JP4241490B2 - 画像形成装置及び画像形成方法 - Google Patents

画像形成装置及び画像形成方法 Download PDF

Info

Publication number
JP4241490B2
JP4241490B2 JP2004126448A JP2004126448A JP4241490B2 JP 4241490 B2 JP4241490 B2 JP 4241490B2 JP 2004126448 A JP2004126448 A JP 2004126448A JP 2004126448 A JP2004126448 A JP 2004126448A JP 4241490 B2 JP4241490 B2 JP 4241490B2
Authority
JP
Japan
Prior art keywords
toner
image
image forming
particles
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004126448A
Other languages
English (en)
Other versions
JP2005309116A (ja
Inventor
雅彦 倉地
文貴 望月
健 石田
義明 澤下
真一 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2004126448A priority Critical patent/JP4241490B2/ja
Publication of JP2005309116A publication Critical patent/JP2005309116A/ja
Application granted granted Critical
Publication of JP4241490B2 publication Critical patent/JP4241490B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真方式の画像形成に用いる有機感光体(以後、単に感光体とも云う)、該有機感光体を用いた画像形成装置及び画像形成方法に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる有機感光体、該有機感光体を用いた画像形成装置及び画像形成方法に関するものである。
近年、電子写真感光体には有機感光体(以下、単に感光体とも云う)が広く用いられている。有機感光体は可視光から赤外光まで各種露光光源に対応した材料が開発しやすいこと、環境汚染のない材料を選択できること、製造コストが安い事など他の感光体に対して有利な点があるが、機械的強度が弱く異物が付着しやすいこと、化学的な耐久性が弱く、多数枚のプリント時に感光体の静電特性の劣化や、表面の擦過傷の発生等がある。
即ち、有機感光体は、該感光体上に形成されたトナー像を紙等の転写材に転写する時や感光体上の残留トナーをクリーニングする時等に加えられる機械的な外力で発生する表面の異物付着やキズに対する耐久性(耐摩耗性)が要求されている。
即ち、クリーニング手段等による接触摩擦に対する耐摩耗特性が不十分であり、多数枚の複写等で表面層が摩耗され、膜厚が減少するという問題もまだ十分には解決されていない。即ち、表面層が摩耗されていくと、感光体表面に筋状の擦り傷が発生し、この擦り傷が電子写真画像に反映して、ハーフトーン画像に全面による筋が発生し、荒れた画像になりやすい。
一方、近年の電子写真方式の画像形成装置では、コンピュータにより作製された画像情報をプリントアウトする情報機器として使用される傾向にあり、メンテナンスが簡素で、高画質のデジタル画像を形成するとが可能な複写機やプリンターが求められている。この為、前記有機感光体上に形成された静電潜像を忠実に顕像化する現像手段が求められ、その手段の1つとして、形状係数や粒度分布等を均一化した重合トナーを非磁性一成分現像剤として用いた現像手段に用いることが提案されている(特許文献1)。しかしながら、このような非磁性一成分現像剤を用いて、現像スリーブ上に薄層化した現像剤で、感光体上の静電潜像を忠実に再現すると、前記した擦り傷等で表面が荒れている有機感光体上では、静電潜像の形成自体が乱れているので、荒れがよりはっきりしたトナー画像として再現され、形状係数や粒度分布で改良されたトナーの特性が十分に発揮できていないと云う課題が見出された。
このような表面層の摩耗劣化を防止するために、電荷輸送層のバインダーに耐摩耗性が高いポリカーボネート樹脂、即ち、中心炭素原子がシクロヘキシレン基のポリカーボネート樹脂(ポリカーボネートZ(単に、BPZとも云う)として知られている)を用いる感光体が提案されている(特許文献2)。
しかしながら、上記バインダーを用いて有機感光体の耐摩耗特性を改良すると、耐摩耗特性は改善されるが、非磁性一成分現像方法では、現像スリーブ上に薄層の現像剤を形成する必要からシリカ等の外添剤を多く含有させるのため、感光体表面が外添剤成分で汚染されやすく、その結果、ダッシュマーク(彗星状の小さなすじ画像)や転写ヌケ等の周期性の画像欠陥が発生しやすい。
このように、これらバインダーを用いて有機感光体の耐摩耗特性を改良する技術では、上記した非磁性一成分方法で発生するダッシュマークや擦り傷によるハーフトーン画像の劣化を同時に解決することは困難である。即ち、削れにくいバインダー樹脂を用いて、摩耗特性を強化すると、表面層は傷や摩耗に対しては強くなるが、表面層の汚染が蓄積されやすくなり、ダッシュマークが発生しやすい。一方、耐摩耗特性が弱いと表面層の傷や摩耗が大きくなり、ハーフトーン画質の劣化を起こしやすいという矛盾を抱えていた。
又、同様の耐摩耗特性を改良する技術としてビスフェノールAの中心炭素原子を酸素原子に置き換えたエーテル結合のポリカーボネート樹脂を用いた感光体が提案されている(特許文献3)。
しかしながら、このエーテル結合のポリカーボネート樹脂を用いた感光体は現像スリーブに薄層に形成して現像する前記一成分非磁性現像プロセスでは、しばしばポチ(モノクロでは、黒ポチ、カラーでは色ポチとなる)を発生しやすい。
又、有機感光体の表面層に含フッ素樹脂微粒子を含有させ表面エネルギーを小さくすることにより、耐摩耗特性や表面への異物付着を改善する技術も公開されている(特許文献4)。しかしながら、含フッ素樹脂微粒子を含有させた有機感光体は、画像ボケが発生しやすい。又、表面エネルギーを十分低下させる量の含フッ素樹脂微粒子を表面層に含有させると、レーザ露光光の散乱を引き起こし鮮鋭性を劣化させたり、膜物性も劣化して機械的強度も低下しやすく、前記クリーニング手段等との接触摩擦により、感光体表面に擦り傷が発生する等の問題を引き起こし、必ずしも良好な電子写真画像を提供し得ていない。
特開2001−272810号公報 特開昭60−172044号公報 特開平6−51544号公報 特開昭63−65449号公報
本発明は、前記した有機感光体の対異物付着性と耐摩耗特性との相反する特性を同時に解決し、感光体表面の異物付着や擦り傷が顕像化しやすい形状係数や粒度分布等が均一化されたトナーを非磁性一成分現像剤に用いて電子写真画像を形成しても、ハーフトーン画像の劣化が防止され、且つダッシュマークやポチの発生を防止した有機感光体を用いた画像形成装置及び画像形成方法を提供することである。
本発明者等は上記課題を解決するために、有機感光体の表面層に検討を加えダッシュマークや擦り傷を防止すると同時に、ポチの発生を防止できる技術開発を続けた結果、有機感光体の表面層を形成する電荷輸送層に前記したエーテル結合のポリカーボネートと酸化防止剤を併用することにより、非磁性一成分現像方法で顕在化しやすいダッシュマークや擦り傷によるハーフトーン画像の劣化とポチの発生を同時に改善できることを見出し本発明を完成した。即ち、表面層としてエーテル結合を有するバインダー樹脂と酸化防止剤を共存させた電荷輸送層を有する感光体を用いることにより、形状係数や粒度分布等を均一化したトナーを用いて電子写真画像を形成しても、ダッシュマークや擦り傷によるハーフトーン画像の劣化を防止し、且つポチの発生も防止できることを見出し本発明を完成した。即ち、本発明の目的は以下のような構成を有することにより達成することができる。
(請求項1)
有機感光体と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、下記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が、形状係数1.2〜1.6の範囲にあるトナー粒子が65個数%以上であるトナーを含有する非磁性一成分現像剤を用いていることを特徴とする画像形成装置。
Figure 0004241490
(式中、Xは酸素原子またはイオウ原子であり、R〜Rは水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
(請求項2)
有機感光体と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、下記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が角がないトナー粒子が50個数%以上であるトナーを含有する非磁性一成分現像剤を用いていることを特徴とする画像形成装置。
Figure 0004241490
(式中、Xは酸素原子またはイオウ原子であり、R 〜R は水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
(請求項
有機感光体と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、下記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が、トナー粒子の粒径をD(μm)とするとき、自然対数lnDを横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおける最頻階級に含まれるトナー粒子の相対度数(m )と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m )との和(M)が70%以上であるトナーを含有する非磁性一成分現像剤を用いていることを特徴とする画像形成装置。
Figure 0004241490
(式中、Xは酸素原子またはイオウ原子であり、R 〜R は水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
(請求項
有機感光体と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、下記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が、トナー粒子の形状係数の変動係数が16%以下、個数粒度分布における個数変動係数が27%以下であるトナーを含有する非磁性一成分現像剤を用いていることを特徴とする画像形成装置。
Figure 0004241490
(式中、Xは酸素原子またはイオウ原子であり、R 〜R は水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
(請求項
少なくとも請求項1〜4のいずれか1項に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。
(請求項
前記一般式(1)で表される構造単位を有するポリカーボネートが前記一般式(1)及び下記一般式(2)で表される構造単位を有する共重合ポリカーボネートであることを特徴とする請求項1〜4のいずれか1項に記載の画像形成装置。
Figure 0004241490
(式中、Aは炭素数1〜10の直鎖、分岐鎖或は環状のアルキリデン基、アリール置換アルキリデン基、及びアリーレン基を示し、R 〜R 16 は水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
本発明を用いることにより、ダッシュマークや擦り傷によるハーフトーン画像の劣化とポチの発生を同時に改善でき、且つ良好な電子写真画像を作製できる有機感光体、該有機感光体を用いた画像形成装置及び画像形成方法を提供することができる。
以下、本発明について詳細に説明する。
本発明の画像形成装置は有機感光体上と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、前記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が、形状係数1.2〜1.6の範囲にあるトナー粒子が65個数%以上であるトナーを含有することを特徴とする。
又、本発明の画像形成装置は有機感光体上と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、前記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が角がないトナー粒子が50個数%以上であるトナーを含有することを特徴とす。
又、本発明の画像形成装置は有機感光体上と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、前記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が、トナー粒子の粒径をD(μm)とするとき、自然対数lnDを横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおける最頻階級に含まれるトナー粒子の相対度数(m1)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m2)との和(M)が70%以上であるトナーを含有することを特徴とする。
又、本発明の画像形成装置は有機感光体上と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、前記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が、トナー粒子の形状係数の変動係数が16%以下、個数粒度分布における個数変動係数が27%以下であるトナーを含有することを特徴とする。
本発明の画像形成装置は、上記構成を有することにより、ダッシュマークや擦り傷によるハーフトーン画像の劣化を防止し、ポチの発生を防止し、且つ長期的に良好な電子写真画像を作製できる。
以下、本発明の画像形成装置の構成について説明する。
本発明の有機感光体の表面層は前記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する。
前記一般式(1)で表される構造単位を有するポリカーボネートとしては繰り返し単位構造が同一の化学構造を有するポリカーボネートでもよいが、より好ましくは、前記一般式(1)及び一般式(2)の構造単位を有する共重合ポリカーボネートがより好ましい。以下に、本発明に好ましく用いられるポリカーボネートを例示するが、本発明はこれら例示構造のポリカーボネートに限定されるものではない。
Figure 0004241490
Figure 0004241490
Figure 0004241490
一般式(1)及び一般式(2)の構造単位を有する共重合ポリカーボネートの中では、一般式(1)の構造単位を全体の構造体中で30〜70モル%含有する共重合ポリカーボネートが好ましく、50〜70モル%含有する共重合ポリカーボネートがより好ましい。
本発明に用いられる上記ポリカーボネート樹脂は各構造単位を有するジオール化合物を用いてホスゲン法等の一般的なポリカーボネート合成法により得ることができる。
本発明のポリカーボネートの分子量としては、耐ダッシュマーク性や耐摩耗性などの点を考慮すれば、粘度平均分子量(Mv)が10,000から150,000の範囲であることが好ましく、特には15,000〜100,000の範囲であることが好ましい。
本発明の酸化防止剤とは、感光体中ないしは感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。詳しくは下記の化合物群が挙げられる。
(1)ラジカル連鎖禁止剤
・フェノール系酸化防止剤(ヒンダードフェノール系)
・アミン系酸化防止剤(ヒンダードアミン系、ジアリルジアミン系、ジアリルアミン系)
・ハイドロキノン系酸化防止剤
(2)過酸化物分解剤
・硫黄系酸化防止剤(チオエーテル類)
・燐酸系酸化防止剤(亜燐酸エステル類)
上記酸化防止剤のうちでは、(1)のラジカル連鎖禁止剤が良く、特にヒンダードフェノール系或いはヒンダードアミン系酸化防止剤が好ましい。又、2種以上のものを併用してもよく、例えば(1)のヒンダードフェノール系酸化防止剤と(2)のチオエーテル類の酸化防止剤との併用も良い。更に、分子中に上記構造単位、例えばヒンダードフェノール構造単位とヒンダードアミン構造単位を含んでいるものでも良い。
前記酸化防止剤の中でも特にヒンダードフェノール系、ヒンダードアミン系酸化防止剤が高温高湿時のカブリの発生や画像ボケ防止に特に効果がある。
ヒンダードフェノール系或いはヒンダードアミン系酸化防止剤の表面層中の含有量は0.01〜20質量%が好ましい。0.01質量%未満だとポチが発生しやすく、20質量%より多い含有量では表面層中の電荷輸送能の低下がおこり、残留電位が増加しやすくなり、又膜強度の低下し、筋傷が発生しやすい。
ここでヒンダードフェノールとはフェノール化合物の水酸基に対しオルト位置に分岐アルキル基を有する化合物類及びその誘導体を云う(但し、水酸基がアルコキシに変成されていても良い。)。
ヒンダードアミン系とはN原子近傍にかさ高い有機基を有する化合物である。かさ高い有機基としては分岐状アルキル基があり、例えばt−ブチル基が好ましい。例えば下記構造式で示される有機基を有する化合物類が好ましい。
Figure 0004241490
式中のR13は水素原子又は1価の有機基、R14、R15、R16、R17はアルキル基、R18は水素原子、水酸基又は1価の有機基を示す。
ヒンダードフェノール部分構造を持つ酸化防止剤としては、例えば特開平1−118137号(P7〜P14)記載の化合物が挙げられるが本発明はこれに限定されるものではない。
ヒンダードアミン部分構造を持つ酸化防止剤としては、例えば特開平1−118138号(P7〜P9)記載の化合物も挙げられるが本発明はこれに限定されるものではない。
有機リン化合物としては、例えば、一般式:RO−P(OR)−ORで表される化合物で代表的なものとして下記のものがある。尚、ここにおいてRは水素原子、各々置換もしくは未置換のアルキル基、アルケニル基又はアリール基を表す。
有機硫黄系化合物としては、例えば、一般式:R−S−Rで表される化合物で代表的なものとして下記のものがある。尚、ここにおいてRは水素原子、各々置換もしくは未置換のアルキル基、アルケニル基又はアリール基を表す。
以下に代表的な酸化防止剤の化合物例を挙げる。
Figure 0004241490
Figure 0004241490
Figure 0004241490
Figure 0004241490
又、製品化されている酸化防止剤としては以下のような化合物、例えばヒンダードフェノール系として「イルガノックス1076」、「イルガノックス1010」、「イルガノックス1098」、「イルガノックス245」、「イルガノックス1330」、「イルガノックス3114」、「イルガノックス1076」、「3,5−ジ−t−ブチル−4−ヒドロキシビフェニル」、ヒンダードアミン系として「サノールLS2626」、「サノールLS765」、「サノールLS770」、「サノールLS744」、「チヌビン144」、「チヌビン622LD」、「マークLA57」、「マークLA67」、「マークLA62」、「マークLA68」、「マークLA63」が挙げられ、チオエーテル系として「スミライザ−TPS」、「スミライザーTP−D」が挙げられ、ホスファイト系として「マーク2112」、「マークPEP−8」、「マークPEP−24G」、「マークPEP−36」、「マーク329K」、「マークHP−10」が挙げられる。
次に、感光層の表面層が電荷輸送層であり、本発明のポリカーボネート及び酸化防止剤を該電荷輸送層に用いた構成について説明する。
電荷輸送層に上記ポリカーボネート樹脂を用いる場合は、電荷輸送層中に占める上記バインダー樹脂の比率が20〜80質量%、好ましくは30〜60質量%である。又、電荷輸送層では上記ポリカーボネート共重合の他に例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂等を併用して用いてもよい。
又、電荷輸送層には電荷輸送物質として、下記一般式(3)で表される化合物をキャリア輸送物質として用いることが好ましい。
Figure 0004241490
〔但し、式中Ar5,Ar6及びAr7は置換又は無置換の芳香族炭化水素又は複素環基を表し、R3は水素原子もしくは置換又は無置換の芳香族炭化水素基又は複素環基を表す。nは2もしくは3である。〕
前記一般式(3)の電荷輸送物質は前記した一般式(1)の構造単位を有するポリカーボネートとの相溶性が良好であり、これらの電荷輸送物質とポリカーボネートを併用することにより、ミクロな相分離がない均一で異物付着がしにくい電荷輸送層を形成し、ダッシュマークや擦り傷の発生を防止し、ハーフトーン画像の劣化を防止し、且つポチの発生を防止し安定して良好な電子写真画像を形成することができる。
前記一般式(3)の化合物の具体例を下記にあげるが、本発明は該具体例に限定されない。
Figure 0004241490
Figure 0004241490
Figure 0004241490
Figure 0004241490
Figure 0004241490
Figure 0004241490
前記一般式(3)の中でも、Ar5が置換基にメチル基を有するフェニル基であることが好ましく、Ar6は無置換のフェニレン基が好ましく、Ar7は置換又は無置換のフェニル基、R3はフェニル基、特に置換基にメチル基を有するフェニル基が好ましい。
又、前記一般式(3)の化合物中、nが2の化合物が、本発明のポリカーボネートとの相溶性が特に優れ、本発明の効果が顕著に達成できる。
電荷輸送層には前記一般式(3)の電荷輸送物質の他に、他の電荷輸送物質(CTM)としては、例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを併用して用いることができる。これら電荷輸送物質の併用では、主たる電荷輸送物質が一般式(3)であることが好ましい。
電荷輸送層中の前記ポリカーボネートを用いたバインダー樹脂と電荷輸送物質の質量比はバインダー100質量部に対し、電荷輸送物質30〜200質量部が好ましく、50〜150質量部がより好ましい。
電荷輸送層の膜厚は、10〜40μmが好ましい。該膜厚が10μm未満では、ハーフトーン画像の劣化が現れやすく、40μmを超えると残電上昇が起こりやすく、鮮鋭性も劣化しやすい。
又、前記電荷輸送層は2層で構成し、表面層となる電荷輸送層に本発明のポリカーボネートを用いた構成にしてもよい。
次に、上記のような表面層を有する有機感光体の層構成について記載する。
本発明の有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。
以下に本発明に用いられる有機感光体の構成について記載する。
導電性支持体
感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。
導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。本発明の導電性支持体としては、アルミニウム支持体が最も好ましい。該アルミニウム支持体は、主成分のアルミニウム以外にマンガン、亜鉛、マグネシウム等の成分が混合したものも用いられる。
中間層
本発明においては導電性支持体と感光層の間に、中間層を設けることが好ましい。
本発明に用いられる中間層にはN型半導性粒子を含有することが好ましい。該N型半導性粒子とは、主たる電荷キャリアが電子である粒子を意味する。すなわち、主たる電荷キャリアが電子であることから、該N型半導性粒子を絶縁性バインダーに含有させた中間層は、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性が少ない性質を有する。
ここで、N型半導性粒子の判別方法について説明する。
導電性支持体上に膜厚5μmの中間層(中間層を構成するバインダー樹脂中に粒子を50質量%分散させた分散液を用いて中間層を形成する)を形成する。該中間層に負極性に帯電させて、光減衰特性を評価する。又、正極性に帯電させて同様に光減衰特性を評価する。
N型半導性粒子とは、上記評価で、負極性に帯電させた時の光減衰が正極性に帯電させた時の光減衰よりも大きい場合に、中間層に分散された粒子をN型半導性粒子という。
N型半導性粒子としては、酸化チタン(TiO2)、酸化亜鉛(ZnO)等の金属酸化物が好ましく、特に酸化チタンが特に好ましく用いられる。
N型半導性粒子は数平均一次粒子径が3.0〜200nmの範囲の微粒子が好ましい。特に、5nm〜100nmが好ましい。数平均一次粒子径とは、微粒子を透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によってフェレ方向平均径としての測定値である。数平均一次粒径が3.0nm未満のN型半導性粒子は中間層バインダー中での均一な分散ができにくく、凝集粒子を形成しやすく、該凝集粒子が電荷トラップとなってポチが発生しやすい。一方、数平均一次粒径が200nmより大きいN型半導性粒子は中間層の表面に大きな凹凸を作りやすく、これらの大きな凹凸を通してハーフトーン画像の劣化が発生しやすい。又、数平均一次粒径が200nmより大きいN型半導性粒子は分散液中で沈澱しやすく、凝集物が発生しやすく、これもハーフトーン画像の劣化を増大させる。
前記酸化チタン粒子は、結晶形としては、アナターゼ形、ルチル形、ブルッカイト形及びアモルファス形等があるが、中でもアナターゼ形酸化チタン顔料又はルチル形酸化チタン顔料は、中間層を通過する電荷の整流性を高め、即ち、電子の移動性を高め、帯電電位を安定させ、残留電位の増大を防止すると共に、ポチの発生を防止することができ、本発明のN型半導性粒子として最も好ましい。
N型半導性粒子はメチルハイドロジェンシロキサン単位を含む重合体で表面処理されたものが好ましい。該メチルハイドロジェンシロキサン単位を含む重合体の分子量は1000〜20000のものが表面処理効果が高く、その結果、N型半導性粒子の整流性を高め、このN型半導性粒子を含有する中間層を用いることにより、黒ポチ発生が防止され、又、良好なハーフトーン画像の作製に効果がある。
メチルハイドロジェンシロキサン単位を含む重合体とは−(HSi(CH3)O)−の構造単位とこれ以外の構造単位(他のシロキサン単位のこと)の共重合体が好ましい。他のシロキサン単位としては、ジメチルシロキサン単位、メチルエチルシロキサン単位、メチルフェニルシロキサン単位及びジエチルシロキサン単位等が好ましく、特にジメチルシロキサンが好ましい。共重合体中のメチルハイドロジェンシロキサン単位の割合は10〜99モル%、好ましくは20〜90モル%である。
メチルハイドロジェンシロキサン共重合体はランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれでもよいがランダム共重合体及びブロック共重合体が好ましい。又、共重合成分としてはメチルハイドロジェンシロキサン以外に、一成分でも二成分以上でもよい。
又、N型半導性粒子は下記一般式(4)で表される反応性有機ケイ素化合物で表面処理したものでもよい。
一般式(4)
(R)n−Si−(X)4-n
(式中、Siはケイ素原子、Rは該ケイ素原子に炭素が直接結合した形の有機基を表し、Xは加水分解性基を表し、nは0〜3の整数を表す。)
一般式(4)で表される有機ケイ素化合物において、Rで示されるケイ素に炭素が直接結合した形の有機基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、ドデシル等のアルキル基、フェニル、トリル、ナフチル、ビフェニル等のアリール基、γ−グリシドキシプロピル、β−(3,4−エポキシシクロヘキシル)エチル等の含エポキシ基、γ−アクリロキシプロピル、γ−メタアクリロキシプロピルの含(メタ)アクリロイル基、γ−ヒドロキシプロピル、2,3−ジヒドロキシプロピルオキシプロピル等の含水酸基、ビニル、プロペニル等の含ビニル基、γ−メルカプトプロピル等の含メルカプト基、γ−アミノプロピル、N−β(アミノエチル)−γ−アミノプロピル等の含アミノ基、γ−クロロプロピル、1,1,1−トリフロオロプロピル、ノナフルオロヘキシル、パーフルオロオクチルエチル等の含ハロゲン基、その他ニトロ、シアノ置換アルキル基を挙げられる。また、Xの加水分解性基としてはメトキシ、エトキシ等のアルコキシ基、ハロゲン基、アシルオキシ基が挙げられる。
また、一般式(4)で表される有機ケイ素化合物は、単独でも良いし、2種以上組み合わせて使用しても良い。
また、一般式(4)で表される有機ケイ素化合物の具体的化合物で、nが2以上の場合、複数のRは同一でも異なっていても良い。同様に、nが2以下の場合、複数のXは同一でも異なっていても良い。又、一般式(4)で表される有機ケイ素化合物を2種以上を用いるとき、R及びXはそれぞれの化合物間で同一でも良く、異なっていても良い。
また、前記メチルハイドロジェンシロキサン共重合体や反応性有機ケイ素化合物の表面処理に先立ちN型半導性粒子をアルミナ、シリカ等の無機の表面処理を行ってもよい。
なお、前述のアルミナ、シリカの処理は同時に行っても良いが、特にアルミナ処理を最初に行い、次いでシリカ処理を行うことが好ましい。また、アルミナとシリカの処理をそれぞれ行う場合のアルミナ及びシリカの処理量は、アルミナよりもシリカの多いものが好ましい。
前記酸化チタン等のN型半導性微粒子のアルミナ、シリカ或いはジルコニア等の金属酸化物による表面処理は湿式法で行うことができる。例えば、シリカ、又はアルミナの表面処理を行ったN型半導性粒子は以下の様に作製することができる。
N型半導性粒子として酸化チタン粒子を用いる場合、酸化チタン粒子(数平均一次粒子径:50nm)を50〜350g/Lの濃度で水中に分散させて水性スラリーとし、これに水溶性のケイ酸塩又は水溶性のアルミニウム化合物を添加する。その後、アルカリ又は酸を添加して中和し、酸化チタン粒子の表面にシリカ、又はアルミナを析出させる。続いて濾過、洗浄、乾燥を行い目的の表面処理酸化チタンを得る。前記水溶性のケイ酸塩としてケイ酸ナトリウムを使用した場合には、硫酸、硝酸、塩酸等の酸で中和することができる。一方、水溶性のアルミニウム化合物として硫酸アルミニウムを用いたときは水酸化ナトリウムや水酸化カリウム等のアルカリで中和することができる。
本発明に用いられる中間層を形成するために作製する中間層塗布液は前記表面処理酸化チタン等のN型半導性粒子の他にバインダー樹脂、分散溶媒等から構成される。
N型半導性粒子の中間層中での比率は、中間層のバインダー樹脂との体積比(バインダー樹脂の体積を1とすると)で0.5〜2.0倍が好ましい。中間層中でこのような高密度で本発明のN型半導性粒子を用いることにより、中間層の整流性が高まり、膜厚を厚くしても残留電位の上昇やポチが発生せず、黒ポチを効果的に防止でき、電位変動が小さい良好なハーフトーン画像を作製できる有機感光体を形成することができる。又、このような中間層はバインダー樹脂100体積部に対し、N型半導性粒子を50〜200体積部を用いることが好ましい。
一方、これらの粒子を分散し、中間層の層構造を形成するバインダー樹脂としては、粒子の良好な分散性を得る為にポリアミド樹脂が好ましいが、特に以下に示すポリアミド樹脂が好ましい。
即ち、中間層にはバインダー樹脂に融解熱0〜40J/gで、且つ吸水率5質量%以下のポリアミド樹脂が好ましい。該融解熱は0〜30J/gがより好ましく、0〜20J/gが最も好ましい。一方、前記吸水率が5質量%を超えると、中間層中の含水率が上昇し、中間層の整流性が低下し、黒ポチが発生しやすく、ハーフトン画像が劣化しやすい。該吸水率は4質量%以下がより好ましい。
上記樹脂の融解熱はDSC(示差走査熱量測定:Differential Scanning Calorimetory)にて測定する。但し、DSCの測定値と同じ測定値が得られれば、DSC測定法にこだわらない。該融解熱はDSC昇温時の吸熱ピーク面積から求める。
一方、樹脂の吸水率は水中浸漬法による質量変化又はカールフィッシャー法により求める。
中間層のバインダー樹脂としてはアルコール可溶性ポリアミド樹脂が好ましい。有機感光体の中間層のバインダー樹脂としては、中間層を均一な膜厚で形成するために、溶媒溶解性の優れた樹脂が必要とされている。このようなアルコール可溶性のポリアミド樹脂としては、前記した6−ナイロン等のアミド結合間の炭素鎖の少ない化学構造から構成される共重合ポリアミド樹脂やメトキシメチル化ポリアミド樹脂が知られているが、これらの樹脂は吸水率が高く、このようなポリアミドを用いた中間層は環境依存性が高くなる傾向にあり、その結果、たとえば高温高湿や低温低湿下の帯電特性や感度等が変化しやすく、黒ポチの発生やハーフトン画像の劣化を起しやすい。
アルコール可溶性ポリアミド樹脂には、上記のような欠点を改良し、融解熱0〜40J/gで、且つ吸水率5質量%以下の特性を与えることにより、従来のアルコール可溶性ポリアミド樹脂の欠点を改良し、外部環境が変化しても、又有機感光体の長時間連続使用を行っても、良好な電子写真画像を得ることができる。
以下、融解熱0〜40J/gで、且つ吸水率5質量%以下の特性を有するアルコール可溶性ポリアミド樹脂について説明する。
前記アルコール可溶性ポリアミド樹脂としては、アミド結合間の炭素数が7〜30の繰り返し単位構造を全繰り返し単位構造の40〜100モル%含有するポリアミド樹脂が好ましい。
ここで、アミド結合間の炭素数が7〜30の繰り返し単位構造について説明する。前記繰り返し単位構造とはポリアミド樹脂を形成するアミド結合単位を意味する。このことを、繰り返し単位構造がアミノ基とカルボン酸基の両方を持つ化合物の縮合により形成されるポリアミド樹脂(タイプA)と、ジアミノ化合物とジカルボン酸化合物の縮合で形成されるポリアミド樹脂(タイプB)の両方の例で説明する。
即ち、タイプAの繰り返し単位構造は一般式(5)で表され、Xに含まれる炭素数が繰り返し単位構造におけるアミド結合単位の炭素数である。一方タイプBの繰り返し単位構造は一般式(6)で表され、Yに含まれる炭素数もZに含まれる炭素数も、各々繰り返し単位構造におけるアミド結合単位の炭素数である。
Figure 0004241490
一般式(5)中、R1は水素原子、置換又は無置換のアルキル基、Xは置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を示し、lは自然数を示す。
Figure 0004241490
一般式(6)中、R2、R3は各水素原子、置換又は無置換のアルキル基、Y、Zは各置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を示し、m、nは自然数を示す。
前記のごとく、炭素数が7〜30の繰り返し単位構造は置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を有する化学構造等が挙げられるが、これらの中で2価のシクロアルカンを含む基を有する化学構造が好ましい。
上記ポリアミド樹脂は繰り返し単位構造のアミド結合間の炭素数が7〜30であるが、好ましくは9〜25、更には11〜20が良い。またアミド結合間の炭素数が7〜30の繰り返し単位構造が全繰り返し単位構造中に占める比率は40〜100モル%、好ましくは60〜100モル%、更には80〜100モル%が良い。
前記炭素数が7より小だと、ポリアミド樹脂の吸湿性が大きく、電子写真特性、特に繰り返し使用時の電位の湿度依存性が大きく、更に黒ポチ等の画像欠陥が発生しやすく、ハーフトン画像が劣化しやすい。30より大であるとポリアミド樹脂の塗布溶媒への溶解が悪くなり、中間層の塗布膜形成に適さない。
又、アミド結合間の炭素数が7〜30の繰り返し単位構造が全繰り返し単位構造中に占める比率が40モル%より小さいと、上記効果が小さくなる。
本発明の好ましいポリアミド樹脂としては下記一般式(7)で示される繰り返し単位構造を有するポリアミドが挙げられる。
Figure 0004241490
一般式(7)中、Y1は2価のアルキル置換されたシクロアルカンを含む基、Z1はメチレン基、mは1〜3、nは3〜20を示す。
上記一般式(7)中、Y1の2価のアルキル置換されたシクロアルカンを含む基は下記化学構造が好ましい。即ち、Y1が下記化学構造を有する本発明のポリアミド樹脂は、黒ポチや擦り傷によるハーフトーン画像の劣化防止の改善効果が見られる。
Figure 0004241490
上記化学構造において、Aは単結合、炭素数1〜4のアルキレン基を示し、R4は置換基で、アルキル基を示し、pは1〜5の自然数を示す。但し、複数のR4は同一でも、異なっていても良い。
上記ポリアミド樹脂の具体例としては下記のような例が挙げられる。
Figure 0004241490
Figure 0004241490
Figure 0004241490
上記具体例中の()内の%は繰り返し単位構造のアミド結合間の炭素数が7以上の繰り返し単位構造の比率(モル%)を示す。
上記具体例の中でも、一般式(7)の繰り返し単位構造を有するN−1〜N−4のポリアミド樹脂が特に好ましい。
又、上記ポリアミド樹脂の分子量は数平均分子量で5,000〜80,000が好ましく、10,000〜60,000がより好ましい。数平均分子量が5,000以下だと中間層の膜厚の均一性が劣化し、本発明の効果が十分に発揮されにくい。一方、80,000より大きいと、樹脂の溶媒溶解性が低下しやすく、中間層中に凝集樹脂が発生しやすく、黒ポチやハーフトーン画像の劣化が発生しやすい。
上記ポリアミド樹脂はその一部が既に市販されており、例えばダイセル・デグサ(株)社製のベスタメルトX1010、X4685等の商品名で販売されて、一般的なポリアミドの合成法で作製することができるが、以下に合成例の一例を挙げる。
例示ポリアミド樹脂(N−1)の合成
攪拌機、窒素、窒素導入管、温度計、脱水管等を備えた重合釜にラウリルラクタム215質量部、3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミン112質量部、1,12−ドデカンシカルボン酸153質量部及び水2質量部を混合し、加熱加圧下、水を留出させながら9時間反応させた。重合物を取り出し、C13−NMRにより共重合組成を求めたところ、N−1の組成と一致した。尚、上記合成された共重合のメルトフローインデックス(MFI)は(230℃/2.16kg)の条件で、5g/10minであった。
上記ポリアミド樹脂を溶解し、塗布液を作製する溶媒としては、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、t−ブタノール、sec−ブタノール等の炭素数2〜4のアルコール類が好ましく、ポリアミドの溶解性と作製された塗布液の塗布性の点で優れている。これらの溶媒は全溶媒中に30〜100質量%、好ましくは40〜100質量%、更には50〜100質量%が好ましい。前記溶媒と併用し、好ましい効果を得られる助溶媒としては、メタノール、ベンジルアルコール、トルエン、メチレンクロライド、シクロヘキサノン、テトラヒドロフラン等が挙げられる。
本発明の中間層の膜厚は0.3〜10μmが好ましい。中間層の膜厚が0.5μm未満では、黒ポチやハーフトーン画像の劣化が発生しやすく、10μmを超えると、残留電位の上昇やポチが発生しやすく、鮮鋭性が劣化しやすい。中間層の膜厚は0.5〜5μmがより好ましい。
又、上記中間層は実質的に絶縁層であることが好ましい。ここで絶縁層とは、体積抵抗が1×108以上である。本発明の中間層及び保護層の体積抵抗は1×108〜1015Ω・cmが好ましく、1×109〜1014Ω・cmがより好ましく、更に好ましくは、2×109〜1×1013Ω・cmである。体積抵抗は下記のようにして測定できる。
測定条件;JIS:C2318−1975に準ずる。
測定器:三菱油化社製Hiresta IP
測定条件:測定プローブ HRS
印加電圧:500V
測定環境:30±2℃、80±5RH%
体積抵抗が1×108未満では中間層の電荷ブロッキング性が低下し、黒ポチの発生が増大し、有機感光体の電位保持性も劣化し、良好な画質が得られない。一方1015Ω・cmより大きいと繰り返し画像形成で残留電位が増大しやすく、良好な画質が得られない。
感光層
本発明の感光体の感光層構成は前記中間層上に電荷発生機能と電荷輸送機能を1つの層に持たせた単層構造の感光層構成でも良いが、より好ましくは感光層の機能を電荷発生層(CGL)と電荷輸送層(CTL)に分離した構成をとるのがよい。機能を分離した構成を取ることにより繰り返し使用に伴う残留電位増加を小さく制御でき、その他の電子写真特性を目的に合わせて制御しやすい。負帯電用の感光体では中間層の上に電荷発生層(CGL)、その上に電荷輸送層(CTL)の構成を取ることが好ましい。正帯電用の感光体では前記層構成の順が負帯電用感光体の場合の逆となる。本発明の最も好ましい感光層構成は前記機能分離構造を有する負帯電感光体構成である。
以下に機能分離負帯電感光体の感光層構成について説明する。
電荷発生層
電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる結晶構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu−Kα線に対するブラッグ角2θの27.2°に最大ピークを有するチタニルフタロシアニン、同2θの7.5°、28.7°に顕著な回折ピークを有するチタニルフタロシン、同2θの12.4に最大ピークを有するビスベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。
電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01μm〜1μmが好ましい。0.01μm未満では十分な感度特性が得られず、残留電位が上昇しやすい。一方、1μmを超えても、感度が低下しやすい。
電荷輸送層
本発明の電荷輸送層としては前記した構成の電荷輸送層を用いる。
中間層、電荷発生層、電荷輸送層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。
又、これらの各層の塗布溶液は塗布工程に入る前に、塗布溶液中の異物や凝集物を除去するために、金属フィルター、メンブランフィルター等で濾過することが好ましい。例えば、日本ポール社製のプリーツタイプ(HDC)、デプスタイプ(プロファイル)、セミデプスタイプ(プロファイルスター)等を塗布液の特性に応じて選択し、濾過をすることが好ましい。
次に有機感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられる。なお保護層は前記円形量規制型塗布加工方法を用いるのが最も好ましい。前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。
又、本発明は前記有機感光体と以下に記すような均一な形状係数やシャープな粒度分布を有するトナーを併用した画像形成装置を採用することにより、ダッシュマークや擦り傷によるハーフトーン画像の劣化とポチの発生を防止し、良好な電子写真画像を作製することが出来る。
(1)形状係数が1.2〜1.6の範囲にあるトナー粒子を65個数%以上含有するトナー
このような特性のトナーはトナー粒子(トナー粒子とは個々の粒子を意味する)の形状が真球に近く且つ形状が類似性を有しているので、トナーの帯電特性が均一化し、感光体上の潜像を忠実に顕像化する性質を有している。その為、感光体上に発生した擦り傷やダッシュマーク、或いはポチを忠実に再現する傾向が大きいが、形状係数が1.2〜1.6の範囲にあるトナー粒子を65個数%以上含有するトナーを本発明の前記した有機感光体と併用することにより、擦り傷もダッシュマークもポチも防止でき、良好な電子写真画像を作製することが出来る。
一方、形状係数が1.2〜1.6の範囲にあるトナー粒子を65個数%未満の場合はトナーの帯電量分布が大きくなり、その結果、過剰帯電のトナー粒子が発生したりしやすく、これらが感光体表面に強固に付着しダッシュマークが発生しやすい。
(2)角がないトナー粒子を50個数%以上含有するトナー
角がないトナー粒子とは、電荷の集中するような突部またはストレスにより破砕しやすいような突部を実質的に有しないトナー粒子を言い、角がないトナー粒子の割合が50個数%以上、更に好ましくは70個数%以上であることにより、現像剤搬送部材などとのストレスにより微細な粒子の発生などがおこりにくくなり、微細なトナーの感光体への付着によるダッシュマークの発生を防止できる。即ち、本発明の感光体と併用することにより、長期に亘り、ダッシュマークが発生しにくく、良好な電子写真画像の形成を可能にする。そのためには角がないトナー粒子の割合が50個数%以上であることが好ましく、更に、好ましくは70個数%以上である。
(3)トナー粒子の粒径をD(μm)とするとき、自然対数lnDを横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数(m1)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m2)との和(M)が70%以上含有するトナー
相対度数(m1)と、相対度数(m2)の和(M)が70%以上のトナーであることにより、該トナーを構成するトナー粒子の粒度分布がシャープとなり、帯電性が安定したトナー画像の形成が可能となり、その結果、本発明の感光体と併用することにより、擦り傷もダッシュマークもポチも防止でき、良好な電子写真画像を作製することが出来る。
(4)トナー粒子の個数粒度分布における個数変動係数が27%以下且つトナー粒子の形状係数の変動係数が16%以下であるトナー
トナーの形状係数の変動係数が16%以下であり、且つトナーの個数粒度分布における個数変動係数が27%以下であるトナーを使用することにより、トナーに安定した帯電特性を付与することができる。このようなトナーと前記した本発明の感光体を併用することにより、擦り傷もダッシュマークもポチも防止でき、良好な電子写真画像を作製することが出来る。トナーの個数変動係数は27%以下であるが、好ましくは25%以下である。トナー粒子の形状係数の変動係数が16%以下、より好ましくは14%以下である。
本発明のトナーは、上記(1)、(2)、(3)、(4)の条件の内、少なくとも1つ以上を満たすトナーであれば、本発明の有機感光体と組み合わせて用いることにより、擦り傷もダッシュマークもポチも防止でき、良好な電子写真画像を作製することが出来るが、更に、上記(1)、(2)、(3)、(4)の条件の内、(2)の条件と(1)或いは(3)の条件の少なくとも1つを満たすトナーがより好ましく、上記(1)、(2)、(3)、(4)の全ての条件を満たすトナーが最も好ましい。
トナーの粒径は、個数平均一次粒径で3〜8μmのものが好ましい。この粒径は、重合法によりトナー粒子を形成させる場合には、凝集剤の濃度や有機溶媒の添加量、または融着時間、さらには重合体自体の組成によって制御することができる。
個数平均粒径が3〜8μmであることにより、定着工程において、現像剤搬送部材に対する付着性の過度なトナーや付着力の低いトナー等の存在を少なくすることができ、現像性を長期に亘って安定化することができるとともに、転写効率が高くなってハーフトーンの画質が向上し、細線やドット等の画質が向上する。
トナーの形状係数は、下記式により示されるものであり、トナー粒子の丸さの度合いを示す。
形状係数=((最大径/2)2×π)/投影面積
ここに、最大径とは、トナー粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる粒子の幅をいう。また、投影面積とは、トナー粒子の平面上への投影像の面積をいう。
この形状係数は、走査型電子顕微鏡により2000倍にトナー粒子を拡大した写真を撮影し、ついでこの写真に基づいて「SCANNING IMAGE ANALYZER」(日本電子社製)を使用して写真画像の解析を行うことにより測定した。この際、100個のトナー粒子を使用して本発明の形状係数を上記算出式にて測定したものである。
本発明のトナーは、この形状係数が1.2〜1.6の範囲にあるトナー粒子が65個数%以上、好ましくは70個数%以上である。
この形状係数を制御する方法は特に限定されるものではない。例えばトナー粒子を熱気流中に噴霧する方法、またはトナー粒子を気相中において衝撃力による機械的エネルギーを繰り返して付与する方法、あるいはトナーを溶解しない溶媒中に添加し旋回流を付与する方法等があるが、本発明では重合法により作製した重合トナーを用いて形状係数等を本発明の範囲内に作製することが好ましい。
トナーの形状係数の変動係数は下記式から算出される。
変動係数=〔S/K〕×100(%)
〔式中、Sは100個のトナー粒子の形状係数の標準偏差を示し、Kは形状係数の平均値を示す。〕
このトナーの形状係数および形状係数の変動係数を、極めてロットのバラツキなく均一に制御するために、重合トナーの製造過程、即ち樹脂粒子(重合体粒子)を重合、融着、形状制御させる工程において、形成されつつあるトナー粒子(着色粒子)の特性をモニタリングしながら適正な工程終了時期を決めてもよい。
モニタリングするとは、インラインに測定装置を組み込みその測定結果に基づいて、工程条件の制御をするという意味である。すなわち、形状などの測定をインラインに組み込んで、例えば樹脂粒子を水系媒体中で会合あるいは融着させることで形成する重合法トナーでは、融着などの工程で逐次サンプリングを実施しながら形状や粒径を測定し、所望の形状になった時点で反応を停止する。
モニタリング方法としては、特に限定されるものではないが、フロー式粒子像分析装置FPIA−2000(東亜医用電子社製)を使用することができる。本装置は試料液を通過させつつリアルタイムで画像処理を行うことで形状をモニタリングできるため好適である。すなわち、反応場よりポンプなどを使用し、常時モニターし、形状などを測定することを行い、所望の形状などになった時点で反応を停止するものである。
トナーの個数粒度分布および個数変動係数はコールターカウンターTA−IIあるいはコールターマルチサイザー(コールター社製)で測定されるものである。本発明においてはコールターマルチサイザーを用い、粒度分布を出力するインターフェース(日科機製)、パーソナルコンピューターを接続して使用した。前記コールターマルチサイザーにおいて使用するアパーチャーとしては100μmのものを用いて、2μm以上のトナーの体積、個数を測定して粒度分布および平均粒径を算出した。個数粒度分布とは、粒子径に対するトナー粒子の相対度数を表すものであり、個数平均粒径とは、個数粒度分布におけるメジアン径を表すものである。
トナーの個数粒度分布における個数変動係数は下記式から算出される。
個数変動係数=〔S/Dn〕×100(%)
〔式中、Sは個数粒度分布における標準偏差を示し、Dnは個数平均粒径(μm)を示す。〕
個数変動係数を制御する方法は特に限定されるものではない。例えば、トナー粒子を風力により分級する方法も使用できるが、個数変動係数をより小さくするためには液中での分級が効果的である。この液中で分級する方法としては、遠心分離機を用い、回転数を制御してトナー粒子径の違いにより生じる沈降速度差に応じてトナー粒子を分別回収し調製する方法がある。
特に懸濁重合法によりトナーを製造する場合、個数粒度分布における個数変動係数を27%以下とするためには分級操作が必須である。懸濁重合法では、重合前に重合性単量体を水系媒体中にトナーとしての所望の大きさの油滴に分散させることが必要である。すなわち、重合性単量体の大きな油滴に対して、ホモミキサーやホモジナイザーなどによる機械的な剪断を繰り返して、トナー粒子程度の大きさまで油滴を小さくすることとなるが、このような機械的な剪断による方法では、得られる油滴の個数粒度分布は広いものとなり、従って、これを重合してなるトナーの粒度分布も広いものとなる。このために分級操作が必須となる。
角がないトナー粒子とは、電荷の集中するような突部またはストレスにより摩耗しやすいような突部を実質的に有しないトナー粒子を言い、すなわち、図5(a)に示すように、トナー粒子Tの長径をLとするときに、半径(L/10)の円Cで、トナー粒子Tの周囲線に対し1点で内側に接しつつ内側をころがした場合に、当該円CがトナーTの外側に実質的にはみださない場合を「角がないトナー粒子」という。「実質的にはみ出さない場合」とは、はみ出す円が存在する突起が1箇所以下である場合をいう。また、「トナー粒子の長径」とは、当該トナー粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる粒子の幅をいう。なお、図5(b)および(c)は、それぞれ角のあるトナー粒子の投影像を示している。
角がないトナーの測定は次のようにして行った。先ず、走査型電子顕微鏡によりトナー粒子を拡大した写真を撮影し、さらに拡大して15,000倍の写真像を得る。次いでこの写真像について前記の角の有無を測定する。この測定を100個のトナー粒子について行った。
角がないトナーを得る方法は特に限定されるものではない。例えば、形状係数を制御する方法として前述したように、トナー粒子を熱気流中に噴霧する方法、またはトナー粒子を気相中において衝撃力による機械的エネルギーを繰り返して付与する方法、あるいはトナーを溶解しない溶媒中に添加し、旋回流を付与することによって得ることができる。しかしながら、製造コストやエネルギーコストを考慮すると、重合法による重合トナーが好ましい。
例えば、樹脂粒子を会合あるいは融着させることで形成する重合法トナーにおいては、融着停止段階では融着粒子表面には多くの凹凸があり、表面は平滑でないが、形状制御工程での温度、攪拌翼の回転数および攪拌時間等の条件を適当なものとすることによって、角がないトナーが得られる。これらの条件は、樹脂粒子の物性により変わるものであるが、例えば、樹脂粒子のガラス転移点温度以上で、より高回転数とすることにより、表面は滑らかとなり、角がないトナーが形成できる。
本発明のトナーの粒径は、個数平均粒径で3〜8μmのものが好ましい。この粒径は、重合法によりトナー粒子を形成させる場合には、凝集剤の濃度や有機溶媒の添加量、または融着時間、さらには重合体自体の組成によって制御することができる。
本発明に好ましく用いられる重合トナーとしては、トナー粒子の粒径をD(μm)とするとき、自然対数lnDを横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数(m1)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m2)との和(M)が70%以上であるトナーであることが好ましい。
相対度数(m1)と相対度数(m2)との和(M)が70%以上であることにより、トナー粒子の粒度分布の分散が狭くなるので、当該トナーを画像形成工程に用いることにより選択現像の発生を確実に抑制することができる。
本発明において、前記の個数基準の粒度分布を示すヒストグラムは、自然対数lnD(D:個々のトナー粒子の粒径)を0.23間隔で複数の階級(0〜0.23:0.23〜0.46:0.46〜0.69:0.69〜0.92:0.92〜1.15:1.15〜1.38:1.38〜1.61:1.61〜1.84:1.84〜2.07:2.07〜2.30:2.30〜2.53:2.53〜2.76・・・)に分けた個数基準の粒度分布を示すヒストグラムであり、このヒストグラムは、下記の条件に従って、コールターマルチサイザーにより測定されたサンプルの粒径データを、I/Oユニットを介してコンピュータに転送し、当該コンピュータにおいて、粒度分布分析プログラムにより作製されたものである。
〔測定条件〕
(1)アパーチャー:100μm
(2)サンプル調製法:電解液〔ISOTON R−11(コールターサイエンティフィックジャパン社製)〕50〜100mlに界面活性剤(中性洗剤)を適量加えて攪拌し、これに測定試料10〜20mgを加える。この系を超音波分散機にて1分間分散処理することにより調製する。
本発明の形状係数等を制御する方法としては、重合トナーが製造方法として簡便である点と、粉砕トナーに比較して特性を制御しやすい点等で好ましい。
重合トナーとはトナー用バインダーの樹脂の生成とトナー形状がバインダー樹脂の原料モノマーの重合と、必要によりその後の化学的処理により形成されるトナーを意味する。より具体的には懸濁重合、乳化重合等の重合反応と、必要によりその後に行われる粒子同士の融着工程を経て形成されるトナーを意味する。
重合トナーは原料モノマーを水系で均一に分散した後に重合させトナーを製造することから、トナーの粒度分布、及び形状が均一なトナーが得られる。
重合トナーは、懸濁重合法や、必要な添加剤の乳化液を加えた液中にて単量体を乳化重合し、微粒の重合粒子を製造し、その後に、有機溶媒、凝集剤等を添加して会合する方法で製造することができる。会合の際にトナーの構成に必要な離型剤や着色剤などの分散液と混合して会合させて調製する方法や、単量体中に離型剤や着色剤などのトナー構成成分を分散した上で乳化重合する方法などがあげられる。ここで会合とは樹脂粒子および着色剤粒子が複数個融着することを示す。
即ち、重合性単量体中に着色剤や必要に応じて離型剤、荷電制御剤、さらに重合開始剤等の各種構成材料を添加し、ホモジナイザー、サンドミル、サンドグラインダー、超音波分散機などで重合性単量体に各種構成材料を溶解あるいは分散させる。この各種構成材料が溶解あるいは分散された重合性単量体を分散安定剤を含有した水系媒体中にホモミキサーやホモジナイザーなどを使用しトナーとしての所望の大きさの油滴に分散させる。その後、攪拌機構が後述の攪拌翼である反応装置へ移し、加熱することで重合反応を進行させる。反応終了後、分散安定剤を除去し、濾過、洗浄し、さらに乾燥することでトナーを調製する。
また、本発明のトナーを製造する方法として樹脂粒子を水系媒体中で会合あるいは融着させて調製する方法も挙げることができる。この方法としては、特に限定されるものではないが、例えば、特開平5−265252号公報や特開平6−329947号公報、特開平9−15904号公報に示す方法を挙げることができる。すなわち、樹脂粒子と着色剤などの構成材料の分散粒子、あるいは樹脂および着色剤等より構成される微粒子を複数以上会合させる方法、特に水中にてこれらを乳化剤を用いて分散した後に、臨界凝集濃度以上の凝集剤を加え塩析させると同時に、形成された重合体自体のガラス転移点温度以上で加熱融着させて融着粒子を形成しつつ徐々に粒径を成長させ、目的の粒径となったところで水を多量に加えて粒径成長を停止し、さらに加熱、攪拌しながら粒子表面を平滑にして形状を制御し、その粒子を含水状態のまま流動状態で加熱乾燥することにより、トナーを形成することができる。なお、ここにおいて凝集剤と同時に水に対して無限溶解する有機溶媒を加えてもよい。
なお、本発明で用いられる形状係数等の均一なトナーを作製するための材料や製造方法、重合トナーの反応装置等については特開2000−214629に詳細に記載されている。
《現像剤》
本発明に用いられるトナーは、一成分現像剤でも二成分現像剤でもよいが、好ましくは二成分現像剤である。
一成分現像剤として用いる場合は、非磁性一成分現像剤として前記トナーをそのまま用いる方法もあるが、通常はトナー粒子中に0.1〜5μm程度の磁性粒子を含有させ磁性一成分現像剤として用いる。その含有方法としては、着色剤と同様にして非球形粒子中に含有させるのが普通である。
又、キャリアと混合して二成分現像剤として用いることができる。この場合は、キャリアの磁性粒子として、鉄、フェライト、マグネタイト等の金属、それらの金属とアルミニウム、鉛等の金属との合金等の従来から公知の材料を用いる。特にフェライト粒子が好ましい。上記磁性粒子は、その体積平均粒径としては15〜100μm、より好ましくは25〜60μmのものがよい。
キャリアの体積平均粒径の測定は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
キャリアは、磁性粒子が更に樹脂により被覆されているもの、あるいは樹脂中に磁性粒子を分散させたいわゆる樹脂分散型キャリアが好ましい。コーティング用の樹脂組成としては、特に限定は無いが、例えば、オレフィン系樹脂、スチレン系樹脂、スチレン/アクリル系樹脂、シリコーン系樹脂、エステル系樹脂或いはフッ素含有重合体系樹脂等が用いられる。また、樹脂分散型キャリアを構成するための樹脂としては、特に限定されず公知のものを使用することができ、例えば、スチレンアクリル樹脂、ポリエステル樹脂、フッ素系樹脂、フェノール樹脂等を使用することができる。
次に、本発明の有機感光体を用いた画像形成装置について説明する。
図1に示す画像形成装置1は、デジタル方式による画像形成装置であって、画像読取り部A、画像処理部B、画像形成部C、転写紙搬送手段としての転写紙搬送部Dから構成されている。
画像読取り部Aの上部には原稿を自動搬送する自動原稿送り手段が設けられていて、原稿載置台11上に載置された原稿は原稿搬送ローラ12によって1枚宛分離搬送され読み取り位置13aにて画像の読み取りが行われる。原稿読み取りが終了した原稿は原稿搬送ローラ12によって原稿排紙皿14上に排出される。
一方、プラテンガラス13上に置かれた場合の原稿の画像は走査光学系を構成する照明ランプ及び第1ミラーから成る第1ミラーユニット15の速度vによる読み取り動作と、V字状に位置した第2ミラー及び第3ミラーから成る第2ミラーユニット16の同方向への速度v/2による移動によって読み取られる。
読み取られた画像は、投影レンズ17を通してラインセンサである撮像素子CCDの受光面に結像される。撮像素子CCD上に結像されたライン状の光学像は順次電気信号(輝度信号)に光電変換されたのちA/D変換を行い、画像処理部Bにおいて濃度変換、フィルタ処理などの処理が施された後、画像データは一旦メモリに記憶される。
画像形成部Cでは、画像形成ユニットとして、像担持体であるドラム状の感光体21と、その外周に、該感光体21を帯電させる帯電手段(帯電工程)22、帯電した感光体の表面電位を検出する電位検出手段220、現像手段(現像工程)23、転写手段(転写工程)である転写搬送ベルト装置45、前記感光体21のクリーニング装置(クリーニング工程)26及び光除電手段(光所電荷発生工程)としてのPCL(プレチャージランプ)27が各々動作順に配置されている。また、現像手段23の下流側には感光体21上に現像されたパッチ像の反射濃度を測定する反射濃度検出手段222が設けられている。感光体21には、本発明の有機感光体を使用し、図示の時計方向に駆動回転される。
回転する感光体21へは帯電手段22による一様帯電がなされた後、像露光手段(像露光工程)30としての露光光学系により画像処理部Bのメモリから呼び出された画像信号に基づいた像露光が行われる。書き込み手段である像露光手段30としての露光光学系は図示しないレーザダイオードを発光光源とし、回転するポリゴンミラー31、fθレンズ34、シリンドリカルレンズ35を経て反射ミラー32により光路が曲げられ主走査がなされるもので、感光体21に対してAoの位置において像露光が行われ、感光体21の回転(副走査)によって静電潜像が形成される。本実施の形態の一例では文字部に対して露光を行い静電潜像を形成する。
本発明の画像形成方法においては、感光体上に静電潜像を形成するに際し、像露光をスポット面積が2×10-92以下の露光ビームを用いて行うことが好ましい。このような小径のビーム露光を行っても、本発明の有機感光体は、該スポット面積に対応した画像を忠実に形成することができる。より好ましいスポット面積は、0.01×10-9〜1×10-92である。その結果400dpi(dpi:2.54cm当たりのドット数)以上で、256階調を実現するところのきわめて優れた画像品質を達成することができる。
前記露光ビームのスポット面積とは該ビーム光の強度がピーク強度の1/e2以上の光強度に対応する面積で表される。
用いられる露光ビームとしては半導体レーザを用いた走査光学系、及びLEDや液晶シャッター等の固体スキャナー等があり、光強度分布についてもガウス分布及びローレンツ分布等があるがそれぞれのピーク強度の1/e2までの部分をスポット面積とする。
感光体21上の静電潜像は現像手段23によって反転現像が行われ、感光体21の表面に可視像のトナー像が形成される。本発明の画像形成方法では、該現像手段に用いられる現像剤には粉砕系トナー又は重合トナーのいずれを用いてもよいが、形状や粒度分布が均一な重合トナーを本発明の有機感光体と併用することにより、より鮮鋭性が良好な電子写真画像を得ることができる。
又、本発明の有機感光体は現像剤に0.1〜1.0μmの無機外添剤と50nm以下の無機外添剤を含有するトナーを用いた時に、本発明の効果、特にダッシュマークや擦り傷によるハーフトーン画像の劣化防止やポチの改善効果が大きい。
転写紙搬送部Dでは、画像形成ユニットの下方に異なるサイズの転写紙Pが収納された転写紙収納手段としての給紙ユニット41(A)、41(B)、41(C)が設けられ、また側方には手差し給紙を行う手差し給紙ユニット42が設けられていて、それらの何れかから選択された転写紙Pは案内ローラ43によって搬送路40に沿って給紙され、給紙される転写紙Pの傾きと偏りの修正を行う対の給紙レジストローラ44によって転写紙Pは一時停止を行ったのち再給紙が行われ、搬送路40、転写前ローラ43a、給紙経路46及び進入ガイド板47に案内され、感光体21上のトナー画像が転写位置Boにおいて転写極24及び分離極25によって転写搬送ベルト装置45の転写搬送ベルト454に載置搬送されながら転写紙Pに転写され、該転写紙Pは感光体21面より分離し、転写搬送ベルト装置45により定着手段50に搬送される。
定着手段50は定着ローラ51と加圧ローラ52とを有しており、転写紙Pを定着ローラ51と加圧ローラ52との間を通過させることにより、加熱、加圧によってトナーを定着させる。トナー画像の定着を終えた転写紙Pは排紙トレイ64上に排出される。
以上は転写紙の片側への画像形成を行う状態を説明したものであるが、両面複写の場合は排紙切換部材170が切り替わり、転写紙案内部177が開放され、転写紙Pは破線矢印の方向に搬送される。
更に、搬送機構178により転写紙Pは下方に搬送され、転写紙反転部179によりスイッチバックさせられ、転写紙Pの後端部は先端部となって両面複写用給紙ユニット130内に搬送される。
転写紙Pは両面複写用給紙ユニット130に設けられた搬送ガイド131を給紙方向に移動し、給紙ローラ132で転写紙Pを再給紙し、転写紙Pを搬送路40に案内する。
再び、上述したように感光体21方向に転写紙Pを搬送し、転写紙Pの裏面にトナー画像を転写し、定着手段50で定着した後、排紙トレイ64に排紙する。
本発明の画像形成装置としては、上述の感光体と、現像器、クリーニング器等の構成要素をプロセスカートリッジとして一体に結合して構成し、このユニットを装置本体に対して着脱自在に構成しても良い。又、帯電器、像露光器、現像器、転写又は分離器、及びクリーニング器の少なくとも1つを感光体とともに一体に支持してプロセスカートリッジを形成し、装置本体に着脱自在の単一ユニットとし、装置本体のレールなどの案内手段を用いて着脱自在の構成としても良い。
次に図2は本発明の有機感光体を用いたカラー画像形成装置(少なくとも有機感光体の周辺に帯電手段、露光手段、複数の現像手段、転写手段、クリーニング手段及び中間転写体を有する複写機あるいはレーザービームプリンタ)の構成断面図である。ベルト状の中間転写体70は中程度の抵抗の弾性体を使用している。
21は像形成体として繰り返し使用される回転ドラム型の感光体であり、矢示の反時計方向に所定の周速度をもって回転駆動される。
感光体21は回転過程で、帯電手段22により所定の極性・電位に一様に帯電処理され、次いで不図示の像露光手段30により画像情報の時系列電気デジタル画素信号に対応して変調されたレーザービームによる走査露光光等による画像露光を受けることにより目的のカラー画像のイエロー(Y)の色成分像に対応した静電潜像が形成される。
次いで、その静電潜像がイエロー(Y)の現像手段(イエロー色現像器)23Yにより第1色であるイエロートナーにより現像される。この時第2〜第4の現像手段(マゼンタ色現像器、シアン色現像器、ブラック色現像器)23M、23C、23Bkの各現像器は作動オフになっていて感光体21には作用せず、上記第1色目のイエロートナー画像は上記第2〜第4の現像器により影響を受けない。
中間転写体70はローラ79a、79b、79c、79d、79eで張架されて時計方向に感光体21と同じ周速度をもって回転駆動されている。
感光体21上に形成担持された上記第1色目のイエロートナー画像が、感光体1と中間転写体70とのニップ部を通過する過程で、1次転写ローラ24aから中間転写体70に印加される1次転写バイアスにより形成される電界により、中間転写体70の外周面に順次中間転写(1次転写)されていく。
中間転写体70に対応する第1色のイエロートナー画像の転写を終えた感光体21の表面は、クリーニング装置26により清掃される。
以下、同様に第2色のマゼンタトナー画像、第3色のシアントナー画像、第4色のクロ(ブラック)トナー画像が順次中間転写体70上に重ね合わせて転写され、目的のカラー画像に対応した重ね合わせカラートナー画像が形成される。
2次転写ローラ24bで、2次転写対向ローラ79bに対応し平行に軸受させて中間転写体70の下面部に離間可能な状態に配設してある。
感光体21から中間転写体70への第1〜第4色のトナー画像の順次重畳転写のための1次転写バイアスはトナーとは逆極性で、バイアス電源から印加される。その印加電圧は、例えば+100V〜+2kVの範囲である。
感光体21から中間転写体70への第1〜第3色のトナー画像の1次転写工程において、2次転写ローラ24b及び中間転写体クリーニング手段26Aは中間転写体70から離間することも可能である。
ベルト状の中間転写体70上に転写された重ね合わせカラートナー画像の第2の画像担持体である転写材Pへの転写は、2次転写ローラ24bが中間転写体70のベルトに当接されると共に、対の給紙レジストローラ44から転写紙ガイドを通って、中間転写体70のベルトに2次転写ローラ24bとの当接ニップに所定のタイミングで転写材Pが給送される。2次転写バイアスがバイアス電源から2次転写ローラ24bに印加される。この2次転写バイアスにより中間転写体70から第2の画像担持体である転写材Pへ重ね合わせカラートナー画像が転写(2次転写)される。トナー画像の転写を受けた転写材Pは定着手段50へ導入され加熱定着される。
本発明の有機感光体は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。
図3は、本発明の有機感光体を用いた他のカラー画像形成装置の断面構成図である。
このカラー画像形成装置は、タンデム型カラー画像形成装置と称せられるもので、4組の画像形成部(画像形成ユニット)10Y、10M、10C、10Bkと、無端ベルト状中間転写体ユニット7と、給紙搬送手段41及び定着手段50とから成る。画像形成装置の本体Aの上部には、原稿画像読み取り装置SCが配置されている。
イエロー色の画像を形成する画像形成部10Yは、第1の像担持体としてのドラム状の感光体21Yの周囲に配置された帯電手段22Y、露光手段30Y、現像手段23Y、一次転写手段としての一次転写ローラ5Y、クリーニング手段6Yを有する。マゼンタ色の画像を形成する画像形成部10Mは、第1の像担持体としてのドラム状の感光体21M、帯電手段22M、露光手段30M、現像手段23M、一次転写手段としての一次転写ローラ5M、クリーニング手段6Mを有する。シアン色の画像を形成する画像形成部10Cは、第1の像担持体としてのドラム状の感光体21C、帯電手段22C、露光手段30C、現像手段23C、一次転写手段としての一次転写ローラ5C、クリーニング手段6Cを有する。黒色画像を形成する画像形成部10Bkは、第1の像担持体としてのドラム状の感光体21Bk、帯電手段22Bk、露光手段30Bk、現像手段23Bk、一次転写手段としての一次転写ローラ5Bk、クリーニング手段6Bkを有する。
前記4組の画像形成ユニット10Y、10M、10C、10Bkは、感光体ドラム21Y、21M、21C、21Bkを中心に、回転する帯電手段22Y、22M、22C、22Bkと、像露光手段30Y、30M、30C、30Bkと、回転する現像手段23Y、23M、23C、23Bk、及び、感光体ドラム21Y、21M、21C、21Bkをクリーニングするクリーニング手段5Y、5M、5C、5Bkより構成されている。
前記画像形成ユニット10Y、10M、10C、10Bkは、感光体21Y、21M、21C、21Bkにそれぞれ形成するトナー像の色が異なるだけで、同じ構成であり、画像形成ユニット10Yを例にして詳細に説明する。
画像形成ユニット10Yは、像形成体である感光体ドラム21Yの周囲に、帯電手段22Y(以下、単に帯電手段22Y、あるいは、帯電器22Yという)、露光手段30Y、現像手段23Y、クリーニング手段5Y(以下、単にクリーニング手段5Y、あるいは、クリーニングブレード5Yという)を配置し、感光体ドラム21Y上にイエロー(Y)のトナー像を形成するものである。また、本実施の形態においては、この画像形成ユニット10Yのうち、少なくとも感光体ドラム21Y、帯電手段22Y、現像手段23Y、クリーニング手段5Yを一体化するように設けている。
帯電手段22Yは、感光体ドラム21Yに対して一様な電位を与える手段であって、本実施の形態においては、感光体ドラム21Yにコロナ放電型の帯電器22Yが用いられている。
像露光手段30Yは、帯電器22Yによって一様な電位を与えられた感光体ドラム21Y上に、画像信号(イエロー)に基づいて露光を行い、イエローの画像に対応する静電潜像を形成する手段であって、この露光手段30Yとしては、感光体ドラム21Yの軸方向にアレイ状に発光素子を配列したLEDと結像素子(商品名;セルフォックレンズ)とから構成されるもの、あるいは、レーザ光学系などが用いられる。
本発明の画像形成方法においては、感光体上に静電潜像を形成するに際し、像露光をスポット面積が2000μm2以下の露光ビームを用いて行うことが好ましい。このような小径のビーム露光を行っても、本発明の有機感光体は、該スポット面積に対応した画像を忠実に形成することができる。より好ましいスポット面積は、100〜1000μm2である。その結果800dpi(dpiとは2.54cm当たりのドット数)以上で、階調性が豊かな電子写真画像を達成することができる。
前記露光ビームのスポット面積とは、該露光ビームを該ビームと垂直な面で切断したとき、該切断面に現れる光強度分布面で、光強度が最大ピーク強度の1/e2以上の領域に相当する面積を意味する。
用いられる光ビームとしては半導体レーザを用いた走査光学系、及びLEDや液晶シャッター等の固体スキャナー等があり、光強度分布についてもガウス分布及びローレンツ分布等があるがそれぞれのピーク強度の1/e2までの部分をスポット面積とする。
無端ベルト状中間転写体ユニット7は、複数のローラにより巻回され、回動可能に支持された半導電性エンドレスベルト状の第2の像担持体としての無端ベルト状中間転写体70を有する。
画像形成ユニット10Y、10M、10C、10Bkより形成された各色の画像は、一次転写手段としての一次転写ローラ5Y、5M、5C、5Bkにより、回動する無端ベルト状中間転写体70上に逐次転写されて、合成されたカラー画像が形成される。給紙カセット40内に収容された記録材(定着された最終画像を担持する支持体:例えば普通紙、透明シート等)としての用紙Pは、給紙手段41により給紙され、複数の中間ローラ42A、42B、42C、42D、レジストローラ43を経て、二次転写手段としての二次転写ローラ5Aに搬送され、用紙P上に二次転写してカラー画像が一括転写される。カラー画像が転写された用紙Pは、定着手段50により定着処理され、排紙ローラ45に挟持されて機外の排紙トレイ46上に載置される。
一方、二次転写手段としての二次転写ローラ5Aにより用紙Pにカラー画像を転写した後、用紙Pを曲率分離した無端ベルト状中間転写体70は、クリーニング手段6Aにより残留トナーが除去される。
画像形成処理中、一次転写ローラ5Bkは常時、感光体21Bkに圧接している。他の一次転写ローラ5Y、5M、5Cはカラー画像形成時にのみ、それぞれ対応する感光体21Y、21M、21Cに圧接する。
二次転写ローラ5Aは、ここを用紙Pが通過して二次転写が行われる時にのみ、無端ベルト状中間転写体70に圧接する。
また、装置本体Aから筐体8を支持レール82L、82Rを介して引き出し可能にしてある。
筐体8は、画像形成部10Y、10M、10C、10Bkと、無端ベルト状中間転写体ユニット7とから成る。
画像形成部10Y、10M、10C、10Bkは、垂直方向に縦列配置されている。感光体21Y、21M、21C、21Bkの図示左側方には無端ベルト状中間転写体ユニット7が配置されている。無端ベルト状中間転写体ユニット7は、ローラ71、72、73、74を巻回して回動可能な無端ベルト状中間転写体70、一次転写ローラ5Y、5M、5C、5Bk、及びクリーニング手段6Aとから成る。
以下、本発明の画像形成装置の現像手段である現像装置について具体的に説明する。
本発明に用いる現像装置は、トナー搬送部材、トナー層規制部材及びトナー補給補助部材等を備え、且つトナー補給補助部材とトナー搬送部材、及びトナー層規制部材とトナー搬送部材がそれぞれ当接していることが好ましい。その装置を使用して薄層化させた非磁性トナーを感光体表面に供給して潜像を現像する方式が好ましい。
トナー搬送部材は非磁性一成分トナーを感光体に供給するものである。このものは弾性を有する部材であることが、感光体に接触させた状態でその弾性によって充分な現像領域を確保するために好ましい。
本発明において、トナー搬送部材にはウレタンゴム、シリコーンゴムのローラーや、ニッケルの無端ベルト状部材の内部にスポンジローラーを内包したもの等を使用することができる。
トナー層規制部材はトナー搬送部材に対してトナーを均一に塗布するとともに摩擦帯電を付与する機能を有するものである。このものは、ウレタンゴム、金属板等の弾性体が用いられ、これをトナー搬送部材に当接してトナーの薄層をトナー搬送部材上に形成する。薄層化された層とは現像領域にてトナーが最大で10層、好ましくは5層以下重なって形成される層である。なお、トナー層規制部材はトナー搬送部材に対して0.1N/cmから5.0N/cmの圧力で当接されていることが好ましい。さらに好ましくは0.2〜4.0N/cmである。この圧力が0.1N/cm未満の場合にはトナー搬送が不均一となり、搬送ムラを発生しやすくなり、画像に白スジがでる問題を発生しやすい。また、トナー搬送部材は10〜50mmの径を有するものが好ましい。
トナー補給補助部材はトナー搬送部材に対してトナーを安定に供給するためのユニットである。このものとしては、撹拌羽根の付いた水車状のローラーあるいはスポンジ状のローラーを使用することができる。このものはトナー搬送部材に対して直径が0.2倍から1.5倍の範囲のものが好ましい。この径が小さすぎるとトナーの供給が不十分となり、また大きすぎる場合には供給過多となりいずれもトナー供給が安定化せず、スジ状の画像不良を引き起こしやすい。
図4は本発明の画像形成装置に用いられる現像装置の概要断面図である。
図4においてトナータンク23fに内蔵された非磁性一成分トナー23eは、トナー補給補助部材としての撹拌羽根23dにより、同じくトナー補給補助部材としてのスポンジローラー23c上に強制的に搬送供給される。こうしてスポンジローラー上に組込まれたトナーはこのローラー23cの矢印方向の回転によりトナー搬送部材としてのゴムローラー23a上に搬送され、このローラー23aとの摩擦によりその表面に静電的、且つ物理的に吸着される。一方、こうしてゴムローラー23a上に付着したトナーはこのローラー23aの矢印方向の回転及びトナー層厚規制部材としてのスチール製弾性ブレード23bにより均一に薄層化されると共に摩擦帯電する。次にゴムローラー23a上のトナー薄層は静電潜像担持体としての感光体21の表面と接触または近接により潜像が現像される。
なお本発明方法で用いられる現像装置は図4のものに限定されないことは勿論である。
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。但し、下記文中の「部」は「質量部」を示す。
以下のようにして、評価に用いる感光体を作製した。
感光体1の作製
中間層1
洗浄済み円筒状アルミニウム基体(切削加工によりJISB−0601規定の十点表面粗さRz:0.81μmに加工した)上に、下記中間層塗布液を浸漬塗布法で塗布し、120℃30分で乾燥し、乾燥膜厚3.0μmの中間層1を形成した。
下記中間層分散液を同じ混合溶媒にて二倍に希釈し、一夜静置後に濾過(フィルター;日本ポール社製リジメッシュフィルター公称濾過精度:5ミクロン、圧力;50kPa)し、中間層塗布液を作製した。
(中間層分散液の作製)
バインダー樹脂:(例示ポリアミドN−1) 1部(1.00体積部)
アナターゼ形酸化チタンA1(一次粒径35nm;メチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比1:1)を用い、酸化チタン全質量の5質量%の量で表面処理したもの) 3.5部(1.0体積部)
エタノール/n−プロピルアルコール/THF(=45/20/30質量比)10部
上記成分を混合し、サンドミル分散機を用い、10時間、バッチ式にて分散して、中間層分散液を作製した。
電荷発生層
下記成分を混合し、サンドミル分散機を用いて分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、前記中間層の上に乾燥膜厚0.3μmの電荷発生層を形成した。
Y形オキシチタニルフタロシアニン(Cu−Kα特性X線によるX線回折のスペクトルで、ブラッグ角(2θ±0.2°)27.3°に最大回折ピークを有するチタニルフタロシン顔料) 20部
シリコーン変性ポリビニルブチラール 10部
4−メトキシ−4−メチル−2ーペンタノン 700部
t−ブチルアセテート 300部
電荷輸送層
下記成分を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、乾燥膜厚25μmの電荷輸送層を形成し、感光体1を作製した。
電荷輸送物質(例示化合物CTM−129) 70部
バインダー樹脂(例示化合物PC−1(Mv:30000)) 100部
酸化防止剤(例示化合物1−1) 8部
テトラヒドロフラン/トルエン(体積比8/2) 750部
感光体2〜14の作製
中間層のN型半導性粒子、バインダー樹脂、乾燥膜厚、電荷輸送層のバインダー樹脂、電荷輸送物質、酸化防止剤、膜厚等を表1のように変更した以外は感光体1と同様にして感光体2〜14を作製した。但し、表1の中間層体積比は感光体1〜14の全ての中間層のバインダー樹脂の体積とN型半導性粒子の体積の合計体積を一定にした上で、バインダー樹脂の体積とN型半導性粒子の体積の比(Vn/Vb)を変えた中間層分散液を作製して、中間層を形成した。
尚、前記感光体1〜14の作製と同時に、各感光体の中間層塗布液を用いて、アルミ蒸着したポリエチレンテレフタレート支持体上に各中間層塗布液を塗布し、前記感光体の乾燥条件と同じ条件で乾燥膜厚10μmの中間層を形成して体積抵抗測定用試料を作製し、各中間層の体積抵抗を測定した。その結果、感光体1〜14の中間層の体積抵抗は全て1×108Ω・cm以上であった又、感光体13に使用したバインダー樹脂PC−Zの構造式を下記に示した。
Figure 0004241490
Figure 0004241490
表中、
A1はルチル形酸化チタン
A2はアナターゼ形酸化チタン
Zは酸化亜鉛
*1はメチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比1:1)
*2はメチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比9:1)
*3はメチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比2:8)
*4はメチルハイドロジェンシロキサンとジエチルシロキサンの共重合体(モル比1:1)
*5はメチルハイドロジェンシロキサンとメチルエチルシロキサンの共重合体(モル比1:1)
*6はメチルハイドロジェンポリシロキサン
*7は一次処理:シリカ・アルミナ、二次処理メチルトリメトキシシラン
尚、表中、表面処理とは粒子の表面に施した表面処理に用いた物質を示す(但し、一次処理のシリカ・アルミナは粒子表面に析出したシリカ・アルミナを意味する)。
又、表中の融解熱、吸水率の測定は以下のようにして行った。
融解熱の測定条件
測定機:島津製作所「島津熱流速示差走査熱量計DSC−50」を用いて測定した。
測定条件:測定試料を上記測定機に設定し、室温(24℃)から測定開始、200℃迄5℃/分で昇温し、次いで室温まで5℃/分で冷却する。これを2回連続で行い、2回めの昇温時の融解による吸熱ピーク面積より融解熱を算出する。
吸水率の測定条件
測定対象の試料を70〜80℃で3〜4時間で十分に乾燥させ、その質量を精密に秤量する。次に、20℃に維持したイオン交換水に試料を投入し、一定時間経過後に引き上げ試料表面の水を清潔な布で拭き取り、質量を測定する。以上の操作を質量増が飽和するまで繰り返し、その結果得られた試料の増加質量(増加分)を初期の質量で除した値を吸水率とした。
表中、炭素数が7以上の単位構造の比率とは、繰り返し単位構造のアミド結合間の炭素数が7以上の繰り返し単位構造の比率(モル%)を示す。
本発明に用いるトナー及び該トナーを用いた現像剤を作製した。
(トナー1Bkの製造)
n−ドデシル硫酸ナトリウム0.90kgと純水10.0リットルを入れ攪拌溶解した。この溶液に、リーガル330R(キャボット社製カーボンブラック)1.20kgを徐々に加え、1時間よく攪拌した後に、サンドグラインダー(媒体型分散機)を用いて、20時間連続分散した。このものを「着色剤分散液1」とする。
また、ドデシルベンゼンスルホン酸ナトリウム0.055kgとイオン交換水4.0リットルとからなる溶液を「アニオン界面活性剤溶液A」とする。
ノニルフェノールポリエチレンオキサイド10モル付加物0.014kgとイオン交換水4.0リットルとからなる溶液を「ノニオン界面活性剤溶液B」とする。
過硫酸カリウム223.8gをイオン交換水12.0リットルに溶解した溶液を「開始剤溶液C」とする。
温度センサー、冷却管、窒素導入装置を付けた容積100リットルのGL(グラスライニング)反応釜に、WAXエマルジョン(数平均分子量3000のポリプロピレンエマルジョン:数平均一次粒子径=120nm/固形分濃度=29.9%)3.41kgと「アニオン界面活性剤溶液A」全量と「ノニオン界面活性剤溶液B」全量とを入れ、攪拌を開始した。次いで、イオン交換水44.0リットルを加えた。
加熱を開始し、液温度が75℃になったところで、「開始剤溶液C」全量を滴下して加えた。その後、液温度を75℃±1℃に制御しながら、スチレン12.1kgとアクリル酸n−ブチル2.88kgとメタクリル酸1.04kgとt−ドデシルメルカプタン548gとを滴下しながら投入した。滴下終了後、液温度を80℃±1℃に上げて、6時間加熱攪拌を行った。ついで、液温度を40℃以下に冷却し攪拌を停止し、ポールフィルターで濾過してラテックスを得た。これを「ラテックス−A」とする。
なお、ラテックス−A中の樹脂粒子のガラス転移温度は57℃、軟化点は121℃、分子量分布は、重量平均分子量=1.27万、重量平均粒径は120nmであった。
ドデシルベンゼンスルホン酸ナトリウム0.055kgをイオン交換純水4.0リットルに溶解した溶液を「アニオン界面活性剤溶液D」とする。
また、ノニルフェノールポリエチレンオキサイド10モル付加物0.014kgをイオン交換水4.0リットルに溶解した溶液を「ノニオン界面活性剤溶液E」とする。
過硫酸カリウム(関東化学社製)200.7gをイオン交換水12.0リットルに溶解した溶液を「開始剤溶液F」とする。
温度センサー、冷却管、窒素導入装置、櫛形バッフルを付けた100リットルのGL反応釜に、WAXエマルジョン(数平均分子量3000のポリプロピレンエマルジョン:数平均一次粒子径=120nm/固形分濃度 29.9%)3.41kgと「アニオン界面活性剤溶液D」全量と「ノニオン界面活性剤溶液E」全量とを入れ、攪拌を開始した。
次いで、イオン交換水44.0リットルを投入した。加熱を開始し、液温度が70℃になったところで、「開始剤溶液F」を添加した。ついで、スチレン11.0kgとアクリル酸n−ブチル4.00kgとメタクリル酸1.04kgとt−ドデシルメルカプタン9.02gとをあらかじめ混合した溶液を滴下した。滴下終了後、液温度を72℃±2℃に制御して、6時間加熱攪拌を行った。さらに、液温度を80℃±2℃に上げて、12時間加熱攪拌を行った。液温度を40℃以下に冷却し攪拌を停止した。ポールフィルターで濾過し、この濾液を「ラテックス−B」とする。
なお、ラテックス−B中の樹脂粒子のガラス転移温度は58℃、軟化点は132℃、分子量分布は、重量平均分子量=24.5万、重量平均粒径は110nmであった。
塩析剤としての塩化ナトリウム5.36kgをイオン交換水20.0リットルに溶解した溶液を「塩化ナトリウム溶液G」とする。
フッ素系ノニオン界面活性剤1.00gをイオン交換水1.00リットルに溶解した溶液を「ノニオン界面活性剤溶液H」とする。
温度センサー、冷却管、窒素導入装置、粒径および形状のモニタリング装置を付けた100リットルのSUS反応釜に、上記で作製したラテックス−A=20.0kgとラテックス−B=5.2kgと着色剤分散液1=0.4kgとイオン交換水20.0kgとを入れ攪拌した。ついで、40℃に加温し、塩化ナトリウム溶液G、イソプロパノール(関東化学社製)6.00kg、ノニオン界面活性剤溶液Hをこの順に添加した。その後、10分間放置した後に、昇温を開始し、液温度85℃まで60分で昇温し、85±2℃にて0.5〜3時間加熱攪拌して塩析/融着させながら粒径成長させた。次に純水2.1リットルを添加して粒径成長を停止させ、融着粒子分散液を作製した。
温度センサー、冷却管、粒径および形状のモニタリング装置を付けた5リットルの反応容器に、上記で作製した融着粒子分散液5.0kgを入れ、液温度85℃±2℃にて、0.5〜15時間加熱攪拌して形状制御した。その後、40℃以下に冷却し攪拌を停止した。次に遠心分離機を用いて、遠心沈降法により液中にて分級を行い、目開き45μmの篩いで濾過し、この濾液を会合液とする。ついで、ヌッチェを用いて、会合液よりウェットケーキ状の非球形状粒子を濾取した。その後、イオン交換水により洗浄した。この非球形状粒子をフラッシュジェットドライヤーを用いて吸気温度60℃にて乾燥させ、ついで流動層乾燥機を用いて60℃の温度で乾燥させた。得られた着色粒子の100質量部に、0.3μmのチタン酸ストロンチウム0.5質量部及び15nmの疎水性シリカ1.0質量部をヘンシェルミキサーにて外添混合して乳化重合会合法によるトナー1Bkを得た。
(トナー2Bk〜14Bkの製造)
トナー2Bkの製造において、前記塩析/融着段階および形状制御工程のモニタリングにおいて、攪拌回転数、および加熱時間を制御することにより、形状および形状係数の変動係数を制御し、さらに液中分級により、粒径および粒度分布の変動係数を任意に調整して、表2に示す形状特性および粒度分布特性等を有するトナー粒子からなるトナー2Bk〜14Bkを得た。
Figure 0004241490
〔現像剤の製造〕
前記したトナー1Bk〜14Bkをそのまま非磁性一成分現像剤をして用いた。
実施例1
得られた感光体1〜14と上記非磁性一成分現像剤を表3に記載の組み合わせで、市販のカラープリンターmagicolor2300DeskLaser(ミノルタキューエムエス社製)に搭載し、低温低湿(LL:10℃20%RH)で耐久試験を行った。詳しくは、画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にある画像画像を計2万枚印刷し、スタート時及び5000枚毎に評価した。評価項目と評価基準を以下に示す。
尚、上記カラープリンターのプロセス条件は下記の条件で実施した。
帯電器:鋸歯電極
露光器:半導体レーザ
現像:非磁性一成分現像法、トナー搬送部材に約16μmのトナー層を形成し、接触反 転現像現像した。
転写:中間転写ベルト使用
クリーニング:クリーニングブレード
定着:加熱定着
プロセススピード:100mm/sec
画像濃度
マクベス社製RD−918を使用して測定。紙の反射濃度を「0」とした相対反射濃度で測定した。多数枚のコピーで残留電位が増加すると、画像濃度が低下する。各1万枚コピー後のべた黒画像部で測定した。
◎:黒ベタ画像が1.2より高い(良好)
○:黒ベタ画像が1.0以上、1.2以下(実用上問題なし)
×:黒ベタ画像が1.0未満(実用上問題あり)
カブリ
カブリ濃度はべた白画像をマクベス社製RD−918を使用し反射濃度で測定した。該反射濃度は相対濃度(印刷していないA4紙の濃度を0.000とする)で評価した。各1万枚コピー後のべた白画像部で測定した。
◎;濃度が0.010未満(良好)
○;濃度が0.010以上、0.020以下(実用上問題ないレベル)
×;濃度が0.020より高い(実用上問題となるレベル)
ダッシュマーク
ハーフトーン画像上に周期性が感光体の周期と一致するダッシュマーク(彗星状の小さなすじ画像)の発生状況を下記の基準で判定した。
◎;0.4mm以上のダッシュマークの頻度:全ての印刷画像が5個/A4以下(良好)
○;0.4mm以上のダッシュマークの頻度:6個/A4以上、10個/A4以下が1枚以上発生(実用上問題なし)
×;0.4mm以上のダッシュマーク画像欠陥の頻度:11個/A4以上が1枚以上発生(実用上問題有り)
黒ポチ
周期性が感光体の周期と一致し、目視できる黒ポチ、黒筋状の画像欠陥が、A4サイズ当たり何個あるかで判定した。
◎;0.4mm以上の画像欠陥の頻度:全ての印刷画像が5個/A4以下(良好)
○;0.4mm以上の画像欠陥の頻度:6個/A4以上、10個/A4以下が1枚以上発生(実用上問題なし)
×;0.4mm以上の画像欠陥の頻度:11個/A4以上が1枚以上発生(実用上問題有り)
擦り傷
◎;感光体表面が均一に削られ、ハーフトーン画像が均一で、すっきりとした画像で再現されている(良好)
○;感光体表面に小さな擦り傷が発生しているが、ハーフトーン画像は均一で、すっきりとした画像で再現されている(実用上問題なし)
×;感光体表面に擦り傷が発生し、ハーフトーン画像が、荒れた画像になっている。(実用上問題有り)
Figure 0004241490
表3の結果より、前記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有する有機感光体は(組み合わせNo.1〜12)は、ダッシュマークや黒ポチの発生が防止され、しかも、画像濃度が十分で且つカブリ濃度が低い良好な電子写真画像を獲得している。
一方、バインダーが本発明外の感光体13を用いた場合は本発明内の感光体1と組み合わせても(組み合わせNo.13)ダッシュマークが発生し、酸化防止剤を含有していない感光体14では本発明内の感光体1と組み合わせても(組み合わせNo.14)カブリ及び黒ポチが発生している。
実施例2
前記、本発明の有機感光体1を用い、前記した非磁性一成分現像剤を表4のように組み合わせ実施例1と同様にして評価した。
Figure 0004241490
表4の結果より、(1)形状係数が1.2〜1.6の範囲にあるトナー粒子を65個数%以上含有するトナー、(2)角がないトナー粒子を50個数%以上含有するトナー、(3)最頻階級に含まれるトナー粒子の相対度数(m1)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m2)との和(M)が70%以上含有するトナー、(4)トナー粒子の個数粒度分布における個数変動係数が27%以下且つトナー粒子の形状係数の変動係数が16%以下であるトナー:これら(1)〜(4)の条件の少なくとも1つが本発明のトナー(No.1Bk〜14Bk)を用いた組み合わせは(組み合わせNo.21〜34)はダッシュマークや黒ポチの発生が防止され、しかも、画像濃度が十分で且つカブリ濃度が低い良好な電子写真画像を獲得している。特に、(2)の条件と(1)又は(3)の条件を満たしたトナーを用いた組み合わせ(組み合わせNo.21〜25、27〜29、31、32)は改善効果がより大きく、前記(1)〜(4)の全ての条件を満たした組み合わせ(組み合わせNo.21〜23)は最も改善効果が著しい。
実施例3
実施例1のトナー1Bkの製造において、「着色剤分散液1」のリーガル330R(キャボット社製カーボンブラック)をC.I.ピグメントイエロー185に代えた以外は同様にしてトナー1Yを作製した。
実施例1のトナー1Bkの製造において、「着色剤分散液1」のリーガル330R(キャボット社製カーボンブラック)をC.I.ピグメントレッド122に代えた以外は同様にしてトナー1Mを作製した。
実施例1のトナー1Bkの製造において、「着色剤分散液1」のリーガル330R(キャボット社製カーボンブラック)をC.I.ピグメントブルー15:3に代えた以外は同様にしてトナー1Cを作製した。
トナー1Bk、1Y、1M、1Cの形状特性および粒度分布特性等の特性を表5に示した。
Figure 0004241490
〔現像剤の製造〕
トナー1Bk、1Y、1M、1Cをそのまま非磁性一成分現像剤をして用いた。
これらの現像剤を前記市販のカラープリンターmagicolor2300DeskLaser(ミノルタキューエムエス社製)に搭載し(現像剤1Bk、1Y、1M、1Cのそれぞれを黒色用、イエロー色用、マゼンタ色用、シンア色用の現像剤として搭載し)、前記実施例1で用いた前記有機感光体1、13及び14を用いて、実施例1と同様に評価した(但し、黒ポチの評価では、他の色ポチ(マゼンタポチ、シアンポチ等)も含めたポチの数で評価した)。評価結果を表6に示す。
Figure 0004241490
表6の結果より、本発明の有機感光体1を用いた組み合わせ(組み合わせNo.41)は上記トナー1Bk、1Y、1M、1Cの非磁性一成分現像剤を用いたカラー画像でも、各評価項目で良好な結果を示しており、良好なカラーの電子写真画像を得ることが出来るのに対し、本発明外の感光体13を用いた組み合わせ(組み合わせNo.42)では、ダッシュマークが発生し、感光体14を用いた組み合わせ(組み合わせNo.42)では、カブリや黒ポチ(色ポチも含める)が発生し、画像濃度も低下している。
本発明の画像形成装置の機能が組み込まれた概略図である。 本発明の有機感光体を用いたカラー画像形成装置の構成断面図である。 本発明の有機感光体を用いた他のカラー画像形成装置の断面構成図である。 本発明の画像形成装置に用いられる現像装置の概要断面図である。 (a)は、角のないトナー粒子の投影像を示す説明図であり、(b)および(c)は、それぞれ角のあるトナー粒子の投影像を示す説明図である。
符号の説明
1 画像形成装置
21 感光体
22 帯電手段
23 現像手段
24 転写極
25 分離極
26 クリーニング装置
30 露光光学系
45 転写搬送ベルト装置
50 定着手段
250 分離爪ユニット

Claims (6)

  1. 有機感光体と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、下記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が、形状係数1.2〜1.6の範囲にあるトナー粒子が65個数%以上であるトナーを含有する非磁性一成分現像剤を用いていることを特徴とする画像形成装置。
    Figure 0004241490
    (式中、Xは酸素原子またはイオウ原子であり、R〜Rは水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
  2. 有機感光体と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、下記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が角がないトナー粒子が50個数%以上であるトナーを含有する非磁性一成分現像剤を用いていることを特徴とする画像形成装置。
    Figure 0004241490
    (式中、Xは酸素原子またはイオウ原子であり、R 〜R は水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
  3. 有機感光体と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、下記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が、トナー粒子の粒径をD(μm)とするとき、自然対数lnDを横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおける最頻階級に含まれるトナー粒子の相対度数(m )と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m )との和(M)が70%以上であるトナーを含有する非磁性一成分現像剤を用いていることを特徴とする画像形成装置。
    Figure 0004241490
    (式中、Xは酸素原子またはイオウ原子であり、R 〜R は水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
  4. 有機感光体と該有機感光体上に静電潜像を形成するための帯電手段、露光手段及び該静電潜像をトナー像に顕像化する為の現像手段を有する画像形成装置において、該有機感光体が、下記一般式(1)で表される構造単位を有するポリカーボネート及び酸化防止剤を含有する表面層を有し、前記現像手段が、トナー粒子の形状係数の変動係数が16%以下、個数粒度分布における個数変動係数が27%以下であるトナーを含有する非磁性一成分現像剤を用いていることを特徴とする画像形成装置。
    Figure 0004241490
    (式中、Xは酸素原子またはイオウ原子であり、R 〜R は水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
  5. 少なくとも請求項1〜4のいずれか1項に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。
  6. 前記一般式(1)で表される構造単位を有するポリカーボネートが前記一般式(1)及び下記一般式(2)で表される構造単位を有する共重合ポリカーボネートであることを特徴とする請求項1〜4のいずれか1項に記載の画像形成装置。
    Figure 0004241490
    (式中、Aは炭素数1〜10の直鎖、分岐鎖或は環状のアルキリデン基、アリール置換アルキリデン基、及びアリーレン基を示し、R 〜R 16 は水素原子、ハロゲン原子、水酸基又は炭素数1〜4のアルキル基を表す。)
JP2004126448A 2004-04-22 2004-04-22 画像形成装置及び画像形成方法 Expired - Fee Related JP4241490B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126448A JP4241490B2 (ja) 2004-04-22 2004-04-22 画像形成装置及び画像形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126448A JP4241490B2 (ja) 2004-04-22 2004-04-22 画像形成装置及び画像形成方法

Publications (2)

Publication Number Publication Date
JP2005309116A JP2005309116A (ja) 2005-11-04
JP4241490B2 true JP4241490B2 (ja) 2009-03-18

Family

ID=35437971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126448A Expired - Fee Related JP4241490B2 (ja) 2004-04-22 2004-04-22 画像形成装置及び画像形成方法

Country Status (1)

Country Link
JP (1) JP4241490B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7301613B2 (ja) 2019-06-14 2023-07-03 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置

Also Published As

Publication number Publication date
JP2005309116A (ja) 2005-11-04

Similar Documents

Publication Publication Date Title
US7477866B2 (en) Image forming method and image forming apparatus
JP4396396B2 (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
US20060115754A1 (en) Image forming method
JP4201007B2 (ja) 有機感光体、画像形成装置、画像形成方法及びプロセスカートリッジ
JP3979222B2 (ja) 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2005292782A (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
JP2006259301A (ja) 画像形成方法及び画像形成装置
JP2006201551A (ja) 画像形成方法及び画像形成装置
JP2006038918A (ja) 有機感光体、画像形成装置及び画像形成方法
JP4650021B2 (ja) 画像形成方法及び画像形成装置
JP4241490B2 (ja) 画像形成装置及び画像形成方法
JP2006010918A (ja) 有機感光体、画像形成装置及び画像形成方法
JP4151585B2 (ja) 画像形成装置及び画像形成方法
JP4792916B2 (ja) 画像形成方法及び画像形成装置
JP4561591B2 (ja) 画像形成方法及び画像形成装置
JP3979245B2 (ja) 画像形成方法及び画像形成装置
JP2006227579A (ja) 画像形成方法及び画像形成装置
JP2006227483A (ja) 画像形成方法、画像形成装置及びプロセスカートリッジ
JP2005266408A (ja) 画像形成装置及び画像形成方法
JP2006154071A (ja) 画像形成方法及び画像形成装置
JP4151628B2 (ja) 有機感光体、該有機感光体を用いたプロセスカートリッジ及び画像形成装置
JP4023060B2 (ja) 画像形成装置、及び画像形成方法
JP2006064718A (ja) 画像形成装置及び画像形成方法
JP2005345686A (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
JP4910639B2 (ja) 画像形成方法及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees