JP4249860B2 - Manufacturing method of steel plate for containers - Google Patents

Manufacturing method of steel plate for containers Download PDF

Info

Publication number
JP4249860B2
JP4249860B2 JP28164999A JP28164999A JP4249860B2 JP 4249860 B2 JP4249860 B2 JP 4249860B2 JP 28164999 A JP28164999 A JP 28164999A JP 28164999 A JP28164999 A JP 28164999A JP 4249860 B2 JP4249860 B2 JP 4249860B2
Authority
JP
Japan
Prior art keywords
steel
present
annealing
carburizing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28164999A
Other languages
Japanese (ja)
Other versions
JP2001107148A (en
Inventor
英邦 村上
和久 楠見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28164999A priority Critical patent/JP4249860B2/en
Publication of JP2001107148A publication Critical patent/JP2001107148A/en
Application granted granted Critical
Publication of JP4249860B2 publication Critical patent/JP4249860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、飲料缶などの金属容器に利用される鋼板の製造方法に関するものである。
【0002】
【従来の技術】
飲料缶、食品缶などに代表される容器用鋼板については、缶コスト低減のため、素材の薄手化が求められている。この時、薄手化に伴う缶強度の低下を補うため鋼板自体を高強度化することと、焼鈍工程において生産効率を阻害するヒートバックルと呼ばれる鋼板の腰折れ回避のため、焼鈍時には目的の板厚より厚い鋼板を通板し、その後再冷延(2CR)を施し、目的とする板厚を得る技術が特公平7−109010号公報などに開示されている。しかし、鋼板の薄手化が進行する中で、2CR率の上昇は必然となり、材料の硬質化に伴う延性劣化が新たな問題となりつつある。代表的には缶胴と缶底または缶蓋を巻き締める際に、缶胴端部の径を拡げる加工(フランジ成形)における割れが問題となる。
【0003】
高い2CRに頼らずに高強度化を図る手段としては、固溶Nによる固溶強化や焼付硬化性(BH)などを利用した技術が特開平5−345926号公報、特開平6−116682号公報、特開平8−170122号公報などに開示されている。これらの技術によって缶強度や2ピース缶製造で必要とされる深絞り性および低異方性は確保できるが、これらの技術には薄手化時の焼鈍通板性への考慮やフランジ成形性を確保する観点が欠けているため、通板性とフランジ成形性を両立するための意図が見られない。
【0004】
強度確保および焼鈍通板性の点で有利な2CR材でフランジ成形性の良好な鋼板として、本発明者らは特願平10−144912号でC量を制限し、焼鈍時の熱履歴、特に冷却速度、さらに焼鈍後の二次冷延率を制御することで材料の加工硬化特性を特定範囲に制限し、2CR後の延性を改善する方法を出願した。しかし、この方法では焼鈍条件の変動により材質も変動するため、前後に通板する鋼板の焼鈍条件などを考慮した焼鈍通板スケジュールの調整が必要であった。
【0005】
【発明が解決しようとする課題】
本発明は、薄手材で問題となる焼鈍通板性、缶強度確保で有利な高い2CRを施しているにもかかわらず良好な延性を持ち、スケジュールフリーで製造可能な鋼板の製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、特に2CR率が10%以上で製造される板厚0.4mm以下の鋼板の成分、熱延条件および焼鈍条件と材質との関係を検討するうち、成分、特にNおよびC量を特定範囲に限定し、引張り試験での0.2%耐力や引張り強度で表される加工硬化特性を適当に制御した鋼板では、2CR率が上昇しても従来鋼ほど延性が劣化しないことを知見した。
【0007】
さらに、Nを含有させる方法についてさらなる検討を加えるうち、Nを焼鈍工程より後で含有させ、特定の0.2%耐力、全伸び、加工硬化を示す鋼板においては、極めて良好なフランジ成形性を示すことを知見した。さらに、特願平10−144912号で出願した技術も検討し、本発明を完成したものである。
【0008】
すなわち本発明は、焼鈍後の窒化処理、浸炭処理あるいは浸炭・窒化処理のいずれか、またはこれらの処理を適宜組み合わせることにより、NとCの総量の増加量を板厚平均で20〜320ppmにし、その後15%以上(但し、15%を除く)50%以下の再冷延を行うことにより、薄くて硬くても伸びがよい鋼板を得るものである。
その鋼板とは全伸びが15%以下、0.2%耐力が430MPa以上で、かつ引張り強度と0.2%耐力の差が比較的高い(20Mpa以上)か降伏点伸びが比較的大きい(2%以上)鋼板、あるいは10%冷間圧延前後の0.2%耐力の差が比較的小さく(140MPa以下)、かつ引張強度と0.2%耐力の差が比較的高い(20MPa以上)か降伏点伸びが比較的大きい(2%以上)鋼板である。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
まず、成分について説明する。成分はすべて重量%である。
焼鈍前のC,N量の上限は、いずれも加工性の劣化を回避するために必要であり、C:0.0600%以下、N:0.0100%以下とする。注意を要するのは、後述のように焼鈍前に存在するC,Nと焼鈍後の窒化や浸炭によって含有させたC,Nは、加工性などに及ぼす効果が異なることである。
【0010】
浸炭や窒化によるC,Nの増加量や焼鈍後のC,N量は本発明の重要規定要件である。浸炭や窒化によるNとCの総量の増加量が板厚平均で20ppmより小さいと2CR後の延性劣化が大きく、逆に320ppmを超えて増加させても発明の効果が飽和してしまうためである。
焼鈍後のC量は、加工性の観点から0.0650%以下とする。また焼鈍後のN量は、本発明効果が飽和することと窒化鉄形成による加工性劣化の可能性が生じることから、0.0300%以下とする。
【0011】
このように浸炭や窒化によるC,Nの増加量、浸炭や窒化後のC,N量を制御することで、ただ単にCやNを含有した鋼に無い本発明鋼特有の材質を持つようになるメカニズムは明確ではないが、2CR時の転位を鋼中に分散させ破断の起点となるボイドを形成させるような複雑な交絡・転位の集中を回避し、その後のフランジ成形時にバウシンガー効果的な挙動により転位の再配列を誘起し、破断までの歪を増大させるような効果が同一の含有C,N量でも、浸炭や窒化によるC,Nでより効率よく発現するためではないかと推定される。
焼鈍前に含有しているCやNは、熱延工程や再結晶焼鈍における高温での熱履歴を経ているため、粗大な炭化物、窒化物やある種の偏析など、本発明の効果を得るのに好ましくない形態に変化する割合が多くなっているものと思われる。
これに対し再結晶焼鈍後に鋼中に侵入したC,Nは高温長時間の熱履歴を受けることがなく、固溶C,Nまたは非常に微細な析出物様の形態を保っているものが多く存在し、これが本発明の効果を助長するものと思われる。
【0012】
通常の鋼板に不可避的、強度調整または特定の目的で含有されるAl,Si,P,S等は、一般に容器用に用いられる鋼板に含有される程度に含有される。
その範囲はSi:0.001〜0.10%、P:0.002〜0.040%、S:0.002〜0.040%、Al:0.005〜0.200%である。
Nを溶鋼中に添加する場合には、Alの含有量が高くなると鋼中の微細AlNが増大し、再結晶を抑制し高温焼鈍が必要となり通板性を劣化させるので、0.080%を上限としていたが、本発明においてはNは焼鈍後に添加されるため、この制限は必要でない。
【0013】
次に窒化条件に関して述べる。窒化処理、浸炭処理あるいは浸炭・窒化処理前に鋼板が再結晶していることを限定条件としたのは、再結晶が終了する前に窒化処理、浸炭処理あるいは浸炭・窒化処理を行うと、再結晶が著しく抑制されて未再結晶組織が残り、加工性の顕著な劣化が起こる可能性があるためである。窒化処理、浸炭処理あるいは浸炭・窒化処理を連続焼鈍プロセスで行うには比較的短時間で処理を終了する必要があるので、温度域は550℃以上、800℃以下が好ましい。
即ち、550℃未満では拡散速度が小さく、鋼板中に入るC,N量が少ない。また800℃超になると、容器用鋼板のように薄い板を通板する際に形状不良などが起き易くなる。このような窒化処理、浸炭処理あるいは浸炭・窒化処理により鋼板に導入するC,N量は、温度のほかに雰囲気ガスであるアンモニアやメタンガスの量によって調整する。
本発明法は、鋼板の0.2%耐力430MPa以上を得ることに適している。又、鋼板の全伸びが15%以下であっても、本発明によるとフランジ成形性の良好な鋼板が製造可能である。
【0014】
鋼板の加工硬化挙動は本発明の重要な要件の一つである。加工硬化挙動は一般には引張試験の応力−歪曲線における加工硬化指数、いわゆるn値で表される場合が多いが、本発明鋼が対象としているフランジ成形性の指標にはならない。
本発明で得られる加工硬化挙動の指標および限定範囲は、引張強度と0.2%耐力の差を20MPa以上、または鋼板に10%の冷間圧延を施した場合の0.2%耐力の上昇量が140MPa以下というものである。
冷延における加工硬化量は通常、ロール径、パス回数、潤滑、温度などの圧延条件によりわずかに変動するが、本発明では通常の実験室で行うことができる条件、すなわちロール径100〜400mm、パス回数は1〜5パス、潤滑はパーム油、温度は室温とした場合の値で評価される。加工硬化挙動がこの範囲に無い場合は、製缶工程でのフランジ成形性が顕著に劣化する。
本発明により、200℃、1時間の人工時効後の降伏点伸びが2%以上である鋼板を得ることができる。
【0015】
板厚は本発明鋼の用途を考え、0.400mm以下と限定する。本発明鋼が特に必要とされるのは、延性の劣化がより顕著となる0.200mm以下、さらに効果が発揮されるのは0.170mm以下の極薄鋼板においてである。
鋼板の0.2%耐力、全伸びは、成分、2CR条件により変化し、従来鋼と同様に材質調整されるが、本発明の特徴である加工硬化挙動および時効特性を制御するには、特に2CR率を10%〜50%とすることが発明の効果を得るのに必要である。特に2CR率を15%〜25%とすれば、より顕著な効果を得ることができる。
【0016】
また本発明鋼では、雰囲気を制御した浸炭や窒化条件により材質を作り分けるため、従来技術のように材質制御のための焼鈍条件、特に最高到達温度と高温での保定時間の管理は重要でなくなり、焼鈍後の組織が再結晶していればよい。
従来技術によれば、特に焼鈍温度を変化させる場合には温度が変化している途中および変化させた後の炉温が安定するまで、通板が停滞または無駄な板を通板する必要がある。このためユーザーの要求に応じ様々な板厚および材質の鋼板を製造するに当たり、焼鈍炉の温度の変動を極力小さくし通板速度を一定として製造できるような通板スケジュールを組む必要が生じるが、このための労力は甚大なものがあり、また生産性を阻害させない完全なスケジュールを組むことは不可能である。本発明鋼では材質を浸炭や窒化条件で制御するため、実質的にスケジュールフリー化が達成できる。
【0017】
従来技術ではNを一般的に知られているような固溶強化または焼付硬化を目的として含有させるものもあるが、本発明でのN含有量では、本発明が対象とするJ1S5号引張試験における0.2%耐力が430MPa以上の鋼板は必ずしも製造できないばかりでなく、成分に応じた2CRなど製造条件による0.2%耐力、加工硬化挙動の制御なくしては延性の劣化が著しい。また、特に2CR率が低い場合には時効性が顕著に劣化し、加工時の表面性状の劣化などの不具合が発生する。本発明でのNの添加は2CRによる延性劣化を抑止する目的で行われるもので、成分ならびに0.2%耐力、加工硬化特性などで上記の特性を得ることができる。
【0018】
本発明の効果は成分調整以降、焼鈍前の熱履歴、製造履歴によらない。熱延を行う場合のスラブはインゴット法、連続鋳造法などの製造法には限定されず、また熱延に至るまでの熱履歴にもよらないため、スラブ再加熱法、鋳造したスラブを再加熱することなく直接熱延するCC−DR法、さらには粗圧延などを省略した薄スラブ鋳造によっても本発明の効果を得ることができる。また熱延条件にもよらず、仕上げ温度をα+γの二相域とする二相域圧延や、粗バーを接合して圧延する連続熱延によっても本発明の効果を得られる。
【0019】
また、本発明鋼を溶接により缶胴部を製造する3ピース缶用素材として用いる場合には、溶接部が硬化し熱影響部が軟化するため、フランジ成形時に熱影響部に歪が集中し、フランジ成形性が鋼板延性のみならず溶接部および熱影響部の特性に影響される場合がある。溶接部および熱影響部の硬度制御のためB,Nbなどが添加される場合があるが、これらの微量元素を添加しても本発明の効果が失われるものではない。
【0020】
通常、本発明鋼板は表面処理鋼板用の原板として使用されるが、表面処理により本発明の効果はなんら損なわれるものではない。缶用表面処理としては通常、錫、クロム(ティンフリー)などが施される。また、近年使用されるようになっている有機皮膜を被覆したラミネート鋼板用の原板としても、本発明の効果を損なうことなく使用できる。
【0021】
【実施例】
本発明では、フランジ成形性は鋼板のJIS5号引張り試験における全伸びによって評価した。3ピース缶用途での板取り方向や2P用途でのしごき方向との兼ね合いを考え、素材の圧延方向と90度の方向の引張試験値を使用する。
材質試験時において表1に示す各成分の鋼について、熱間圧延、冷間圧延、焼鈍後、2CRを施して鋼板を製造し、引張試験により材質を測定した。特に注意を要するのは表1中のC,Nの量である。表中の数字は材質試験時のものであるため、表2に示す浸炭や窒化により製造されたものでは、焼鈍前のC,N量は表1の値から表2に示す浸炭または窒化によるC,Nの増加量を差し引いたものということになる。
【0022】
これらの鋼についての製造条件および材質を表2に示す。本発明の製造法により加工硬化挙動および時効特性を本発明の範囲内に制御することで、熱延条件によらず良好な延性が得られていることが確認できる。これらの試験材は250mm厚の連続鋳造スラブを1050℃から1250℃で加熱し、γ域で熱間圧延を行った後、冷延し連続焼鈍で熱処理を行った。板厚は0.19mmに調整した。
【0023】
図1は、板厚:0.170〜0.140mmの鋼板について熱延条件、再結晶焼鈍条件を一定とし、浸炭、窒化または浸炭・窒化条件と15〜25%の2CRで材質を作り分けた場合の0.2%耐力と延性のバランスにより、本発明鋼C(浸炭又は窒化でC,Nを高めた鋼板でC:300ppm 以上又はN:40ppm 以上とした鋼板)の材質(○印)を、0.2%耐力や引張強度で表される加工硬化特性を適当に制御するが、本発明の条件以外の製造法で制御された鋼板B(製鋼段階でC:300ppm 以上又はN:40ppm 以上とした鋼板)(△印)、および更にそれ以前の0.2%耐力で表される加工硬化特性を制御しない鋼板A(C:300ppm 以下、N:40ppm 以下のもので浸炭又は窒化によりC,Nを高めていない鋼板)(×印)と比較したものである。
本発明法によれば、従来技術(△,×)より優れた材質の鋼を得ることができる。
【0024】
【表1】

Figure 0004249860
【0025】
【表2】
Figure 0004249860
【0026】
【発明の効果】
以上述べたごとく本発明によれば、高2CR率および焼鈍スケジュールフリー化により、焼鈍時の生産性を改善しつつフランジ成形性が著しく良好な極薄容器用鋼板を得ることができる。
【図面の簡単な説明】
【図1】本発明鋼の比較鋼の全伸びと0.2耐力の関係を示す図である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for producing a steel plate used for a metal container such as a beverage can.
[0002]
[Prior art]
For steel plates for containers represented by beverage cans, food cans, etc., there is a demand for thinner materials for reducing can costs. At this time, to make up the strength of the steel plate itself to compensate for the reduction in can strength accompanying thinning, and to avoid the buckling of the steel plate called a heat buckle, which hinders production efficiency in the annealing process, the target plate thickness during annealing is Japanese Patent Publication No. 7-109010 discloses a technique in which a thick steel plate is passed, and then re-cold rolling (2CR) is performed to obtain a target plate thickness. However, as the steel sheets are becoming thinner, the 2CR ratio is inevitably increased, and ductility deterioration due to the hardening of materials is becoming a new problem. Typically, when winding the can body and the bottom or can lid, there is a problem of cracking in the process of expanding the diameter of the end of the can body (flange molding).
[0003]
As means for increasing the strength without relying on the high 2CR, techniques using solid solution strengthening or bake hardenability (BH) by solid solution N are disclosed in JP-A-5-345926 and JP-A-6-116682. JP-A-8-170122 and the like. Although these technologies can ensure the strength of the can and the deep drawability and low anisotropy required in the production of two-piece cans, these technologies have considerations for the ability to anneal through when thinning and flange formability. Since the viewpoint to ensure is lacking, there is no intention to achieve both plate-through and flange formability.
[0004]
As a 2CR material that is advantageous in terms of securing strength and annealing passability and having good flange formability, the present inventors limited the amount of C in Japanese Patent Application No. Hei 10-144912, and especially the heat history during annealing, We applied for a method to improve the ductility after 2CR by controlling the cooling rate and further the secondary cold rolling rate after annealing to limit the work hardening characteristics of the material to a specific range. However, in this method, since the material also changes due to the change in the annealing conditions, it is necessary to adjust the annealing plate schedule in consideration of the annealing conditions of the steel plates to be passed back and forth.
[0005]
[Problems to be solved by the invention]
The present invention provides a method for manufacturing a steel sheet that has good ductility and can be manufactured on a schedule-free basis despite the high 2CR, which is advantageous in securing annealing strength and can strength, which is a problem with thin materials. Is.
[0006]
[Means for Solving the Problems]
In particular, the present inventors have studied the components, particularly N and C, among the components, hot rolling conditions and annealing conditions of steel sheets having a thickness of 0.4 mm or less manufactured with a 2CR ratio of 10% or more. In steel sheets with limited amounts within a specific range and appropriately controlled work hardening characteristics expressed by 0.2% proof stress and tensile strength in tensile tests, ductility does not deteriorate as in conventional steels even if the 2CR ratio increases. I found out.
[0007]
Furthermore, while further studying the method of containing N, N is contained after the annealing step, and the steel sheet exhibiting a specific 0.2% proof stress, total elongation and work hardening has an extremely good flange formability. I found out that Furthermore, the technology filed in Japanese Patent Application No. 10-144912 has been studied and the present invention has been completed.
[0008]
That is, according to the present invention, the increase in the total amount of N and C is 20 to 320 ppm on average in the sheet thickness by nitriding after annealing, carburizing or carburizing / nitriding, or by appropriately combining these processes. Then, 15% or more (however, excluding 15%) 50% or less of re-rolling is performed to obtain a steel sheet that is thin and hard but has good elongation.
The steel sheet has a total elongation of 15% or less, a 0.2% yield strength of 430 MPa or more, a relatively high difference between tensile strength and 0.2% yield strength (20 Mpa or more), or a relatively large yield point elongation (2 % Or more) steel sheet or 0.2% yield strength difference before and after 10% cold rolling is relatively small (140 MPa or less) and the difference between tensile strength and 0.2% yield strength is relatively high (20 MPa or more) or yield. It is a steel plate having a relatively large point elongation (2% or more).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
First, components will be described. All ingredients are weight percent.
The upper limits of the amounts of C and N before annealing are both necessary to avoid deterioration of workability, and C: 0.0600% or less and N: 0.0100% or less. It should be noted that C and N existing before annealing and C and N contained by nitriding and carburizing after annealing have different effects on workability as described later.
[0010]
The amount of increase in C and N due to carburizing and nitriding and the amount of C and N after annealing are important requirements of the present invention. If the increase in the total amount of N and C due to carburizing and nitriding is less than 20 ppm in terms of sheet thickness average, the ductility deterioration after 2CR will be large, and conversely, even if it exceeds 320 ppm, the effect of the invention will be saturated. is there.
The amount of C after annealing is set to 0.0650% or less from the viewpoint of workability. Further, the amount of N after annealing is set to 0.0300% or less because the effect of the present invention is saturated and the possibility of deterioration of workability due to iron nitride formation occurs.
[0011]
By controlling the amount of C and N increased by carburizing and nitriding and the amount of C and N after carburizing and nitriding as described above, the material unique to the steel of the present invention is simply not present in steel containing C or N. The mechanism is not clear, but the dislocations at 2CR are dispersed in the steel to avoid the formation of complex entanglement and dislocations that form voids that are the starting points of fracture, and it is effective for bausingers during subsequent flange forming It is presumed that the effect of inducing rearrangement of dislocations by the behavior and increasing the strain until breakage is more efficiently expressed by C and N due to carburizing and nitriding even with the same amount of C and N contained. .
Since C and N contained before annealing have undergone a thermal history at a high temperature in the hot rolling process and recrystallization annealing, the effects of the present invention such as coarse carbides, nitrides, and certain types of segregation are obtained. It seems that the rate of change to an unfavorable form is increasing.
On the other hand, C and N that have entered the steel after recrystallization annealing are not subject to a high temperature and long time thermal history, and many of them maintain a solid solution C, N or very fine precipitate-like form. Exist and this is believed to facilitate the effects of the present invention.
[0012]
Al, Si, P, S, etc., which are inevitably contained in a normal steel plate for strength adjustment or for a specific purpose, are contained to the extent that they are generally contained in a steel plate used for containers.
The ranges are Si: 0.001-0.10%, P: 0.002-0.040%, S: 0.002-0.040%, Al: 0.005-0.200%.
When N is added to the molten steel, if the Al content increases, the fine AlN in the steel increases, and recrystallization is suppressed and high-temperature annealing is required, which deteriorates sheet-passability. Although the upper limit has been set, in the present invention, N is added after annealing, so this limitation is not necessary.
[0013]
Next, nitriding conditions will be described. The limiting condition is that the steel sheet is recrystallized before nitriding, carburizing, or carburizing / nitriding.If nitriding, carburizing, or carburizing / nitriding is performed before recrystallization is complete, This is because the crystals are remarkably suppressed, an unrecrystallized structure remains, and the workability may be significantly deteriorated. In order to perform nitriding treatment, carburizing treatment, or carburizing / nitriding treatment in a continuous annealing process, it is necessary to finish the treatment in a relatively short time. Therefore, the temperature range is preferably 550 ° C. or higher and 800 ° C. or lower.
That is, when the temperature is lower than 550 ° C., the diffusion rate is small and the amount of C and N entering the steel sheet is small. Moreover, when it exceeds 800 degreeC, a shape defect etc. will occur easily when passing a thin board like a steel plate for containers. The amount of C and N introduced into the steel sheet by such nitriding, carburizing or carburizing / nitriding is adjusted by the amount of ammonia or methane gas, which is an atmospheric gas, in addition to the temperature.
The method of the present invention is suitable for obtaining a 0.2% proof stress of 430 MPa or more of a steel plate. Even if the total elongation of the steel sheet is 15% or less, according to the present invention, a steel sheet with good flange formability can be manufactured.
[0014]
The work hardening behavior of the steel sheet is one of the important requirements of the present invention. In general, the work hardening behavior is often expressed by a work hardening index in a stress-strain curve of a tensile test, that is, a so-called n value, but it does not serve as an index of flange formability targeted by the steel of the present invention.
The index and the limited range of the work hardening behavior obtained in the present invention are the difference between the tensile strength and the 0.2% proof stress of 20 MPa or more, or the 0.2% proof stress increase when the steel sheet is subjected to 10% cold rolling. The amount is 140 MPa or less.
The work hardening amount in cold rolling usually varies slightly depending on rolling conditions such as roll diameter, number of passes, lubrication, temperature, etc., but in the present invention, conditions that can be performed in a normal laboratory, that is, roll diameter of 100 to 400 mm, The number of passes is 1 to 5 passes, the lubrication is palm oil, and the temperature is room temperature. When the work hardening behavior is not within this range, the flange formability in the can making process is significantly deteriorated.
According to the present invention, a steel sheet having a yield point elongation of 2% or more after artificial aging at 200 ° C. for 1 hour can be obtained.
[0015]
The plate thickness is limited to 0.400 mm or less in consideration of the application of the steel of the present invention. The steel of the present invention is particularly required for ultrathin steel sheets of 0.200 mm or less where the deterioration of ductility becomes more pronounced, and further effective in 0.170 mm or less.
The 0.2% proof stress and total elongation of the steel sheet change depending on the components and 2CR conditions, and the material is adjusted in the same manner as in the conventional steel. It is necessary to obtain a 2CR rate of 10% to 50% in order to obtain the effects of the invention. In particular, if the 2CR rate is 15% to 25%, a more remarkable effect can be obtained.
[0016]
In the steel according to the present invention, since the materials are prepared according to the carburizing and nitriding conditions with controlled atmosphere, it is not important to manage the annealing conditions for controlling the materials, especially the maximum temperature and the holding time at the high temperature as in the prior art. The structure after annealing may be recrystallized.
According to the prior art, especially when changing the annealing temperature, it is necessary to let the passing plate stagnate or pass a useless plate while the temperature is changing and until the furnace temperature after changing is stabilized. . For this reason, when manufacturing steel sheets with various plate thicknesses and materials according to the user's request, it is necessary to create a plate passing schedule that can be manufactured with the temperature variation of the annealing furnace as small as possible and the plate passing speed constant. The effort for this is enormous, and it is impossible to create a complete schedule that does not impede productivity. In the steel of the present invention, the material is controlled by carburizing and nitriding conditions, so that the schedule can be substantially eliminated.
[0017]
In the prior art, some N is contained for the purpose of solid solution strengthening or bake hardening as generally known. However, in the N content in the present invention, in the J1S5 tensile test targeted by the present invention. A steel sheet having a 0.2% proof stress of 430 MPa or more cannot always be produced, and the ductility is remarkably deteriorated without control of the 0.2% proof stress and work hardening behavior depending on production conditions such as 2CR depending on the components. In particular, when the 2CR rate is low, the aging property is remarkably deteriorated, and defects such as deterioration of the surface properties during processing occur. The addition of N in the present invention is performed for the purpose of suppressing ductile deterioration due to 2CR, and the above-mentioned characteristics can be obtained with components, 0.2% proof stress, work hardening characteristics, and the like.
[0018]
The effect of the present invention does not depend on the heat history and manufacturing history before annealing after component adjustment. The slab for hot rolling is not limited to manufacturing methods such as the ingot method and continuous casting method, and it does not depend on the heat history until hot rolling, so the slab reheating method and the cast slab are reheated. The effects of the present invention can also be obtained by the CC-DR method in which hot rolling is directly performed without thinning, and also by thin slab casting in which rough rolling is omitted. The effect of the present invention can also be obtained by two-phase rolling with a finishing temperature of α + γ and continuous hot rolling in which a rough bar is joined and rolled regardless of hot rolling conditions.
[0019]
In addition, when using the steel of the present invention as a three-piece can material for producing a can body part by welding, the welded part is hardened and the heat-affected zone is softened. The flange formability may be affected not only by the ductility of the steel sheet but also by the characteristics of the welded part and the heat affected zone. B, Nb, etc. may be added to control the hardness of the welded part and heat-affected zone, but the effects of the present invention are not lost even if these trace elements are added.
[0020]
Usually, the steel sheet of the present invention is used as an original sheet for a surface-treated steel sheet, but the effect of the present invention is not impaired by the surface treatment. As the surface treatment for cans, tin, chromium (tin-free), etc. are usually applied. Moreover, it can be used without impairing the effect of this invention also as a negative | original plate for laminated steel plates which coat | covered the organic membrane which has come to be used in recent years.
[0021]
【Example】
In the present invention, the flange formability was evaluated by the total elongation in the JIS No. 5 tensile test of the steel sheet. Considering the balance between the boarding direction in the 3-piece can application and the ironing direction in the 2P application, the tensile test values in the rolling direction of the material and the direction of 90 degrees are used.
The steel of each component shown in Table 1 at the time of the material test was subjected to hot rolling, cold rolling, annealing, 2CR to produce a steel plate, and the material was measured by a tensile test. It is the amounts of C and N in Table 1 that require special attention. Since the numbers in the table are those at the time of the material test, in the case of being manufactured by carburizing or nitriding shown in Table 2, the amounts of C and N before annealing are C values by carburizing or nitriding shown in Table 2 from the values in Table 1. , N is subtracted from the increase.
[0022]
The production conditions and materials for these steels are shown in Table 2. By controlling the work hardening behavior and aging characteristics within the scope of the present invention by the production method of the present invention, it can be confirmed that good ductility is obtained regardless of the hot rolling conditions. For these test materials, a 250 mm thick continuous cast slab was heated at 1050 ° C. to 1250 ° C., hot-rolled in the γ region, cold-rolled, and heat-treated by continuous annealing. The plate thickness was adjusted to 0.19 mm.
[0023]
FIG. 1 shows that steel sheets having a thickness of 0.170 to 0.140 mm have the same hot-rolling conditions and recrystallization annealing conditions, and materials are made differently according to carburizing, nitriding or carburizing / nitriding conditions and 15 to 25% 2CR. Depending on the balance of 0.2% proof stress and ductility, the material of the present invention C (steel plate with C and N increased by carburizing or nitriding C: 300 ppm or more or N: 40 ppm or more) The steel plate B controlled by a production method other than the conditions of the present invention (C: 300 ppm or more or N: 40 ppm or more in the steelmaking stage) is appropriately controlled with the work hardening characteristics represented by 0.2% proof stress and tensile strength. Steel plate A) (△ mark), and steel plate A (C: 300 ppm or less, N: 40 ppm or less) that does not control the work hardening characteristics expressed by 0.2% proof stress before that. Steel sheet not increasing N) (x mark) It is.
According to the method of the present invention, steel having a material superior to that of the prior art (Δ, ×) can be obtained.
[0024]
[Table 1]
Figure 0004249860
[0025]
[Table 2]
Figure 0004249860
[0026]
【The invention's effect】
As described above, according to the present invention, a steel sheet for an ultra-thin container having a remarkably good flange formability can be obtained by improving the productivity at the time of annealing due to the high 2CR rate and making the annealing schedule free.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between total elongation and 0.2 proof stress of a comparative steel of the present invention.

Claims (1)

重量%で、C:0.0600%以下、N:0.0100%以下を含有し、残部Feおよび不可避的不純物からなる鋼を、冷延後、連続焼鈍炉内で再結晶焼鈍をした後、NとCの総量の増加量が、板厚平均で20〜320ppmとなる窒化処理或いは浸炭処理または浸炭・窒化処理を行ってC:0.0650%以下、N:0.0300%以下とし、その後15%以上(但し、15%を除く)50%以下の再冷延を行うことを特徴とする板厚0.400mm以下容器用鋼板の製造方法。The steel containing the balance of Fe and unavoidable impurities in a weight percentage of C: 0.0600% or less, N: 0.0100% or less, after cold rolling, after recrystallization annealing in a continuous annealing furnace, The increase in the total amount of N and C is 20 to 320 ppm on average in the plate thickness, and C: 0.0650% or less, N: 0.0300% or less by performing carburizing or carburizing / nitriding treatment, then more than 15% (excluding 15%) following method for producing a container for steel plate thickness 0.400mm, characterized in that to re-cold rolling of 50% or less.
JP28164999A 1999-10-01 1999-10-01 Manufacturing method of steel plate for containers Expired - Fee Related JP4249860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28164999A JP4249860B2 (en) 1999-10-01 1999-10-01 Manufacturing method of steel plate for containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28164999A JP4249860B2 (en) 1999-10-01 1999-10-01 Manufacturing method of steel plate for containers

Publications (2)

Publication Number Publication Date
JP2001107148A JP2001107148A (en) 2001-04-17
JP4249860B2 true JP4249860B2 (en) 2009-04-08

Family

ID=17642052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28164999A Expired - Fee Related JP4249860B2 (en) 1999-10-01 1999-10-01 Manufacturing method of steel plate for containers

Country Status (1)

Country Link
JP (1) JP4249860B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299859B2 (en) * 2003-12-09 2009-07-22 新日本製鐵株式会社 Steel plate for container and method for producing the same
WO2005068667A1 (en) * 2004-01-19 2005-07-28 Nippon Steel Corporation Steel sheet for use in containers and manufacturing method therefor
JP4564289B2 (en) * 2004-06-24 2010-10-20 新日本製鐵株式会社 Steel plate for high-rigidity can with less surface coating film damage after processing and manufacturing method thereof
JP2006219717A (en) * 2005-02-09 2006-08-24 Nippon Steel Corp Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor
DE102014116929B3 (en) * 2014-11-19 2015-11-05 Thyssenkrupp Ag Method for producing an embroidered packaging steel, cold rolled flat steel product and apparatus for recrystallizing annealing and embroidering a flat steel product

Also Published As

Publication number Publication date
JP2001107148A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
EP2578718B1 (en) High-strength molten-zinc-plated steel sheet having excellent bendability and weldability, and process for production thereof
JP5283504B2 (en) Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
EP1264911B1 (en) High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
EP1195447B1 (en) Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production
EP2623622B1 (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JP2008308732A (en) Hardened steel plate member, steel plate for hardening, and their manufacturing methods
JP2003013177A (en) Hot-dip galvanized sheet steel with high ductility superior in press formability and strain aging hardening characteristics, and manufacturing method thereor
JP5929556B2 (en) Method for producing continuous cast slab and method for producing high-strength cold-rolled steel sheet
JP4249860B2 (en) Manufacturing method of steel plate for containers
JPH10251794A (en) Hot rolled steel plate for structural purpose, excellent in press formability and surface characteristic, and its production
JP3840004B2 (en) Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same
JP7431325B2 (en) Thick composite structure steel with excellent durability and its manufacturing method
JP4670135B2 (en) Manufacturing method of hot-rolled steel sheet with excellent strain age hardening characteristics
JPH09310165A (en) Thin steel sheet for working excellent in fatigue characteristic and its production
US11891676B2 (en) Flat steel product having improved processing properties
JP4091717B2 (en) Manufacturing method of high strength and high ductility steel sheet for containers
CN114934228B (en) Hot-formed steel plate and production method thereof
JP3324074B2 (en) High strength and high ductility steel plate for container and method of manufacturing the same
JP3925063B2 (en) Cold-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP2001355042A (en) Hot dip galvanized steel sheet excellent in press formability and strain age hardening characteristic and its production method
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3977951B2 (en) Steel plate for soft hard container after processing and method for manufacturing the same
JPH05195143A (en) Production of high-strength hot-rolled steel sheet excellent in ductility and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4249860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees