JP4240759B2 - Combustor tail cooling structure - Google Patents

Combustor tail cooling structure Download PDF

Info

Publication number
JP4240759B2
JP4240759B2 JP2000152426A JP2000152426A JP4240759B2 JP 4240759 B2 JP4240759 B2 JP 4240759B2 JP 2000152426 A JP2000152426 A JP 2000152426A JP 2000152426 A JP2000152426 A JP 2000152426A JP 4240759 B2 JP4240759 B2 JP 4240759B2
Authority
JP
Japan
Prior art keywords
cooling
tail
outlet
cooling medium
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000152426A
Other languages
Japanese (ja)
Other versions
JP2001329858A (en
Inventor
武彦 清水
哲 羽田
弘一 赤城
克則 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000152426A priority Critical patent/JP4240759B2/en
Priority to DE60137099T priority patent/DE60137099D1/en
Priority to EP01108310A priority patent/EP1146289B1/en
Priority to CA002344012A priority patent/CA2344012C/en
Priority to US09/832,937 priority patent/US6553766B2/en
Publication of JP2001329858A publication Critical patent/JP2001329858A/en
Application granted granted Critical
Publication of JP4240759B2 publication Critical patent/JP4240759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン用の燃焼器尾筒の冷却構造に関するものである。
【0002】
【従来の技術】
近年、ガスタービン燃焼器として、例えば1500℃級のガスタービンでも低NOXが実現可能な、蒸気冷却式燃焼器が注目を集めている。即ち、燃焼器壁面を蒸気で冷却することにより、それまで壁面冷却に使用していた空気を燃焼用に使用することで、ガスタービンの高温下にもかかわらず予混合燃焼温度を空冷式燃焼器なみに抑えて低NOX化が可能となるのである。
【0003】
このような蒸気冷却は、例えば図7に示すように、パイロット燃料と燃焼用空気とが反応して拡散火炎を形成するコーン1の周囲に、メイン燃料と燃焼用空気との予混合気体を形成・噴出する予混合火炎形成ノズル2を複数に分割・配置してなるマルチノズル形予混合式燃焼器3の尾筒4の冷却に採用される。
【0004】
これによれば、冷却蒸気は尾筒4の壁面内部に形成した冷却ジャケット5(図8参照)及びマニホールド6a,6b,6cにより、先ず、尾筒4の長手方向中間部(マニホールド6b参照)に供給され、ここから図中矢印のようにガス流れの上流側と下流側に分流されて壁面を冷却した後、尾筒4の入口部(マニホールド6a参照)と出口部(マニホールド6c参照)から回収されるようになっている。尚、冷却蒸気の流れとしては、尾筒4の入口部(マニホールド6a参照)と出口部(マニホールド6c参照)より供給された冷却蒸気が中間部(マニホールド6b参照)に向け流れ、壁面を冷却した後、当該中間部から回収される所謂逆流方式のものもある。
【0005】
また、冷却ジャケット5は、図8に示すように、二重壁で構成された尾筒4の一方壁4aに溝巾D1 =溝深さD2 の溝加工を施す(溝加工部イ参照)と共に該溝加工した側に他方壁4bをロー付けする(ロー付け部ロ参照)ことで形成される。
【0006】
【発明が解決しようとする課題】
ところが、前述したような従来の燃焼器尾筒の冷却構造にあっては、一般に出口部側が矩形状に形成された尾筒4の外周面(車室側)より内周面(ロータ側)及び側面(隣接する尾筒同志の対向面)のメタル温度が高くなる等で局所的に温度条件が異なるにもかかわらず、冷却ジャケット5のサイズ(通路断面積)が全周均一に設定されるなどして、各部への冷却蒸気の流量配分がメタル温度に関係なくなされているため、メタル温度不均一による熱応力の増大と尾筒4出口部(特に、フランジ部)の冷却不足による熱変形により、尾筒4出口部の四隅にクラックが発生するという問題点があった。
【0007】
本発明は、前述した状況に鑑みてなされたもので、熱応力の軽減と熱変形の防止により尾筒クラックの発生を未然に回避することができて使用寿命の延命が図れる燃焼器尾筒の冷却構造を提供することを目的とする。
【0008】
【課題を解決するための手段】
斯かる目的を達成するための本発明に係る燃焼器尾筒の冷却構造は、ガスタービン燃焼器の尾筒長手方向に冷却媒体の入口側マニホールドから出口側マニホールドへと延びる冷却ジャケットを尾筒壁面の全周に亙って多数本形成した燃焼器尾筒の冷却構造において、前記尾筒の出口部周縁に付設したフランジの正面部に前記出口部を囲繞するように環状の冷却通路を形成し、前記冷却通路に通じる複数の冷却媒体溜めを前記フランジの根元部に近接して尾筒の出口部周縁に複数設けこれらの冷却媒体溜めに前記冷却ジャケットをバイパスする複数本のバイパス冷却媒体ジャケットを介して冷却媒体が供給される一方前記冷却通路を流れてフランジを冷却した冷却媒体は、前記冷却ジャケットを流れて尾筒壁面を冷却した冷却媒体と前記尾筒の出口部周縁に設けた前記出口側マニホールドで混合されて回収されることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明に係る燃焼器尾筒の冷却構造を実施例により図面を用いて詳細に説明する。
【0014】
[第1実施例]
図1は本発明の第1実施例を示す冷却ジャケットの断面積比較及びジャケット配置箇所を示す比較説明図で、同図(a)は現状冷却ジャケットサイズの説明図、同図(b)は本発明冷却ジャケットサイズの説明図、同図(c)は尾筒の要部切欠き斜視図で、同図(a)には一部切欠きで冷却ジャケットの通路を示している。
【0015】
図1に示すように、本実施例では、出口部側が矩形状に形成された尾筒4の壁面内部に形成される冷却ジャケット(図8の符号5参照)は、その通路断面積が現状の冷却ジャケットより大部分において拡大されると共に、尾筒4各部のメタル温度に応じて例えば尾筒4の外周面(車室側)Aと内周面(ロータ側)B及び側面(隣接する尾筒同志の対向面)Cとで、それぞれ通路断面積を変化させている。
【0016】
即ち、現状の冷却ジャケットでは、図1の(a)に示すように、外周面、内周面及び側面において、例えば溝深さD2 (図8参照)=φmmの均一の冷却ジャケットサイズに設定されるのに対し、本実施例では、図1の(b)に示すように、外周面の中央部では溝深さD2 =φmmで、両側部(コーナー部)は溝深さD2 ≒1.07φmmに冷却ジャケットサイズが設定されると共に、内周面では溝深さD2 ≒1.21φmmに、かつ側面上流側では溝深さD2 ≒1.29φmmに冷却ジャケットサイズが設定される。一方、側面下流側では溝深さD2 ≒1.07φmmに冷却ジャケットサイズが設定される。尚、冷却ジャケットの本数は、現状と本実施例とで変化はない。
【0017】
このようにして、本実施例では、尾筒4各部のメタル温度が均一になるように、各部の冷却ジャケットサイズを変化させて、冷却媒体としての冷却蒸気の流量配分を最適化したので、メタル温度不均一による熱応力の増大と尾筒4出口部の冷却不足による熱変形を効果的に防止でき、依って尾筒4出口部のクラック発生が回避される。
【0018】
尚、上記実施例において、溝深さD2 に代えて又は溝深さD2 と共に溝巾D1 も増大するなどして各部の冷却ジャケットサイズを変化させても良い。
【0019】
[第2実施例]
図2は本発明の第2実施例を示す尾筒出口部の比較説明図で、同図(a)は現状尾筒出口部の構造説明図、同図(b)は本発明尾筒出口部の構造説明図である。尾筒全体の構造は図7を参照して詳しい説明は省略する。
【0020】
図2に示すように、本実施例では、前述した尾筒4の出口部周縁(開口部周縁)に外向きに張出し形成されたフランジ4aへ冷却蒸気を供給する冷却ジャケット5(図8参照)の行き先変更がなされて、前記フランジ4aが積極的に蒸気冷却されるようになっている。
【0021】
即ち、現状の冷却ジャケット5では、図2の(a)に示すように、前記フランジ4aの根元部に送られた冷却蒸気は、前記根元部で隣の冷却ジャケット5へ流れた後上流側へ若干リターンして通孔5a(冷却ジャケット5の一本おきに形成される)よりマニホールド6c内に流入するのに対し、本実施例では、図2の(b)に示すように、前記フランジ4aの根元部に送られた冷却蒸気は、前記フランジ4aの高さ方向へ延設された通路5bを流れた後、マニホールド6c内に流入するようになっている。従って、前記通路5bは、通孔5aと異なり冷却ジャケット5の一本毎に形成される。
【0022】
このようにして、本実施例では、尾筒4出口部のフランジ4a全体に冷却蒸気が行き渡るようにして、前記フランジ4aの冷却強化を図ったので、温度差による熱変形を効果的に防止でき、依って尾筒4出口部のクラック発生が回避される。
【0023】
[第3実施例]
図3は本発明の第3実施例を示す尾筒の要部側面図、図4は同じく尾筒出口部の背部斜視図、図5は同じく尾筒出口部の正面図、図6は図5のVI−VI線断面図である。
【0024】
図3乃至図6に示すように、本実施例では、出口部側が矩形状に形成された尾筒4の壁面内部に形成される冷却ジャケット(図8の符号5参照)とは別に、バイパス蒸気ジャケット10a〜10dが設けられ、該バイパス蒸気ジャケット10a〜10dにより尾筒4の壁面を冷却しない冷却蒸気が、尾筒4出口部のフランジ4a正面に形成された環状の冷却通路11に供給されて、前記フランジ4aが積極的に蒸気冷却されるようになっている。
【0025】
即ち、前記バイパス蒸気ジャケット10a〜10dは、前述したマニホールド6bから尾筒4の外周面に沿って周方向4本宛分岐されて尾筒4出口部の四隅に形成された蒸気溜め12a〜12dに通じている。該蒸気溜め12a〜12dは、前記矩形状フランジ4aの四隅に形成された通孔13a〜13d及び溝通路14a〜14dを介して前記冷却通路11に通じている。そして、該冷却通路11からは、周方向4ヶ所に設けた小孔群15a〜15dを介して前述したマニホールド6cに冷却蒸気は導かれ、ここで前記冷却ジャケット5からの冷却蒸気と混ざり、回収されるようになっている。尚、図中16は冷却通路11及び溝通路14a〜14dをそれらの溝加工後に閉塞する蓋板である。
【0026】
このようにして、本実施例では、尾筒4出口部のフランジ4aが、マニホールド6bからバイパス蒸気ジャケット10a〜10d→蒸気溜め12a〜12d→通孔13a〜13d及び溝通路14a〜14dを介して熱交換なしで環状の冷却通路11に供給される低温の冷却蒸気で、全体的に蒸気冷却されるため、十分な冷却効果が得られ、温度差による熱変形を防止して尾筒4出口部のクラック発生が回避される。
【0027】
尚、本発明は上記各実施例に限定されず、本発明の要旨を逸脱しない範囲で、冷却媒体として空気を用いたり、第1〜第3実施例を同時に実施する(図2の(b)参照)等各種変更が可能であることはいうまでもない。
【0028】
【発明の効果】
以上、実施例に基づいて詳細に説明したように、本発明によれば、ガスタービン燃焼器の尾筒長手方向に冷却媒体の入口側マニホールドから出口側マニホールドへと延びる冷却ジャケットを尾筒壁面の全周に亙って多数本形成した燃焼器尾筒の冷却構造において、前記尾筒の出口部周縁に付設したフランジの正面部に前記出口部を囲繞するように環状の冷却通路を形成し、前記冷却通路に通じる複数の冷却媒体溜めを前記フランジの根元部に近接して尾筒の出口部周縁に複数設けこれらの冷却媒体溜めに前記冷却ジャケットをバイパスする複数本のバイパス冷却媒体ジャケットを介して冷却媒体が供給される一方前記冷却通路を流れてフランジを冷却した冷却媒体は、前記冷却ジャケットを流れて尾筒壁面を冷却した冷却媒体と前記尾筒の出口部周縁に設けた前記出口側マニホールドで混合されて回収されることを特徴とするので、十分な冷却効果が得られ、温度差による熱変形を防止して尾筒出口部のクラック発生が回避されるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す冷却ジャケットの比較説明図で、同図(a)は現状冷却ジャケットサイズの説明図、同図(b)は本発明冷却ジャケットサイズの説明図、同図(c)は尾筒の要部切欠き斜視図で、同図(a)には一部切欠きで冷却ジャケットの通路を示している。
【図2】本発明の第2実施例を示す尾筒出口部の比較説明図で、同図(a)は現状尾筒出口部の構造説明図、同図(b)は本発明尾筒出口部の構造説明図である。
【図3】本発明の第3実施例を示す尾筒の要部側面図である。
【図4】同じく尾筒出口部の背部斜視図である。
【図5】同じく尾筒出口部の正面図である。
【図6】同じく図5のVI−VI線断面図である。
【図7】従来例を示すガスタービン燃焼器周りの側断面図である。
【図8】同じく図7のVIII−VIII線断面図である。
【符号の説明】
1 コーン
2 予混合火炎形成ノズル
3 マルチノズル形予混合式燃焼器
4 尾筒
4a フランジ
5 冷却ジャケット
5a 通孔
5b 通路
6a,6b,6c マニホールド
10a〜10d バイパス蒸気ジャケット
11冷却通路
12a〜12d 蒸気溜め
13a〜13d 通孔
14a〜14d 溝通路
15a〜15d 小孔群
16 蓋板
イ 溝加工部
ロ ロー付け部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling structure for a combustor tail cylinder for a gas turbine.
[0002]
[Prior art]
In recent years, as a gas turbine combustor, for example, a steam-cooled combustor that can achieve low NO x even with a 1500 ° C. class gas turbine has attracted attention. That is, by cooling the combustor wall surface with steam, the air previously used for wall surface cooling is used for combustion, so that the premixed combustion temperature can be set to the air-cooled combustor despite the high temperature of the gas turbine. it is the low NO X reduction is possible by suppressing the tears.
[0003]
For example, as shown in FIG. 7, the steam cooling forms a premixed gas of main fuel and combustion air around the cone 1 where the pilot fuel and combustion air react to form a diffusion flame. -It is employ | adopted for cooling of the tail cylinder 4 of the multi-nozzle type premix type combustor 3 which divides and arrange | positions the premixed flame formation nozzle 2 to eject.
[0004]
According to this, the cooling steam is first introduced into the longitudinal intermediate portion (see the manifold 6b) of the tail tube 4 by the cooling jacket 5 (see FIG. 8) and the manifolds 6a, 6b, 6c formed inside the wall surface of the tail tube 4. After being supplied and diverted to the upstream side and downstream side of the gas flow as shown by the arrows in the figure to cool the wall surface, it is recovered from the inlet portion (see the manifold 6a) and outlet portion (see the manifold 6c) of the tail cylinder 4 It has come to be. As the flow of the cooling steam, the cooling steam supplied from the inlet part (refer to the manifold 6a) and the outlet part (refer to the manifold 6c) of the transition piece 4 flows toward the intermediate part (refer to the manifold 6b) to cool the wall surface. There is also a so-called reverse flow type that is later recovered from the intermediate portion.
[0005]
Further, as shown in FIG. 8, the cooling jacket 5 performs the groove processing of the groove width D 1 = the groove depth D 2 on the one wall 4 a of the tail cylinder 4 formed of a double wall (see the groove processing portion a). ) And the other wall 4b is brazed to the grooved side (see brazed portion B).
[0006]
[Problems to be solved by the invention]
However, in the conventional cooling structure for the combustor tail cylinder as described above, the inner peripheral surface (rotor side) and the outer peripheral surface (chamber side) of the tail cylinder 4 whose outlet side is generally formed in a rectangular shape are generally provided. The size of the cooling jacket 5 (passage cross-sectional area) is set to be uniform even though the temperature conditions are locally different, such as the metal temperature on the side surfaces (opposite surfaces of adjacent tail cylinders) increases. Since the distribution of the flow rate of the cooling steam to each part is made regardless of the metal temperature, an increase in thermal stress due to non-uniform metal temperature and thermal deformation due to insufficient cooling of the tail tube 4 outlet part (particularly the flange part) There was a problem that cracks occurred at the four corners of the outlet portion of the transition piece 4.
[0007]
The present invention has been made in view of the above-described situation, and is a combustor tail tube that can avoid the occurrence of a tail tube crack by reducing thermal stress and preventing thermal deformation, thereby extending the service life of the combustor. An object is to provide a cooling structure.
[0008]
[Means for Solving the Problems]
In order to achieve such an object, a cooling structure for a combustor tail cylinder according to the present invention includes a cooling jacket extending from the inlet side manifold to the outlet side manifold of the cooling medium in the longitudinal direction of the tail cylinder of the gas turbine combustor. In the cooling structure for the combustor tail tube formed over the entire circumference, an annular cooling passage is formed so as to surround the outlet portion at the front portion of the flange attached to the periphery of the outlet portion of the tail tube. A plurality of cooling medium reservoirs communicating with the cooling passage are provided near the periphery of the flange and at the periphery of the outlet of the tail tube, and a plurality of bypass cooling medium jackets bypassing the cooling jacket to these cooling medium reservoirs while cooling medium is supplied through the cooling coolant passage to cool the flange flows, the cooling medium after cooling the tail tube wall flows through the cooling jacket tail Are mixed in the outlet-side manifold which is provided on the outlet peripheral edge, characterized in that it is recovered.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a cooling structure for a combustor tail cylinder according to the present invention will be described in detail with reference to the accompanying drawings.
[0014]
[First embodiment]
FIG. 1 is a cross-sectional area comparison of cooling jackets showing a first embodiment of the present invention and a comparative explanatory view showing jacket placement locations. FIG. 1 (a) is an explanatory view of the current cooling jacket size, and FIG. An explanatory view of the cooling jacket size of the invention, FIG. 2C is a perspective cutaway view of the main part of the tail tube, and FIG. 1A shows a passage of the cooling jacket with a partial cutout.
[0015]
As shown in FIG. 1, in this embodiment, the cooling jacket (see reference numeral 5 in FIG. 8) formed inside the wall surface of the tail cylinder 4 whose outlet portion side is formed in a rectangular shape has a current passage cross-sectional area. For example, the outer peripheral surface (chamber side) A and the inner peripheral surface (rotor side) B and the side surfaces (adjacent tail cylinders) of the tail cylinder 4 are expanded depending on the metal temperature of each part of the tail cylinder 4. The cross-sectional area of each of the opposite surfaces (C) is changed.
[0016]
That is, in the current cooling jacket, as shown in FIG. 1A, on the outer peripheral surface, the inner peripheral surface and the side surface, for example, the groove depth D 2 (see FIG. 8) is set to a uniform cooling jacket size of φmm. On the other hand, in this embodiment, as shown in FIG. 1B, the groove depth D 2 = φmm at the central portion of the outer peripheral surface and the groove depth D 2 ≈ on both sides (corner portions). the cooling jacket size is set to 1.07Faimm, cooling jacket size is set to the groove depth D 2 ≒ 1.29φmm in the groove depth D 2 ≒ 1.21φmm, and side upstream in the inner peripheral surface . On the other hand, on the downstream side of the side surface, the cooling jacket size is set to a groove depth D 2 ≈1.07 φmm. The number of cooling jackets does not change between the current state and the present embodiment.
[0017]
Thus, in this embodiment, the cooling jacket size of each part is changed so that the metal temperature of each part of the tail cylinder 4 is uniform, and the flow distribution of the cooling steam as the cooling medium is optimized. An increase in thermal stress due to temperature non-uniformity and thermal deformation due to insufficient cooling of the outlet portion of the transition piece 4 can be effectively prevented, and therefore the occurrence of cracks at the outlet portion of the transition piece 4 can be avoided.
[0018]
In the above embodiment, instead of the groove depth D 2 or with the groove depth D 2 groove width D 1 also may change the cooling jacket size of each part and the like increases.
[0019]
[Second Embodiment]
FIG. 2 is a comparative explanatory view of a transition piece outlet portion showing a second embodiment of the present invention. FIG. 2 (a) is a structural explanatory view of a current transition piece outlet portion, and FIG. FIG. Detailed description of the structure of the entire transition piece will be omitted with reference to FIG.
[0020]
As shown in FIG. 2, in this embodiment, the cooling jacket 5 (see FIG. 8) that supplies cooling steam to a flange 4 a that extends outwardly on the peripheral edge of the outlet portion (opening peripheral edge) of the tail cylinder 4 described above. The destination 4 is changed so that the flange 4a is actively steam-cooled.
[0021]
That is, in the current cooling jacket 5, as shown in FIG. 2A, the cooling steam sent to the root portion of the flange 4 a flows to the adjacent cooling jacket 5 at the root portion and then goes upstream. In the present embodiment, as shown in FIG. 2B, the flange 4a is slightly returned to flow into the manifold 6c through the through holes 5a (formed every other cooling jacket 5). The cooling steam sent to the root portion of the gas flows through the passage 5b extending in the height direction of the flange 4a and then flows into the manifold 6c. Accordingly, the passage 5b is formed for each cooling jacket 5 unlike the through hole 5a.
[0022]
In this way, in this embodiment, the cooling steam is spread over the entire flange 4a at the outlet portion of the transition piece 4 so as to enhance the cooling of the flange 4a, so that thermal deformation due to a temperature difference can be effectively prevented. Therefore, the occurrence of cracks at the exit portion of the transition piece 4 is avoided.
[0023]
[Third embodiment]
FIG. 3 is a side view of the main part of the transition piece according to the third embodiment of the present invention, FIG. 4 is a rear perspective view of the transition piece outlet part, FIG. 5 is a front view of the transition piece outlet part, and FIG. It is VI-VI sectional view taken on the line.
[0024]
As shown in FIGS. 3 to 6, in this embodiment, the bypass steam is separated from the cooling jacket (see reference numeral 5 in FIG. 8) formed inside the wall surface of the tail cylinder 4 in which the outlet side is formed in a rectangular shape. Jackets 10a to 10d are provided, and cooling steam that does not cool the wall surface of the tail cylinder 4 by the bypass steam jackets 10a to 10d is supplied to an annular cooling passage 11 formed in front of the flange 4a of the tail cylinder 4 outlet portion. The flange 4a is actively steam-cooled.
[0025]
That is, the bypass steam jackets 10a to 10d are branched into four steam reservoirs 12a to 12d which are branched from the manifold 6b to the circumferential direction along the outer peripheral surface of the tail cylinder 4 and are formed at the four corners of the outlet section of the tail cylinder 4. Communicates. The steam reservoirs 12a to 12d communicate with the cooling passage 11 through through holes 13a to 13d and groove passages 14a to 14d formed at the four corners of the rectangular flange 4a. And from this cooling channel | path 11, cooling steam is guide | induced to the manifold 6c mentioned above via the small hole groups 15a-15d provided in the circumferential direction four places, and here, it mixes with the cooling steam from the said cooling jacket 5, and is collect | recovered. It has come to be. In the figure, reference numeral 16 denotes a cover plate for closing the cooling passage 11 and the groove passages 14a to 14d after the grooves are processed.
[0026]
In this way, in the present embodiment, the flange 4a at the outlet portion of the transition piece 4 passes from the manifold 6b via the bypass steam jackets 10a to 10d → the steam reservoirs 12a to 12d → the through holes 13a to 13d and the groove passages 14a to 14d. The low-temperature cooling steam supplied to the annular cooling passage 11 without heat exchange is entirely cooled by steam, so that a sufficient cooling effect is obtained, and thermal deformation due to a temperature difference is prevented to prevent the tail tube 4 outlet portion. Generation of cracks is avoided.
[0027]
The present invention is not limited to the above embodiments, and air is used as a cooling medium or the first to third embodiments are simultaneously performed without departing from the gist of the present invention ((b) of FIG. 2). It goes without saying that various changes can be made.
[0028]
【The invention's effect】
As described above in detail based on the embodiment, according to the present invention, the cooling jacket extending from the inlet side manifold of the cooling medium to the outlet side manifold in the longitudinal direction of the tail cylinder of the gas turbine combustor is provided on the tail cylinder wall surface. In the cooling structure of the combustor tail tube formed over the entire circumference, an annular cooling passage is formed so as to surround the outlet portion at the front portion of the flange attached to the periphery of the outlet portion of the tail tube, A plurality of cooling medium reservoirs communicating with the cooling passage are provided at the periphery of the outlet portion of the tail tube adjacent to the base of the flange, and a plurality of bypass cooling medium jackets bypassing the cooling jacket are provided in these cooling medium reservoirs. while cooling medium is supplied through the cooling medium to and the cooling passage flow flange cooling, the transition piece and the coolant which has cooled the transition piece wall flows through said cooling jacket Because characterized in that it is recovered are mixed in the outlet-side manifold which is provided on the outlet peripheral edge, a sufficient cooling effect is obtained and cracking of the tail tube outlet portion avoided by preventing thermal deformation due to temperature difference The effect that it is done is acquired.
[Brief description of the drawings]
FIG. 1 is a comparative explanatory view of a cooling jacket showing a first embodiment of the present invention, where FIG. 1 (a) is an explanatory view of a current cooling jacket size, and FIG. 1 (b) is an explanatory view of a cooling jacket size of the present invention; FIG. 4C is a perspective view of the main part of the tail tube, with the main part cut away, and FIG.
FIGS. 2A and 2B are comparative explanatory views of a transition piece outlet portion showing a second embodiment of the present invention, in which FIG. 2A is a structural explanatory view of a current transition piece outlet portion, and FIG. It is structure explanatory drawing of a part.
FIG. 3 is a side view of an essential part of a transition piece showing a third embodiment of the present invention.
FIG. 4 is a rear perspective view of the tail tube outlet portion.
FIG. 5 is a front view of the transition piece outlet portion.
6 is a cross-sectional view taken along the line VI-VI in FIG.
FIG. 7 is a side sectional view around a gas turbine combustor showing a conventional example.
8 is a cross-sectional view taken along the line VIII-VIII in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cone 2 Premixing flame formation nozzle 3 Multi-nozzle type premixing combustor 4 Cylinder 4a Flange 5 Cooling jacket 5a Through-hole 5b Passage 6a, 6b, 6c Manifold 10a-10d Bypass steam jacket 11 Cooling passage 12a-12d Steam reservoir 13a to 13d Through-holes 14a to 14d Groove passages 15a to 15d Small hole group 16 Lid plate A Groove processing part Roll attaching part

Claims (1)

ガスタービン燃焼器の尾筒長手方向に冷却媒体の入口側マニホールドから出口側マニホールドへと延びる冷却ジャケットを尾筒壁面の全周に亙って多数本形成した燃焼器尾筒の冷却構造において、
前記尾筒の出口部周縁に付設したフランジの正面部に前記出口部を囲繞するように環状の冷却通路を形成し、
前記冷却通路に通じる複数の冷却媒体溜めを前記フランジの根元部に近接して尾筒の出口部周縁に複数設け
これらの冷却媒体溜めに前記冷却ジャケットをバイパスする複数本のバイパス冷却媒体ジャケットを介して冷却媒体が供給される一方
前記冷却通路を流れてフランジを冷却した冷却媒体は、前記冷却ジャケットを流れて尾筒壁面を冷却した冷却媒体と前記尾筒の出口部周縁に設けた前記出口側マニホールドで混合されて回収されることを特徴とする燃焼器尾筒の冷却構造。
In the cooling structure of the combustor tail cylinder in which a number of cooling jackets extending from the inlet side manifold of the cooling medium to the outlet side manifold in the longitudinal direction of the gas turbine combustor are formed over the entire circumference of the tail cylinder wall surface,
An annular cooling passage is formed so as to surround the outlet portion in the front portion of the flange attached to the periphery of the outlet portion of the tail tube,
Providing a plurality of cooling medium reservoirs communicating with the cooling passage on the periphery of the outlet portion of the tail tube in the vicinity of the base portion of the flange ,
While the cooling medium is supplied to the cooling medium reservoir through a plurality of bypass cooling medium jackets that bypass the cooling jacket ,
The cooling medium that has flowed through the cooling passage and cooled the flange is mixed and recovered by the cooling medium that has flowed through the cooling jacket and cooled the wall of the tail tube and the outlet side manifold provided at the periphery of the outlet of the tail tube. Combustor tail cylinder cooling structure characterized by the above.
JP2000152426A 2000-04-13 2000-05-24 Combustor tail cooling structure Expired - Lifetime JP4240759B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000152426A JP4240759B2 (en) 2000-05-24 2000-05-24 Combustor tail cooling structure
DE60137099T DE60137099D1 (en) 2000-04-13 2001-04-02 Cooling structure for the end of a gas turbine combustor
EP01108310A EP1146289B1 (en) 2000-04-13 2001-04-02 Cooling structure of combustor tail tube
CA002344012A CA2344012C (en) 2000-04-13 2001-04-12 Cooling structure of combustor tail tube
US09/832,937 US6553766B2 (en) 2000-04-13 2001-04-12 Cooling structure of a combustor tail tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000152426A JP4240759B2 (en) 2000-05-24 2000-05-24 Combustor tail cooling structure

Publications (2)

Publication Number Publication Date
JP2001329858A JP2001329858A (en) 2001-11-30
JP4240759B2 true JP4240759B2 (en) 2009-03-18

Family

ID=18657853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152426A Expired - Lifetime JP4240759B2 (en) 2000-04-13 2000-05-24 Combustor tail cooling structure

Country Status (1)

Country Link
JP (1) JP4240759B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484707B2 (en) * 2008-10-10 2014-05-07 三菱重工業株式会社 Combustor and gas turbine
JP6016655B2 (en) * 2013-02-04 2016-10-26 三菱日立パワーシステムズ株式会社 Gas turbine tail tube seal and gas turbine

Also Published As

Publication number Publication date
JP2001329858A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
JP4001795B2 (en) Improvement of gas turbine blade cooling circuit
US10094563B2 (en) Microcircuit cooling for gas turbine engine combustor
EP1146289B1 (en) Cooling structure of combustor tail tube
US5383766A (en) Cooled vane
US8978385B2 (en) Distributed cooling for gas turbine engine combustor
US6282905B1 (en) Gas turbine combustor cooling structure
JP4553285B2 (en) End rail cooling method for high pressure and low pressure turbine combined shroud.
US7493767B2 (en) Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US6708499B2 (en) Combustion apparatus
EP0516322B1 (en) Shroud cooling assembly for gas turbine engine
EP0284819B1 (en) Gas turbine combustor transition duct forced convection cooling
US6779597B2 (en) Multiple impingement cooled structure
JP4575532B2 (en) Hot wall with impingement baffle with dimples
US7506512B2 (en) Advanced effusion cooling schemes for combustor domes
JP5468831B2 (en) Combustor transition piece rear end cooling and related methods
CA2231690C (en) Cooled stationary blade for a gas turbine
US20190353349A1 (en) Internally cooled dilution hole bosses for gas turbine engine combustors
US20100034643A1 (en) Transition duct aft end frame cooling and related method
JPH0610704A (en) Air foil device
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
JP2009047414A (en) Fuel nozzle and diffusion tip for the fuel nozzle
JP4381276B2 (en) gas turbine
US20100236248A1 (en) Combustion Liner with Mixing Hole Stub
JP4240759B2 (en) Combustor tail cooling structure
JP2009057980A (en) Gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4240759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term