JP4248975B2 - Organic compound decomposition catalyst particles and organic compound decomposition method using the same - Google Patents

Organic compound decomposition catalyst particles and organic compound decomposition method using the same Download PDF

Info

Publication number
JP4248975B2
JP4248975B2 JP2003314197A JP2003314197A JP4248975B2 JP 4248975 B2 JP4248975 B2 JP 4248975B2 JP 2003314197 A JP2003314197 A JP 2003314197A JP 2003314197 A JP2003314197 A JP 2003314197A JP 4248975 B2 JP4248975 B2 JP 4248975B2
Authority
JP
Japan
Prior art keywords
organic compound
catalyst particles
acid
particle
citric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003314197A
Other languages
Japanese (ja)
Other versions
JP2005081198A (en
Inventor
恒夫 柳澤
暢 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2003314197A priority Critical patent/JP4248975B2/en
Publication of JP2005081198A publication Critical patent/JP2005081198A/en
Application granted granted Critical
Publication of JP4248975B2 publication Critical patent/JP4248975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、有機化合物分解触媒粒子及びそれを用いた有機化合物の分解方法に関し、更に詳しくは、有機化合物の酸化分解反応等に触媒として用いて好適であり、しかも安価な有機化合物分解触媒粒子、及び、この有機化合物分解触媒粒子を用いた有機化合物の分解方法に関するものである。   The present invention relates to an organic compound decomposition catalyst particle and a method for decomposing an organic compound using the same. More specifically, the organic compound decomposition catalyst particle is suitable for use as a catalyst in an oxidative decomposition reaction of an organic compound and the like, and is inexpensive. The present invention also relates to an organic compound decomposition method using the organic compound decomposition catalyst particles.

従来、例えば、排ガス中に含まれる有機化合物を酸化触媒を利用して分解除去することが行われており、この酸化触媒としては、従来より白金(Pt)触媒が多く用いられている。
一方、貴金属コロイドについても、その触媒性の観点から多くの研究がなされてきており、貴金属コロイドの合成に関しても多くの研究がなされている(非特許文献1、2等参照)。
チェルケビッチ、キム著、サイエンス(J.Turkevich and G.Kim, Science)169巻 873頁 (1970) トシマ、クシハシ、ヨネザワ、ヒミ著、ケミストリー・レターズ(N.Toshima, K.Kushihashi, T.Yonezawa and H.Himi, Chem.Lett.,)1769頁 (1989年)
Conventionally, for example, an organic compound contained in exhaust gas has been decomposed and removed using an oxidation catalyst, and as this oxidation catalyst, a platinum (Pt) catalyst has been conventionally used.
On the other hand, noble metal colloids have been studied from the viewpoint of their catalytic properties, and many studies have been conducted on the synthesis of noble metal colloids (see Non-Patent Documents 1 and 2).
Cherkevic, Kim, Science, J. Turkevich and G. Kim, Science 169, 873 (1970) Toshima, Kushihashi, Yonezawa, Himi, Chemistry Letters (N. Toshima, K. Kushihashi, T. Yonezawa and H. Himi, Chem. Lett.), 1769 (1989)

しかしながら、従来のPt触媒は、有機化合物の酸化分解、特にカルボキシル基を有する有機化合物の分解には、200℃を超える高温が必要であり、必要なエネルギーの観点、及び、触媒の寿命の観点から、より低温度で有機化合物を酸化分解できる触媒、及び、有機化合物の分解方法が求められていた。
また、従来のPt触媒は、Pt自体が極めて高価であることから、その用途がPt触媒の価格を問題にしないような分野に限定されてしまうという問題点もある。
一方、貴金属コロイドについても、その触媒性について多くの研究がなされているが、今後重要となってくると思われる500℃以下の低中温領域での貴金属コロイドの性質についての研究は、ほとんど行われていないのが現状である。
However, the conventional Pt catalyst requires a high temperature exceeding 200 ° C. for oxidative decomposition of an organic compound, particularly decomposition of an organic compound having a carboxyl group, from the viewpoint of required energy and the life of the catalyst. Therefore, a catalyst capable of oxidatively decomposing an organic compound at a lower temperature and a method for decomposing the organic compound have been demanded.
In addition, since the conventional Pt catalyst is extremely expensive, there is a problem that its use is limited to a field where the price of the Pt catalyst is not a problem.
On the other hand, there are many studies on the catalytic properties of precious metal colloids, but almost no research has been conducted on the properties of precious metal colloids in the low and intermediate temperature range below 500 ° C, which is expected to become important in the future. The current situation is not.

本発明は、上記の課題を解決するためになされたものであって、有機化合物、特にカルボキシル基を有する有機化合物を200℃以下の温度にて酸化分解することができ、しかも、白金に比べて安価な貴金属粒子を用いることができる有機化合物分解触媒粒子及びそれを用いた有機化合物の分解方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can oxidatively decompose an organic compound, particularly an organic compound having a carboxyl group, at a temperature of 200 ° C. or lower, and compared with platinum. An object of the present invention is to provide an organic compound decomposition catalyst particle capable of using inexpensive precious metal particles and an organic compound decomposition method using the same.

本発明者は、鋭意検討を行った結果、1つの粒子中に、金、銀、パラジウムの群から選択された2種以上の元素をそれぞれ5重量%以上含む粒子が、有機化合物、特にカルボキシル基を含む有機化合物を200℃以下にて酸化分解し得ることを発見し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that particles containing 5% by weight or more each of two or more elements selected from the group of gold, silver, and palladium in one particle are organic compounds, particularly carboxyl groups. It has been found that an organic compound containing can be oxidized and decomposed at 200 ° C. or lower, and the present invention has been completed.

すなわち、本発明の有機化合物分解触媒粒子は、カルボキシル基を含む有機化合物を200℃以下の温度下にて分解する触媒粒子であって、1つの粒子中に、金、銀、パラジウムの群から選択された2種以上の元素をそれぞれ5重量%以上含有してなることを特徴とする。
前記粒子の粒子径は、5nm以上かつ20nm以下であることが好ましい。
前記粒子は、金属酸化物に担持されていることが好ましい。
前記粒子は、金、銀、パラジウムの群から選択された2種以上の元素を含む金属塩水溶液を還元してなることが好ましい。
That is, the organic compound decomposition catalyst particle of the present invention is a catalyst particle that decomposes an organic compound containing a carboxyl group at a temperature of 200 ° C. or less, and is selected from the group of gold, silver, and palladium in one particle. Each of the two or more elements is contained in an amount of 5% by weight or more.
The particle diameter of the particles is preferably 5 nm or more and 20 nm or less.
The particles are preferably supported on a metal oxide.
The particles are preferably formed by reducing an aqueous metal salt solution containing two or more elements selected from the group consisting of gold, silver and palladium.

本発明の有機化合物の分解方法は、1つの粒子中に、金、銀、パラジウムの群から選択された2種以上の元素をそれぞれ5重量%以上含有する有機化合物分解触媒粒子に、100℃以上かつ200℃以下の温度にてカルボキシル基を含む有機化合物を接触させ、該有機化合物を分解させることを特徴とする。 The organic compound decomposition method of the present invention is such that the organic compound decomposition catalyst particles each containing 5% by weight or more of two or more elements selected from the group of gold, silver, and palladium in one particle are at least 100 ° C. In addition, the organic compound containing a carboxyl group is brought into contact at a temperature of 200 ° C. or lower to decompose the organic compound.

本発明の有機化合物分解触媒粒子によれば、1つの粒子中に、金、銀、パラジウムの群から選択された2種以上の元素をそれぞれ5重量%以上含有するので、200℃以下の低中温領域においてもカルボキシル基を含む有機化合物を分解することができる。しかも、白金より安価な金属である金、銀、パラジウムを用いたので、触媒の低価格を図ることができ、工業上非常に有益なものとなる。 According to the organic compound decomposition catalyst particles of the present invention, each particle contains 5% by weight or more of two or more elements selected from the group of gold, silver, and palladium. Even in the region, an organic compound containing a carboxyl group can be decomposed. In addition, since gold, silver, and palladium, which are cheaper than platinum, are used, the cost of the catalyst can be reduced, which is very useful industrially.

本発明の有機化合物の分解方法によれば、1つの粒子中に、金、銀、パラジウムの群から選択された2種以上の元素をそれぞれ5重量%以上含有する有機化合物分解触媒粒子に、100℃以上かつ200℃以下の温度にてカルボキシル基を含む有機化合物を接触させ、該有機化合物を分解させるので、200℃以下の低中温領域においてもカルボキシル基を含む有機化合物を容易かつ速やかに分解することができる。
According to the organic compound decomposition method of the present invention, the organic compound decomposition catalyst particles each containing 5% by weight or more of two or more elements selected from the group of gold, silver, and palladium in 100 Since an organic compound containing a carboxyl group is brought into contact with and decomposed at a temperature of ℃ to 200 ° C, the organic compound containing a carboxyl group is easily and quickly decomposed even in a low and medium temperature region of 200 ° C or less. be able to.

本発明の有機化合物分解触媒粒子及びそれを用いた有機化合物の分解方法の最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The best mode of the organic compound decomposition catalyst particles of the present invention and the organic compound decomposition method using the same will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

[有機化合物分解触媒粒子]
本発明の有機化合物分解触媒粒子は、1つの粒子中に、金(Au)、銀(Ag)、パラジウム(Pd)の群から選択された2種以上の元素を含有するものであり、選択された2種以上の元素の含有量は、それぞれが5重量%以上である。
[Organic compound decomposition catalyst particles]
The organic compound decomposition catalyst particles of the present invention contain two or more elements selected from the group of gold (Au), silver (Ag), and palladium (Pd) in one particle, and are selected. The content of two or more elements is 5% by weight or more.

これらの元素は、1つの粒子中に共存していることが必要であるが、これらの元素は合金化されていても、されていなくても、どちらでもよい。また、選択された2種以上の元素の含有量は、それぞれが20重量%以上であることがより好ましい。
ここで、1つの粒子中に、Au、Ag、Pdの群から選択された2種以上の元素を含有するとは、例えば、AuとAgを選択した場合、1つの粒子中に、Auを5重量%以上、Agを5重量%以上、それぞれ含有するという意味である。
These elements need to coexist in one particle, but these elements may or may not be alloyed. Further, the content of the two or more selected elements is more preferably 20% by weight or more.
Here, when two or more elements selected from the group of Au, Ag, and Pd are contained in one particle, for example, when Au and Ag are selected, 5 weight of Au is contained in one particle. % Or more and 5% by weight or more of Ag.

この有機化合物分解触媒粒子は、1つの粒子中に、Au、Ag、Pdの群から選択された2種以上の元素をそれぞれ5重量%以上含有するものであればよく、他の成分は特に限定されないが、Au、Ag、Pdの群から選択された2種以上の元素のみからなることが好ましい。   The organic compound decomposition catalyst particles only need to contain 5% by weight or more of each of two or more elements selected from the group of Au, Ag, and Pd in one particle, and other components are particularly limited. Although it is not, it is preferable that it consists only of 2 or more types of elements selected from the group of Au, Ag, and Pd.

この有機化合物分解触媒粒子は、所定の粒子径の範囲で最大(もしくは極大)の触媒活性を示すものが好ましく、この観点から、粒子径は、5nm以上かつ20nm以下が好ましく、より好ましくは、5nm以上かつ10nm以下である。
その理由は、粒径が20nmを超えると表面積が小さくなるため、十分な量の有機物を吸着することができなくなるからであり、また、粒径が5nm未満では、粒子の表面における活性が高いために、化学的反応性に富んだものとなる一方、表面エネルギーの増大とともに不安定になるために、触媒反応温度での有機化合物分解触媒粒子同士の不必要な融着が生じる虞があるからである。
The organic compound decomposition catalyst particles preferably exhibit the maximum (or maximum) catalytic activity within a predetermined particle diameter range. From this viewpoint, the particle diameter is preferably 5 nm or more and 20 nm or less, more preferably 5 nm. Above and below 10 nm.
The reason is that when the particle size exceeds 20 nm, the surface area becomes small, so that a sufficient amount of organic matter cannot be adsorbed. When the particle size is less than 5 nm, the activity on the particle surface is high. On the other hand, because it becomes rich in chemical reactivity, it becomes unstable as the surface energy increases, so there is a possibility that unnecessary fusion between organic compound decomposition catalyst particles at the catalytic reaction temperature may occur. is there.

この有機化合物分解触媒粒子は、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、安定化した酸化ジルコニウム(安定化ジルコニア)等の金属酸化物に担持させて使用することもできる。この場合、この有機化合物分解触媒粒子を、酸化アルミニウム(アルミナ)等の金属酸化物担体に対して1重量%以上担持させれば、有機化合物を酸化分解する触媒として使用することができる。   The organic compound decomposition catalyst particles can be used by being supported on a metal oxide such as aluminum oxide (alumina), silicon oxide (silica), stabilized zirconium oxide (stabilized zirconia), or the like. In this case, if the organic compound decomposition catalyst particles are supported on a metal oxide carrier such as aluminum oxide (alumina) in an amount of 1% by weight or more, the organic compound decomposition catalyst particles can be used as a catalyst for oxidative decomposition of the organic compound.

[有機化合物分解触媒粒子の製造方法]
この有機化合物分解触媒粒子は、湿式、乾式を問わず製造することができるが、以下のような方法により製造するのが好適である。
まず、上記の有機化合物分解触媒粒子を構成する複数の貴金属元素それぞれの貴金属塩を含む水溶液を作成し、さらに、貴金属コロイドの分散安定剤を添加した後、この水溶液に水素化硼素ナトリウム等の還元剤を加え、含まれる貴金属塩を同時に還元することにより、容易かつ速やかに作製することができる。
[Method for producing organic compound decomposition catalyst particles]
The organic compound decomposition catalyst particles can be produced regardless of wet type or dry type, but is preferably produced by the following method.
First, an aqueous solution containing a noble metal salt of each of a plurality of noble metal elements constituting the organic compound decomposition catalyst particles is prepared, and further, a dispersion stabilizer of a noble metal colloid is added, and then the aqueous solution such as sodium borohydride is reduced. By adding an agent and reducing the contained noble metal salt at the same time, it can be easily and quickly produced.

[有機化合物の分解方法]
この有機化合物の分解方法は、1つの粒子中に、Au、Ag、Pdの群から選択された2種以上の元素をそれぞれ5重量%以上含有する有機化合物分解触媒粒子に、100℃以上かつ200℃以下の温度にて有機化合物を接触させ、該有機化合物を分解させる方法である。
[Decomposition method of organic compounds]
In this organic compound decomposition method, organic compound decomposition catalyst particles each containing 5% by weight or more of two or more elements selected from the group of Au, Ag, and Pd in one particle are heated to 100 ° C. or higher and 200 ° C. This is a method in which an organic compound is brought into contact at a temperature of 0 ° C. or lower to decompose the organic compound.

有機化合物を接触させる条件としては、上記の有機化合物分解触媒粒子に200℃以下の温度下で有機化合物を接触させれば十分であり、分解の際の雰囲気としては、酸化性雰囲気、不活性雰囲気のいずれも適用することができる。特に、不活性雰囲気の場合、酸素が存在しないにもかかわらず、酸化分解反応を好適に生じさせることができる。また、その際、コンプレッサ等の空気圧縮機等を用いて加圧する必要はなく、常圧下で十分に有機化合物の酸化分解反応を生じさせることができる。   As the conditions for contacting the organic compound, it is sufficient that the organic compound is brought into contact with the organic compound decomposition catalyst particles at a temperature of 200 ° C. or less. The atmosphere during the decomposition includes an oxidizing atmosphere and an inert atmosphere. Any of these can be applied. In particular, in the case of an inert atmosphere, an oxidative decomposition reaction can be suitably caused even though oxygen is not present. Further, at that time, it is not necessary to pressurize using an air compressor such as a compressor, and an oxidative decomposition reaction of an organic compound can be sufficiently caused under normal pressure.

特に、カルボキシル基を有する有機化合物の場合、200℃以下の温度下で、常圧で、分解の際の雰囲気中に酸素が存在しなくても、好適に酸化分解を行うことができる。
カルボキシル基を有する有機化合物としては、カルボキシル基をその分子内に含有する有機化合物であればよく、低分子であるか、高分子であるかは問わず、酸化性雰囲気、不活性雰囲気のいずれにおいても分解することができる。
例えば、飽和脂肪族モノカルボン酸、飽和脂肪族ジ(あるいはトリ)カルボン酸、不飽和脂肪酸、炭素環カルボン酸、複素環カルボン酸、あるいはこれらの塩等を効率よく分解することができる。
In particular, in the case of an organic compound having a carboxyl group, oxidative decomposition can be suitably carried out at a temperature of 200 ° C. or lower at normal pressure and without oxygen in the atmosphere during decomposition.
The organic compound having a carboxyl group may be an organic compound containing a carboxyl group in the molecule, regardless of whether it is a low molecule or a polymer, in an oxidizing atmosphere or an inert atmosphere. Can also be decomposed.
For example, saturated aliphatic monocarboxylic acid, saturated aliphatic di (or tri) carboxylic acid, unsaturated fatty acid, carbocyclic carboxylic acid, heterocyclic carboxylic acid, or salts thereof can be efficiently decomposed.

飽和脂肪族モノカルボン酸としては、蟻酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、ピバル酸、ラウリン酸、パルミチン酸、ステアリン酸等が挙げられる。
飽和脂肪族ジ(あるいはトリ)カルボン酸としては、シュウ酸、マロン酸、コハク酸、リンゴ酸、クエン酸、酒石酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸等が挙げられる。
Examples of the saturated aliphatic monocarboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, pivalic acid, lauric acid, palmitic acid, stearic acid and the like.
Examples of the saturated aliphatic di (or tri) carboxylic acid include oxalic acid, malonic acid, succinic acid, malic acid, citric acid, tartaric acid, glutaric acid, adipic acid, pimelic acid, and suberic acid.

不飽和脂肪酸としては、アクリル酸、ポリアクリル酸、プロピオン酸、メタクリル酸、クロトン酸、オレイン酸、マレイン酸、フマル酸等が挙げられる。
炭素環カルボン酸としては、安息香酸、フタル酸、イソフタル酸、テレフタル酸等が挙げられる。
複素環カルボン酸としては、ニコチン酸、イソニコチン酸等が挙げられる。
Examples of the unsaturated fatty acid include acrylic acid, polyacrylic acid, propionic acid, methacrylic acid, crotonic acid, oleic acid, maleic acid, and fumaric acid.
Examples of the carbocyclic carboxylic acid include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid and the like.
Examples of the heterocyclic carboxylic acid include nicotinic acid and isonicotinic acid.

以下、実施例1〜9及び比較例1〜3により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely by Examples 1-9 and Comparative Examples 1-3, this invention is not limited by these Examples.

[有機化合物分解触媒粒子の合成]
下記の5種類の有機化合物分解触媒粒子を合成した。
(A)Ag−PdコロイドによるAg−Pd触媒粒子(1)の合成
(Ag:Pd=50:50)
AgNOとPd(NO水溶液を所定量混合して金属成分であるAg及びPdの総量が0.03wt%の水溶液を作製し、さらに、Ag及びPdの総量に対してクエン酸3ナトリウム2水和物を等モル量となるように添加・溶解して原料用水溶液とした。
一方、NaBHの含有量が原料用水溶液のAg及びPdの総量に対して0.5モル量となるように、このNaBHを純水に溶解し還元用水溶液を作製した。
[Synthesis of organic compound decomposition catalyst particles]
The following five types of organic compound decomposition catalyst particles were synthesized.
(A) Synthesis of Ag-Pd catalyst particles (1) by Ag-Pd colloid (Ag: Pd = 50: 50)
A predetermined amount of AgNO 3 and Pd (NO 3 ) 2 aqueous solution are mixed to prepare an aqueous solution in which the total amount of Ag and Pd as metal components is 0.03 wt%, and trisodium citrate with respect to the total amount of Ag and Pd. Dihydrate was added and dissolved so as to have an equimolar amount to obtain a raw material aqueous solution.
On the other hand, this NaBH 4 was dissolved in pure water so that the content of NaBH 4 was 0.5 molar relative to the total amount of Ag and Pd in the raw material aqueous solution to prepare a reducing aqueous solution.

次いで、上記の原料用水溶液を40℃に加温した後、この原料用水溶液に還元用水溶液を5分間掛けて滴下させ、反応溶液を作製した。
次いで、この反応溶液の還元反応を促進させた。この還元反応は、上記の反応溶液を30分間、40℃に保ったまま撹拝して反応を促進させた。
反応終了後、この反応溶液を限外ろ過モジュール(旭化成社製)を用いて濃縮・脱イオン処理を行い、約30倍に濃縮した。この濃縮した反応溶液からフリーズドドライ法により固形分を採取した。
以上により、1つの粒子が、AgとPdからなり、その割合が50:50であるAg−Pd触媒粒子(1)を得た。
Subsequently, after heating said raw material aqueous solution to 40 degreeC, the aqueous solution for reduction was dripped at this aqueous solution for raw materials over 5 minutes, and the reaction solution was produced.
Subsequently, the reduction reaction of this reaction solution was promoted. In this reduction reaction, the reaction solution was stirred for 30 minutes while maintaining the temperature at 40 ° C. to promote the reaction.
After completion of the reaction, the reaction solution was concentrated and deionized using an ultrafiltration module (Asahi Kasei Co., Ltd.) and concentrated about 30 times. A solid content was collected from the concentrated reaction solution by freeze-drying.
As described above, Ag—Pd catalyst particles (1) in which one particle is composed of Ag and Pd and the ratio is 50:50 were obtained.

(B)Au−PdコロイドによるAu−Pd触媒粒子(1)の合成
(Au:Pd=50:50)
Au源としてHAuCl水溶液、Pd源としてPd(NO水溶液を用いた以外は、上記(A)のAg−Pd触媒粒子(1)の合成と同様にして、1つの粒子がAuとPdからなり、その割合が50:50であるAu−Pd触媒粒子(1)を得た。
(B) Synthesis of Au—Pd catalyst particles (1) by Au—Pd colloid (Au: Pd = 50: 50)
Except for using an HAuCl 4 aqueous solution as the Au source and a Pd (NO 3 ) 2 aqueous solution as the Pd source, one particle is made of Au and Pd in the same manner as in the synthesis of the Ag—Pd catalyst particles (1) in (A) above. Au-Pd catalyst particles (1) having a ratio of 50:50 were obtained.

(C)Au−AgコロイドによるAu−Ag触媒粒子(1)の合成
(Au:Ag=50:50)
Au源としてNaAu(SO水溶液、Ag源としてAgNO水溶液を用いた以外は、上記(A)のAg−Pd触媒粒子(1)の合成と同様にして、1つの粒子がAuとAgからなり、その割合が50:50であるAu−Ag触媒粒子(1)を得た。
(C) Synthesis of Au-Ag catalyst particles (1) by Au-Ag colloid (Au: Ag = 50: 50)
Except for using an aqueous Na 3 Au (SO 3 ) 2 solution as an Au source and an AgNO 3 aqueous solution as an Ag source, one particle is Au in the same manner as in the synthesis of the Ag—Pd catalyst particles (1) in (A) above. Au—Ag catalyst particles (1) having a ratio of 50:50 were obtained.

(D)Ag−PdコロイドによるAg−Pd触媒粒子(2)の合成
(Ag:Pd=75:25)
Ag源としてAgNO水溶液、Pd源としてPd(NO水溶液を用い、その比をAg:Pd=75:25とした以外は、上記(A)のAg−Pd触媒粒子(1)の合成と同様にして、1つの粒子がAgとPdからなり、その割合が75:25であるAg−Pd触媒粒子(2)を得た。
(D) Synthesis of Ag-Pd catalyst particles (2) by Ag-Pd colloid (Ag: Pd = 75: 25)
Synthesis of Ag-Pd catalyst particles (1) in (A) above, except that an AgNO 3 aqueous solution is used as the Ag source, a Pd (NO 3 ) 2 aqueous solution is used as the Pd source, and the ratio is set to Ag: Pd = 75: 25 In the same manner as above, Ag—Pd catalyst particles (2) in which one particle is composed of Ag and Pd and the ratio is 75:25 were obtained.

(E)Ag−PdコロイドによるAg−Pd触媒粒子(3)の合成
(Ag:Pd=25:75)
Ag源としてAgNO水溶液、Pd源としてPd(NO水溶液を用い、その比をAg:Pd=25:75とした以外は、上記(A)のAg−Pd触媒粒子(1)の合成と同様にして、1つの粒子がAgとPdからなり、その割合が25:75であるAg−Pd触媒粒子(3)を得た。
(E) Synthesis of Ag-Pd catalyst particles (3) by Ag-Pd colloid (Ag: Pd = 25: 75)
Synthesis of Ag-Pd catalyst particles (1) of (A) above, except that an AgNO 3 aqueous solution is used as the Ag source, a Pd (NO 3 ) 2 aqueous solution is used as the Pd source, and the ratio is set to Ag: Pd = 25: 75 In the same manner as described above, Ag—Pd catalyst particles (3) in which one particle is composed of Ag and Pd and the ratio is 25:75 were obtained.

[有機化合物の分解]
上記の5種類の有機化合物分解触媒粒子(Ag−Pd触媒粒子(1)〜Ag−Pd触媒粒子(3))を用いて有機化合物の分解を行った。
(実施例1)
クエン酸水溶液に上記(A)で得られたAg−Pd触媒粒子(1)を添加し、このAg−Pd触媒粒子(1)に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Ag−Pd触媒粒子(1)100重量部に対し約5重量部のクエン酸が吸着していた。
[Decomposition of organic compounds]
The organic compound was decomposed using the above five kinds of organic compound decomposition catalyst particles (Ag—Pd catalyst particles (1) to Ag—Pd catalyst particles (3)).
Example 1
The Ag—Pd catalyst particles (1) obtained in (A) above were added to the citric acid aqueous solution, and citric acid was adsorbed on the Ag—Pd catalyst particles (1) in the aqueous solution.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, about 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of the Ag—Pd catalyst particles (1).

この試料を、空気中、140℃、常圧にて、10分間、放置したところ、二酸化炭素と水がほぼ量論量、気体として発生した。残った試料の炭素成分の残存量を熱分析装置により確認したところ、炭素成分の残存は認められず、クエン酸が完全に酸化分解していることが確認された。なお、通常の状態でのクエン酸の分解温度は350℃である。   When this sample was allowed to stand in air at 140 ° C. and normal pressure for 10 minutes, carbon dioxide and water were generated in almost stoichiometric amounts as a gas. When the remaining amount of the carbon component in the remaining sample was confirmed by a thermal analyzer, no carbon component remained, and it was confirmed that citric acid was completely oxidatively decomposed. In addition, the decomposition temperature of citric acid in a normal state is 350 ° C.

(実施例2)
上記(A)で得られたAg−Pd触媒粒子(1)を、酸化アルミニウム粒子100重量部に対し1重量部担持させた。
次いで、クエン酸水溶液に、この酸化アルミニウム粒子に担持されたAg−Pd触媒粒子(1)を添加し、この酸化アルミニウム粒子に担持されたAg−Pd触媒粒子(1)に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Ag−Pd触媒粒子(1)100重量部に対し約5重量部のクエン酸が吸着していた。
(Example 2)
1 part by weight of the Ag—Pd catalyst particles (1) obtained in the above (A) was supported on 100 parts by weight of the aluminum oxide particles.
Next, Ag-Pd catalyst particles (1) supported on the aluminum oxide particles are added to the citric acid aqueous solution, and citric acid is added to the Ag-Pd catalyst particles (1) supported on the aluminum oxide particles. Adsorbed inside.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, about 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of the Ag—Pd catalyst particles (1).

この試料を、空気中、180℃、常圧にて、10分間、放置したところ、二酸化炭素と水がほぼ量論量、気体として発生した。残った試料の炭素成分の残存量を実施例1と同様にして確認したところ、炭素成分の残存は認められず、クエン酸が完全に酸化分解していることが確認された。   When this sample was allowed to stand in air at 180 ° C. and normal pressure for 10 minutes, carbon dioxide and water were generated in almost stoichiometric amounts as a gas. When the remaining amount of the carbon component of the remaining sample was confirmed in the same manner as in Example 1, no carbon component remained, and it was confirmed that citric acid was completely oxidatively decomposed.

(実施例3)
クエン酸水溶液に上記(A)で得られたAg−Pd触媒粒子(1)を添加し、このAg−Pd触媒粒子(1)に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Ag−Pd触媒粒子(1)100重量部に対し約5重量部のクエン酸が吸着していた。
(Example 3)
The Ag—Pd catalyst particles (1) obtained in (A) above were added to the citric acid aqueous solution, and citric acid was adsorbed on the Ag—Pd catalyst particles (1) in the aqueous solution.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, about 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of the Ag—Pd catalyst particles (1).

この試料を、空気中、200℃、常圧にて、10分間、放置したところ、二酸化炭素と水がほぼ量論量、気体として発生した。残った試料の炭素成分の残存量を実施例1と同様にして確認したところ、炭素成分の残存は認められず、クエン酸が完全に酸化分解していることが確認された。   When this sample was allowed to stand in air at 200 ° C. and normal pressure for 10 minutes, carbon dioxide and water were generated in almost stoichiometric amounts as a gas. When the remaining amount of the carbon component of the remaining sample was confirmed in the same manner as in Example 1, no carbon component remained, and it was confirmed that citric acid was completely oxidatively decomposed.

(実施例4)
クエン酸水溶液に上記(B)で得られたAu−Pd触媒粒子(1)を添加し、このAu−Pd触媒粒子(1)に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Au−Pd触媒粒子(1)100重量部に対し約5重量部のクエン酸が吸着していた。
(Example 4)
The Au—Pd catalyst particles (1) obtained in (B) above were added to the citric acid aqueous solution, and citric acid was adsorbed on the Au—Pd catalyst particles (1) in the aqueous solution.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, about 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of the Au—Pd catalyst particles (1).

この試料を、空気中、180℃、常圧にて、10分間、放置したところ、二酸化炭素と水がほぼ量論量、気体として発生した。残った試料の炭素成分の残存量を実施例1と同様にして確認したところ、炭素成分の残存は認められず、クエン酸が完全に酸化分解していることが確認された。   When this sample was allowed to stand in air at 180 ° C. and normal pressure for 10 minutes, carbon dioxide and water were generated in almost stoichiometric amounts as a gas. When the remaining amount of the carbon component of the remaining sample was confirmed in the same manner as in Example 1, no carbon component remained, and it was confirmed that citric acid was completely oxidatively decomposed.

(実施例5)
クエン酸水溶液に上記(C)で得られたAu−Ag触媒粒子(1)を添加し、このAu−Ag触媒粒子(1)に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Au−Ag触媒粒子(1)100重量部に対し約5重量部のクエン酸が吸着していた。
(Example 5)
The Au-Ag catalyst particles (1) obtained in (C) above were added to the citric acid aqueous solution, and citric acid was adsorbed on the Au-Ag catalyst particles (1) in the aqueous solution.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, about 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of the Au—Ag catalyst particles (1).

この試料を、空気中、200℃、常圧にて、10分間、放置したところ、二酸化炭素と水がほぼ量論量、気体として発生した。残った試料の炭素成分の残存量を実施例1と同様にして確認したところ、炭素成分の残存は認められず、クエン酸が完全に酸化分解していることが確認された。   When this sample was allowed to stand in air at 200 ° C. and normal pressure for 10 minutes, carbon dioxide and water were generated in almost stoichiometric amounts as a gas. When the remaining amount of the carbon component of the remaining sample was confirmed in the same manner as in Example 1, no carbon component remained, and it was confirmed that citric acid was completely oxidatively decomposed.

(実施例6)
クエン酸水溶液に上記(D)で得られたAg−Pd触媒粒子(2)を添加し、このAg−Pd触媒粒子(2)に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Ag−Pd触媒粒子(2)100重量部に対し約5重量部のクエン酸が吸着していた。
(Example 6)
The Ag—Pd catalyst particles (2) obtained in (D) above were added to the citric acid aqueous solution, and citric acid was adsorbed on the Ag—Pd catalyst particles (2) in the aqueous solution.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, about 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of the Ag—Pd catalyst particles (2).

この試料を、空気中、150℃、常圧にて、10分間、放置したところ、二酸化炭素と水がほぼ量論量、気体として発生した。残った試料の炭素成分の残存量を実施例1と同様にして確認したところ、炭素成分の残存は認められず、クエン酸が完全に酸化分解していることが確認された。   When this sample was allowed to stand in air at 150 ° C. and normal pressure for 10 minutes, carbon dioxide and water were generated in a substantially stoichiometric amount as a gas. When the remaining amount of the carbon component of the remaining sample was confirmed in the same manner as in Example 1, no carbon component remained, and it was confirmed that citric acid was completely oxidatively decomposed.

(実施例7)
クエン酸水溶液に上記(E)で得られたAg−Pd触媒粒子(3)を添加し、このAg−Pd触媒粒子(3)に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Ag−Pd触媒粒子(3)100重量部に対し約5重量部のクエン酸が吸着していた。
(Example 7)
The Ag—Pd catalyst particles (3) obtained in (E) above were added to the citric acid aqueous solution, and citric acid was adsorbed on the Ag—Pd catalyst particles (3) in the aqueous solution.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, about 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of the Ag—Pd catalyst particles (3).

この試料を、空気中、180℃、常圧にて、10分間、放置したところ、二酸化炭素と水がほぼ量論量、気体として発生した。残った試料の炭素成分の残存量を実施例1と同様にして確認したところ、炭素成分の残存は認められず、クエン酸が完全に酸化分解していることが確認された。   When this sample was allowed to stand in air at 180 ° C. and normal pressure for 10 minutes, carbon dioxide and water were generated in almost stoichiometric amounts as a gas. When the remaining amount of the carbon component of the remaining sample was confirmed in the same manner as in Example 1, no carbon component remained, and it was confirmed that citric acid was completely oxidatively decomposed.

(実施例8)
吸着する有機化合物をクエン酸からシュウ酸ナトリウム(カルボン酸塩)に変更した以外は、実施例1と同様にして、Ag−Pd触媒粒子(1)に、シュウ酸ナトリウムを、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Ag−Pd触媒粒子(1)100重量部に対し約5重量部のシュウ酸ナトリウムが吸着していた。
(Example 8)
Adsorbing sodium oxalate on Ag-Pd catalyst particles (1) in an aqueous solution in the same manner as in Example 1 except that the adsorbing organic compound was changed from citric acid to sodium oxalate (carboxylate). I let you.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, about 5 parts by weight of sodium oxalate was adsorbed with respect to 100 parts by weight of the Ag—Pd catalyst particles (1).

この試料を、空気中、150℃、常圧にて、10分間、放置したところ、二酸化炭素と水がほぼ量論量、気体として発生した。残った試料の炭素成分の残存量を熱分析装置により確認したところ、炭素成分の残存は認められず、シュウ酸ナトリウムのうちの有機成分(オキサリル:カルボキシル基)が完全に酸化分解していることが確認された。
なお、通常の状態でのシュウ酸ナトリウムの分解温度は300℃以上である。
When this sample was allowed to stand in air at 150 ° C. and normal pressure for 10 minutes, carbon dioxide and water were generated in a substantially stoichiometric amount as a gas. When the remaining amount of the carbon component of the remaining sample was confirmed by a thermal analyzer, no carbon component remained, and the organic component (oxalyl: carboxyl group) of sodium oxalate was completely oxidatively decomposed. Was confirmed.
In addition, the decomposition temperature of sodium oxalate in a normal state is 300 ° C. or higher.

(実施例9)
吸着する有機化合物をクエン酸から酒石酸に変更した以外は、実施例1と同様にして、Ag−Pd触媒粒子(1)に、酒石酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Ag−Pd触媒粒子(1)100重量部に対し約5重量部の酒石酸が吸着していた。
Example 9
Tartaric acid was adsorbed in Ag-Pd catalyst particles (1) in an aqueous solution in the same manner as in Example 1 except that the adsorbing organic compound was changed from citric acid to tartaric acid.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, about 5 parts by weight of tartaric acid was adsorbed with respect to 100 parts by weight of the Ag—Pd catalyst particles (1).

この試料を、空気中、160℃、常圧にて、10分間、放置したところ、二酸化炭素と水がほぼ量論量、気体として発生した。残った試料の炭素成分の残存量を熱分析装置により確認したところ、炭素成分の残存は認められず、酒石酸が完全に酸化分解していることが確認された。
なお、通常の状態では、酒石酸は206℃から分解を開始するため、206℃以上の温度でないと分解しない。
When this sample was allowed to stand in air at 160 ° C. and normal pressure for 10 minutes, carbon dioxide and water were generated in a substantially stoichiometric amount as a gas. When the remaining amount of the carbon component in the remaining sample was confirmed by a thermal analyzer, no carbon component remained, and it was confirmed that tartaric acid was completely oxidatively decomposed.
In a normal state, tartaric acid starts to decompose at 206 ° C., so it does not decompose unless the temperature is 206 ° C. or higher.

(比較例1)
クエン酸水溶液にAgコロイド粒子を添加し、このAgコロイド粒子に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Ag粒子100重量部に対し5重量部のクエン酸が吸着していた。
その後、熱分析装置を用いて、この試料を、空気中、常圧にて加熱し、クエン酸の酸化分解が始まる温度を求めた。その結果、320℃まで温度を上げないと、クエン酸の酸化分解反応が始まらないことが確認された。
(Comparative Example 1)
Ag colloidal particles were added to the citric acid aqueous solution, and citric acid was adsorbed on the Ag colloidal particles in the aqueous solution.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of Ag particles.
Thereafter, this sample was heated in air at normal pressure using a thermal analyzer, and the temperature at which oxidative decomposition of citric acid begins was determined. As a result, it was confirmed that the oxidative decomposition reaction of citric acid would not start unless the temperature was raised to 320 ° C.

(比較例2)
クエン酸水溶液にPdコロイド粒子を添加し、このPdコロイド粒子に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Pd粒子100重量部に対し5重量部のクエン酸が吸着していた。
その後、熱分析装置を用いて、この試料を、空気中、常圧にて加熱し、クエン酸の酸化分解が始まる温度を求めた。その結果、300℃まで温度を上げないと、クエン酸の酸化分解反応が始まらないことが確認された。
(Comparative Example 2)
Pd colloidal particles were added to the citric acid aqueous solution, and citric acid was adsorbed on the Pd colloidal particles in the aqueous solution.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of the Pd particles.
Thereafter, this sample was heated in air at normal pressure using a thermal analyzer, and the temperature at which oxidative decomposition of citric acid begins was determined. As a result, it was confirmed that the oxidative decomposition reaction of citric acid would not start unless the temperature was raised to 300 ° C.

(比較例3)
クエン酸水溶液にAuコロイド粒子を添加し、このAuコロイド粒子に、クエン酸を、水溶液中にて吸着させた。
その後、遠心分離を施し、固形分を分離して採取し、風乾させた。
この乾燥した試料においては、Au粒子100重量部に対し5重量部のクエン酸が吸着していた。
その後、熱分析装置を用いて、この試料を、空気中、常圧にて加熱し、クエン酸の酸化分解が始まる温度を求めた。その結果、340℃まで温度を上げないと、クエン酸の酸化分解反応が始まらないことが確認された。
(Comparative Example 3)
Au colloidal particles were added to the citric acid aqueous solution, and citric acid was adsorbed on the Au colloidal particles in the aqueous solution.
Then, it centrifuged and isolate | separated solid content and extract | collected and air-dried.
In this dried sample, 5 parts by weight of citric acid was adsorbed with respect to 100 parts by weight of Au particles.
Thereafter, this sample was heated in air at normal pressure using a thermal analyzer, and the temperature at which oxidative decomposition of citric acid begins was determined. As a result, it was confirmed that the oxidative decomposition reaction of citric acid would not start unless the temperature was raised to 340 ° C.

本発明の有機化合物分解触媒粒子は、有機化合物、特にカルボキシル基を有する有機化合物を200℃以下の温度にて酸化分解することができ、しかも、白金に比べて安価な貴金属粒子を用いることができるものであるから、排ガス中に含まれる有機化合物を分解除去するための触媒として用いるのはもちろんのこと、その他の工業用触媒としても有用である。   The organic compound decomposition catalyst particles of the present invention can oxidize and decompose organic compounds, particularly organic compounds having a carboxyl group, at a temperature of 200 ° C. or lower, and can use precious metal particles that are less expensive than platinum. Therefore, it is useful not only as a catalyst for decomposing and removing organic compounds contained in exhaust gas, but also as other industrial catalysts.

Claims (5)

カルボキシル基を含む有機化合物を200℃以下の温度下にて分解する触媒粒子であって、
1つの粒子中に、金、銀、パラジウムの群から選択された2種以上の元素をそれぞれ5重量%以上含有してなることを特徴とする有機化合物分解触媒粒子。
Catalyst particles for decomposing an organic compound containing a carboxyl group at a temperature of 200 ° C. or lower,
An organic compound decomposition catalyst particle, wherein each particle contains 5% by weight or more of two or more elements selected from the group consisting of gold, silver and palladium.
前記粒子の粒子径は、5nm以上かつ20nm以下であることを特徴とする請求項1記載の有機化合物分解触媒粒子。   2. The organic compound decomposition catalyst particle according to claim 1, wherein the particle diameter of the particle is 5 nm or more and 20 nm or less. 前記粒子は、金属酸化物に担持されていることを特徴とする請求項1または2記載の有機化合物分解触媒粒子。   3. The organic compound decomposition catalyst particle according to claim 1, wherein the particle is supported on a metal oxide. 前記粒子は、金、銀、パラジウムの群から選択された2種以上の元素を含む金属塩水溶液を還元してなることを特徴とする請求項1、2または3記載の有機化合物分解触媒粒子。   4. The organic compound decomposition catalyst particle according to claim 1, wherein the particle is obtained by reducing an aqueous metal salt solution containing two or more elements selected from the group consisting of gold, silver and palladium. 1つの粒子中に、金、銀、パラジウムの群から選択された2種以上の元素をそれぞれ5重量%以上含有する有機化合物分解触媒粒子に、100℃以上かつ200℃以下の温度にてカルボキシル基を含む有機化合物を接触させ、該有機化合物を分解させることを特徴とする有機化合物の分解方法。 In one particle, an organic compound decomposition catalyst particle containing 5% by weight or more of each of two or more elements selected from the group of gold, silver and palladium is subjected to a carboxyl group at a temperature of 100 ° C. or more and 200 ° C. or less. A method for decomposing an organic compound, comprising contacting an organic compound containing the organic compound and decomposing the organic compound.
JP2003314197A 2003-09-05 2003-09-05 Organic compound decomposition catalyst particles and organic compound decomposition method using the same Expired - Fee Related JP4248975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314197A JP4248975B2 (en) 2003-09-05 2003-09-05 Organic compound decomposition catalyst particles and organic compound decomposition method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314197A JP4248975B2 (en) 2003-09-05 2003-09-05 Organic compound decomposition catalyst particles and organic compound decomposition method using the same

Publications (2)

Publication Number Publication Date
JP2005081198A JP2005081198A (en) 2005-03-31
JP4248975B2 true JP4248975B2 (en) 2009-04-02

Family

ID=34414893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314197A Expired - Fee Related JP4248975B2 (en) 2003-09-05 2003-09-05 Organic compound decomposition catalyst particles and organic compound decomposition method using the same

Country Status (1)

Country Link
JP (1) JP4248975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391005A (en) * 2016-10-20 2017-02-15 北京化大宏博应用技术研究院有限公司安庆分公司 Preparation method of multilayered silicon dioxide particles for catalytic column

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007933A (en) * 2012-12-13 2013-04-03 北京化工大学常州先进材料研究院 Preparation method of attapulgite load nanogold catalyst
KR102509366B1 (en) * 2018-01-26 2023-03-10 닛신 엔지니어링 가부시키가이샤 Manufacturing method of fine silver particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391005A (en) * 2016-10-20 2017-02-15 北京化大宏博应用技术研究院有限公司安庆分公司 Preparation method of multilayered silicon dioxide particles for catalytic column

Also Published As

Publication number Publication date
JP2005081198A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JPH0634921B2 (en) Method for oxidizing carbon monoxide and method for producing catalyst composition used therein
JP5588107B2 (en) Improvement of catalyst
JPH05184927A (en) Preparation of vinyl acetate
JP4724116B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP4883162B2 (en) Exhaust gas purification catalyst for CO or HC purification
JP6855073B2 (en) Multidimensional solid solution fine particles, their production method, and catalyst
JP5579357B2 (en) Ruthenium recovery method
CN107497442A (en) A kind of method for preparing efficient rare-earth element supported copper aluminium-based catalyst and its prepared catalyst
CN109261148A (en) A kind of catalyst and preparation method thereof of alumina load ruthenium
JP7157456B2 (en) PdRu Solid Solution Nanoparticles, Manufacturing Method and Catalyst Therefor, Method for Controlling Crystal Structure of PtRu Solid Solution Nanoparticles, and AuRu Solid Solution Nanoparticles and Manufacturing Method Therefor
JP4248975B2 (en) Organic compound decomposition catalyst particles and organic compound decomposition method using the same
JP2010089031A (en) Metal-particle supporting catalyst, and method of producing the same
CN109908935B (en) Pt-Ru bimetallic nano catalyst for high-concentration organic wastewater catalytic wet oxidation and preparation method thereof
US8987166B2 (en) Preparation of cerium oxide-supported nano gold-silver catalysts and its application in carbon monoxide removal in air
JP5084302B2 (en) Method for producing a catalyst for oxidizing gaseous or vapor hydrocarbons (VOC) and selectively reducing NOx
US7166557B2 (en) Process for the preparation of a microspheroidal catalyst
JP3760257B2 (en) Method for producing ammonia synthesis catalyst and catalyst obtained by the method
CA2335902C (en) Process for regenerating a used precious metal catalyst
CN112264010A (en) Catalyst for normal-temperature decomposition of formaldehyde and preparation method thereof
JP5049118B2 (en) Method for producing palladium-containing catalyst
CN115646511B (en) Catalytic wet oxidation catalyst and preparation method and application thereof
JP2006321673A (en) Method for producing hydrogen peroxide
JP2003192632A (en) Method for producing mixture of unsaturated carboxylic acid ester with unsaturated carboxylic acid
US10626075B2 (en) Process for oxidation of alcohols using oxygen-containing gases
KR20210135093A (en) Cobalt/ceria catalyst for oxidizing nitrogenmonoxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees