JP4240301B2 - Turbo pump - Google Patents

Turbo pump Download PDF

Info

Publication number
JP4240301B2
JP4240301B2 JP2003355888A JP2003355888A JP4240301B2 JP 4240301 B2 JP4240301 B2 JP 4240301B2 JP 2003355888 A JP2003355888 A JP 2003355888A JP 2003355888 A JP2003355888 A JP 2003355888A JP 4240301 B2 JP4240301 B2 JP 4240301B2
Authority
JP
Japan
Prior art keywords
water
pump
vacuum
pipe
water separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003355888A
Other languages
Japanese (ja)
Other versions
JP2005120885A (en
Inventor
俊明 山本
誠 石井
新一 勘甚
Original Assignee
株式会社電業社機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社電業社機械製作所 filed Critical 株式会社電業社機械製作所
Priority to JP2003355888A priority Critical patent/JP4240301B2/en
Publication of JP2005120885A publication Critical patent/JP2005120885A/en
Application granted granted Critical
Publication of JP4240301B2 publication Critical patent/JP4240301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、真空ポンプを駆動してポンプ本体内を満水状態とするための満水装置を備え、先行待機運転にも好適なターボ型ポンプに関する。   The present invention relates to a turbo pump that is equipped with a water filling device for driving a vacuum pump to fill a pump body and is suitable for a prior standby operation.

インペラを収容するポンプ本体が吸込水槽の水面よりも上位に位置する横軸ポンプ等においては、真空ポンプを駆動してポンプ本体内を満水状態とする必要がある。このため、横軸ポンプ等には、真空ポンプを駆動してポンプ本体内に水を吸引するための満水装置が設けられている。   In a horizontal shaft pump or the like in which the pump body that houses the impeller is positioned above the water surface of the suction water tank, it is necessary to drive the vacuum pump to fill the pump body. For this reason, a horizontal axis pump or the like is provided with a water filling device for driving a vacuum pump and sucking water into the pump body.

ここで、満水装置を備える従来の横軸ポンプの基本構成を図7に基づいて説明する。   Here, the basic configuration of a conventional horizontal shaft pump provided with a full water device will be described with reference to FIG.

図7に示す横軸ポンプ1においては、ポンプケーシング2の吸入側には吸込エルボ3を介して吸込管4が接続されており、この吸込管4は垂直下方に延び、その下端の吸込口4aは吸込水槽5内の水中に開口している。   In the horizontal shaft pump 1 shown in FIG. 7, a suction pipe 4 is connected to the suction side of the pump casing 2 via a suction elbow 3, and the suction pipe 4 extends vertically downward and has a suction port 4a at its lower end. Is open to the water in the suction tank 5.

又、前記ポンプケーシング2の吐出側にはルーズ短管6及び吐出弁7を介して吐出管8が接続されており、この吐出管8は吐出水槽9に向かって斜め下方に延び、その端部の吐出口8aは吐出水槽9内の水中に開口している。   A discharge pipe 8 is connected to the discharge side of the pump casing 2 via a loose short pipe 6 and a discharge valve 7. The discharge pipe 8 extends obliquely downward toward the discharge water tank 9, and has an end portion thereof. The discharge port 8 a is open to the water in the discharge water tank 9.

而して、前記吸込エルボ3にはロータ10が水平方向に貫通しており、このロータ10の前記ポンプケーシング2内に臨む一端にはインペラ11が取り付けられており、ロータ10の吸込エルボ3の外部に延出する他端は、減速機12を介して電動モータ13の出力軸14に連結されている。   Thus, a rotor 10 penetrates the suction elbow 3 in the horizontal direction, and an impeller 11 is attached to one end of the rotor 10 facing the pump casing 2. The other end extending to the outside is connected to the output shaft 14 of the electric motor 13 via the speed reducer 12.

ところで、前記ポンプケーシング2の上部には開口部2aが形成されており、この開口部2aには満水検出手段15が連通しており、この満水検出手段15は真空遮断弁16を介して液封式真空ポンプ17に連通連結されている。尚、満水検出手段15と真空遮断弁16を接続する配管を分岐し、その分岐部には、大気と連通する真空破壊弁18が取り付けられている。   By the way, an opening 2 a is formed in the upper part of the pump casing 2, and a full water detection means 15 communicates with the opening 2 a, and this full water detection means 15 is liquid-sealed via a vacuum shutoff valve 16. The vacuum pump 17 is connected in communication. A pipe connecting the full water detection means 15 and the vacuum shutoff valve 16 is branched, and a vacuum break valve 18 communicating with the atmosphere is attached to the branch portion.

ここで、前記液封式真空ポンプ17には、給水ポンプ19によって適宜給水される貯水タンク20から液封のための水が供給される。   Here, the liquid ring vacuum pump 17 is supplied with water for liquid sealing from a water storage tank 20 which is appropriately supplied with water by a water supply pump 19.

又、制御手段21は、前記満水検出手段15から送信される満水の検出信号を受信すると、前記真空遮断弁16を閉じるとともに、液封式真空ポンプ17の駆動を停止する。   Further, when receiving the full water detection signal transmitted from the full water detection means 15, the control means 21 closes the vacuum shutoff valve 16 and stops the liquid ring vacuum pump 17 from being driven.

尚、ポンプケーシング2に形成された前記開口部2a、満水検出手段15、真空遮断弁16、液封式真空ポンプ17、制御手段21等によって満水装置が構成されている。   The opening 2a formed in the pump casing 2, the full water detection means 15, the vacuum shutoff valve 16, the liquid ring vacuum pump 17, the control means 21 and the like constitute a full water device.

斯かる満水装置を備える横軸ポンプ1においては、その起動に際して真空遮断弁16が開かれるとともに、液封式真空ポンプ17が駆動される。すると、液封式真空ポンプ17によってポンプケーシング2内の空気が吸い出されるために該ポンプケーシング2内が負圧となり、この負圧に引かれて吸込水槽5内の水が吸込管4及び吸込エルボ3を通ってポンプケーシング2内に供給される。そして、ポンプケーシング2内が満水状態となり、この満水状態が満水検出手段15によって検出されると、制御手段21によって真空遮断弁16が閉じられるとともに、液封式真空ポンプ17の運転が停止される。   In the horizontal axis pump 1 having such a water filling device, the vacuum shut-off valve 16 is opened and the liquid ring vacuum pump 17 is driven at the time of activation. Then, since the air in the pump casing 2 is sucked out by the liquid-sealed vacuum pump 17, the inside of the pump casing 2 becomes a negative pressure, and the water in the suction water tank 5 is drawn by this negative pressure to the suction pipe 4 and the suction. It is fed into the pump casing 2 through the elbow 3. When the inside of the pump casing 2 becomes full and this full water state is detected by the full water detection means 15, the vacuum shutoff valve 16 is closed by the control means 21 and the operation of the liquid ring vacuum pump 17 is stopped. .

以上のようにしてポンプケーシング2内が満水状態となると、電動モータ13を駆動してその回転を減速機12を経てロータ10に伝達し、該ロータ10とこれに取り付けられたインペラ11を回転駆動することによって、当該横軸ポンプ1による所要の揚水作用がなされる。尚、横軸ポンプ1の揚水運転が終了した後、真空遮断弁16を開くと、ポンプケーシング2内の水が落水する。   When the inside of the pump casing 2 becomes full as described above, the electric motor 13 is driven and the rotation is transmitted to the rotor 10 via the speed reducer 12, and the rotor 10 and the impeller 11 attached thereto are rotationally driven. By doing so, the required pumping action by the horizontal axis pump 1 is performed. In addition, if the vacuum shut-off valve 16 is opened after the pumping operation of the horizontal shaft pump 1 is finished, the water in the pump casing 2 falls.

ところで、従来、満水装置の真空ポンプに封水式真空ポンプを用いるのは次の理由による。   By the way, conventionally, a sealed-type vacuum pump is used as the vacuum pump of the water filling device for the following reason.

即ち、ポンプケーシング内の満水操作を行う際、ポンプケーシング内の水と一緒に水分や塵埃をも真空ポンプが吸い込むことが多く、封水式真空ポンプであれば、水分や塵埃を吸い込んでも損傷を受けることがないためである。   In other words, when the pump casing is filled with water, the vacuum pump often sucks moisture and dust together with the water in the pump casing. It is because it does not receive.

一方、近年、ポンプ場の無水化が進みつつあり、これに伴って満水装置の真空ポンプとして乾式真空ポンプを採用するに至っている。   On the other hand, in recent years, the dehydration of pumping stations has been progressing, and along with this, dry vacuum pumps have been adopted as vacuum pumps for water filling devices.

ところが、乾式真空ポンプにおいては、これに吸引された水や塵埃が流れ込むと該真空ポンプが損傷する可能性がある。   However, in the dry type vacuum pump, if the water or dust sucked into the vacuum pump flows, the vacuum pump may be damaged.

そこで、図8に示すように、ポンプケーシング2に形成された開口部2aと乾式真空ポンプ17の間に気液分離手段としての真空タンク22を設け、該真空タンク22内にフィルター23を設置する提案がなされている(特許文献1参照)。尚、図8においては、図7に示したと同様の要素には同一符号を付している。   Therefore, as shown in FIG. 8, a vacuum tank 22 as a gas-liquid separation means is provided between the opening 2 a formed in the pump casing 2 and the dry vacuum pump 17, and a filter 23 is installed in the vacuum tank 22. A proposal has been made (see Patent Document 1). In FIG. 8, the same elements as those shown in FIG.

而して、上記提案に係る構成によれば、乾式真空ポンプ17に吸引される空気に含まれる水は真空タンク22において分離され、又、空気に含まれる塵埃はフィルター23によって除去されるため、乾式真空ポンプ17には水や塵埃が吸引されることがなく、該乾式真空ポンプ17の損傷が防がれる。   Thus, according to the configuration according to the above proposal, the water contained in the air sucked into the dry vacuum pump 17 is separated in the vacuum tank 22, and the dust contained in the air is removed by the filter 23. Water or dust is not sucked into the dry vacuum pump 17, and damage to the dry vacuum pump 17 is prevented.

ところが、上記提案に係る構成によれば、比較的大容量の気液分離手段(真空タンク22)が必要となるため、付属設備全体が大型化するとともに、製造コストが高くなるという問題が発生する。   However, the configuration according to the above proposal requires a relatively large-capacity gas-liquid separation means (vacuum tank 22), which causes the problem that the entire attached equipment is enlarged and the manufacturing cost is increased. .

そこで、図9に示すように、ポンプケーシング2に形成された開口部2aと真空ポンプ17を接続する吸気管24の一部に立ち上がり部24aを形成し、この立ち上がり部24aの高さを所定値に設定することにより、満水操作中に吸気管24に吸引された水が該吸気管24の立ち上がり部24aの頂部を越えないようにする提案がなされている(特許文献2)。この提案によれば、満水後も真空遮断弁16を閉じることなく真空ポンプ17の運転を継続していても、水が吸気管24の立ち上がり部24aの頂部を超えることがないため、横軸ポンプ1の先行待機運転が可能になる。即ち、降雨等による急な出水が予想される場合、予め横軸ポンプ1の満水操作を行い、真空遮断弁16を開いたまま真空ポンプ17の運転を継続して満水状態を保持しておくことにより、出水の際に迅速に排水運転を開始することができる。尚、図9においても、図7に示したと同様の要素には同一符号を付している。   Therefore, as shown in FIG. 9, a rising portion 24a is formed in a part of the intake pipe 24 connecting the opening 2a formed in the pump casing 2 and the vacuum pump 17, and the height of the rising portion 24a is set to a predetermined value. In order to prevent the water sucked into the intake pipe 24 during the full water operation from exceeding the top of the rising portion 24a of the intake pipe 24 (Patent Document 2). According to this proposal, since the water does not exceed the top of the rising portion 24a of the intake pipe 24 even if the operation of the vacuum pump 17 is continued without closing the vacuum shutoff valve 16 even after the water is full, the horizontal axis pump 1 prior standby operation becomes possible. That is, when sudden water discharge due to rain or the like is expected, the horizontal axis pump 1 is filled in advance, and the vacuum pump 17 is continuously operated while the vacuum shut-off valve 16 is open to keep the water full. Thus, the drainage operation can be quickly started when water is discharged. In FIG. 9 as well, the same elements as those shown in FIG.

特開2002−138982号公報JP 2002-138882 A 特開2002−206494号公報JP 2002-206494 A

しかしながら、軸貫通部が水封されていない無給水軸封装置が備えられた横軸ポンプ1においては、満水操作中はポンプケーシング2内や吸込エルボ3内、吸込管4内が負圧となるため、吸込エルボ3のロータ10が貫通する部分(軸貫通部)に設けられた軸封部から空気がポンプケーシング2内に流入し、この空気が吸気管24aの立ち上がり部24aに流入して水位を押し上げる(エアーリフト)という問題が発生する。   However, in the horizontal shaft pump 1 provided with the non-water supply shaft seal device in which the shaft penetration portion is not sealed with water, the inside of the pump casing 2, the suction elbow 3, and the suction pipe 4 become negative pressure during the water filling operation. Therefore, air flows into the pump casing 2 from the shaft sealing portion provided in the portion (shaft penetrating portion) through which the rotor 10 of the suction elbow 3 passes, and this air flows into the rising portion 24a of the intake pipe 24a and the water level. The problem of pushing up (air lift) occurs.

ところで、図9に示す構成においては、ポンプケーシング2内に空気が流入しないことを前提として吸気管24の立ち上がり部24aの高さを設定している。従って、実際、前述のようにポンプケーシング2内に流入した空気によって吸気管24の立ち上がり部24aの水位が押し上げられると、吸気管24の立ち上がり部24aの頂部を越えて水が真空ポンプ17へと流れ込み、真空ポンプ17が水やこれに含まれる塵埃によって損傷する可能性がある。   In the configuration shown in FIG. 9, the height of the rising portion 24 a of the intake pipe 24 is set on the assumption that air does not flow into the pump casing 2. Therefore, in fact, when the water level of the rising portion 24a of the intake pipe 24 is pushed up by the air flowing into the pump casing 2 as described above, the water passes over the top of the rising portion 24a of the intake pipe 24 and flows into the vacuum pump 17. There is a possibility that the vacuum pump 17 may be damaged by water or dust contained therein.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、満水操作中にポンプ本体内への空気の流入があっても、真空ポンプへの水の流入を確実に防いで該真空ポンプの耐久性向上を図ることができるターボ型ポンプを提供することにある。   The present invention has been made in view of the above-mentioned problems, and its intended process is to reliably prevent water from flowing into the vacuum pump even if air flows into the pump body during a full water operation. An object of the present invention is to provide a turbo pump that can improve the durability of a vacuum pump.

上記目的を達成するため、請求項1記載の発明は、ポンプ本体上部に開口する開口部と真空ポンプとを接続する吸気管の一部に逆U字状を成す立ち上り部と立ち下がり部を形成し、前記立ち上がり部と前記真空ポンプ及び前記吸気管に介装された真空遮断弁を含んで満水装置を構成して成るターボ型ポンプにおいて、
前記吸気管の立ち上がり部を吸気管の他の部分よりも大径な気水分離管で構成し、該気水分離管の高さh1を、満水操作中に水が該気水分離管の頂部を越えない条件を満たす理論必要高さh0に、満水操作中にポンプ本体に流入する空気による該気水分離管の水位上昇分Δhを補正値として加算した値(h0+Δh)よりも大きく(h1>h0+Δh)設定したことを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a rising portion and a falling portion having an inverted U shape are formed in a part of an intake pipe that connects an opening portion opened to an upper portion of a pump body and a vacuum pump. and, in the turbo-type pump formed by constituting a full water apparatus comprises a vacuum shut-off valve interposed in the vacuum pump and the intake pipe and the rising portion,
Wherein the rising portion of the intake pipe constitutes a large-diameter steam-water separation tube than the other portion of the intake pipe, the height h1 of the gas-water separation tube, the water in the full level operation of the gas-water separation tube top the theory required height h0 that meet the condition not exceeding, greater than the value of the water level rise Delta] h obtained by adding a correction value of the gas-water separation tube by the air flowing into the pump body during full water operation (h0 + Δh) ( (h1> h0 + Δh) .

請求項2記載の発明は、請求項1記載の発明において、前記水位上昇分Δh(mm)は、空気流入量をQ(L/min)、前記気水分離管の内径をd(mm)としたとき、
Δh≧(−250Q 2 +95000Q)/d 2
を満足する値に設定されることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, the water level increase Δh (mm) is defined as Q (L / min) as an air inflow amount and d (mm) as an inner diameter of the steam-water separation pipe. When
Δh ≧ (−250Q 2 + 95000Q) / d 2
Is set to a value satisfying the above.

請求項3記載の発明は、請求項1又は2記載の発明において、前記気水分離管の上部に水位検知手段を設けたことを特徴とする。 A third aspect of the invention is characterized in that, in the first or second aspect of the invention, a water level detecting means is provided in an upper part of the steam-water separation pipe .

請求項4記載の発明は、請求項1〜3の何れかに記載の発明において、前記気水分離管を透明な管で構成したことを特徴とする。 According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the steam-water separation pipe is formed of a transparent pipe.

請求項1記載の発明によれば、気水分離管の高さh1を、満水操作中に水が該気水分離管の頂部を越えない条件を満たす理論必要高さh0に、満水操作中にポンプ本体に流入する空気による該気水分離管の水位上昇分Δhを補正値として加算した値(h0+Δh)よりも大きく(h1>h0+Δh)設定したため、満水操作中にポンプ本体内への空気の流入があっても、吸気管の気水分離管に吸引された水が気水分離管の頂部を越えて真空ポンプへと流れることがなく、水やこれに含まれる塵埃によって真空ポンプが損傷することがなく、該真空ポンプの耐久性向上が図られる。 According to the first aspect of the invention, the height h1 of the steam-water separation tube, the theory required height h0 that meet the conditions of water during full level operation does not exceed the top of the gas-water separation tube, full level operation Since the value (h0 + Δh), which is a value obtained by adding the water level increase Δh of the steam / water separation pipe due to the air flowing into the pump body as a correction value, is set (h1> h0 + Δh) , Even if air flows in, the water sucked into the air / water separation pipe of the intake pipe does not flow over the top of the air / water separation pipe to the vacuum pump. The durability of the vacuum pump can be improved without being damaged.

請求項2記載の発明によれば、気水分離管の内径d(mm)をパラメータとして、空気流入量Q(L/min)に対する水位上昇分Δh(mm)を実測し、これらのΔhとQ及びdとの間の関係を実験式として求めた結果、
Δh≧(−250Q 2 +95000Q)/d 2
なる式が得られた。この式によれば、水位上昇分Δhを低く抑えるためには、気水分離管の内径d(つまり、断面積)を大きく設定する必要があることが分かる。
According to the second aspect of the present invention, the amount of increase in water level Δh (mm) with respect to the air inflow amount Q (L / min) is measured using the inner diameter d (mm) of the steam-water separation pipe as a parameter, and these Δh and Q And the relationship between d and empirical formula,
Δh ≧ (−250Q 2 + 95000Q) / d 2
The following formula was obtained. According to this equation, it can be seen that the inner diameter d (that is, the cross-sectional area) of the steam / water separation pipe needs to be set large in order to keep the water level increase Δh low.

請求項3記載の発明によれば、気水分離管の上部に水位検知手段を設けたため、軸封部の劣化等によって満水操作時のポンプ本体への空気流入量が経時的に増大し、この結果、気水分離管の水位が水位上昇分Δhを越えて上昇した場合には、このことが水位検知手段によって検知され、例えば警報を発して真空ポンプの駆動を停止したり、軸封部の交換を促すことができる。 According to the invention of claim 3, since the water level detection means is provided at the upper part of the steam-water separation pipe , the amount of air flowing into the pump body during a full water operation increases with time due to deterioration of the shaft seal portion, etc. As a result, when the water level of the air / water separation pipe rises exceeding the water level increase Δh, this is detected by the water level detecting means, for example, an alarm is issued to stop the driving of the vacuum pump, Can be exchanged.

請求項4記載の発明によれば、気水分離管を透明な管で構成したため、該気水分離管の内部の水位の上昇等の状況を外部から容易に目視することができる。 According to a fourth aspect of the present invention, due to constitute the steam-water separation tube of transparent tubes, it can be easily visually situation such as increase of the water level inside of the steam-water separation tube from the outside.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明に係る横軸ポンプの全体構成図、図2は同横軸ポンプの気水分離管部分の拡大断面図、図3は各空気流入量(空気漏れ量)に対する気水分離管内の水位上昇分を実測した結果を気水分離管の内径をパラメータとして示す図、図4は各種真空ポンプによるポンプ内圧力(真空圧)に対する空気流入量(空気漏れ量)の関係を示す図である。尚、図1においては、図8に示したと同一要素には同一符号を付している。   1 is an overall configuration diagram of a horizontal axis pump according to the present invention, FIG. 2 is an enlarged cross-sectional view of an air / water separation pipe portion of the horizontal axis pump, and FIG. 3 is an inside of an air / water separation pipe with respect to each air inflow amount (air leakage amount). FIG. 4 is a diagram showing the relationship between the air inflow amount (air leakage amount) and the pump internal pressure (vacuum pressure) by various vacuum pumps. is there. In FIG. 1, the same elements as those shown in FIG.

本発明に係る横軸ポンプ1においては、ポンプケーシング2の上部に開口する開口部2aと真空ポンプ17とを接続する吸気管24の一部に逆U字管状を成す立ち上がり部24aと立ち下がり部24bが形成されている。ここで、立ち上がり部24aは、図2に示すように、吸気管24の他の部分よりも大径な気水分離管25で構成されており、この気水分離管25とポンプケーシング2の開口部2aとの間には電動式の真空遮断弁16が介設されている。尚、本実施の形態では、気水分離管25はアクリル等の透明樹脂で構成されており、その内部を外部から視認することができる。   In the horizontal shaft pump 1 according to the present invention, a rising portion 24a and a falling portion that form an inverted U-shape in a part of the intake pipe 24 that connects the opening 2a that opens to the top of the pump casing 2 and the vacuum pump 17. 24b is formed. Here, as shown in FIG. 2, the rising portion 24 a is constituted by a steam / water separation pipe 25 having a diameter larger than that of the other part of the intake pipe 24, and the opening of the steam / water separation pipe 25 and the pump casing 2. An electric vacuum shut-off valve 16 is interposed between the part 2a. In the present embodiment, the air / water separation tube 25 is made of a transparent resin such as acrylic, and the inside thereof can be viewed from the outside.

そして、気水分離管25の側壁の上下には水位検知手段としての満水検知センサー26,27が取り付けられており、一方の満水検知センサー26は、後述のように警報センサーとしての機能を果たす。ここで、満水検知センサー26,27は、その電極に水が接触して導通することによって満水状態を検知するものであって、その検出信号は制御手段21に送信される。   Full water detection sensors 26 and 27 as water level detection means are attached to the upper and lower sides of the side wall of the steam / water separation pipe 25, and one full water detection sensor 26 functions as an alarm sensor as will be described later. Here, the full water detection sensors 26 and 27 detect a full water state when water comes into contact with the electrodes and conducts, and the detection signal is transmitted to the control means 21.

又、図2に示すように、吸気管24の立ち上がり部24aを構成する前記気水分離管25の頂部からは小径の吸気管24が逆U字状に180°折り曲げられ、そこから下方に延びて前記立ち下がり部24bを構成している。そして、吸気管24は、図1に示すように、立ち下がり部24bの下端において略直角に折り曲げられて略水平に延び、前記真空ポンプ17の吸入側に接続されている。   Further, as shown in FIG. 2, a small-diameter intake pipe 24 is bent in an inverted U shape by 180 ° from the top of the air / water separation pipe 25 constituting the rising portion 24a of the intake pipe 24, and extends downward therefrom. Thus, the falling portion 24b is configured. As shown in FIG. 1, the intake pipe 24 is bent at a substantially right angle at the lower end of the falling part 24 b and extends substantially horizontally, and is connected to the suction side of the vacuum pump 17.

更に、吸気管24の真空ポンプ17に近い部分からは分岐管28,29がそれぞれ分岐しており、一方の分岐管28には電動式の真空破壊弁18が取り付けられ、他方の分岐管29には圧力調整弁(真空調整弁)30が取り付けられている。尚、真空破壊弁18と前記真空遮断弁16は、前記制御手段21によってその開閉が制御される。   Further, branch pipes 28 and 29 are branched from a portion of the intake pipe 24 close to the vacuum pump 17. The electric vacuum breaker valve 18 is attached to one branch pipe 28, and the other branch pipe 29 is connected to the other branch pipe 29. A pressure regulating valve (vacuum regulating valve) 30 is attached. Note that the opening and closing of the vacuum breaker valve 18 and the vacuum shutoff valve 16 are controlled by the control means 21.

ところで、本実施の形態では、真空ポンプ17として乾式真空ポンプを用いているが、水封式真空ポンプを用いることもできる。   By the way, in this Embodiment, although the dry-type vacuum pump is used as the vacuum pump 17, a water seal-type vacuum pump can also be used.

以上の構成を有する横軸ポンプ1においては、ポンプケーシング2の上部に開口する開口部2a、真空遮断弁16、真空ポンプ17、制御手段21、満水検知センサー26,27等によって満水装置が構成されている。   In the horizontal axis pump 1 having the above configuration, the water filling device is constituted by the opening 2a that opens at the top of the pump casing 2, the vacuum shutoff valve 16, the vacuum pump 17, the control means 21, the full water detection sensors 26, 27, and the like. ing.

尚、本実施の形態では、開口部2aをポンプケーシング2の上部に形成したが、ポンプケーシング2と共にポンプ本体を構成する吸込エルボ3又はルーズ短管6の上部に開口部を形成しても良い。   In this embodiment, the opening 2a is formed in the upper part of the pump casing 2. However, the opening may be formed in the upper part of the suction elbow 3 or the loose short tube 6 that constitutes the pump body together with the pump casing 2. .

而して、本実施の形態に係る横軸ポンプ1においては、その起動に際して真空遮断弁16が開かれるとともに、真空ポンプ17が駆動される。すると、真空ポンプ17によってポンプケーシング2内の空気が吸い出されるために該ポンプケーシング2内が負圧となり、この負圧に引かれて吸込水槽5内の水が吸込管4及び吸込エルボ3を通ってポンプケーシング2内に供給される。そして、ポンプケーシング2内が満水状態となり、気水分離管25内を水が上昇するが、気水分離管25においては所定の位置で水位の上昇が停止し、先行待機運転が継続される。   Thus, in the horizontal axis pump 1 according to the present embodiment, the vacuum shut-off valve 16 is opened and the vacuum pump 17 is driven at the time of activation. Then, since the air in the pump casing 2 is sucked out by the vacuum pump 17, the inside of the pump casing 2 becomes a negative pressure, and the water in the suction water tank 5 is pulled by this negative pressure to cause the suction pipe 4 and the suction elbow 3 to move. And is fed into the pump casing 2. Then, the pump casing 2 is filled with water, and the water rises in the steam / water separation pipe 25. In the steam / water separation pipe 25, the rise in the water level is stopped at a predetermined position, and the preceding standby operation is continued.

そして、出水が始まると、真空ポンプ17の運転を停止するとともに真空遮断弁16を閉じ、電動モータ13を駆動してその回転を減速機12を経てロータ10に伝達し、該ロータ10とこれに取り付けられたインペラ11を回転駆動することによって、当該横軸ポンプ1による所要の揚水作用がなされる。尚、満水装置を先行待機運転用として使用する以外に、満水検知センサー27によって満水が検知されたときから所定時間(例えば、10秒間)が経過するまで満水操作を継続し、所定時間が経過した後、真空遮断弁16を閉じて揚水運転を開始する運転方法も可能である。   When water begins to flow, the operation of the vacuum pump 17 is stopped and the vacuum shut-off valve 16 is closed, the electric motor 13 is driven, and the rotation is transmitted to the rotor 10 via the speed reducer 12. The required pumping action by the horizontal shaft pump 1 is performed by rotationally driving the attached impeller 11. In addition, the full water operation is continued until a predetermined time (for example, 10 seconds) elapses from when the full water detection sensor 27 detects full water, in addition to using the full water device for the preceding standby operation, and the predetermined time has elapsed. Thereafter, an operation method in which the vacuum shutoff valve 16 is closed and the pumping operation is started is also possible.

ここで、満水操作時に負圧となるポンプケーシング2等に外部から空気が流入しないと仮定した場合、水が気水分離管25の頂部を越えない条件を満たす該気水分離管25の理論必要高さh0(m)(図2参照)は以下のようにして求められる。   Here, when it is assumed that air does not flow from the outside into the pump casing 2 or the like that has a negative pressure during a full water operation, the theoretical requirement of the steam / water separation pipe 25 that satisfies the condition that water does not exceed the top of the steam / water separation pipe 25 is necessary. The height h0 (m) (see FIG. 2) is obtained as follows.

即ち、図1に示すように、満水操作時の吸込水槽5の最高水位WHから開口部2aまでの高さをh2(m)、満水操作時の吸込水槽5の最高水位WHと最低水位WLとの差(WH−WL)をh3(m)としたとき、真空ポンプ17の最低絶対圧力P1(kPa)としては、吸込水槽5の水位が最低水位WLの状態で満水操作を行った際に吸込水槽5の水を開口部2aまで吸い上げてポンプケーシング2内を満水状態とするためには、(h2+h3)の水頭を保持することができる真空圧が必要である。従って、次式が満足される必要がある。   That is, as shown in FIG. 1, the height from the maximum water level WH of the suction water tank 5 to the opening 2a at the time of the full water operation is h2 (m), the maximum water level WH and the minimum water level WL of the suction water tank 5 at the time of the full water operation, When the difference in pressure (WH-WL) is h3 (m), the minimum absolute pressure P1 (kPa) of the vacuum pump 17 is the suction when the water level of the suction water tank 5 is at the minimum water level WL. In order to suck up the water in the water tank 5 to the opening 2a and fill the pump casing 2 with water, a vacuum pressure capable of holding the water head of (h2 + h3) is required. Therefore, the following formula needs to be satisfied.

10−(P1/9.8)>h2+h3 …(1)
上式において、10(m)は大気圧、9.8は重力加速度(m/sec 2 )であり、10−(P1/9.8)は真空ポンプ17の真空圧を示す。
10− (P1 / 9.8)> h2 + h3 (1)
In the above equation, 10 (m) is atmospheric pressure, 9.8 is gravitational acceleration (m / sec 2 ), and 10− (P1 / 9.8) indicates the vacuum pressure of the vacuum pump 17.

一方、真空ポンプ17の真空能力が高過ぎると、吸込水槽5の水が気水分離管25の頂部を越えて真空ポンプ17に流入する。これを防ぐためには、吸込水槽5の水位が最高水位WHの状態で満水操作を行った際、真空ポンプ17の真空能力を(h0+h2)の水頭を保持できない値に抑える必要がある。従って、次式が満足される必要がある。   On the other hand, if the vacuum capacity of the vacuum pump 17 is too high, the water in the suction water tank 5 flows into the vacuum pump 17 beyond the top of the steam / water separation pipe 25. In order to prevent this, it is necessary to suppress the vacuum capacity of the vacuum pump 17 to a value that cannot hold the water head of (h0 + h2) when the water filling operation is performed with the water level of the suction water tank 5 being the maximum water level WH. Therefore, the following formula needs to be satisfied.

10−(P1/9.8)<h0+h2 …(2)
上記(1),(2)式より、気水分離管25の理論必要高さh0(m)は次式によって求められる。
10− (P1 / 9.8) <h0 + h2 (2)
From the above formulas (1) and (2), the theoretical required height h0 (m) of the steam separator 25 is obtained by the following formula.

h0>10−(P1/9.8)−h2>h3 …(3)
ところで、実際には、ポンプケーシング2等の内部が負圧となる満水操作中においては、吸込エルボ3のロータ10が貫通する部分(軸貫通部)に設けられた軸封部等から空気がポンプケーシング2内に流入し、この空気が気泡となって気水分離管25内を上昇して図2に示すように水位をΔhだけ押し上げる(エアーリフト)。
h0> 10- (P1 / 9.8) -h2> h3 (3)
By the way, in actuality, during a full water operation in which the inside of the pump casing 2 or the like has a negative pressure, air is pumped from a shaft sealing portion or the like provided in a portion (shaft penetrating portion) through which the rotor 10 of the suction elbow 3 passes. The air flows into the casing 2 and the air becomes bubbles to rise in the air / water separation pipe 25 to push up the water level by Δh as shown in FIG. 2 (air lift).

従って、気水分離管25の高さとしては、前記理論必要高さh0 に補正値として水位上昇分Δhを加算する必要がある。   Therefore, as the height of the steam-water separation pipe 25, it is necessary to add the water level increase Δh as a correction value to the theoretical required height h0.

本発明者等は、エアリフトによる水位上昇分Δhを実験的に求めた。   The inventors of the present invention experimentally obtained a water level increase Δh due to air lift.

即ち、内径dがφ25mm、φ40mm、φ65mm、φ100mmの4種類の透明管を気水分離管25として用い、各空気流入量(空気漏れ量)Q(L/min)に対して水位上昇分Δh(mm)を実測した。その結果を内径dをパラメータとして図3に示す。   That is, four types of transparent tubes having an inner diameter d of φ25 mm, φ40 mm, φ65 mm, and φ100 mm are used as the air-water separation tube 25, and the water level increase Δh (with respect to each air inflow amount (air leakage amount) Q (L / min)) mm). The result is shown in FIG. 3 with the inner diameter d as a parameter.

図3に示される実験結果から、最小自乗法によって水位上昇分Δhの実験式を求めると次式のような結果が得られた。   From the experimental results shown in FIG. 3, when the empirical formula for the water level increase Δh is obtained by the method of least squares, the following result is obtained.

Δh≧(−250Q 2 +95000Q)/d 2 …(4)
従って、満水操作時のポンプケーシング2内への空気の流入を考慮して、気水分離管25の高さh1は、
h1>h0+Δh …(5)
を満足するよう設定すべきである。そして、図2に示すように、警報センサーとして機能する前記満水検知センサー26は、満水操作時の気水分離管25の最高水位(h0+Δh)よりも更に高い位置に取り付けられている。
Δh ≧ (−250Q 2 + 95000Q) / d 2 (4)
Therefore, in consideration of the inflow of air into the pump casing 2 during the full water operation, the height h1 of the steam / water separation pipe 25 is:
h1> h0 + Δh (5)
Should be set to satisfy As shown in FIG. 2, the full water detection sensor 26 functioning as an alarm sensor is attached at a position higher than the maximum water level (h0 + Δh) of the steam / water separation pipe 25 during a full water operation.

従って、本実施の形態においては、気水分離管25の高さとして、理論必要高さh0に、エアリフトによる水位上昇分Δhを補正値として加算した値に設定するため、満水操作中にポンプケーシング2内への空気の流入があっても、気水分離管25に吸引された水が該気水分離管25の頂部を越えて真空ポンプ17へと流れることがなく、水やこれに含まれる塵埃によって真空ポンプ17が損傷することがなく、該真空ポンプ17の耐久性向上が図られる。   Accordingly, in the present embodiment, the height of the air / water separation pipe 25 is set to a value obtained by adding the amount of increase in water level Δh due to air lift as a correction value to the theoretically required height h0. 2, even if there is an inflow of air into the water 2, the water sucked into the steam-water separation pipe 25 does not flow over the top of the steam-water separation pipe 25 to the vacuum pump 17, and is contained in the water and this. The vacuum pump 17 is not damaged by dust, and the durability of the vacuum pump 17 is improved.

ところで、前記(4)式によれば、水位上昇分Δhを低く抑えるためには、気水分離管25の内径d(つまり、断面積)を大きく設定する必要があることが分かる。   By the way, according to the equation (4), it can be seen that the inner diameter d (that is, the cross-sectional area) of the steam / water separation pipe 25 needs to be set large in order to keep the water level increase Δh low.

ここで、ポンプ内圧力(真空圧力)(kPaG)に対する空気流入量(空気漏れ量)Q(L/min)の測定結果を3種類の真空ポンプについて示すが、この結果から空気流入量(空気漏れ量)Q(L/min)を余裕を見込んで20(L/min)とすると、エアーリフトによる水位上昇分Δhを1m以内に抑えるためには、図3或は(4)式から、気水分離管25の内径dとしてφ40mm以上が必要であることが分かる。   Here, the measurement results of the air inflow amount (air leakage amount) Q (L / min) with respect to the pump internal pressure (vacuum pressure) (kPaG) are shown for three types of vacuum pumps. (Quantity) If Q (L / min) is set to 20 (L / min) with allowance, in order to keep the water level increase Δh due to air lift to within 1 m, air-water can be obtained from the equation of FIG. 3 or (4). It can be seen that the inner diameter d of the separation tube 25 needs to be φ40 mm or more.

又、本実施の形態では、気水分離管25の上部(h0+Δhよりも高い位置)に警報センサーとしての満水検知センサー26を設けたため、軸封部の劣化等によって満水操作時のポンプケーシング2等への空気流入量が経時的に増大し、この結果、気水分離管25の水位が水位上昇分Δhを越えて上昇した場合には、このことが満水検知センサー26によって検知され、例えば警報を発して真空ポンプ17の駆動を停止したり、軸封部の交換を促すことができる。   In the present embodiment, since the full water detection sensor 26 as an alarm sensor is provided in the upper part of the air / water separation pipe 25 (position higher than h0 + Δh), the pump casing 2 and the like at the time of the full water operation due to deterioration of the shaft seal portion or the like. When the amount of air flowing into the water increases with time and, as a result, the water level of the steam / water separation pipe 25 rises above the water level rise Δh, this is detected by the full water detection sensor 26, for example, an alarm. It is possible to stop driving the vacuum pump 17 or to exchange the shaft seal.

更に、本実施の形態では、気水分離管25を透明な管で構成したため、その内部の水位の上昇等の状況を外部から容易に目視することができる。   Furthermore, in the present embodiment, since the air / water separation pipe 25 is formed of a transparent pipe, it is possible to easily visually check the situation such as the rise of the water level inside the pipe.

その他、本実施の形態では、真空遮断弁16を比較的低いポンプケーシング2の開口部2aに取り付ける構成を採用したため、該真空遮断弁16のメンテナンスを容易に行うことができる。   In addition, in this Embodiment, since the structure which attaches the vacuum cutoff valve 16 to the opening part 2a of the pump casing 2 comparatively low was employ | adopted, the maintenance of this vacuum cutoff valve 16 can be performed easily.

尚、図5に示すように、真空遮断弁16を吸気管24の立ち下がり部24bと真空ポンプ17の間の低い位置に設けても良く、真空ポンプ17を複数の横軸ポンプ1で共用する場合には、吸気管24から分岐管24cを分岐させてこれを他の横軸ポンプ(不図示)の吸気管に接続すれば良い。   As shown in FIG. 5, the vacuum shutoff valve 16 may be provided at a low position between the falling portion 24 b of the intake pipe 24 and the vacuum pump 17, and the vacuum pump 17 is shared by the plurality of horizontal shaft pumps 1. In this case, the branch pipe 24c may be branched from the intake pipe 24 and connected to the intake pipe of another horizontal axis pump (not shown).

又、本発明の別実施形態として、図6に示すように、ポンプケーシング2の開口部2aに満水検知手段15、真空遮断弁16及び気水分離管25(吸気管立ち上がり部24a)を順次連結して構成しても良く、本実施の形態によれば、前記実施の形態において使用した満水検知センサー27を気水分離管25に設ける必要がなくなる。   As another embodiment of the present invention, as shown in FIG. 6, a full water detecting means 15, a vacuum shutoff valve 16 and a steam / water separation pipe 25 (intake pipe rising part 24a) are sequentially connected to the opening 2a of the pump casing 2. According to the present embodiment, it is not necessary to provide the full water detection sensor 27 used in the embodiment in the steam-water separation pipe 25.

本発明は、斜流ポンプ、軸流ポンプ等のポンプ形式を問わず、起動時に真空ポンプを駆動してポンプ本体内を満水状態とするための満水装置を備える任意の横軸ポンプや、サイホン運転に用いられ、吐出揚程が低いために自力で満水状態にできない立軸ポンプ等のターボ型ポンプに対して適用可能である。   The present invention relates to an arbitrary horizontal axis pump including a full water device for driving a vacuum pump at the time of start-up to fill the pump body with a full water regardless of pump type such as a mixed flow pump and an axial flow pump, and siphon operation. It can be applied to a turbo type pump such as a vertical shaft pump which cannot be fully filled by itself due to a low discharge head.

本発明に係る横軸ポンプの全体構成図である。It is a whole lineblock diagram of a horizontal axis pump concerning the present invention. 本発明に係る横軸ポンプの気水分離管部分の拡大断面図である。It is an expanded sectional view of the steam-water separation pipe part of the horizontal axis pump concerning the present invention. 各空気流入量(空気漏れ量)に対する気水分離管内の水位上昇分を実測した結果を気水分離管の内径をパラメータとして示す図である。It is a figure which shows the result of having actually measured the rise in the water level in a steam-water separation pipe with respect to each air inflow amount (air leakage amount), using the internal diameter of a steam-water separation pipe as a parameter. 各種真空ポンプによるポンプ内圧力(真空圧)に対する空気流入量(空気漏れ量)の関係を示す図である。It is a figure which shows the relationship of the air inflow amount (air leakage amount) with respect to the pump internal pressure (vacuum pressure) by various vacuum pumps. 本発明の別形態に係る横軸ポンプの全体構成図である。It is a whole block diagram of the horizontal shaft pump which concerns on another form of this invention. 本発明の別形態に係る横軸ポンプの全体構成図である。It is a whole block diagram of the horizontal shaft pump which concerns on another form of this invention. 従来の横軸ポンプの全体構成図である。It is a whole block diagram of the conventional horizontal shaft pump. 従来の横軸ポンプの全体構成図である。It is a whole block diagram of the conventional horizontal shaft pump. 従来の横軸ポンプの全体構成図である。It is a whole block diagram of the conventional horizontal shaft pump.

符号の説明Explanation of symbols

1 横軸ポンプ
2 ポンプケーシング
2a 開口部
3 吸込エルボ
4 吸込管
5 吸込水槽
6 ルーズ短管
7 吐出弁
8 吐出管
9 吐出水槽
10 ロータ
11 インペラ
12 減速機
13 電動モータ
16 真空遮断弁
17 真空ポンプ
21 制御手段
24 吸気管
24a 吸気管立ち上がり部
24b 吸気管立ち下がり部
25 気水分離管
26,27 満水検知センサー(水位検知手段)
30 圧力調整弁
DESCRIPTION OF SYMBOLS 1 Horizontal shaft pump 2 Pump casing 2a Opening part 3 Suction elbow 4 Suction pipe 5 Suction water tank 6 Loose short pipe 7 Discharge valve 8 Discharge pipe 9 Discharge water tank 10 Rotor 11 Impeller 12 Reducer 13 Electric motor 16 Vacuum shut-off valve 17 Vacuum pump 21 Control means 24 Intake pipe 24a Intake pipe rising part 24b Intake pipe falling part 25 Air-water separation pipes 26, 27 Full water detection sensor (water level detection means)
30 Pressure regulating valve

Claims (4)

ポンプ本体上部に開口する開口部と真空ポンプとを接続する吸気管の一部に逆U字状を成す立ち上り部と立ち下がり部を形成し、前記立ち上がり部と前記真空ポンプ及び前記吸気管に介装された真空遮断弁を含んで満水装置を構成して成るターボ型ポンプにおいて、
前記吸気管の立ち上がり部を吸気管の他の部分よりも大径な気水分離管で構成し、該気水分離管の高さh1を、満水操作中に水が該気水分離管の頂部を越えない条件を満たす理論必要高さh0に、満水操作中にポンプ本体に流入する空気による該気水分離管の水位上昇分Δhを補正値として加算した値(h0+Δh)よりも大きく(h1>h0+Δh)設定したことを特徴とするターボ型ポンプ。
To form a rising portion and a falling portion which partially forms an inverted U-shaped intake pipe connecting the opening and the vacuum pump which opens into the pump body upper part, through the vacuum pump and the intake pipe and the rising portion In a turbo pump comprising a full water device including a mounted vacuum shut-off valve,
Wherein the rising portion of the intake pipe constitutes a large-diameter steam-water separation tube than the other portion of the intake pipe, the height h1 of the gas-water separation tube, the water in the full level operation of the gas-water separation tube top the theory required height h0 that meet the condition not exceeding, greater than the value of the water level rise Delta] h obtained by adding a correction value of the gas-water separation tube by the air flowing into the pump body during full water operation (h0 + Δh) ( h1> h0 + Δh) A turbo pump characterized by being set .
前記水位上昇分Δh(mm)は、空気流入量をQ(L/min)、前記気水分離管の内径をd(mm)としたとき、
Δh≧(−250Q 2 +95000Q)/d 2
を満足する値に設定されることを特徴とする請求項1記載のターボ型ポンプ。
When the water level rise Δh (mm) is Q (L / min) as the air inflow amount and d (mm) as the inner diameter of the steam-water separation pipe ,
Δh ≧ (−250Q 2 + 95000Q) / d 2
The turbo pump according to claim 1, wherein the turbo pump is set to a value satisfying
前記気水分離管の上部に水位検知手段を設けたことを特徴とする請求項1又は2記載のターボ型ポンプ。 The turbo pump according to claim 1 or 2, wherein a water level detection means is provided in an upper part of the steam-water separation pipe . 前記気水分離管を透明な管で構成したことを特徴とする請求項1〜3の何れかに記載のターボ型ポンプ。 The turbo pump according to any one of claims 1 to 3, wherein the steam-water separation pipe is formed of a transparent pipe.
JP2003355888A 2003-10-16 2003-10-16 Turbo pump Expired - Lifetime JP4240301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355888A JP4240301B2 (en) 2003-10-16 2003-10-16 Turbo pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355888A JP4240301B2 (en) 2003-10-16 2003-10-16 Turbo pump

Publications (2)

Publication Number Publication Date
JP2005120885A JP2005120885A (en) 2005-05-12
JP4240301B2 true JP4240301B2 (en) 2009-03-18

Family

ID=34613291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355888A Expired - Lifetime JP4240301B2 (en) 2003-10-16 2003-10-16 Turbo pump

Country Status (1)

Country Link
JP (1) JP4240301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795172B2 (en) * 2006-08-29 2011-10-19 株式会社電業社機械製作所 Horizontal shaft pump
JP5364043B2 (en) * 2010-06-08 2013-12-11 株式会社荏原製作所 Horizontal axis pump facility and operation method thereof

Also Published As

Publication number Publication date
JP2005120885A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP2002156092A (en) Submerged bearing lubrication system
JP4240301B2 (en) Turbo pump
CN111379590B (en) Drainage system and drainage method in tunnel operation period
JP3713621B2 (en) Horizontal shaft pump
US20080060703A1 (en) Action Keeping Siphon Unit
JP4822336B2 (en) Management operation method of vertical shaft pump
CN112112810A (en) Pump priming system and method of centrifugal pump system
RU175622U1 (en) VERTICAL CENTRIFUGAL SUBMERSIBLE PUMP
JP5188366B2 (en) Advance standby operation pump
JP5004463B2 (en) How to drain oil from the oil tank
CN215949844U (en) Vacuum-pumping-free water pump
JP4468009B2 (en) Vertical shaft pump system and pump station
KR200453124Y1 (en) Vacuum suction pump
CN214118491U (en) Self-priming pump
US1965783A (en) Liquid pumping mechanism
CN219974833U (en) Automatic water diversion device of coal mine centrifugal pump
CN218600341U (en) Condenser return water room air extraction device
CN111536097B (en) Oil pipe hydraulic transmission system and method based on double pumps
KR102580515B1 (en) Seawater intake system for aquafarm with intake pump using ring blower for start-up
CN101922454A (en) Full-automatic strong self-sucking centrifugal pump
JP4074066B2 (en) Pump with air injection device
CN209761747U (en) Water supply system of fire pump
CN108412813B (en) Water filling and exhausting device of centrifugal pump without bottom valve and using method thereof
JP2016079951A (en) Water level retainer and pump equipment, water level retaining method and pump operational method
CN114893449A (en) Water-irrigation-free bottomless valve cavitation eliminating device and system suitable for coal mine underground water pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4240301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term