JP4243091B2 - Method for manufacturing bead core and pneumatic tire using bead core manufactured by the method - Google Patents

Method for manufacturing bead core and pneumatic tire using bead core manufactured by the method Download PDF

Info

Publication number
JP4243091B2
JP4243091B2 JP2002333483A JP2002333483A JP4243091B2 JP 4243091 B2 JP4243091 B2 JP 4243091B2 JP 2002333483 A JP2002333483 A JP 2002333483A JP 2002333483 A JP2002333483 A JP 2002333483A JP 4243091 B2 JP4243091 B2 JP 4243091B2
Authority
JP
Japan
Prior art keywords
wire
bead core
width direction
row
wire row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002333483A
Other languages
Japanese (ja)
Other versions
JP2004167724A (en
Inventor
一芳 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002333483A priority Critical patent/JP4243091B2/en
Publication of JP2004167724A publication Critical patent/JP2004167724A/en
Application granted granted Critical
Publication of JP4243091B2 publication Critical patent/JP4243091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建設車両に用いるオフザロードタイヤまたは、産業車両に用いるインダストリアルタイヤ等の重荷重用空気入りタイヤに適用されるビードコアの製造方法およびそれにより製造されたビードコアを用いた空気入りタイヤに関するものである。
【0002】
【従来の技術】
重荷重用空気入りタイヤのビードコアとしては、製造の簡易化およびリム組み付け時の嵌合圧力の均一化を図るという観点から、横断面形状が六角形をなすものが従来から広く一般に使用されている。
【0003】
しかしながら、このような六角形のビードコアでは、タイヤの製造時および加硫時等に、ビードコアの角部が、ビードコアと、その周りに巻き返したカーカスとの間のゴムを押しのけて、負荷転動時に、カーカスに対し集中的な力を及ぼすことにより、カーカスの、応力集中に起因する破断を引き起こすおそれがあった。
【0004】
この一方で、六角形状のビードコアの特に角部は、タイヤの製造および加硫におけるタイヤの拡径時に、カーカスの本体部が、巻上げ端部分としてのそれの側部部分を引きぬき方向に変位させるのを大きく妨げるため、たとえば、生タイヤの製造工程におけるシェーピング、加硫時の、ブラダー内圧の作用下でのタイヤの膨張変形等によって、タイヤのサイドウォール部に相当する部分が、タイヤの幅方向外側へ膨出変形される場合に、カーカスの巻上げ端部分が、生タイヤの中心軸線と直交する方向に延びてその巻上げ端を通る輪郭円直径が最大となる姿勢を経て、タイヤの外側へ傾く姿勢となって、巻上げ端を通る輪郭円直径がそれの最大値より小さくなる事に起因して、カーカスの巻上げ端部分がタイヤの厚み内で波打ち変形することになり、これがタイヤビード部の耐久性の低下やユニフォミティの低下の一因となるという問題があった。
【0005】
上記問題を解決するために、ビードコアの、カーカスと接触する、半径方向内周側の面の横断面形状を半円形状とすることが、特公昭62−137206号公報に提案されており、これによれば、ビードコアの角部の存在によって、カーカスに応力が集中する事によるそれの破断を防止する事ができ、また、タイヤの製造等に当って、カーカスの本体部が巻上げ端部分を引きぬき方向に変位させるのを許容して、巻上げ端部分への波打ち変形の発生を防止する事ができる。
ところが、ビードコアの横断面形状を半円形状とする場合は、たとえ、横断面形状が半円形をなす樋状の巻取り型を用いてワイヤを巻回積層しても、ワイヤに、それを樋底方向に滑らせる向きの分力が発生するため、巻崩れが発生しやすいという問題点があった。
【0006】
【特許文献1】
特公昭62−137206号公報
【0007】
【発明が解決しようとする課題】
そこで本発明は、カーカスの破断を防止でき、タイヤの製造等に当ってカーカスの巻上げ端部分への波打ちの発生を防止できる横断面形状を有するビードコアを所期した通りに製造する方法およびその方法により製造されたビードコアを用いた空気入りタイヤを提供するものである。
【0008】
【課題を解決するための手段】
本発明に係るビードコアの製造方法は、ワイヤーの複数本を1列に並べてなるワイヤー列を、複数段に隙間なく整列配置させてなる全体として円環形状のビードコアを製造するにあたり、
最大幅位置より内周側に位置するほぼ平坦なワイヤー列の、少なくとも2列の幅方向最外側のそれぞれのワイヤーを、それの内周側に隣接するワイヤー列の幅方向最外側のそれぞれのワイヤーよりも、ワイヤー径の(m+0.5)(但しmは1〜3の整数)倍だけ幅方向外側に位置させるとともに、かつ、最内周側から最大幅位置に至るまでの各ワイヤー列の幅方向最外側のそれぞれのワイヤーを、その内周側のワイヤー列の幅方向最外側のそれぞれのワイヤーに対し幅方向外側に位置させて、そのずれ量を、最内周側から最大幅位置に向けて段階的に小さくすることを特徴とする。
【0009】
なお、ここでの各ワイヤー列は、一本のワイヤーをワイヤー列の幅方向の一方端から他方端に向けて螺旋状に巻回して形成する事ができる他、ワイヤー列のワイヤー本数に合わせた複数のワイヤーの各々を、円環状に隙間なく周回させるとともに、周回させた各ワイヤーのそれぞれの端部をエンドレスに接合することによって形成することもできる。
ところで、ワイヤーは単一の素線からなるもの、または、複数の素線の撚り合わせ構造になるものとすることができる。
【0010】
これによれば、ワイヤーを一定の半径のもとに平坦状に巻回して各ワイヤー列を多段に形成する事で、ワイヤーに巻崩れを生じさせることなしにビードコアを構成する事ができ、このビードコアは少なくともカーカスと接触する部分の角部の角度が六角形状よりはるかに大きい多角形状をなす。
【0011】
従って、この方法により製造されたビードコアによれば、ビードコアの最内周側の辺から最大幅位置に至るまでの間に、六角形状よりも大きい角度の数箇所の角部が形成される事になり、その周りに巻き返したカーカスへの応力集中が、従来の六角形状ビードコアに比して大きく緩和される事になり、これがため、カーカスの破断が、半円形状のビードコアとほぼ同様に、防止されることになる。
【0012】
また、ビードコアの角部の角度を大きくすることにより、タイヤ製造から加硫時に発生するタイヤの拡径において、ビードコアとカーカス間のゴムゲージを均一化して、ビードコアのカーカスに対する拘束力をある程度低減させて、カーカス本体部が、カーカスの巻上げ端部分をひきぬき方向に変位させる事を許容し、巻き上げ端部分への波打ち変形の発生を、これも半円形状のビードコアとほぼ同様に、防止する事ができる。
この一方で、上記方法に従って製造したビードコアを用いた製品タイヤにおいては、それの負荷転動に当っての、ビードコアによるカーカスコードの拘束力は大きくなり、カーカスの引きぬき方向への変位を抑制することができる。
【0013】
ここで好ましくは、最内周側のワイヤー列の幅方向最外側のそれぞれのワイヤーに対し、その外周側に隣接するワイヤー列の幅方向最外側のそれぞれのワイヤーを、ワイヤー径の(m+0.5)(但しmは1〜3の整数)倍だけ幅方向外側に位置させる。
【0014】
これによれば、この方法により製造されたビードコアを使用した空気入りタイヤをリム組みした場合に、応力集中が起き易いビードコアの最内周側の辺に隣接する角部の角度を大きくして、カーカスの破断及び、タイヤの製造時および加硫時のカーカスの巻上げ端部分の波打ち変形の発生を防止する効果をより高める事ができる。
【0017】
また、好ましくは、最内周側のワイヤー列からビードコアの最大幅位置に存在するワイヤー列にいたるまでの、各々のワイヤー列の幅方向最外側に位置するそれぞれのワイヤーに対し、そのワイヤ列の外周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーの幅方向外側へのずれ量を、内周側のワイヤー列から外周側のワイヤー列に向けて、ワイヤー径の1.5倍および0.5倍の二段階に変化させる。
【0018】
これによれば、ビードコアの幅方向の仮想線分に対し、ビードコアの横断面形状に対する接線がなす角度を30度および60度の二段階に変化させて、ビードコアの角部の角度を大きくして、横断面形状を円形に近づけて、カーカス破断及びタイヤの製造時および加硫時のカーカス巻上げ端部の波打ち変形の発生を防止する効果をより高める事ができる。
【0019】
さらに好ましくは、最内周側のワイヤー列からビードコアの最大幅に位置するワイヤー列にいたるまでの、各々のワイヤー列の幅方向最外側に位置するそれぞれのワイヤーに対し、そのワイヤー列の外周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーの幅方向外側へのずれ量を、内周側のワイヤー列から外周側のワイヤー列に向けて、ワイヤー径の2.5倍、1.5倍および0.5倍の三段階に変化させる。
【0020】
これによれば、ビードコアの幅方向の仮想線分に対し、ビードコアの横断面形状に対する接線がなす角度を19度、30度および60度へと三段階に変化させて、角部の角度をさらに大きくして、横断面形状をより円形に近づけて、カーカス破断及びタイヤの製造時および加硫時のカーカス巻上げ端部の波打ち変形の発生を防止する効果をより高める事ができる。
なお、タイヤサイズが大きい場合は強度面より必要なワイヤー本数が多くなるため、ワイヤーのずれ量を三段階に変化させるケースが多くなり、タイヤサイズが小さい場合は必要なワイヤー本数が少なくなるため、二段階に変化させるケースが多くなる。
【0021】
さらに、最内周側のワイヤー列の幅のビードコアの最大幅に対する比を0.3から0.75とすることが好ましい。
【0022】
これによれば、ビードコアの補強材としての強度の確保とカーカス破断防止効果とを、ともに高い次元で両立させる事ができる。
0.3より小さいと、最大幅位置のワイヤー列に対し、最内周側のワイヤー列の抗張力強度が低下しすぎてタイヤ補強材としての強度が低下しかつ底辺にとがり形状ができるため好ましくなく、0.75を超えるとビードコアの最内周側の辺の両端に発生する角部の角度が小さくなりすぎ、ビードコアの角部がカーカスへ及ぼす力が大きくなりすぎる。
【0023】
また、好ましくは、ビードコアの製造に当って、左右対称の階段状の構造を有する製造用型を用いてワイヤーを複数列および複数段に巻回した後、製造用型を取外す。
ここで製造用型は、周方向に隙間なく配列される複数のセグメントにより構成しても良いし、周方向にある程度の隙間を持たせた複数のセグメントとそれらを拡縮径させる機構とにより構成したものでも良い。
これによれば、より確実な方法で、上述のビードコアの製造方法を実施する事ができる。
【0024】
また、本発明の空気入りタイヤは、一枚以上のカーカスプライを一対のビードコア間にトロイダルに延在させるとともに、各カーカスプライの側部部分をビードコアの周りに巻き返してなるカーカスのクラウン部の外周側に一層以上のベルト層よりなるベルトを配設し、その外周側にトレッドゴムを配設してなり、前記ビードコアを、先に述べたいずれかの方法に従って製造したものとする。
【0025】
これによれば、巻崩れがおきにくいより確実な方法で製造された、横断面形状の角部の角度が大きなビードコアを使用して、カーカスの破断を防止し、タイヤ製造から加硫にいたるまでにカーカスの巻上げ端部分に波打ち変形が発生する事を防止することができる。
【0026】
【発明の実施の形態】
以下に、本発明の実施の形態を図面に示すところに基づいて説明する。
図1はビードコアの製造方法を示す、幅方向断面図である。
ここでははじめに、図1(a)に示すように、左右対称の階段状の構造を有する製造用型1に、ワイヤー2を一段毎に幅方向の一方端から他方端へ隙間なく螺旋状に巻回して、最内周側のワイヤー列から数えて三段目までを、各々のワイヤー列の幅方向最外側のそれぞれのワイヤーを、内周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対してワイヤー径の2.5倍だけ幅方向外側に位置させる。
次いで、図1(b)に示すように、四段目から六段目までのワイヤー列を同様にして形成して、各々のワイヤー列の幅方向最外側のそれぞれのワイヤーを、内周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対してワイヤー径の1.5倍だけ幅方向外側へ位置させる。
【0027】
さらに、図1(c)に示すように、七段目から十二段目までを、各々のワイヤー列の幅方向最外側に位置するそれぞれのワイヤーの、外周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対してワイヤー径の0.5倍だけ幅方向外側へ位置させて、その後は、図1(d)および(e)に順次示すように、ワイヤー列の幅を減じるように、ビードコア3を製造する。
ただし、ビードコアは、各ワイヤー列のワイヤー本数に合わせた複数のワイヤーの各々を隙間なく整列配列して円環状に周回して、周回した各ワイヤーのそれぞれの端部をエンドレスに接合して製造する事もできる。
【0028】
これによれば、各ワイヤー列をワイヤー2を一定の巻回半径のもとに平坦状に巻回し、それらを積層して形成できるため、角部の角度が大きなビードコアを製造するに当り、ワイヤーが巻崩れする事を防止する事ができる。
【0029】
図2(a)は本発明の製造方法により製造されたビードコアの幅方向断面図であり、図2(b)はそのビードコアの最内周側の近傍Aを拡大して示す幅方向断面図である。
図2(a)および図2(b)に示すように、このビードコアは最内周側のワイヤー列から数えて五段目までを、各々のワイヤー列の幅方向最外側のそれぞれのワイヤーの、内周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対してワイヤー径の1.5倍だけ幅方向外側に位置させて、六段目から十四段目までを、各々のワイヤー列の幅方向最外側のそれぞれのワイヤーの、内周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対してワイヤー径の0.5倍だけ幅方向外側に位置させて、ビードコアの最内周側の辺から最大幅位置に向けて、ビードコアの幅方向の仮想線分に対し、最内周側から五段目までのワイヤー列の幅方向外側の複数のワイヤーの外輪郭線に引いた接線が30度をなし、六段目から十四段目までのワイヤー列の幅方向外側の複数のワイヤーの外輪郭線に引いた接線が60度の角度をなすように、一本のワイヤーを一段のワイヤー列ごとに一方から他方へ隙間なく平坦状に螺旋状に巻回してなる。
【0030】
このビードコアでは、六角形状のビードコアに較べて、カーカスに接触する部分の角部の角度を大きくでき、カーカスの応力集中による破断を防止し、ビードコアがカーカスに及ぼす拘束力を、ほぼ半円形状のビードコア並に小さくし、タイヤ製造から加硫にかけてのタイヤの拡径に伴い、カーカス巻上げ端部に波打ち変形が発生することを、カーカスの本体側が巻上げ端側を引き抜き方向に変位させる事を許容して、防止する事ができる。
【0031】
図3(a)は本発明の製造方法により製造された他の形態のビードコアの幅方向断面図であり、図3(b)はそのビードコアの最内周側の近傍Bを拡大して示す幅方向断面図である。
図3(a)および図3(b)に示すように、このビードコアは最内周側のワイヤー列から数えて三段目までを、各々のワイヤー列の幅方向最外側のそれぞれのワイヤーの、内周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対して、ワイヤー径の2.5倍だけ幅方向外側に位置させて、四段目から六段目までを、各々のワイヤー列の幅方向最外側のそれぞれのワイヤーの、内周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対してワイヤー径の1.5倍だけ幅方向外側に位置させて、七段目から十二段目までを、各々のワイヤー列の幅方向最外側のそれぞれのワイヤーの、内周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対してワイヤー径の0.5倍だけ幅方向外側に位置させて、ビードコアの最内周側の辺から最大幅位置に向けて、ビードコアの幅方向の仮想線分に対し、最内周側から三段目までのワイヤー列の幅方向外側の複数のワイヤーの外輪郭線に引いた接線が19度をなし、四段目から六段目までのワイヤー列の幅方向外側の複数のワイヤーの外輪郭線に引いた接線が30度をなし、七段目から十二段目までのワイヤー列の幅方向外側の複数のワイヤーの外輪郭線に引いた接線が60度の角度をなすように、一本のワイヤーを一段のワイヤー列ごとに一方から他方へ隙間なく平坦状に螺旋状に巻回してなる。
【0032】
このビードコアは、図2(a)に示すビードコアに較べてさらにカーカスに接触する部分の角部の角度を大きくでき、横断面形状を角部を増やしてより円形に近づけることにより、より効果的に、カーカスの破断を防止し、カーカス巻上げ端部の波打ち変形の発生を防止する事ができる。
【0033】
【実施例】
(実施例1)
本発明に係る製造方法により製造されたビードコアを使用した、サイズがOR3700R57のオフザロードタイヤの、ビードコアによるカーカスの破断防止効果を評価する目的で、図2、図3に示す断面形状を有する多角形状のビードコアを使用した二種類の実施例タイヤと、図4に示す断面形状を有する六角形状のビードコアを使用した一種類の比較例タイヤとを、サイズが27.0×6.0のリムに装着し、空気圧700kPaを充填して、ダンプカー(CAT793)に装着して、積載荷重を200t(タイヤ一本あたり50t)とし、USA銅鉱山の条件で、走行距離60000kmの走行試験を行い、ビード部分のカーカス破断の有無を測定した。その結果を表1に示す。
【0034】
なお、図4に示すビードコアは、最内周側のワイヤー列から数えて十六段目までを、各々のワイヤー列の幅方向最外側のそれぞれのワイヤーを、内周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対してワイヤー径の0.5倍だけ幅方向外側に位置させて、十七段目以上を、各々のワイヤー列の幅方向最外側のそれぞれのワイヤーの、内周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーに対してワイヤー径の0.5倍だけ幅方向内側に位置させて、横断面形状が六角形状となるように、一本のワイヤーを一段ごとに一方から他方へ隙間なく平坦状に螺旋状に巻回してなる従来形状のビードコアである。
【0035】
【表1】

Figure 0004243091
【0036】
表1において、実施例タイヤ1および2と比較例タイヤ1を比較すると、実施例タイヤ1および2はともに、カーカス破断の防止に対し優れた効果を示している事が分かる。
【0037】
(実施例2)
本発明に係る製造方法により製造されたビードコアを使用した、サイズがOR3700R57のオフザロードタイヤの、ビードコアによる成型および加硫時におけるカーカスの巻上げ端部分の波打ち変形発生の防止効果を評価する目的で、図2、図3に示す断面形状を有する多角形状のビードコアを使用した二種類の実施例タイヤと、図4に示す断面形状を有する六角形状のビードコアを使用した一種類の比較例タイヤにつき、加硫終了後における巻上げ端部分の波打ち変形の発生の有無を測定した。その結果を表2に示す。
【0038】
【表2】
Figure 0004243091
【0039】
表2において、実施例タイヤ1および2と比較例タイヤ1を比較すると、実施例タイヤ1および2はともに、カーカス巻上げ端の波打ち変形発生の防止に対し優れた効果を示している事が分かる。
【0040】
【発明の効果】
以上に述べたところから明らかなように、本発明によれば、ワイヤーを複数列、および複数段に隙間なく整列配置させてなる全体として円環形状のビードコアを製造するにあたり、最大幅位置より内周側に位置するほぼ平坦なワイヤー列の少なくとも一列の幅方向最外側のそれぞれのワイヤーを、それの内周側に隣接するワイヤー列の幅方向最外側のそれぞれのワイヤーよりも、ワイヤー径の(m+0.5)(但しmは1〜3の整数)倍だけ幅方向外側に位置させるとともに、かつ、最内周側から最大幅位置に至るまでの各ワイヤー列の幅方向最外側のそれぞれのワイヤーを、その内周側のワイヤー列の幅方向最外側のそれぞれのワイヤーに対し幅方向外側に位置させて、そのずれ量を、最内周側から最大幅位置に向けて傾向的に小さくする事により、ワイヤーを一定の半径のもとに平坦状に巻回してビードコアを製造できるため、半円形状のビードコアにおける製造方法に較べ、ビードコアの製造時にワイヤーが巻崩れする事を防止する事ができる。またこの方法により製造されたビードコアは、ビードコアの最内周側の辺から最大幅位置に至るまでに、六角形状よりも大きい角度の数箇所の角部を形成する事ができ、ビードコアの角部がカーカスに対し集中的な力を及ぼし、カーカスが破断することおよびタイヤ製造および加硫時にカーカスの巻上げ端部分に波打ち変形が発生する事を、半円形状のビードコアとほぼ同様に、防止する事ができる。
【図面の簡単な説明】
【図1】 本発明のビードコアの製造方法を示す幅方向断面図である。
【図2】 本発明の製造方法により製造されたビードコアの幅方向断面図である。
【図3】 本発明の製造方法により製造された他のビードコアの幅方向断面図である。
【図4】 従来形状のビードコアの幅方向断面図である。
【符号の説明】
1 製造用型
2 ワイヤー
3 ビードコア[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a bead core applied to a heavy duty pneumatic tire such as an off-the-road tire used for a construction vehicle or an industrial tire used for an industrial vehicle, and a pneumatic tire using the bead core manufactured thereby. is there.
[0002]
[Prior art]
As a bead core for a heavy-duty pneumatic tire, one having a hexagonal cross-sectional shape has been widely used in the past from the viewpoint of simplifying the manufacturing and making the fitting pressure uniform when assembling the rim.
[0003]
However, in such a hexagonal bead core, at the time of load rolling, the corners of the bead core push away the rubber between the bead core and the carcass rolled back around the bead core during tire manufacture and vulcanization. By applying a concentrated force to the carcass, the carcass may break due to stress concentration.
[0004]
On the other hand, the corner portion of the hexagonal bead core is displaced in the pulling direction by the carcass main body portion as a winding end portion when the tire diameter is increased during tire manufacture and vulcanization. For example, a portion corresponding to the sidewall portion of the tire due to the deformation of the tire under the action of the internal pressure of the bladder during shaping, vulcanization or the like in the raw tire manufacturing process When bulging outward, the winding end portion of the carcass extends in a direction perpendicular to the center axis of the green tire and tilts to the outside of the tire through a posture in which the contour circle diameter passing through the winding end is maximized. Due to the fact that the contour circle diameter passing through the winding end becomes smaller than its maximum value, the winding end portion of the carcass is wavyly deformed within the tire thickness. Now, this is a problem that contribute to the deterioration of the durability of the decline and the uniformity of the tire bead portion.
[0005]
In order to solve the above problem, Japanese Patent Publication No. 62-137206 proposes that the bead core has a semicircular cross-sectional shape on the radially inner circumferential surface that contacts the carcass. According to the present invention, the corners of the bead core can prevent the carcass from being broken due to stress concentration, and the carcass main body pulls the winding-up end portion when manufacturing tires. Displacement in the unwinding direction is allowed, and the occurrence of undulation deformation at the winding end portion can be prevented.
However, when the cross-sectional shape of the bead core is a semicircular shape, even if the wire is wound and laminated using a bowl-shaped winding die having a semicircular cross-sectional shape, the wire is There is a problem in that the component tends to slide because the component force in the direction of sliding in the bottom direction is generated.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 62-137206 [0007]
[Problems to be solved by the invention]
Accordingly, the present invention provides a method for manufacturing a bead core having a cross-sectional shape capable of preventing carcass breakage and preventing occurrence of undulations at the winding end portion of the carcass in manufacturing a tire and the like, and the method thereof A pneumatic tire using a bead core manufactured by the method described above is provided.
[0008]
[Means for Solving the Problems]
The manufacturing method of the bead core according to the present invention is to manufacture a bead core having an annular shape as a whole by arranging a plurality of wires arranged in a row, and arranging them in a plurality of stages without gaps.
The outermost wires in the width direction of at least two rows in the substantially flat wire row located on the inner peripheral side from the maximum width position are the outermost wires in the width direction of the wire row adjacent to the inner peripheral side. Than (m + 0.5) (where m is an integer of 1 to 3) times the wire diameter and positioned on the outer side in the width direction, and the width of each wire row from the innermost side to the maximum width position Each outermost wire in the direction is positioned on the outer side in the width direction with respect to each outermost wire in the width direction of the wire row on the inner periphery side, and the shift amount is directed from the innermost periphery side to the maximum width position. It is characterized by making it smaller in steps .
[0009]
In addition, each wire row here can be formed by spirally winding one wire from one end to the other end in the width direction of the wire row, and also matched the number of wires in the wire row Each of the plurality of wires can be formed in an annular shape without gaps, and the ends of each of the wound wires can be joined endlessly.
By the way, a wire can be made of a single strand or a twisted structure of a plurality of strands.
[0010]
According to this, a bead core can be constituted without causing the wire to collapse by winding the wire in a flat shape with a certain radius and forming each wire row in multiple stages. The bead core has a polygonal shape in which the angle of the corner portion at least in contact with the carcass is much larger than the hexagonal shape.
[0011]
Therefore, according to the bead core manufactured by this method, several corners having a larger angle than the hexagonal shape are formed from the innermost side of the bead core to the maximum width position. Therefore, the stress concentration on the carcass rolled back around it is greatly relaxed compared to the conventional hexagonal bead core, and this prevents the carcass from being broken almost like the semicircular bead core. Will be.
[0012]
Also, by increasing the angle of the corners of the bead core, the rubber gauge between the bead core and the carcass is made uniform in the diameter expansion of the tire that occurs during vulcanization from tire manufacture, and the restraining force of the bead core against the carcass is reduced to some extent. The carcass main body allows the carcass winding end portion to be displaced in the pulling direction, and can prevent the wavy deformation of the winding end portion in the same manner as the semicircular bead core. .
On the other hand, in the product tire using the bead core manufactured according to the above-described method, the restraint force of the carcass cord by the bead core during the load rolling is increased, and the displacement of the carcass in the pulling direction is suppressed. be able to.
[0013]
Preferably, for each wire on the outermost side in the width direction of the wire row on the innermost peripheral side, each wire on the outermost side in the width direction of the wire row adjacent to the outer peripheral side is set to (m + 0.5 ) (Where m is an integer of 1 to 3).
[0014]
According to this, when a pneumatic tire using a bead core manufactured by this method is assembled with a rim, the angle of the corner adjacent to the innermost side of the bead core where stress concentration is likely to occur is increased, The effect of preventing carcass breakage and occurrence of undulating deformation of the carcass winding end portion during tire manufacture and vulcanization can be further enhanced.
[0017]
Preferably, for each wire located on the outermost side in the width direction of each wire row from the innermost wire row to the wire row existing at the maximum width position of the bead core, The amount of deviation of the outermost wire in the width direction of the wire row located adjacent to the outer peripheral side to the outer side in the width direction is changed from 1. It is changed in two stages of 5 times and 0.5 times.
[0018]
According to this, with respect to the imaginary line segment in the width direction of the bead core, the angle formed by the tangent to the cross-sectional shape of the bead core is changed in two steps of 30 degrees and 60 degrees to increase the angle of the corner of the bead core. By making the cross-sectional shape close to a circle, it is possible to further enhance the effect of preventing the carcass fracture and the occurrence of wavy deformation at the carcass winding end at the time of tire manufacture and vulcanization.
[0019]
More preferably, for each wire located on the outermost side in the width direction of each wire row from the innermost wire row to the wire row located at the maximum width of the bead core, the outer circumference side of the wire row The amount of deviation of the outermost wire in the width direction of the wire row located adjacent to the outer side in the width direction is 2.5 times the wire diameter from the inner wire side to the outer wire row. , 1.5 times and 0.5 times.
[0020]
According to this, with respect to the imaginary line segment in the width direction of the bead core, the angle formed by the tangent to the cross-sectional shape of the bead core is changed in three steps from 19 degrees, 30 degrees, and 60 degrees to further increase the angle of the corner portion. By making it larger, the cross-sectional shape can be made closer to a circle, and the effect of preventing carcass fracture and the occurrence of wavy deformation at the end of the carcass winding at the time of tire manufacture and vulcanization can be further enhanced.
When the tire size is large, the number of wires required is greater than the strength, so there are many cases where the amount of wire displacement is changed in three stages, and when the tire size is small, the number of wires required is small, There are many cases that change in two stages.
[0021]
Furthermore, the ratio of the width of the innermost wire row to the maximum width of the bead core is preferably set to 0.3 to 0.75.
[0022]
According to this, both the securing of the strength as the reinforcing material of the bead core and the carcass fracture preventing effect can be achieved at a high level.
If it is smaller than 0.3, the tensile strength of the innermost wire row is excessively lowered with respect to the wire row at the maximum width position, the strength as a tire reinforcing material is lowered, and a pointed shape can be formed at the bottom, which is not preferable. If it exceeds 0.75, the angle of the corner portion generated at both ends of the innermost peripheral side of the bead core becomes too small, and the force exerted on the carcass by the corner portion of the bead core becomes too large.
[0023]
Preferably, in manufacturing the bead core, the wire is wound into a plurality of rows and a plurality of steps using a manufacturing die having a symmetrical step-like structure, and then the manufacturing die is removed.
Here, the manufacturing mold may be constituted by a plurality of segments arranged without gaps in the circumferential direction, or by a plurality of segments having a certain amount of gaps in the circumferential direction and a mechanism for expanding and reducing the diameters. Things can be used.
According to this, the manufacturing method of the above-mentioned bead core can be carried out with a more reliable method.
[0024]
Further, the pneumatic tire of the present invention has one or more carcass plies extending in a toroidal manner between a pair of bead cores, and an outer periphery of a crown portion of a carcass formed by winding a side portion of each carcass ply around a bead core. A belt composed of one or more belt layers is disposed on the side, and a tread rubber is disposed on the outer peripheral side thereof, and the bead core is manufactured according to any of the methods described above.
[0025]
According to this, from a tire production to vulcanization, using a bead core produced by a more reliable method that is less likely to be unrolled and having a large cross-sectional corner angle, the carcass is prevented from breaking. Further, it is possible to prevent undulation deformation from occurring at the winding end portion of the carcass.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view in the width direction showing a method for manufacturing a bead core.
Here, first, as shown in FIG. 1 (a), a wire 2 is wound spirally from one end to the other end in the width direction on a manufacturing die 1 having a symmetrical stepped structure without gaps. Rotate the outermost wire row from the innermost wire row to the third stage, and wire the outermost wire in the width direction of each wire row, the outermost wire row in the width direction adjacent to the inner circumference side Each wire is positioned on the outside in the width direction by 2.5 times the wire diameter.
Next, as shown in FIG. 1 (b), the wire rows from the fourth row to the sixth row are formed in the same manner, and the respective outermost wires in the width direction of each wire row are arranged on the inner peripheral side. The wire rows located adjacent to each other on the outermost side in the width direction are positioned outward in the width direction by 1.5 times the wire diameter.
[0027]
Furthermore, as shown in FIG.1 (c), the wire row | line | wire located adjacent to the outer peripheral side of each wire located in the width direction outermost side of each wire row | line from the 7th step to the 12th step | paragraph For each outermost wire in the width direction, the wire is positioned 0.5 times the wire diameter outward in the width direction, and then the width of the wire row is sequentially shown in FIGS. The bead core 3 is manufactured so as to reduce.
However, the bead core is manufactured by aligning and arranging each of a plurality of wires in accordance with the number of wires in each wire row without gaps, and circularly wrapping each end of each circulated wire in an endless manner. You can also do things.
[0028]
According to this, since each wire row can be formed by winding the wires 2 in a flat shape under a certain winding radius and laminating them, the wires are produced when manufacturing a bead core having a large corner angle. Can be prevented from collapsing.
[0029]
2A is a cross-sectional view in the width direction of the bead core manufactured by the manufacturing method of the present invention, and FIG. 2B is a cross-sectional view in the width direction showing an enlarged vicinity A on the innermost peripheral side of the bead core. is there.
As shown in FIG. 2 (a) and FIG. 2 (b), this bead core is counted from the innermost peripheral wire row up to the fifth stage, of each wire on the outermost side in the width direction of each wire row, For each wire on the outermost side in the width direction of the wire row located adjacent to the inner peripheral side, it is positioned on the outer side in the width direction by 1.5 times the wire diameter, and the sixth stage to the fourteenth stage, The outermost wire in the width direction of each wire row is on the outer side in the width direction by 0.5 times the wire diameter with respect to the outermost wire in the width direction of the wire row located adjacent to the inner peripheral side. Positioned from the innermost side of the bead core toward the maximum width position, with respect to the imaginary line segment in the width direction of the bead core, a plurality of outer wires in the width direction of the wire row from the innermost side to the fifth stage The tangent drawn to the outer outline of the wire makes 30 degrees, From one side of each row of wires, one wire is placed so that the tangents drawn to the outer contours of the plurality of wires on the outside in the width direction of the row of wires from the step to the 14th step form an angle of 60 degrees. The other side is spirally wound in a flat shape without a gap.
[0030]
Compared with a hexagonal bead core, this bead core can increase the angle of the corner portion in contact with the carcass to prevent breakage due to the stress concentration of the carcass, and the restraining force exerted on the carcass by the bead core is almost semicircular. The bead core is made as small as possible to allow the carcass main body side to displace the hoisting end side in the pulling direction, as the tire diameter increases from tire manufacture to vulcanization, causing the wavy deformation at the carcass hoisting end. Can be prevented.
[0031]
FIG. 3A is a cross-sectional view in the width direction of another form of the bead core manufactured by the manufacturing method of the present invention, and FIG. 3B is an enlarged view showing the vicinity B on the innermost peripheral side of the bead core. FIG.
As shown in FIG. 3 (a) and FIG. 3 (b), this bead core counts from the innermost circumferential side of the wire row up to the third stage of each wire on the outermost side in the width direction of each wire row. For each wire on the outermost side in the width direction of the wire row located adjacent to the inner peripheral side, it is positioned on the outer side in the width direction by 2.5 times the wire diameter, and the fourth to sixth steps The outermost wire in the width direction of each wire row is on the outer side in the width direction by 1.5 times the wire diameter with respect to the outermost wire in the width direction of the wire row located adjacent to the inner peripheral side. Position the wire from the 7th to the 12th to the outermost wire in the width direction of the wire row adjacent to the inner periphery of the outermost wire in the width direction of each wire row. Width is 0.5 times the wire diameter Positioned on the outer side, from the innermost side of the bead core toward the maximum width position, with respect to the virtual line segment in the width direction of the bead core, on the outer side in the width direction of the wire row from the innermost side to the third stage The tangent drawn to the outer outline of the plurality of wires forms 19 degrees, the tangent drawn to the outer outline of the plurality of wires on the outer side in the width direction of the wire row from the fourth stage to the sixth stage forms 30 degrees, One wire for each step of the wire row so that the tangents drawn to the outer contour lines of the plurality of wires on the outer side in the width direction of the wire row from the seventh step to the twelfth step form an angle of 60 degrees. It is spirally wound in a flat shape from one to the other with no gap.
[0032]
Compared with the bead core shown in FIG. 2 (a), this bead core can further increase the angle of the corner portion in contact with the carcass, and more effectively by increasing the cross-sectional shape to make it more circular. It is possible to prevent the carcass from being broken and to prevent the carcass winding end from being wavy.
[0033]
【Example】
(Example 1)
The polygonal shape having the cross-sectional shape shown in FIGS. 2 and 3 for the purpose of evaluating the effect of preventing the carcass from being broken by the bead core of the OR3700R57 size off-the-road tire using the bead core manufactured by the manufacturing method according to the present invention. 2 types of tires using the bead core and one type of comparative example tire using the hexagonal bead core having the cross-sectional shape shown in FIG. 4 are mounted on a rim having a size of 27.0 × 6.0. Then, it is filled with air pressure 700 kPa, mounted in a dump truck (CAT793), loaded load is 200 tons (50 tons per tire), and a running test is conducted at a traveling distance of 60000 km under the conditions of the USA copper mine. The presence or absence of carcass fracture was measured. The results are shown in Table 1.
[0034]
In addition, the bead core shown in FIG. 4 is positioned up to the sixteenth stage counted from the innermost wire row, and the outermost wires in the width direction of each wire row are positioned adjacent to the inner peripheral side. The outermost wire in the width direction of the wire row is positioned on the outer side in the width direction by 0.5 times the diameter of the wire, and the 17th step or more is connected to the outermost wire in the width direction of each wire row. The cross-sectional shape is hexagonal, with the wire array positioned adjacent to the inner peripheral side of the wire row on the outermost side in the width direction by 0.5 times the wire diameter. In addition, a conventional bead core is formed by winding a single wire from one side to the other in a spiral manner without gaps.
[0035]
[Table 1]
Figure 0004243091
[0036]
In Table 1, when Example tires 1 and 2 and Comparative example tire 1 are compared, it can be seen that both Example tires 1 and 2 have an excellent effect on preventing carcass fracture.
[0037]
(Example 2)
For the purpose of evaluating the effect of preventing the occurrence of wavy deformation of the carcass winding end portion during molding and vulcanization of an off-the-road tire of the size OR3700R57 using the bead core manufactured by the manufacturing method according to the present invention, Two examples of tires using polygonal bead cores having the cross-sectional shape shown in FIGS. 2 and 3 and one type of comparative tire using hexagonal bead cores having the cross-sectional shape shown in FIG. The presence or absence of undulation deformation at the winding end after the completion of the vulcanization was measured. The results are shown in Table 2.
[0038]
[Table 2]
Figure 0004243091
[0039]
In Table 2, when Example tires 1 and 2 and Comparative Example tire 1 are compared, it can be seen that both Example tires 1 and 2 have an excellent effect for preventing the occurrence of wavy deformation at the carcass winding end.
[0040]
【The invention's effect】
As is clear from the above description, according to the present invention, in manufacturing an annular bead core as a whole by arranging the wires in a plurality of rows and in a plurality of steps without gaps, the inner diameter from the maximum width position. The outermost wire in the width direction of at least one row of the substantially flat wire row located on the circumferential side is made to have a wire diameter ( m + 0.5) (where m is an integer of 1 to 3) times the outermost wire in the width direction and the outermost wire in the width direction of each wire row from the innermost side to the maximum width position Is positioned on the outer side in the width direction with respect to the respective outermost wires in the width direction of the wire array on the inner peripheral side, and the amount of shift is gradually reduced from the innermost side toward the maximum width position. Because the bead core can be manufactured by winding the wire in a flat shape with a certain radius, it is possible to prevent the wire from collapsing during the manufacture of the bead core, compared to the manufacturing method in the semicircular bead core. . In addition, the bead core manufactured by this method can form several corners having a larger angle than the hexagonal shape from the innermost side of the bead core to the maximum width position. As with a semicircular bead core, it is possible to prevent the carcass from rupturing and the carcass from breaking and undulating deformation at the winding end of the carcass during tire manufacture and vulcanization. Can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in the width direction showing a method for manufacturing a bead core of the present invention.
FIG. 2 is a cross-sectional view in the width direction of a bead core manufactured by the manufacturing method of the present invention.
FIG. 3 is a cross-sectional view in the width direction of another bead core manufactured by the manufacturing method of the present invention.
FIG. 4 is a cross-sectional view in the width direction of a conventional bead core.
[Explanation of symbols]
1 Manufacturing mold 2 Wire 3 Bead core

Claims (7)

ワイヤーの複数本を1列に並べてなるワイヤー列を、複数段に隙間なく整列配置させてなる全体として円環形状のビードコアを製造するにあたり、
最大幅位置より内周側に位置するほぼ平坦なワイヤー列の、少なくとも2列の幅方向最外側のそれぞれのワイヤーを、それの内周側に隣接するワイヤー列の幅方向最外側のそれぞれのワイヤーよりも、ワイヤー径の(m+0.5)(但しmは1〜3の整数)倍だけ幅方向外側に位置させるとともに、かつ、最内周側から最大幅位置に至るまでの各ワイヤー列の幅方向最外側のそれぞれのワイヤーを、その内周側のワイヤー列の幅方向最外側のそれぞれのワイヤーに対し幅方向外側に位置させて、そのずれ量を、最内周側から最大幅位置に向けて段階的に小さくしてなるビードコアの製造方法。
In manufacturing an annular bead core as a whole by arranging a plurality of wires in a row and arranging them in a row with no gaps,
The outermost wires in the width direction of at least two rows in the substantially flat wire row located on the inner peripheral side from the maximum width position are the outermost wires in the width direction of the wire row adjacent to the inner peripheral side. Than (m + 0.5) (where m is an integer of 1 to 3) times the wire diameter and positioned on the outer side in the width direction, and the width of each wire row from the innermost side to the maximum width position Each outermost wire in the direction is positioned on the outer side in the width direction with respect to each outermost wire in the width direction of the wire row on the inner periphery side, and the shift amount is directed from the innermost periphery side to the maximum width position. A method of manufacturing a bead core that is gradually reduced in size.
最内周側のワイヤー列の幅方向最外側のそれぞれのワイヤーに対し、その外周側に隣接するワイヤー列の幅方向最外側のそれぞれのワイヤーを、ワイヤー径の(m+0.5)(但しmは1〜3の整数)倍だけ幅方向外側に位置させる請求項1に記載のビードコアの製造方法。  For each outermost wire in the width direction of the innermost wire row, the outermost wire in the width direction of the wire row adjacent to the outer peripheral side is set to the wire diameter (m + 0.5) (where m is The method for manufacturing a bead core according to claim 1, wherein the bead core is positioned on the outer side in the width direction by an integer of 1 to 3. 最内周側のワイヤー列からビードコアの最大幅位置に存在するワイヤー列にいたるまでの、各々のワイヤー列の幅方向最外側に位置するそれぞれのワイヤーに対し、そのワイヤ列の外周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーの幅方向外側へのずれ量を、内周側のワイヤー列から外周側のワイヤー列に向けて、ワイヤー径の1.5倍および0.5倍の二段階に変化させる請求項1もしくは2に記載のビードコアの製造方法。For each wire located on the outermost side in the width direction of each wire row from the innermost wire row to the wire row existing at the maximum width position of the bead core, it is adjacent to the outer circumference side of the wire row. The amount of deviation of the outermost wire in the width direction of the wire row positioned in the width direction to the outer side in the width direction is 1.5 times the wire diameter and 0. The method for producing a bead core according to claim 1, wherein the bead core is changed in two stages of 5 times. 最内周側のワイヤー列からビードコアの最大幅に位置するワイヤー列にいたるまでの、各々のワイヤー列の幅方向最外側に位置するそれぞれのワイヤーに対し、そのワイヤー列の外周側に隣接して位置するワイヤー列の幅方向最外側のそれぞれのワイヤーの幅方向外側へのずれ量を、内周側のワイヤー列から外周側のワイヤー列に向けて、ワイヤー径の2.5倍、1.5倍および0.5倍の三段階に変化させる請求項1に記載のビードコアの製造方法。  For each wire located on the outermost side in the width direction of each wire row, from the innermost wire row to the wire row located at the maximum width of the bead core, adjacent to the outer circumference side of the wire row The amount of displacement of the outermost wire in the width direction of the wire row positioned to the outer side in the width direction is 2.5 times the wire diameter from the inner wire row to the outer wire row, 1.5 The method for producing a bead core according to claim 1, wherein the bead core is changed in three stages of double and 0.5 times. 最内周側のワイヤー列の幅のビードコアの最大幅に対する比を0.3から0.75としてなる請求項1〜4のいずれかに記載のビードコアの製造方法。The method for manufacturing a bead core according to any one of claims 1 to 4 , wherein a ratio of the width of the innermost wire row to the maximum width of the bead core is 0.3 to 0.75. 左右対称の階段状の構造を有する製造用型を用いてワイヤーを複数列および複数段に巻回した後、製造用型を取外す請求項1〜5のいずれかに記載のビードコアの製造方法。The manufacturing method of the bead core in any one of Claims 1-5 which removes a manufacturing type | mold after winding a wire in the multiple rows | lines and several steps using the manufacturing type | mold which has a symmetrical step-like structure. 一枚以上のカーカスプライを一対のビードコア間にトロイダルに延在させるとともに、各カーカスプライの側部部分をビードコアの周りに巻き返してなるカーカスのクラウン部の外周側に一層以上のベルト層よりなるベルトを配設し、その外周側にトレッドゴムを配設してなる空気入りタイヤであって、
前記ビードコアを、請求項1〜6のいずれかに記載の方法により製造したものとする空気入りタイヤ。
A belt composed of one or more belt layers on the outer peripheral side of the crown portion of the carcass in which one or more carcass plies are extended toroidally between a pair of bead cores and the side portions of each carcass ply are wound around the bead cores. A pneumatic tire in which a tread rubber is disposed on the outer peripheral side thereof,
A pneumatic tire in which the bead core is manufactured by the method according to claim 1.
JP2002333483A 2002-11-18 2002-11-18 Method for manufacturing bead core and pneumatic tire using bead core manufactured by the method Expired - Fee Related JP4243091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333483A JP4243091B2 (en) 2002-11-18 2002-11-18 Method for manufacturing bead core and pneumatic tire using bead core manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333483A JP4243091B2 (en) 2002-11-18 2002-11-18 Method for manufacturing bead core and pneumatic tire using bead core manufactured by the method

Publications (2)

Publication Number Publication Date
JP2004167724A JP2004167724A (en) 2004-06-17
JP4243091B2 true JP4243091B2 (en) 2009-03-25

Family

ID=32698182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333483A Expired - Fee Related JP4243091B2 (en) 2002-11-18 2002-11-18 Method for manufacturing bead core and pneumatic tire using bead core manufactured by the method

Country Status (1)

Country Link
JP (1) JP4243091B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055465A (en) * 2005-08-25 2007-03-08 Bridgestone Corp Bead core and pneumatic tire using it
CN102441626A (en) * 2011-11-07 2012-05-09 三角轮胎股份有限公司 Nearly circular bead ring
JP6505552B2 (en) * 2015-08-31 2019-04-24 住友ゴム工業株式会社 Bead winding former

Also Published As

Publication number Publication date
JP2004167724A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
CN110177700B (en) Pneumatic tire
JP4279150B2 (en) Run-flat tire and manufacturing method thereof
JP4118608B2 (en) Pneumatic radial tire for aircraft and manufacturing method thereof
JP4243091B2 (en) Method for manufacturing bead core and pneumatic tire using bead core manufactured by the method
JP2004268820A (en) Pneumatic tire
JP4166308B2 (en) Pneumatic tire
JP4507921B2 (en) Run-flat tire and manufacturing method thereof
EP3090885B1 (en) Pneumatic tire
JP3777241B2 (en) Pneumatic radial tire
US6640860B1 (en) Vehicle pneumatic tire with specified carcass length and/or curvature
JP5495426B2 (en) Pneumatic radial tire and manufacturing method thereof
JP6074230B2 (en) Pneumatic tire and manufacturing method thereof
JP4905963B2 (en) Pneumatic tire
JP4684019B2 (en) Heavy duty tire and manufacturing method thereof
JP4722629B2 (en) Pneumatic tire manufacturing method
JPH11189018A (en) Pneumatic tire
CN219618843U (en) Semi-steel radial tire
JP2012131109A (en) Method of manufacturing pneumatic tire and bead apex rubber
JP4721481B2 (en) Pneumatic radial tire
JP3402503B2 (en) Pneumatic tire
JP2017001673A (en) Pneumatic tire and manufacturing method thereof
WO2020129870A1 (en) Aircraft pneumatic tire
EP1200275A1 (en) Metallic cord for reinforcing rubber articles, in particular tyres
CN117507689A (en) Tire bead structure and preparation method thereof
JP2012035790A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees