JP4242111B2 - Welding method in automatic welding equipment - Google Patents

Welding method in automatic welding equipment Download PDF

Info

Publication number
JP4242111B2
JP4242111B2 JP2002145524A JP2002145524A JP4242111B2 JP 4242111 B2 JP4242111 B2 JP 4242111B2 JP 2002145524 A JP2002145524 A JP 2002145524A JP 2002145524 A JP2002145524 A JP 2002145524A JP 4242111 B2 JP4242111 B2 JP 4242111B2
Authority
JP
Japan
Prior art keywords
welding
cross
welded
speed
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002145524A
Other languages
Japanese (ja)
Other versions
JP2003334659A (en
Inventor
幸治 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2002145524A priority Critical patent/JP4242111B2/en
Publication of JP2003334659A publication Critical patent/JP2003334659A/en
Application granted granted Critical
Publication of JP4242111B2 publication Critical patent/JP4242111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動溶接装置における溶接方法に関する。
【0002】
【従来の技術】
自動溶接装置の中には、複数の溶接ロボットにより複数の溶接部を同時に溶接して溶接作業の効率化を図るようにしたものがあり、各溶接部を同時に溶接する場合、各溶接ロボットにて同一の溶接動作が行われている。
【0003】
ところで、本来、各溶接部について、それぞれの開先部の断面形状は同一にされているはずではあるが、部材そのものの加工精度、例えば角柱部材のコーナ部の板厚精度または開先部の加工誤差により、同一形状でない場合がある。
【0004】
しかし、従来、開先部の断面形状が同一でない場合でも、同一の溶接条件、例えば同一の溶接パス数および同一の溶接速度にて溶接が行われていた。
【0005】
【発明が解決しようとする課題】
上述したように、開先部の断面形状が同一でない場合でも、同一の溶接条件にて溶接が行わていたため、一方の溶接部については、最適な溶接を行い得たとしても、他方の溶接部については、最適な溶接条件にて溶接を行うことができなかった。例えば、溶接パス数について説明すると、開先部の断面積が異なる場合であっても溶接パス数が同一であるため、各溶接部における開先部での1パスによる溶着断面積が大きく異なってしまい、両溶接部を最適な溶接条件にて溶接することができないという問題があった。
【0006】
そこで、本発明は、複数の溶接部において、開先部の断面形状が同一でない場合でも、最適な溶接条件にて溶接を行い得る自動溶接装置における溶接方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1に係る自動溶接装置における溶接方法は、各溶接部の断面形状に応じて溶接条件を決定する際に、溶接条件が溶接速度および溶接電流に関する場合で且つ各溶接部にコーナ部が含まれている場合であって、
各溶接部におけるコーナ部での溶接具の回し半径位置に応じて溶接速度を決定するとともに、各溶接部のコーナ部における回し溶接の開始動作が同期して行われるように、当該各コーナ部手前における直線部での溶接速度を決定し、且つ溶接速度に応じて溶接電流を決定する方法である。
【0008】
また、請求項2に係る自動溶接装置における溶接方法は、請求項1に係る溶接方法において、溶接条件溶接パス数が含まれている場合、各溶接部の全体断面積を予め設定された基準断面積にて除することにより溶接パス数を求めるとともに、この溶接パス数に基づき溶接層数およびこれら各溶接層における溶接パス数を決定する方法である。
【0010】
上記の溶接方法によると、複数の溶接ロボットにて複数の溶接部を同時に溶接する際に、被溶接物そのものの製作誤差、または溶接部における開先部の加工誤差などにより、各溶接部における開先部の断面形状が異なっている場合でも、その断面形状に応じて溶接条件を決定するため、最適な溶接条件にて溶接を行うことができる。
【0011】
例えば、開先部の断面積が異なっている場合でも、基準断面積を用いて適正な全体溶接パス数を求めるとともに、この全体溶接パス数に基づき溶接層数および各溶接層における溶接パス数を決定するようにしているので、最適な溶接条件にて溶接を行い得る。
【0012】
また、溶接部にコーナ部がある場合には、コーナ部における開先部の断面積を考慮して、すなわち回し溶接における回し半径位置に応じて溶接速度を決定するとともに、コーナ部での回し溶接の開始位置についても、コーナ部手前の直線部での溶接速度が調整されて、回し溶接の開始位置が同一となるようにしているため、やはり、最適な溶接条件にて溶接を行い得る。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態に係る自動溶接装置における溶接方法を、図1〜図6に基づき説明する。
【0014】
まず、自動溶接装置の概略構成について説明する。
この自動溶接装置は、図1に示すように、平面視が矩形状の支持フレーム1と、この支持フレーム1上に立設された門型フレーム2と、この門型フレーム2に沿って支持フレーム1側に設けられた一対の案内レール3と、この案内レール3の一端側に固定されて被溶接物の一端側を保持する固定側保持体4と、案内レール3上を移動可能配置されて被溶接物の他端側を保持する可動側保持体5と、上記門型フレーム2の水平部2aに移動自在に設けられた前後一対の移動体6と、これら各移動体6に設けられた2台の溶接ロボット7とから構成されている。
【0015】
そして、上記両保持体4,5により両端部が保持された被溶接物Cにおける複数、例えば前後2箇所の溶接部Wを、2台の溶接ロボット7により、自動的に且つ同時に溶接を行い得るようにされている。勿論、各溶接ロボット7のアーム先端部には、溶接用電極、溶接トーチなどの溶接具7aが設けられている。
【0016】
さらに、この自動溶接装置には、図3に示すように、各溶接部における開先部の断面形状(例えば、厚さ、開先角度など)を入力することにより(アーム先端で検出して自動的に入力することもできる)、各溶接部での溶接条件を最適な値に決定し得る溶接条件決定装置11が具備されている。
【0017】
以下、溶接条件決定装置11について説明するが、被溶接物Cに2個の溶接部Wが存在するとともに、これら両溶接部Wにおける開先部の断面形状が、被溶接物自身の製作誤差(例えば、角柱部材におけるコーナ部の厚さの相違、すなわち曲率半径の相違)、組立誤差、開先部の加工誤差などにより、少し異なっている場合に適用して説明する。
【0018】
この溶接条件決定装置11には、溶接部における開先部の全体断面積の大きさに応じて溶接パス数を決定するパス数決定部12と、溶接部がコーナ部である場合にその溶接ロボット7の溶接具7aをコーナ部に沿って回転移動させて回し溶接を行う際にその回し速度すなわち回転角速度が一定となるように溶接速度を決定するコーナ部速度決定部13と、両溶接部のコーナ部における溶接開始位置(回し角度位置)が同一となるように当該コーナ部手前における直線部での溶接速度を決定する直線部速度決定部14と、これら各決定部13,14にて決定された溶接速度に応じてその溶着量が一定量(適正量)となるように溶接電流を決定する溶接電流決定部15とが設けられている。
【0019】
次に、各決定部12〜15における決定手順を、図4に基づき、例えば角柱部材(コラム)Kにフランジ材Fを接続する場合に適用して説明する。
まず、パス数決定部12によるパス配置状態の決定手順について説明する。
【0020】
溶接部における開先部の全体断面積Sを基準断面積(1回のパスにて溶接し得る適正な断面積である)Tで除する(割る)ことにより、全体のパス数P(=S/T)を求めた後、この求められたパス数Pに基づき最適な溶接パスの配置状態、すなわち溶接層数および各溶接層におけるパス数が決定される。
【0021】
例えば、加工誤差により両溶接部における開先部の全体断面積が異なる場合でのパス配置状態を、図4(a)および(b)に示す。なお、図4(a)に加工誤差が発生していない正規の開先部断面積(以下、正規断面積といい、その場合の溶接物を正規溶接物という)を示し、図4(b)は加工誤差が発生して、その開先部断面積が正規断面積より大きい(または小さい)面積(以下、非正規断面積といい、その場合の溶接物を非正規溶接物という)を示している。
【0022】
図4(a)の正規断面積の場合では、4層で且つ第4層目については2パスであるのに対し、図4(b)の非正規断面積の場合では、同じ4層ではあるが、第3層目と第4層目とがそれぞれ2パスにされている。すなわち、全体溶接パス数が1つ増加するとともに、第3層目にパスが増加される。また、各溶接層の厚さについても、1パスでの断面積がほぼ一定となるように、開先部の幅に応じて増減されている。例えば、このパス数の決定方法としては、非正規断面積での溶接層数が正規断面積と同一数にされるとともに、上層側から順番にパスが増加されていく。
【0023】
なお、図4(c)および(d)に、比較例として従来の方法によるパス配置状態を示す。すなわち、図4(d)に示すように、非正規断面積の場合でも、図(c)にて示される正規断面積におけるパス配置状態と同一にされており、全体的に溶接パスが幅方向に拡大されるだけであり、最適な溶接条件が得られていないのが分かる。
【0024】
また、このようにして決定されたパス配置状態に基づき、現時点における各パスでの断面積が求められ、そしてこれら各パスにおける断面積に応じて、使用される電流値の範囲が求められる。
【0025】
上記手順を図5のフローチャートに示しておく。
このように、溶接部における開先部の全体断面積を基準断面積、すなわち1回のパスにて溶接し得る適正な断面積で除することにより、全体の溶接パス数を求めた後、この求められたパス数から、最適な溶接パスの配置状態、すなわち溶接層数および各溶接層におけるパス数を決定し、さらにこのパス配置状態に基づき現時点での断面積を求めた後、この断面積に基づき溶接電流値の範囲を求めるようにしているので、たとえ各溶接部における開先部の断面積が異なっている場合でも、各溶接部を最適な溶接条件にて溶接することができる。
【0026】
次に、コーナ部速度決定部13によるコーナ部での溶接速度の決定手順について説明する。
上記パス数決定部12にて決定された最適な溶接パスの配置状態によると、両溶接部における溶接パスの位置が互いに少しづつ異なっているため、特にコーナ部においては、溶接具7aによる回し溶接を行う際の回転半径位置(回し半径位置)が異なり、両溶接ロボット7の溶接具7aを同一速度で回転移動させると、溶接開始位置(角度位置)および/または溶接終了位置(角度位置)が互いにずれてしまう。これを回避するために、内側位置での溶接速度よりも外側位置での溶接速度が早くなるように、すなわち両溶接ロボット7における溶接具7aの回転角速度が一致するように溶接速度が決定される。
【0027】
次に、直線部速度決定部14による決定手順について説明する。図6に示すように、製作誤差により、非正規溶接部(実線にて示す)におけるコーナ部での溶接開始位置Mが、正規溶接部(破線にて示す)の溶接開始位置M′に比べて、外側にずれている場合には、すなわち溶接開始動作が遅くなるような場合には、両溶接部の回し溶接における溶接開始位置が一致(同期)するように、言い換えれば、溶接開始動作が同期して行われるように、直線部での溶接速度が調整される。例えば、正規溶接部に対して外側にずれている場合には、溶接速度が早められる(具体的には、直線部速度決定部12により、溶接開始位置までの直線部を移動する時間が同一となるように溶接速度が調整される)
【0028】
次に、溶接電流決定部15による溶接電流の決定手順について説明する。
上記コーナ部速度決定部13および直線部速度決定部14にて決定された溶接速度に応じて、すなわち溶着量が一定量(適正量)となるように、溶接ロボット7における溶接電流の範囲が決定される。したがって、溶接速度が早い場合には溶接電流が大きくされ、溶接速度が遅い場合には、溶接電流が小さくされる。
【0029】
このように、コーナ部についても、両開先部の断面積を考慮して、すなわち回し溶接における回転半径位置(回し半径位置)に応じて溶接速度を決定するとともに、コーナ部での回し溶接の開始位置についても、コーナ部手前の直線部での溶接速度が調整されて、回し溶接の開始位置が一致するようにしているため、やはり、最適な溶接条件にて溶接を行うことができる。
【0030】
勿論、各溶接ロボットによる溶接時に、その溶接速度に応じて溶接電流が決定されるているので、上記同様に、最適な溶接条件にて溶接を行うことができる。なお、上記説明においては、溶接条件として、溶接パス数、並びにコーナ部および直線部での溶接速度および溶接電流として別個に説明したが、勿論、被溶接物の形状に応じて、適宜、これらの各条件が組み合わせられて溶接が行われる。
【0031】
ところで、上記実施の形態においては、被溶接物として角柱部材である場合について説明したが、例えば断面が円形のパイプである場合にも適用することができる。このパイプの場合には、例えば両溶接部において、それぞれの断面積に応じて溶接パス数が決定されるとともに、これら決定された各溶接パスの断面積に応じて溶接電流が決定されることになる。
【0032】
また、上記説明においては、複数の溶接部同士が、製作誤差などに起因して互いにずれがある場合に適用して説明したが、複数の溶接部同士が異なる寸法でもって製作されている場合にでも適用することができる。
【0033】
【発明の効果】
以上のように本発明の溶接方法によると、複数の溶接ロボットにて複数の溶接部を同時に溶接する際に、被溶接物そのものの製作誤差、または溶接部における開先部の加工誤差などにより、各溶接部における開先部の断面形状が異なっている場合でも、その断面形状に応じて溶接条件を決定するため、最適な溶接条件にて溶接を行うことができる。
【0034】
例えば、開先部の断面積が異なっている場合でも、基準断面積を用いて適正な全体溶接パス数を求めるとともに、この全体溶接パス数に基づき溶接層数および各溶接層における溶接パス数を決定するようにしているので、各溶接部を最適な溶接条件にて溶接を行うことができる。
【0035】
また、溶接部にコーナ部がある場合には、コーナ部における開先部の断面積を考慮して、すなわち回し溶接における回し半径位置に応じて溶接速度を決定するとともに、コーナ部での回し溶接の開始位置についても、コーナ部手前の直線部での溶接速度が調整されて、回し溶接の開始動作が同期して行われるようにしているため、やはり、最適な溶接条件にて溶接を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る自動溶接装置の概略構成を示す側面図である。
【図2】図1のA−A矢視図である。
【図3】同自動溶接装置における溶接条件決定装置の概略構成を示すブロック図である。
【図4】溶接部における溶接パス数の配置状態を示す断面図で、(a)および(b)は本実施の形態に係る場合を示し、(c)および(d)は従来例の場合を示す。
【図5】本発明の実施の形態に係る溶接方法の手順を示すフローチャートである。
【図6】溶接部のコーナ部における溶接開始位置を示す図である。
【符号の説明】
1 自動溶接装置
7 溶接ロボット
11 溶接条件決定装置
12 パス数決定部
13 コーナ部速度決定部
14 直線部速度決定部
15 溶接電流決定部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a welding method in an automatic welding apparatus.
[0002]
[Prior art]
In some automatic welding equipment, multiple welding robots are used to weld multiple welds simultaneously to improve the efficiency of welding work. The same welding operation is performed.
[0003]
By the way, the section shape of each groove portion should be the same for each welded portion. However, the processing accuracy of the member itself, for example, the plate thickness accuracy of the corner portion of the prismatic member or the processing of the groove portion. Due to errors, the shape may not be the same.
[0004]
However, conventionally, welding is performed under the same welding conditions, for example, the same number of welding passes and the same welding speed, even when the cross-sectional shapes of the groove portions are not the same.
[0005]
[Problems to be solved by the invention]
As described above, even when the cross-sectional shape of the groove portion is not the same, welding is performed under the same welding conditions. Therefore, even if one of the welds can be optimally welded, the other weld As for, welding could not be performed under optimum welding conditions. For example, the number of welding passes will be described. Since the number of welding passes is the same even when the cross-sectional areas of the groove portions are different, the welding cross-sectional areas by one pass at the groove portions in each welded portion are greatly different. Therefore, there is a problem that both welds cannot be welded under optimum welding conditions.
[0006]
Therefore, an object of the present invention is to provide a welding method in an automatic welding apparatus that can perform welding under optimum welding conditions even when the cross-sectional shapes of the groove portions are not the same in a plurality of welds.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, the welding method in the automatic welding apparatus according to claim 1 of the present invention is such that the welding conditions relate to the welding speed and the welding current when the welding conditions are determined according to the cross-sectional shape of each welded part. And when each weld includes a corner,
The welding speed is determined in accordance with the turning radius position of the welding tool at each corner in each welded portion, and the start of the turn welding in the corner portion of each welded portion is performed in front of each corner portion so as to be performed synchronously. In this method, the welding speed at the straight line portion is determined and the welding current is determined according to the welding speed .
[0008]
Further, the welding method in the automatic welding apparatus according to claim 2 is the welding method according to claim 1, wherein when the number of welding passes is included in the welding conditions , the overall cross-sectional area of each welded portion is set in advance. In this method, the number of weld passes is obtained by dividing by the cross-sectional area, and the number of weld layers and the number of weld passes in each weld layer are determined based on the number of weld passes.
[0010]
According to the above welding method, when a plurality of welding parts are welded simultaneously by a plurality of welding robots, an opening in each welded part is caused by a manufacturing error of the workpiece itself or a processing error of a groove part in the welded part. Even when the cross-sectional shape of the tip portion is different, the welding conditions are determined according to the cross-sectional shape, so that welding can be performed under optimum welding conditions.
[0011]
For example, even when the cross-sectional areas of the groove portions are different, the appropriate total number of weld passes is obtained using the reference cross-sectional area, and the number of weld layers and the number of weld passes in each weld layer are calculated based on the total number of weld passes. Since it is determined, welding can be performed under optimum welding conditions.
[0012]
In addition, when the welded portion has a corner portion, the welding speed is determined in consideration of the cross-sectional area of the groove portion in the corner portion, that is, the turning radius position in the turn welding, and the turn welding at the corner portion. Since the welding speed at the straight line portion before the corner portion is adjusted so that the starting position of the rotary welding is the same, welding can be performed under optimum welding conditions.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the welding method in the automatic welding apparatus which concerns on embodiment of this invention is demonstrated based on FIGS.
[0014]
First, a schematic configuration of the automatic welding apparatus will be described.
As shown in FIG. 1, the automatic welding apparatus includes a support frame 1 having a rectangular shape in plan view, a portal frame 2 erected on the support frame 1, and a support frame along the portal frame 2. A pair of guide rails 3 provided on one side, a fixed side holding body 4 that is fixed to one end side of the guide rail 3 and holds one end side of an object to be welded, and movable on the guide rail 3 are arranged. A movable side holding body 5 that holds the other end side of the workpiece, a pair of front and rear moving bodies 6 that are movably provided on the horizontal portion 2 a of the portal frame 2, and each of these moving bodies 6. It consists of two welding robots 7.
[0015]
Then, a plurality of, for example, two front and rear welds W in the work piece C held at both ends by the holding bodies 4 and 5 can be automatically and simultaneously welded by the two welding robots 7. Has been. Of course, a welding tool 7a such as a welding electrode or a welding torch is provided at the arm tip of each welding robot 7.
[0016]
Further, as shown in FIG. 3, the automatic welding apparatus inputs the sectional shape (for example, thickness, groove angle, etc.) of the groove portion in each welded portion (automatically detected by the arm tip). A welding condition determination device 11 that can determine the welding condition at each weld to an optimum value.
[0017]
Hereinafter, although the welding condition determination apparatus 11 is demonstrated, while the two to-be-welded parts W exist in the to-be-welded object C, the cross-sectional shape of the groove part in both these welded parts W is a manufacturing error ( For example, the present invention will be applied to a case where the corner portions of the prismatic member are slightly different due to differences in the thickness of the corner portions, that is, differences in curvature radii, assembling errors, processing errors in the groove portions, and the like.
[0018]
The welding condition determining device 11 includes a number-of-pass determining unit 12 that determines the number of welding passes according to the size of the entire cross-sectional area of the groove portion in the welded portion, and a welding robot when the welded portion is a corner portion. When the welding tool 7a is rotated and rotated along the corner portion to perform welding, a corner speed determining portion 13 for determining the welding speed so that the turning speed, that is, the rotational angular velocity is constant, It is determined by the linear part speed determining part 14 for determining the welding speed at the straight part in front of the corner part so that the welding start position (turning angle position) in the corner part is the same, and these determining parts 13 and 14. A welding current determining unit 15 is provided for determining the welding current so that the welding amount becomes a certain amount (appropriate amount) according to the welding speed.
[0019]
Next, the determination procedure in each determination part 12-15 is applied and demonstrated, for example when connecting the flange material F to the prismatic member (column) K based on FIG.
First, the procedure for determining the path arrangement state by the path number determination unit 12 will be described.
[0020]
By dividing (dividing) the total cross-sectional area S of the groove portion in the welded portion by a reference cross-sectional area (which is an appropriate cross-sectional area that can be welded in one pass) T, the total number of passes P (= S After obtaining / T), the optimum welding pass arrangement state, that is, the number of weld layers and the number of passes in each weld layer are determined based on the obtained number of passes P.
[0021]
For example, FIGS. 4A and 4B show a path arrangement state in the case where the entire cross-sectional areas of the groove portions in the two welded portions are different due to processing errors. FIG. 4 (a) shows a normal groove section cross-sectional area (hereinafter referred to as a normal cross-sectional area, and the welded product in that case is referred to as a normal welded product) in which no processing error occurs, and FIG. 4 (b). Indicates an area where the cross-sectional area of the groove is larger (or smaller) than the normal cross-sectional area (hereinafter referred to as non-normal cross-sectional area, and the welded product in that case is referred to as non-normal welded product) Yes.
[0022]
In the case of the normal cross-sectional area of FIG. 4A, there are four layers and two passes for the fourth layer, whereas in the case of the non-normal cross-sectional area of FIG. However, the third layer and the fourth layer each have two passes. That is, the total number of welding passes is increased by 1, and the number of passes is increased in the third layer. Also, the thickness of each weld layer is increased or decreased according to the width of the groove portion so that the cross-sectional area in one pass is substantially constant. For example, as a method for determining the number of passes, the number of weld layers in the non-normal cross-sectional area is made equal to the normal cross-sectional area, and the number of passes is increased in order from the upper layer side.
[0023]
FIGS. 4C and 4D show a path arrangement state according to a conventional method as a comparative example. That is, as shown in FIG. 4D, even in the case of the non-normal cross-sectional area, it is the same as the path arrangement state in the normal cross-sectional area shown in FIG. It can be seen that the optimum welding conditions are not obtained.
[0024]
Further, based on the path arrangement state determined in this way, the cross-sectional area in each path at the present time is obtained, and the range of the current value to be used is obtained in accordance with the cross-sectional area in each of these paths.
[0025]
The above procedure is shown in the flowchart of FIG.
Thus, after the total cross-sectional area of the groove portion in the welded portion is divided by the reference cross-sectional area, that is, an appropriate cross-sectional area that can be welded in one pass, After determining the optimum welding pass arrangement state, that is, the number of weld layers and the number of passes in each weld layer, and obtaining the current cross-sectional area based on this pass arrangement state, Since the range of the welding current value is obtained based on the above, even when the cross-sectional areas of the groove portions in the welded portions are different, the welded portions can be welded under the optimum welding conditions.
[0026]
Next, the procedure for determining the welding speed at the corner by the corner speed determining unit 13 will be described.
According to the optimal welding pass arrangement determined by the pass number determining unit 12, the positions of the welding passes in the two welded portions are slightly different from each other. Therefore, particularly in the corner portion, the rotary welding by the welding tool 7a is performed. When the rotational radius position (turning radial position) is different and the welding tool 7a of both welding robots 7 is rotated at the same speed, the welding start position (angular position) and / or the welding end position (angular position) are changed. It will shift from each other. In order to avoid this, the welding speed is determined so that the welding speed at the outer position is faster than the welding speed at the inner position, that is, the rotational angular velocities of the welding tools 7a in the two welding robots 7 coincide. .
[0027]
Next, the determination procedure by the linear part speed determination part 14 is demonstrated. As shown in FIG. 6, due to manufacturing errors, the welding start position M at the corner portion in the non-regular welded portion (shown by a solid line) is compared with the welding start position M ′ of the regular welded portion (shown by a broken line). In the case where it is shifted to the outside, that is, when the welding start operation is delayed, the welding start positions in the turn welding of both welds are matched (synchronized) , in other words, the welding start operation is synchronized. Thus , the welding speed at the straight line portion is adjusted. For example, when it deviates to the outside with respect to the regular welded portion, the welding speed is increased (specifically, the time taken to move the straight portion to the welding start position by the straight portion speed determining portion 12 is the same. The welding speed is adjusted so that
[0028]
Next, the procedure for determining the welding current by the welding current determining unit 15 will be described.
The range of the welding current in the welding robot 7 is determined according to the welding speed determined by the corner speed determining section 13 and the linear section speed determining section 14, that is, so that the welding amount becomes a constant amount (appropriate amount). Is done. Therefore, when the welding speed is fast, the welding current is increased, and when the welding speed is slow, the welding current is decreased.
[0029]
As described above, also in the corner portion, the welding speed is determined in consideration of the cross-sectional area of both the groove portions, that is, the rotational radius position (turning radius position) in the turning welding, and the turning welding in the corner portion is performed. With respect to the start position, the welding speed at the straight line portion before the corner portion is adjusted so that the start positions of the rotary welding are matched, so that welding can be performed under optimum welding conditions.
[0030]
Of course, since welding current is determined according to the welding speed at the time of welding by each welding robot, welding can be performed under optimum welding conditions as described above. In the above description, the welding conditions are described separately as the number of welding passes, the welding speed and the welding current at the corner portion and the straight portion, but, of course, these are appropriately determined according to the shape of the workpiece. Each condition is combined and welding is performed.
[0031]
By the way, in the said embodiment, although the case where it was a prismatic member as a to-be-welded object was demonstrated, it is applicable, for example, also when the cross section is a circular pipe. In the case of this pipe, for example, in both welds, the number of welding passes is determined according to the respective cross-sectional areas, and the welding current is determined according to the determined cross-sectional areas of the respective welding passes. Become.
[0032]
Further, in the above description, a plurality of welds are described as being applied when there is a deviation from each other due to manufacturing errors, etc., but when a plurality of welds are manufactured with different dimensions. But it can be applied.
[0033]
【The invention's effect】
As described above, according to the welding method of the present invention, when simultaneously welding a plurality of welds with a plurality of welding robots, due to manufacturing errors of the workpiece itself or processing errors of the groove portion in the welds, Even when the cross-sectional shape of the groove part in each welding part differs, since welding conditions are determined according to the cross-sectional shape, welding can be performed on optimal welding conditions.
[0034]
For example, even when the cross-sectional areas of the groove portions are different, the appropriate total number of weld passes is obtained using the reference cross-sectional area, and the number of weld layers and the number of weld passes in each weld layer are calculated based on the total number of weld passes. Since it determines, it can weld on each welding part on optimal welding conditions.
[0035]
In addition, when the welded portion has a corner portion, the welding speed is determined in consideration of the cross-sectional area of the groove portion in the corner portion, that is, the turning radius position in the turn welding, and the turn welding at the corner portion. Since the welding speed is adjusted at the straight line part before the corner part and the starting operation of rotating welding is performed synchronously, the welding position must be welded under optimum welding conditions. Can do.
[Brief description of the drawings]
FIG. 1 is a side view showing a schematic configuration of an automatic welding apparatus according to an embodiment of the present invention.
FIG. 2 is a view taken in the direction of arrows AA in FIG.
FIG. 3 is a block diagram showing a schematic configuration of a welding condition determination device in the automatic welding device.
FIGS. 4A and 4B are cross-sectional views showing an arrangement state of the number of welding passes in a welded portion, wherein FIGS. 4A and 4B show the case according to the present embodiment, and FIGS. Show.
FIG. 5 is a flowchart showing a procedure of a welding method according to an embodiment of the present invention.
FIG. 6 is a diagram showing a welding start position at a corner portion of a welded portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Automatic welding apparatus 7 Welding robot 11 Welding condition determination apparatus 12 Pass number determination part 13 Corner part speed determination part 14 Linear part speed determination part 15 Welding current determination part

Claims (2)

複数の溶接部を同時に溶接し得る複数の溶接ロボットが設けられた自動溶接装置における溶接方法であって、
各溶接部の断面形状に応じて溶接条件を決定する際に、溶接条件が溶接速度および溶接電流に関する場合で且つ各溶接部にコーナ部が含まれている場合であって、
各溶接部におけるコーナ部での溶接具の回し半径位置に応じて溶接速度を決定するとともに、各溶接部のコーナ部における回し溶接の開始動作が同期して行われるように、当該各コーナ部手前における直線部での溶接速度を決定し、且つ溶接速度に応じて溶接電流を決定することを特徴とする自動溶接装置における溶接方法。
A welding method in an automatic welding apparatus provided with a plurality of welding robots capable of simultaneously welding a plurality of welds,
When determining the welding conditions according to the cross-sectional shape of each welded part , the welding conditions are related to the welding speed and welding current, and each welded part includes a corner part,
The welding speed is determined in accordance with the turning radius position of the welding tool at each corner in each welded portion, and the start of the turn welding in the corner portion of each welded portion is performed in front of each corner portion so as to be performed synchronously. A welding method in an automatic welding apparatus characterized by determining a welding speed at a straight line portion and determining a welding current according to the welding speed .
溶接条件溶接パス数が含まれている場合、各溶接部の全体断面積を予め設定された基準断面積にて除することにより溶接パス数を求めるとともに、この溶接パス数に基づき、溶接層およびこれら各溶接層における溶接パス数を決定することを特徴とする請求項1に記載の自動溶接装置における溶接方法。When the number of welding passes is included in the welding conditions , the number of welding passes is obtained by dividing the total cross-sectional area of each welded portion by a preset reference cross-sectional area. The welding method in the automatic welding apparatus according to claim 1, wherein the number of welding passes in each of the weld layers is determined.
JP2002145524A 2002-05-21 2002-05-21 Welding method in automatic welding equipment Expired - Fee Related JP4242111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145524A JP4242111B2 (en) 2002-05-21 2002-05-21 Welding method in automatic welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145524A JP4242111B2 (en) 2002-05-21 2002-05-21 Welding method in automatic welding equipment

Publications (2)

Publication Number Publication Date
JP2003334659A JP2003334659A (en) 2003-11-25
JP4242111B2 true JP4242111B2 (en) 2009-03-18

Family

ID=29704784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145524A Expired - Fee Related JP4242111B2 (en) 2002-05-21 2002-05-21 Welding method in automatic welding equipment

Country Status (1)

Country Link
JP (1) JP4242111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10065259B2 (en) 2014-06-04 2018-09-04 Kobe Steel, Ltd. Welding condition derivation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103381517B (en) * 2013-05-09 2015-06-24 杭州新九龙厨具制造有限公司 Automatic water tank welding machine and welding method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10065259B2 (en) 2014-06-04 2018-09-04 Kobe Steel, Ltd. Welding condition derivation device

Also Published As

Publication number Publication date
JP2003334659A (en) 2003-11-25

Similar Documents

Publication Publication Date Title
US9162325B2 (en) Welding apparatus
EP0524599B1 (en) Method of making frames from tubular members and frames made by the method
JP3793592B2 (en) Manufacturing method for spherical tanks for liquefied natural gas
JP5431881B2 (en) Weld bead measuring method, weld bead cutting method and weld bead cutting device for pipe
JP2015221443A (en) Spinning device, method od manufacturing tank mirror portion, method of manufacturing tank body portion, method of manufacturing tank, and tank
KR20070066061A (en) The continuous automatic welding device for horizontal and vertical fillet welding groove
JP2019202351A (en) Method for welding plural work-pieces and use thereof
JP3623684B2 (en) Column ring welding equipment
JP6460645B2 (en) Bonding assembly equipment
JP6863944B2 (en) Teaching position correction method
US20150336221A1 (en) Tool for assembling components and system and method for same
JP4242111B2 (en) Welding method in automatic welding equipment
EP1157775A3 (en) Laser welding apparatus
WO2018066136A1 (en) Welding device and welding method
JP2904247B2 (en) Welding robot for corrugated lap joints
JP3397311B2 (en) Tube section center position measuring method and tube processing guide device
CN113370235B (en) Automatic milling device for weld reinforcement, path generation method and using method
JP4748681B2 (en) Welding system and welding method
JPH09150264A (en) Positioning jig and welding equipment for welding steel segment
CN110076501B (en) Method and system for obtaining multi-layer and multi-pass welding deformation angle of thick plate
JP2005066683A (en) Seam welding method
JP5901284B2 (en) Copy welding apparatus and copy welding method
JP2005052878A (en) Seam welding method and seam welding equipment
JP7227332B1 (en) Welding equipment and welding method
JP6972250B1 (en) Welding equipment and welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4242111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees