JP4251361B2 - Method for measuring off-diagonal components of third-order optical nonlinear susceptibility - Google Patents

Method for measuring off-diagonal components of third-order optical nonlinear susceptibility Download PDF

Info

Publication number
JP4251361B2
JP4251361B2 JP2004155312A JP2004155312A JP4251361B2 JP 4251361 B2 JP4251361 B2 JP 4251361B2 JP 2004155312 A JP2004155312 A JP 2004155312A JP 2004155312 A JP2004155312 A JP 2004155312A JP 4251361 B2 JP4251361 B2 JP 4251361B2
Authority
JP
Japan
Prior art keywords
measured
sample
diagonal component
axis
nonlinear susceptibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004155312A
Other languages
Japanese (ja)
Other versions
JP2005337822A (en
Inventor
英夫 岸田
博 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004155312A priority Critical patent/JP4251361B2/en
Publication of JP2005337822A publication Critical patent/JP2005337822A/en
Application granted granted Critical
Publication of JP4251361B2 publication Critical patent/JP4251361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、三次の光学非線形感受率の非対角成分の測定方法に関する。   The present invention relates to a method for measuring a non-diagonal component of a third-order optical nonlinear susceptibility.

情報通信の高速化に伴い、光技術のますますの向上が望まれている。その中で、全光型のデバイスが必須技術である。全光型デバイスとは、ある光に対する光学応答(吸収、透過、反射、屈折など)を別の光によって制御するデバイスである。このようなデバイスを可能にするためには、大きな三次の光学非線形性を有する非線形光学材料が必要である。光学材料の三次の光学非線形性を評価するうえで、第三高調波発生法(third−harmonic generation)は定量性に優れた標準的な方法となっている。この手法を用い、三次の光学非線形性を評価することにより、光学材料の電子状態を知ることができ、電子状態に立ち返って非線形光学材料の設計が可能になるため、有用な評価方法である。
三次の非線形感受率は、対角成分と非対角成分からなり、対角成分は従来からメーカーフリンジ(Maker fringe)法等が知られ、測定方法が確立されている。しかし、非対角成分についての測定方法は未だ確立されておらず、従来方法として位相遅延法(非特許文献1参照)があるが、この方法は下記に説明するような課題があった。
A.B.Schumacher,et.al.,“Parity−Forbidden Excitation of Sr2 CuO2 Cl2 Revealed by Optical Third−Harmonic Spectroscopy Physical Review Letters,Vol.87,No.12,127006−1〜127006−4(2000)
With the speeding up of information communication, further improvement in optical technology is desired. Among them, all-optical devices are essential technologies. An all-optical device is a device that controls the optical response (absorption, transmission, reflection, refraction, etc.) of one light with another light. In order to enable such a device, a nonlinear optical material having a large third-order optical nonlinearity is required. In evaluating the third-order optical nonlinearity of an optical material, the third-harmonic generation method is a standard method with excellent quantitativeness. By evaluating third-order optical nonlinearity using this method, the electronic state of the optical material can be known, and the nonlinear optical material can be designed by returning to the electronic state, which is a useful evaluation method.
The third-order nonlinear susceptibility is composed of a diagonal component and a non-diagonal component. For the diagonal component, a manufacturer fringe (Maker fringe) method or the like is conventionally known, and a measurement method has been established. However, a measurement method for non-diagonal components has not yet been established, and there is a phase delay method (see Non-Patent Document 1) as a conventional method. However, this method has problems as described below.
A. B. Schumacher, et. al. , “Parity-Forbidden Exclusion of Sr2 CuO2 Cl2 Revealed by Optical Third-Harmonic Spectroscopy Physical Review Letters, Vol.

ここで、位相遅延法による非対角成分の測定方法(非特許文献1参照)の課題を説明する。この方法は、図4に示すように、偏光方向41が結晶x軸又はy軸から45°傾いたレーザー光42を位相調整器(retarder)43に入力し、レーザー光42のx軸成分44とy軸成分45との間に位相遅延Δを加えて、被測定光学結晶46に入射し、被測定光学結晶46から発光する第三高調波のx軸成分強度Ix 、y軸成分強度Iy を検光子48及び光強度検出器49により測定する。Δを種々変えて測定し、被測定光学結晶46の三次の光学非線形感受率を求める。 Here, the problem of the non-diagonal component measurement method (see Non-Patent Document 1) by the phase delay method will be described. In this method, as shown in FIG. 4, a laser beam 42 whose polarization direction 41 is inclined by 45 ° from the crystal x-axis or y-axis is input to a phase adjuster 43, and the x-axis component 44 of the laser beam 42 and A phase delay Δ is added to the y-axis component 45, and the third harmonic x-axis intensity I x and y-axis component intensity I y of the third harmonic incident on the measured optical crystal 46 and emitted from the measured optical crystal 46 are obtained. Is measured by an analyzer 48 and a light intensity detector 49. The Δ is measured in various ways to obtain the third-order optical nonlinear susceptibility of the optical crystal 46 to be measured.

光学結晶が4回回転対称軸を有する場合についてこの方法の原理を説明する。4回回転対称軸を有する結晶の三次の光学非線形感受率の独立な成分は、対角成分χxxxx (3) と、非対角成分χxxyy (3) である。Ex 、Ey をそれぞれ、x軸方向、y軸方向の光電界とすれば、x軸、y軸方向の三次の分極Px(3ω)、Py(3ω) は次式(1)で表される(但し、ωはレーザー光の角周波数とする)。

Figure 0004251361
ここで、χxxxx (3) を、強度κxx、位相αを用いて次式(2)で表す。
Figure 0004251361
さらに、χxxxx (3) とχxxyy (3) の位相差δを次式(3)のように定義し、
Figure 0004251361
同様に、χxxyy (3) を、強度κxy、位相βで表し、また、(3)式のδを使用して表すと次式(4)となる。
Figure 0004251361
さらに、χxxxx (3) とχxxyy (3) の相対強度比sを次式(5)のように定義する。
Figure 0004251361
さらに、χxxyy (3) を、(3)式、(4)式、(5)式を使用してχxxxx (3) で表すと次式(6)となる。
Figure 0004251361
The principle of this method will be described for the case where the optical crystal has a 4-fold rotational symmetry axis. Independent components of the third-order optical nonlinear susceptibility of a crystal having a four-fold rotational symmetry axis are a diagonal component χ xxxx (3) and a non-diagonal component χ xxyy (3) . If E x and E y are optical electric fields in the x-axis direction and y-axis direction, respectively, the third-order polarizations Px (3ω) and Py (3ω) in the x-axis direction and y-axis direction are expressed by the following equation (1). Where ω is the angular frequency of the laser beam.
Figure 0004251361
Here, χ xxxx (3) is expressed by the following equation (2) using the intensity κ xx and the phase α.
Figure 0004251361
Furthermore, the phase difference δ between χ xxxx (3) and χ xxyy (3) is defined as the following equation (3):
Figure 0004251361
Similarly, χ xxyy (3) is expressed by the intensity κ xy and the phase β, and is expressed by using the δ in the equation (3), the following equation (4) is obtained.
Figure 0004251361
Further, the relative intensity ratio s between χ xxxx (3) and χ xxyy (3) is defined as the following equation (5).
Figure 0004251361
Further, when χ xxyy (3) is expressed by χ xxxx (3) using the equations (3), (4), and (5), the following equation (6) is obtained.
Figure 0004251361

また、Ex 、Ey の共通部分をEとし、図4に示した位相調整器43によって、Ex とEy の間に付加する位相遅延をΔとすると、(1)〜(6)式によって、(1)式のPx(3ω)、Py(3ω) は次式(7)で表される。

Figure 0004251361
(7)式から、Px(3ω)が最小になるのは、δ+2Δ=π、すなわち、Δ=(π−δ)/2のときであり、また、Py(3ω) が最小になるのは、2Δ−δ=π、すなわち、Δ=(π+δ)/2であるから、図5に示すように、第三高調波のx軸成分強度Ix 、及び第三高調波のy軸成分強度Iy をΔの関数として測定し、Ix とIy のそれぞれの最小値を与える位相遅延Δの差から、δが測定できる。
変数γ、θを次式(8)で定義する。
Figure 0004251361
x は、γ、θを用いることにより、次式(9)で表される。
Figure 0004251361
さらに、変数a,cを導入し、(9)式を次式(10)のように表す。
Figure 0004251361
a,cを、測定値Ix のカーブ・フィティングによって求める。a、cとγの関係は次式(11)で表される。
Figure 0004251361
この(11)式から、γを解くと次式(12)となる。
Figure 0004251361
In addition, E x, the intersection of E y and E, the phase adjuster 43 shown in FIG. 4, when the phase delay to be added between the E x and E y, and Δ, (1) ~ (6 ) formula Therefore, Px (3ω) and Py (3ω) in the equation (1) are expressed by the following equation (7).
Figure 0004251361
From equation (7), Px (3ω) is minimized when δ + 2Δ = π, that is, when Δ = (π−δ) / 2, and Py (3ω) is minimized. Since 2Δ−δ = π, that is, Δ = (π + δ) / 2, as shown in FIG. 5, the x-axis component intensity I x of the third harmonic and the y-axis component intensity I y of the third harmonic Is measured as a function of Δ, and δ can be measured from the difference in phase delay Δ that gives the minimum values of I x and I y , respectively.
Variables γ and θ are defined by the following equation (8).
Figure 0004251361
I x is expressed by the following equation (9) by using γ and θ.
Figure 0004251361
Furthermore, variables a and c are introduced, and the expression (9) is expressed as the following expression (10).
Figure 0004251361
a and c are obtained by curve fitting of the measured value I x . The relationship between a, c and γ is expressed by the following equation (11).
Figure 0004251361
From this equation (11), when γ is solved, the following equation (12) is obtained.
Figure 0004251361

従来方法は、(7)式に基づいて位相遅延Δの差から求めたδと、(12)式のカーブ・フィティングで求めたγと、メーカーフリンジ法で測定したχxxxx (3) の絶対値κxxと位相αとから、(6)式を用いてχxxyy (3) を求めるものである。 The conventional method is the absolute value of δ obtained from the difference in phase delay Δ based on equation (7), γ obtained by curve fitting in equation (12), and χ xxxx (3) measured by the manufacturer fringe method. From the value κ xx and the phase α, χ xxyy (3) is obtained using equation (6).

しかしながら、(12)式を、γを縦軸、aを横軸としてグラフに表示すると、図6に示すように、γはa=cのときに1であり、a<cでは二つの解が存在する。すなわち、a<cの場合のsは、s=γ/3=κxy/κxx>1/3、及び、κxy/κxx<1/3の両方が可能であり、従って、χxxyy (3) の絶対値が決定できない。このため、従来は、κxy/κxx>1/3であるか、κxy/κxx<1/3であるかを理論的考察に基づいて、或いは他の特性の測定データを参考とすることにより、どちらか一方を選択してχxxyy (3) を決定せざるを得なかった。しかしながら、理論的考察が困難であったり、他の特性の測定データが参考にならない場合がほとんどである。
このように、従来の位相遅延法では、χxxyy (3) が決定できないと言う課題がある。
However, when the equation (12) is displayed on the graph with γ as the vertical axis and a as the horizontal axis, as shown in FIG. 6, γ is 1 when a = c, and two solutions are obtained when a <c. Exists. That is, s for a <c can be both s = γ / 3 = κ xy / κ xx > 1/3 and κ xy / κ xx <1/3, and therefore χ xxyy ( The absolute value of 3) cannot be determined. Therefore, conventionally, whether κ xy / κ xx > 1/3 or κ xy / κ xx <1/3 is based on theoretical considerations, or measurement data of other characteristics is referred to. Therefore, either one of them must be selected to determine χ xxyy (3) . However, in most cases, theoretical consideration is difficult, or measurement data of other characteristics is not helpful.
As described above, the conventional phase delay method has a problem that χ xxyy (3) cannot be determined.

本発明は上記課題に鑑み、三次の光学非線形感受率の非対角成分を測定し得る方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a method capable of measuring a non-diagonal component of a third-order optical nonlinear susceptibility.

上記目的を達成するために、本発明の三次の光学非線形感受率の非対角成分の測定方法は、励起光の光軸を被測定試料の回転対称軸に一致させ、且つ、励起光の偏光方向を被測定試料の主軸の一つに一致させて励起光を被測定試料に入射し、被測定試料から発生する三次の非線形発光強度を、被測定試料の回転対称軸の回りの回転角0度と所定の回転角とでそれぞれ測定し、所定の回転角における測定値を回転角0度の測定値で正規化し、この正規化した値が1より大きいか小さいかによって、被測定試料の三次の光学非線形感受率の対角成分と非対角成分との相対強度比が、位相遅延法から求める上記対角成分と非対角成分との位相差から定まる一定値より大きいか小さいかを判定し、この判定により、上記位相遅延法から求まる、被測定試料の三次の光学非線形感受率の対角成分と非対角成分との二つの相対強度比の内の一方を選択して、被測定試料の三次の光学非線形感受率の非対角成分を測定することを特徴とする。
ここで、上記所定の回転角は、前記被測定試料の回転対称軸が4回回転軸である場合に、nπ/2(但し、nは整数)を除く任意の角度である。
位相遅延法から求める被測定試料の三次の光学非線形感受率の対角成分と非対角成分との位相差から定まる一定値は、前記被測定試料の回転対称軸が4回回転軸である場合に、上記一定値をs0 とし、位相差をδとして、s={−cosδ+(cosδ+3)0.5 }/3で定まる一定値である。
この方法によれば、位相遅延法から定まる可能な二つの解の一方を、本発明の方法による測定値に基づいて選択することができる。従来は、理論的考察や他の特性の測定データを参考にして二つの可能な解の一方を選択していたが、本発明の方法によれば、測定値に基づいて、正しい強度比を決定できる。従って、三次の光学非線形感受率の非対角成分を正しく測定することが可能になる。
上記構成において、被測定試料から発生する三次の非線形発光強度を、回転角0°と回転角45°の二点で測定し、この2点の測定値の大小関係から、位相遅延法から定まる二つの、対角成分と非対角成分の間の相対強度比の内の一方を選択してもよい。この方法によれば、極めて簡便、且つ、正確に、可能な相対強度比の内の一方を測定値に基づいて選択することができる。
In order to achieve the above object, the third-order optical nonlinear susceptibility non-diagonal component measurement method of the present invention makes the optical axis of the excitation light coincide with the rotational symmetry axis of the sample to be measured, and the polarization of the excitation light. Excitation light is incident on the sample to be measured with the direction coincident with one of the main axes of the sample to be measured, and the third-order nonlinear emission intensity generated from the sample to be measured is set to a rotation angle 0 around the rotational symmetry axis of the sample to be measured. The measurement value at a predetermined rotation angle is normalized with the measurement value at a rotation angle of 0 degree, and the third order of the sample to be measured is determined depending on whether the normalized value is larger or smaller than 1. Determines whether the relative intensity ratio between the diagonal component and non-diagonal component of the optical nonlinear susceptibility is greater or less than a fixed value determined from the phase difference between the diagonal component and non-diagonal component obtained from the phase delay method. and, by this determination, it obtained from the phase delay method, the measurement Fee tertiary selects one of the two relative intensity ratio between the diagonal components and non-diagonal components of the optical nonlinear susceptibility, measuring off-diagonal components of the third-order optical nonlinear susceptibility of the sample to be measured It is characterized by doing.
Here, the predetermined rotation angle is an arbitrary angle excluding nπ / 2 (where n is an integer) when the rotational symmetry axis of the sample to be measured is a four-fold rotation axis.
The constant value determined from the phase difference between the diagonal component and the non-diagonal component of the third-order optical nonlinear susceptibility of the sample to be measured obtained from the phase delay method is when the rotational symmetry axis of the sample to be measured is a four-fold rotation axis. Further, the above constant value is s 0 and the phase difference is δ, and is a constant value determined by s 0 = {− cos δ + (cos δ + 3) 0.5 } / 3.
According to this method, one of the two possible solutions determined from the phase delay method can be selected based on the measured value according to the method of the present invention. Conventionally, one of two possible solutions has been selected with reference to theoretical considerations and measurement data of other characteristics, but according to the method of the present invention, the correct intensity ratio is determined based on the measured values. it can. Accordingly, it is possible to correctly measure the off-diagonal component of the third-order optical nonlinear susceptibility.
In the above configuration, the third-order nonlinear emission intensity generated from the sample to be measured is measured at two points of the rotation angle of 0 ° and the rotation angle of 45 °. One of the relative intensity ratios between the diagonal component and the non-diagonal component may be selected. According to this method, one of the possible relative intensity ratios can be selected on the basis of the measured value in a very simple and accurate manner.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
本発明の方法は、上記の背景技術で説明した位相遅延法と下記に説明する試料回転法とを組み合わせて、三次の光学非線形感受率の非対角成分を測定するものである。
以下では4回転対称軸を有する光学結晶の場合を例にとって説明する。図1は、試料回転法を説明するための装置模式図である。図において、光学結晶1は、光学結晶1の結晶z軸を、レーザー光2の光線軸3に一致させて配置し、レーザー光2の偏光方向4を光学結晶1の結晶x軸方向に一致させる。この状態から、光学結晶1を光線軸3の回りに連続的に回転し、レーザー光2の照射によって光学結晶1から発生する第三高調波5の強度を、回転角φの関数として、光強度検出器5により測定する。この測定値から、三次の光学非線形感受率の非対角成分を以下のようにして測定する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The method of the present invention measures the off-diagonal component of the third-order optical nonlinear susceptibility by combining the phase delay method described in the background art and the sample rotation method described below.
Hereinafter, the case of an optical crystal having four rotational symmetry axes will be described as an example. FIG. 1 is a schematic view of an apparatus for explaining a sample rotation method. In the figure, the optical crystal 1 is arranged such that the crystal z-axis of the optical crystal 1 coincides with the light beam axis 3 of the laser light 2, and the polarization direction 4 of the laser light 2 coincides with the crystal x-axis direction of the optical crystal 1. . From this state, the optical crystal 1 is continuously rotated around the light axis 3, and the intensity of the third harmonic 5 generated from the optical crystal 1 by the irradiation of the laser beam 2 is expressed as a function of the rotation angle φ. Measurement is performed by the detector 5. From this measurement value, the off-diagonal component of the third-order optical nonlinear susceptibility is measured as follows.

すなわち、任意の回転角φにおける、結晶x軸方向の電界Ex 、結晶y軸方向の電界Ey を、レーザー光2の電界E0 、及び回転角φで表すと次式(13)となる。

Figure 0004251361
また、(3)式、(5)式で定義したs及びδを使用して、変数tを次式(14)のように定義する。
Figure 0004251361
結晶x軸方向の第三高調波の強度Ix は、(1)式、(3)式、(5)式、(14)式から次式(15)となる。
Figure 0004251361
同様に、結晶y軸方向の第三高調波の強度Iy は次式(16)となる。
Figure 0004251361
光強度検出器5が検出する第三高調波の強度Iは、(15)式、(16)式を用いて次式(17)で表される。
Figure 0004251361
ところで、恒等式として次式(18)が成り立つ。
Figure 0004251361
(17)式の最後の式と(18)式とを比べれば明らかなように、(17)式の最後の式のcos2 φ・sin2 φの項の係数9s2 +6scosδが、次式(19)を満足すれば、Iはφによらずに一定値Ic であることがわかる。
Figure 0004251361
Tを次式(20)のように定義する。
Figure 0004251361
(19)式はT=0に相当する。T=0を満たすsをs0 とすれば、s0 は次式(21)で表される。
Figure 0004251361
Tはsの2乗項の係数が正の2次関数であるので、s>s0 でT>0、s<s0 でT<0である。T>0は、9s2 +6scosδ>3を意味するから、s>s0 であれば、(17)式の最後の式におけるcos2 φ・sin2 φの項の係数が3より大きいことを意味する。同様に、T<0は、9s2 +6scosδ<3を意味するから、s<s0 であれば、(17)式の最後の式におけるcos2 φ・sin2 φの項の係数が3より小さいことを意味する。さらに(17)式を次式(22)のように書き直す。
Figure 0004251361
ここで、ΔTは3からの偏差を表す。(22)式から明らかなように、ΔTが正であれば(22)式の中括弧({ })の値はφによらずに常に1より大きく、ΔTが負であれφによらずに常に1より小さいことがわかる。ところで、(17)式でφ=0と置けば、(17)式は次式(23)となる。
Figure 0004251361
(22)式を(23)式で割れば、(22)式の中括弧({ })の式が得られ、この値が1より大きいか小さいかによって、ΔTが正か負かがわかる、すなわち、(17)式の最後の式におけるcos2 φ・sin2 φの項の係数が3より大きいか小さいかがわかる。 That is, at any rotation angle phi, the crystal x-axis direction of the electric field E x, and the electric field E y crystal y-axis direction, the electric field E 0 of the laser beam 2, and is represented by the rotation angle phi following equation (13) .
Figure 0004251361
Further, the variable t is defined as the following equation (14) using s and δ defined in the equations (3) and (5).
Figure 0004251361
The third harmonic intensity I x in the crystal x-axis direction is expressed by the following equation (15) from the equations (1), (3), (5), and (14).
Figure 0004251361
Similarly, the intensity I y of the third harmonic in the crystal y-axis direction is expressed by the following equation (16).
Figure 0004251361
The intensity I of the third harmonic detected by the light intensity detector 5 is expressed by the following equation (17) using the equations (15) and (16).
Figure 0004251361
By the way, the following equation (18) holds as an identity.
Figure 0004251361
As is clear from the comparison of the last equation of equation (17) and equation (18), the coefficient 9s 2 + 6scosδ of the term cos 2 φ · sin 2 φ of the last equation of equation (17) is If 19) is satisfied, it can be seen that I is a constant value I c regardless of φ.
Figure 0004251361
T is defined as in the following equation (20).
Figure 0004251361
Equation (19) corresponds to T = 0. If s satisfying T = 0 and s 0, s 0 is expressed by the following equation (21).
Figure 0004251361
T Since the coefficient of square term of s is a positive quadratic function, a T <0 at T> 0, s <s 0 at s> s 0. T> 0 means 9s 2 + 6scos δ> 3. Therefore, if s> s 0 , it means that the coefficient of the term cos 2 φ · sin 2 φ in the last equation of the equation (17) is larger than 3. To do. Similarly, since T <0 means 9s 2 + 6scosδ <3, if s <s 0 , the coefficient of the term cos 2 φ · sin 2 φ in the last expression of equation (17) is smaller than 3. Means that. Further, equation (17) is rewritten as the following equation (22).
Figure 0004251361
Here, ΔT represents a deviation from 3. As apparent from the equation (22), if ΔT is positive, the value of the braces ({}) in the equation (22) is always larger than 1 regardless of φ, and regardless of φ, even if ΔT is negative. It can be seen that it is always less than 1. By the way, if φ = 0 is set in the equation (17), the equation (17) becomes the following equation (23).
Figure 0004251361
By dividing the expression (22) by the expression (23), the expression of the curly braces ({}) of the expression (22) is obtained. That is, it can be seen whether the coefficient of the term cos 2 φ · sin 2 φ in the last equation of the equation (17) is larger or smaller than 3.

従って、図1を用いて説明したように、光学結晶1を光線軸3の回りに、π/2の整数倍を除く任意の角度回転し、レーザー光2の照射によって光学結晶1から発生する第三高調波5の強度Iを測定し、この測定値Iを回転角0°の測定強度で正規化し、この規格化した値が、1よりも大きければ、(17)式の最後の式におけるcos2 φ・sin2 φの項の係数が3より大きく、従って、s>s0 であることがわかる。また、この規格化した値が、1よりも小さければ、(17)式の最後の式におけるcos2 φ・sin2 φの項の係数が3より小さく、従って、s<s0 であることがわかる。従って、本発明の方法によれば、sの範囲を特定する情報が得られるので、従来法で課題であった、s=κxy/κxx>1/3の解、又は、s=κxy/κxx<1/3の解の内の正しい解を選択できるようになる。 Therefore, as described with reference to FIG. 1, the optical crystal 1 is rotated around the light axis 3 by an arbitrary angle excluding an integral multiple of π / 2, and the first generated from the optical crystal 1 by the irradiation of the laser light 2. The intensity I of the third harmonic 5 is measured, the measured value I is normalized with the measured intensity at the rotation angle of 0 °, and if this normalized value is larger than 1, cos in the last expression of the expression (17). It can be seen that the coefficient of the term of 2 φ · sin 2 φ is larger than 3, and therefore s> s 0 . If this normalized value is smaller than 1, the coefficient of the term cos 2 φ · sin 2 φ in the last equation of equation (17) is smaller than 3, and therefore s <s 0. Recognize. Therefore, according to the method of the present invention, information specifying the range of s can be obtained. Therefore, the solution of s = κ xy / κ xx > 1/3, which is a problem in the conventional method, or s = κ xy It becomes possible to select a correct solution among the solutions of / κ xx <1/3.

また、上記の解の選択は、(22)式から明らかなように、φ=45°の測定値をφ=0°の測定値で正規化し、その値が1より大きいか小さいかで判断すれば、簡便、且つ、精度良く選択することができる。   Also, the selection of the above solution is determined by normalizing the measured value of φ = 45 ° with the measured value of φ = 0 °, as apparent from the equation (22), and determining whether the value is larger or smaller than 1. In this case, the selection can be made easily and with high accuracy.

試料として、典型的な二次元銅酸化物であるNd2 CuO4 を用いた。この酸化物は4回回転対称軸対称性を有する結晶である。図2は従来の位相遅延法を用いて測定したδを示す図である。縦軸はTHG(第三高調波)強度を示し、横軸は位相調整器によって付け加えた相対位相Δを表し、●は結晶x軸方向のTHG強度であり、○は結晶y軸方向のTHG強度を示す。この測定結果からδ=59°であり、このδから、s0 =0.49であることがわかる。また、この測定結果のカーブ・フィティングから、s=0.77か、S=0.15であることがわかった。 As a sample, Nd 2 CuO 4 which is a typical two-dimensional copper oxide was used. This oxide is a crystal having four-fold rotational symmetry axial symmetry. FIG. 2 is a diagram showing δ measured using the conventional phase delay method. The vertical axis represents the THG (third harmonic) intensity, the horizontal axis represents the relative phase Δ added by the phase adjuster, ● represents the THG intensity in the crystal x-axis direction, and ○ represents the THG intensity in the crystal y-axis direction. Indicates. From this measurement result, it is found that δ = 59 °, and from this δ, s 0 = 0.49. Further, from the curve fitting of this measurement result, it was found that s = 0.77 or S = 0.15.

図3は、試料回転法による測定結果を示す図である。横軸は試料回転角φを示し、縦軸はφ=0°のときのTHG強度で正規化したTHG強度である。図から、φ=0°以外の点の規格化されたTHG強度が1より大きくなっているので、s>s0 =0.49であることがわかり、位相遅延法で求めた解s=0.77、と0.15のうち、s=0.77を選択することができた。これにより、Nd2 CuO4 の三次の非線形感受率の非対角成分χxxyy (3) を決定することができた。 FIG. 3 is a diagram illustrating a measurement result obtained by the sample rotation method. The horizontal axis represents the sample rotation angle φ, and the vertical axis represents the THG intensity normalized by the THG intensity when φ = 0 °. From the figure, it can be seen that s> s 0 = 0.49 because the normalized THG intensity at points other than φ = 0 ° is greater than 1, and the solution s = 0 obtained by the phase delay method S = 0.77 could be selected from .77 and 0.15. As a result, the non-diagonal component χ xxyy (3) of the third-order nonlinear susceptibility of Nd 2 CuO 4 could be determined.

上記説明から理解されるように、本発明の方法によれば、三次の非線形感受率の非対角成分を決定することができるから、光学材料の非線形応答メカニズムを解明できるようになり、その結果、非線形光学応答に優れた光学材料の開発が可能になり、例えば、情報通信の高速化にともなって必要な全光型デバイスの実現が可能になる。   As can be understood from the above description, according to the method of the present invention, the non-diagonal component of the third-order nonlinear susceptibility can be determined, so that the nonlinear response mechanism of the optical material can be clarified, and as a result, Thus, it becomes possible to develop an optical material having an excellent nonlinear optical response. For example, it is possible to realize a necessary all-optical device as information communication speeds up.

本発明の三次の非線形感受率の非対角成分を決定する方法を説明するための装置模式図である。It is an apparatus schematic diagram for demonstrating the method of determining the non-diagonal component of the 3rd-order nonlinear susceptibility of this invention. 従来の位相遅延法を用いて測定したδを示す図である。It is a figure which shows (delta) measured using the conventional phase delay method. 本発明の試料回転法による測定結果を示す図である。It is a figure which shows the measurement result by the sample rotation method of this invention. 位相遅延法による非対角成分の測定装置を模式的に示す図である。It is a figure which shows typically the measuring device of the non-diagonal component by a phase delay method. 位相遅延法による非対角成分の位相差δを測定する方法を示す図である。It is a figure which shows the method of measuring phase difference (delta) of the non-diagonal component by a phase delay method. 位相遅延法では対角成分と非対角成分の強度比を一義的に決定できないことを説明する図である。It is a figure explaining that the intensity ratio of a diagonal component and a non-diagonal component cannot be determined uniquely by a phase delay method.

符号の説明Explanation of symbols

1 光学結晶
2 レーザー光
3 光軸
4 偏光方向
5 第三高調波
6 光強度検出器
41 偏光方向
42 レーザー光
43 位相調整器
44 x軸成分
45 y軸成分
46 光学結晶
47 第三高調波
48 検光子
49 光強度検出器
DESCRIPTION OF SYMBOLS 1 Optical crystal 2 Laser beam 3 Optical axis 4 Polarization direction 5 Third harmonic 6 Light intensity detector 41 Polarization direction 42 Laser light 43 Phase adjuster 44 x-axis component 45 y-axis component 46 Optical crystal 47 Third harmonic 48 Photon 49 Light intensity detector

Claims (4)

励起光の光軸を被測定試料の回転対称軸に一致させ、且つ、励起光の偏光方向を被測定試料の主軸の一つに一致させて励起光を被測定試料に入射し、被測定試料から発生する三次の非線形発光強度を、被測定試料の回転対称軸の回りの回転角0度と所定の回転角とでそれぞれ測定し、所定の回転角における測定値を回転角0度の測定値で正規化し、この正規化した値が1より大きいか小さいかによって、被測定試料の三次の光学非線形感受率の対角成分と非対角成分との相対強度比が、位相遅延法から求める上記対角成分と非対角成分との位相差から定まる一定値より大きいか小さいかを判定し、この判定により、上記位相遅延法から求まる、被測定試料の三次の光学非線形感受率の対角成分と非対角成分との二つの相対強度比の内の一方を選択して、被測定試料の三次の光学非線形感受率の非対角成分を測定することを特徴とする、三次の光学非線形感受率の非対角成分の測定方法。 Make the optical axis of the excitation light coincide with the rotational symmetry axis of the sample to be measured and make the polarization direction of the excitation light coincide with one of the main axes of the sample to be measured so that the excitation light is incident on the sample to be measured. The third-order nonlinear emission intensity generated from the sample is measured at a rotation angle around the rotational symmetry axis of the sample to be measured and a predetermined rotation angle, and the measured value at the predetermined rotation angle is measured at the rotation angle of 0 degree. The relative intensity ratio between the diagonal component and the non-diagonal component of the third-order optical nonlinear susceptibility of the sample to be measured is obtained from the phase delay method depending on whether the normalized value is larger or smaller than 1. Determine whether it is larger or smaller than a fixed value determined from the phase difference between the diagonal component and non-diagonal component, and by this determination, the diagonal component of the third-order optical nonlinear susceptibility of the sample to be measured, obtained from the phase delay method. one of the two relative intensity ratio of non-diagonal components And-option, and measuring off-diagonal components of the third-order optical nonlinear susceptibility of the sample to be measured, tertiary measurement method of the non-diagonal components of the optical nonlinear susceptibility. 前記所定の回転角は、前記被測定試料の回転対称軸が4回回転軸である場合に、nπ/2(但し、nは整数)を除く任意の角度であることを特徴とする、請求項1に記載の三次の光学非線形感受率の非対角成分の測定方法。   The predetermined rotation angle is an arbitrary angle excluding nπ / 2 (where n is an integer) when the rotational symmetry axis of the sample to be measured is a four-fold rotation axis. 2. A method of measuring a non-diagonal component of the third-order optical nonlinear susceptibility according to 1. 前記位相遅延法から求める被測定試料の三次の光学非線形感受率の対角成分と非対角成分との位相差から定まる一定値は、前記被測定試料の回転対称軸が4回回転軸である場合に、上記一定値をs0 とし、前記位相差をδとして、s={−cosδ+(cosδ+3)0.5 }/3で定まる一定値であることを特徴とする、請求項1に記載の三次の光学非線形感受率の非対角成分の測定方法。 The constant value determined from the phase difference between the diagonal component and non-diagonal component of the third-order optical nonlinear susceptibility of the sample to be measured obtained from the phase delay method is such that the rotational symmetry axis of the sample to be measured is a four-fold rotation axis. 2, wherein the constant value is s 0 and the phase difference is δ, and is a constant value determined by s 0 = {− cos δ + (cos δ + 3) 0.5 } / 3. Of measuring the non-diagonal component of the third-order optical nonlinear susceptibility. 前記被測定試料の回転対称軸が4回回転軸である場合に、前記被測定試料から発生する三次の非線形発光強度を、回転角0°と回転角45°の二点で測定することを特徴とする、請求項1に記載の三次の光学非線形感受率の非対角成分の測定方法。   When the rotational symmetry axis of the sample to be measured is a four-fold rotational axis, the third-order nonlinear emission intensity generated from the sample to be measured is measured at two points of a rotation angle of 0 ° and a rotation angle of 45 °. The method for measuring a non-diagonal component of the third-order optical nonlinear susceptibility according to claim 1.
JP2004155312A 2004-05-25 2004-05-25 Method for measuring off-diagonal components of third-order optical nonlinear susceptibility Expired - Fee Related JP4251361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155312A JP4251361B2 (en) 2004-05-25 2004-05-25 Method for measuring off-diagonal components of third-order optical nonlinear susceptibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155312A JP4251361B2 (en) 2004-05-25 2004-05-25 Method for measuring off-diagonal components of third-order optical nonlinear susceptibility

Publications (2)

Publication Number Publication Date
JP2005337822A JP2005337822A (en) 2005-12-08
JP4251361B2 true JP4251361B2 (en) 2009-04-08

Family

ID=35491570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155312A Expired - Fee Related JP4251361B2 (en) 2004-05-25 2004-05-25 Method for measuring off-diagonal components of third-order optical nonlinear susceptibility

Country Status (1)

Country Link
JP (1) JP4251361B2 (en)

Also Published As

Publication number Publication date
JP2005337822A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
Azzam et al. Accurate calibration of the four-detector photopolarimeter with imperfect polarizing optical elements
Pontin et al. Simultaneous cavity cooling of all six degrees of freedom of a levitated nanoparticle
Wang et al. Nonlinear interferometer: design, implementation, and phase-sensitive sum frequency measurement
Fulghum et al. Interferometric calorimeter for the measurement of water-vapor absorption
Yang et al. Multidimensional four-wave-mixing spectroscopy with squeezed light
Macfarlane et al. Measurement of nuclear and electronic Zeeman effects using optical hole-burning spectroscopy
CN109883346A (en) A kind of device and method based on the optics frequency tripling measurement photoelastic tensor of two-dimensional material third-order non-linear
Nowakowski et al. Time-resolved phase-sensitive second harmonic generation spectroscopy
Ko et al. Direct measurements of safety factor profiles with motional Stark effect for KSTAR tokamak discharges with internal transport barriers
JP4251361B2 (en) Method for measuring off-diagonal components of third-order optical nonlinear susceptibility
New et al. Multiplex polarization spectroscopy of OH for flame thermometry
Lottermoser et al. Nonlinear spatially resolved phase spectroscopy
Conti et al. High-spectral-purity laser system for the AURIGA detector optical readout
Brault The gravitational red shift in the solar spectrum
Shimizu et al. A PD-edge method associated with the laser autocollimation for measurement of a focused laser beam diameter
Li et al. A multi-frequency signal processing method for fiber-optic gyroscopes with square wave modulation
Ulbricht et al. Impact of Earth’s gravity on Gaussian beam propagation in hemispherical cavities
Kong et al. Wavelength-dependence reduction of the scale factor for tactical-grade fiber optic gyroscopes
Norgard et al. An electrooptic probe to determine internal electric fields in a piezoelectric transformer
Vörös et al. Foucault's method for measuring the speed of light with modern apparatus
JPH06317498A (en) Extinction ratio measuring method in assembling process of polarization maintaining fiber and semiconductor laser
Sweeney et al. Measurement of absolute transition dipole moment functions of the 3 Π1→ 1 (X) Σ1+ and 3 Π1→ 2 (A) Σ1+ transitions in NaK using Autler–Townes spectroscopy and calibrated fluorescence
RU2528609C2 (en) METHOD OF DETERMINING ORIENTATION OF CRYSTALLOGRAPHIC AXES IN CLASS 3m ANISOTROPIC ELECTRO-OPTICAL CRYSTAL
Richert et al. Sodern recent development in the design and verification of passive polarization scramblers for space applications
JP2018200401A (en) Optical functional element, polarization analyzer, and method for manufacturing optical functional element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350