JP4239256B2 - Heat pump cycle - Google Patents

Heat pump cycle Download PDF

Info

Publication number
JP4239256B2
JP4239256B2 JP30876698A JP30876698A JP4239256B2 JP 4239256 B2 JP4239256 B2 JP 4239256B2 JP 30876698 A JP30876698 A JP 30876698A JP 30876698 A JP30876698 A JP 30876698A JP 4239256 B2 JP4239256 B2 JP 4239256B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pressure
compressor
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30876698A
Other languages
Japanese (ja)
Other versions
JP2000130878A (en
Inventor
幸克 尾崎
成秀 木村
伸 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP30876698A priority Critical patent/JP4239256B2/en
Publication of JP2000130878A publication Critical patent/JP2000130878A/en
Application granted granted Critical
Publication of JP4239256B2 publication Critical patent/JP4239256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高圧冷媒の圧力(圧縮機の吐出圧)が、冷媒の臨界圧力以上となる超臨界冷凍サイクルを用いたヒートポンプサイクルに関するもので、空調装置に適用して有効である。
【0002】
【従来の技術】
近年、冷凍サイクルの脱フロン対策の1つとして、例えば特公平7−18602号公報に記載のごとく、二酸化炭素(CO2 )を使用した冷凍サイクル(以下、CO2 サイクルと呼ぶ。)が提案されている。
このCO2 サイクルは、CO2 の臨界温度が約31℃とフロンの臨界温度と比べて低いため、夏等の大きな冷凍能力を必要とするときには、放熱器側の冷媒圧力(吐出圧)を臨界圧力以上まで高めて(圧縮して)冷凍サイクルを運転する必要がある。
【0003】
そこで、上記公報に記載の発明では、冷凍サイクルの効率及び冷凍能力の向上を図るとともに、圧縮機に液相冷媒が吸入されることを防止すべく、放熱器を出た高圧冷媒と圧縮機に吸入される低圧冷媒との間で熱交換を行う内部熱交換器を設けている。
【0004】
【発明が解決しようとする課題】
しかし、内部熱交換器を設けて高圧冷媒と低圧冷媒との間で熱交換を行うと、圧縮機に吸入される低圧冷媒の温度が高くなるため、圧縮機から吐出する高圧冷媒の温度も上昇してしまう。このため、上記公報に記載のCO2 サイクルを単純に冷暖房可能なヒートポンプサイクルに適用すると、以下に述べるような問題が発生する。
【0005】
すなわち、内部熱交換器にて低圧冷媒が加熱されることに加えて、冬等の外気温度が低いときに暖房運転を行うと、低圧冷媒の圧力が冷房運転時より低くなって、圧縮比(吸入圧と吐出圧との比)が冷房運転時より大きくなるので、圧縮機から吐出する高圧冷媒の温度が冷房運転時より高くなる。
このため、高圧冷媒の温度が、冷媒中に混合された潤滑油(冷凍機油)の耐熱温度を越えてしまうので、冷媒中に混合された潤滑油が分解又は変性してしまい、圧縮機が損傷してしまうという問題が発生する。
【0006】
因みに、図12は、HFC134a(フロン)は高圧冷媒の圧力を15kgf/cm2 absとし、CO2 は高圧冷媒の圧力を90kgf/cm2 absとした場合において、圧縮機の効率を1としたときの蒸発器の飽和温度に対するHFC134aを冷媒とする冷凍サイクルの吐出冷媒温度(高圧冷媒の温度)と、CO2 サイクル吐出温度の吐出冷媒温度(高圧冷媒の温度)とを示すグラフである。
【0007】
そして、図12から明らかなように、蒸発器の飽和温度、すなわち低圧冷媒の圧力が低下するほど高圧冷媒の温度が上昇するので、暖房運転時に内部熱交換器を設けると、吐出冷媒の温度がさらに上昇してしまうことが判る。
本発明は、上記点に鑑み、圧縮機の吐出圧が冷媒の臨界圧力以上となるヒートポンプサイクルにおいて、暖房運転時に圧縮機が損傷することを防止することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために請求項に記載の発明では、冷媒として二酸化炭素を用いる冷暖房切換可能なヒートポンプサイクルであって、
前記冷媒を吸入し、その吸入した冷媒を冷媒の臨界圧力以上まで圧縮する圧縮機(1)と、
室外空気と冷媒との間で熱交換を行う室外熱交換器(2)と、
室内に吹き出す室内空気と冷媒との間で熱交換を行う室内熱交換器(3)と、
前記室内熱交換器(3)と前記室外熱交換器(2)とを結ぶ冷媒通路に設けられ、冷媒を減圧する減圧器(4)と、
前記圧縮機(1)の吸入側に設けられ、冷媒を気相冷媒と液相冷媒とに分離するとともに、気相冷媒を前記圧縮機(1)の吸入側に向けて流出させるアキュムレータ(5)と、
前記アキュムレータ(5)から前記圧縮機(1)の吸入側に向かって流通する冷媒が流通する第1冷媒通路(6a)、及び前記第1冷媒通路(6a)に隣接する第2冷媒通路(6b)を有し、前記両冷媒通路(6a、6b)間で熱交換を行う内部熱交換器(6)と、
冷房運転時には前記室外熱交換器(2)が高圧冷媒の放熱側となるとともに前記室内熱交換器(3)が低圧冷媒の吸熱側となり、これに対し、暖房運転時には前記室内熱交換器(3)が高圧冷媒の放熱側となるとともに前記室外熱交換器(2)が低圧冷媒の吸熱側となるように冷媒流れを切り換える切換弁(7)とを備え、
前記暖房運転を外気温が低いときに行うと、前記暖房運転時の低圧冷媒の圧力が前記冷房運転時よりも低くなって、前記暖房運転時の圧縮比が前記冷房運転時よりも大きくなり、これにより、前記暖房運転時に前記圧縮機(1)から吐出する高圧冷媒の温度が前記冷房運転時よりも高くなる超臨界冷凍サイクルであり、
前記冷房運転時には、前記第2冷媒通路(6b)に前記減圧器(4)にて減圧される前の高圧冷媒を流通させ、前記暖房運転時には、前記第2冷媒通路(6b)に前記減圧器(4)にて減圧された後の低圧冷媒を流通させることにより、前記内部熱交換器(6)にて前記高圧冷媒と前記低圧冷媒とを熱交換させないようになっており、
前記暖房運転時には、前記高圧冷媒の温度が冷媒中に混合される潤滑油の耐熱温度を越えない温度範囲に維持されることを特徴とする。
【0009】
これにより、冷媒として二酸化炭素を用いる超臨界冷凍サイクルからなるヒートポンプサイクルにおいて、暖房運転時には、両冷媒通路(6a、6b)を流通する冷媒の温度及び圧力が等しくなるので、高圧冷媒と低圧冷媒とが熱交換されない。したがって、低外気温時における暖房運転時に圧縮機(1)から吐出する高圧冷媒の温度が過度に上昇することを防止できるので、高圧冷媒の温度が冷媒中に混合された潤滑油の耐熱温度を越えてしまうことを防止できる。したがって、冷媒中に混合された潤滑油が分解又は変性してしまうことを防止でき、圧縮機(1)が損傷することを防止できる
【0011】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0012】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係るヒートポンプサイクルを二酸化炭素を冷媒とするヒートポンプサイクルを用いた空調装置に適用したものであって、図1は本実施形態に係るヒートポンプサイクルの模式図である。
【0013】
図1中、1は冷媒(CO2 )を吸入し、その吸入した冷媒を冷媒の臨界圧力以上にまで圧縮する圧縮機であり、この圧縮機1は冷媒と共に潤滑油を吸入することにより、圧縮機1内の潤滑を図っている。2は室外空気と冷媒との間で熱交換を行う室外熱交換器であり、3は室内に吹き出す室内空気と冷媒との間で熱交換を行う室内熱交換器である。
【0014】
そして、この室内熱交換器3と室外熱交換器2との間には、冷媒を減圧する減圧器4が設けられている。なお、減圧器4は、特願平8−33962号出願に記載されている圧力制御弁と同様なものであるので、本明細書では、減圧器4の詳細説明は省略する。
また、圧縮機1の吸入側には、冷媒を気相冷媒と液相冷媒とに分離するとともに、気相冷媒を圧縮機1の吸入側に向けて流出させるアキュムレータ(気液分離手段)5が設けられている。そして、6は、アキュムレータ5と圧縮機1との間に存在する冷媒と、室外熱交換器2と減圧器4との間に存在する冷媒とを熱交換する内部熱交換器であり、7は、圧縮機1から吐出する冷媒を室外熱交換器2に向けて流通させる場合と、室内熱交換器3に向けて流通させる場合とを切り換える切換弁(四方弁)である。
【0015】
なお、内部熱交換器6は、アキュムレータ5から圧縮機1の吸入側に向かって流通する冷媒が流通する第1冷媒通路6a、及び第1冷媒通路6aに隣接する冷媒通路6bを有するように二重円筒状に構成されている。このため、第1冷媒通路6aを流通する冷媒(アキュムレータ5と圧縮機1との間に存在する冷媒)と、第2冷媒通路6bを流通する冷媒との間で熱交換が行われる。
【0016】
因みに、8は室内熱交換器に向けて空気を送風する室内送風機であり、9は室外熱交換器2に向けて空気を送風する室外送風機であり、両送風機8、9及び切換弁7は、電子制御装置(図示せず)により制御される。
次に、本実施形態に係るヒートポンプサイクルの作動について述べる。
1.冷房運転時(図1参照)
圧縮機1から吐出する冷媒が室外熱交換器2に向けて流通するように、切換弁7を作動させる。
【0017】
これにより、圧縮機1から吐出した冷媒は、切換弁7、室外熱交換器2、内部熱交換器6、減圧器4、室内熱交換器3、切換弁7、アキュムレータ5及び内部熱交換器6の順にこれらの機器を経由して圧縮機1に吸入されて、再び室外熱交換器2に向けて吐出される。したがって、室内熱交換器3にて室内空気から蒸発潜熱を奪って冷媒が蒸発して室内空気を冷却し、その室内空気から奪った熱は、室外熱交換器2にて室外空気中に放熱される。
【0018】
このとき、内部熱交換器6にて減圧器4で減圧される前の高圧冷媒と、圧縮機1に吸入される低圧冷媒とが熱交換されるため、図2のA−B−C−Dに示すように、室内熱交換器3の入口側における冷媒の比エンタルピが、内部熱交換器6にて熱交換を行わない場合に比べて、δQだけ小さくなる。したがって、室内熱交換器3の入口と出口との比エンタルピ差が、内部熱交換器6にて熱交換を行わない場合に比べて、δQだけ大きくなるので、冷凍能力及び効率(成績係数)が向上する。因みに、図2のa−b−c−dは、内部熱交換器6を有していない場合のサイクルの挙動を示す線図である。
【0019】
また、圧縮機1の吸入側にアキュムレータ5が設けられているため、圧縮機1に液相冷媒が吸入されることが防止される。
なお、減圧器4の開度は、特願平8−33962号出願に記載のごとく、ヒートポンプサイクル(冷凍サイクル)の成績係数が最大となるように、室外熱交換器2の出口側の冷媒温度に基づいて調節される。
【0020】
2.暖房運転時(図3参照)
圧縮機1から吐出する冷媒が室内熱交換器3に向けて流通するように、切換弁7を作動させる。
これにより、圧縮機1から吐出した冷媒は、切換弁7、室内熱交換器3、減圧器4、内部熱交換器6、室外室内熱交換器2、切換弁7、アキュムレータ5及び内部熱交換器6の順にこれらの機器を経由して圧縮機1に吸入されて、再び室内熱交換器3に向けて吐出される。したがって、室外熱交換器2にて室外空気から蒸発潜熱を吸熱して冷媒が蒸発し、その室外空気から吸熱した熱は、室内熱交換器3にて室内空気中に放熱される。
【0021】
このとき、減圧器4で減圧された後の冷媒は、図4のd−aに示すように、温度及び圧力が一定で相変化するので、内部熱交換器6の両冷媒通路6a、6bを流通する冷媒の温度及び圧力が等しくなる。したがって、減圧器4から流出した冷媒とアキュムレータ5から流出した冷媒との間で実質的に熱交換が行われないので、減圧器4で減圧される前の高圧冷媒と、圧縮機1に吸入される低圧冷媒との間で熱交換が行われない。
【0022】
なお、減圧器4の開度は、冷房運転時と同様に、ヒートポンプサイクルの成績係数が最大となるように、室内熱交換器3の出口側の冷媒温度に基づいて調節される。
次に、本実施形態の特徴を述べる。
本実施形態によれば、暖房運転時には、内部熱交換器6で熱交換が行われず、減圧器4で減圧される前の高圧冷媒と、圧縮機1に吸入される低圧冷媒とが熱交換されないので、圧縮機1から吐出する高圧冷媒の温度が過度に上昇することを防止できる。
【0023】
したがって、高圧冷媒の温度が冷媒中に混合された潤滑油の耐熱温度を越えてしまうことを防止できるので、冷媒中に混合された潤滑油が分解又は変性してしまうことを防止でき、圧縮機1が損傷することを防止できる。
(第2実施形態)
本実施形態は、冷房運転及び暖房運転に加えて、除湿運転ができるようにしたものである。
【0024】
すなわち、本実施形態では、図5に示すように、室内熱交換器3(以下、この室内熱交換器を第1室内熱交換器3と呼ぶ。)より空気流れ下流側に、室内に吹き出す室内空気と冷媒との間で熱交換を行う第2室内熱交換器10を設けるとともに、第2室内熱交換器10と室外熱交換器2とを結ぶ冷媒通路に冷媒を減圧する第2減圧器11を設ける。なお、以下、減圧器4を第1減圧器4と呼ぶ。
【0025】
因みに、12は冷媒が一方向にのみ流通する(本実施形態では、室外熱交換器2に向けてのみ流通する)ことを許容する逆止弁であり、13は冷媒通路を開閉する電磁弁である。
また、本実施形態に係る切換弁7は、圧縮機1から吐出する冷媒を室外熱交換器2に向けて流通させる場合と、第2室内熱交換器10に向けて流通させる場合とを切り換える。
【0026】
次に、本実施形態の作動を述べる。
1.冷房運転時(図5参照)
圧縮機1から吐出する冷媒が室外熱交換器2に向けて流通するように、切換弁7を作動させるとともに、電磁弁13を閉じる。
これにより、圧縮機1から吐出した冷媒は、切換弁7、室外熱交換器2、内部熱交換器6、第1減圧器4、第1室内室内熱交換器3、アキュムレータ5及び内部熱交換器6の順にこれらの機器を経由して圧縮機1に吸入されて、再び室外熱交換器2に向けて吐出される。したがって、第1室内熱交換器3にて室内空気から蒸発潜熱を奪って冷媒が蒸発して室内空気を冷却し、その室内空気から奪った熱は、室外熱交換器2にて室外空気中に放熱されるとともに、内部熱交換器6で高圧冷媒と低圧冷媒が熱交換される。
【0027】
2.暖房運転時(図6参照)
圧縮機1から吐出する冷媒が第2室内熱交換器10に向けて流通するように、切換弁7を作動させ、かつ、第1減圧器4を全閉とするとともに、電磁弁10を開く。
これにより、圧縮機1から吐出した冷媒は、切換弁7、第2室内熱交換器10、第2減圧器11、室外熱交換器2、内部熱交換器6、アキュムレータ5及び内部熱交換器6の順にこれらの機器を経由して圧縮機1に吸入されて、再び第2室内熱交換器10に向けて吐出される。なお、冷媒の減圧は、第2減圧器11にて行う。
【0028】
したがって、室外熱交換器2にて室外空気から蒸発潜熱を吸熱して冷媒が蒸発し、その室外空気から吸熱した熱は、第2室内熱交換器10にて室内空気中に放熱される。
また、内部熱交換器6には、第2減圧器11にて減圧された冷媒が流入するので、内部熱交換器6では、実質的に熱交換は行われない。
【0029】
3.第1除湿運転時(図7参照)
圧縮機1から吐出する冷媒が第2室内熱交換器10に向けて流通するように、切換弁7を作動させ、かつ、第2減圧弁11を全開とするとともに、電磁弁13を閉じる。
これにより、圧縮機1から吐出した冷媒は、切換弁7、第2室内熱交換器10、第2減圧器11、室外熱交換器2、内部熱交換器6、第1減圧器4、第1室内熱交換器3、アキュムレータ5及び内部熱交換器6の順にこれらの機器を経由して圧縮機1に吸入されて、再び第2室内熱交換器10に向けて吐出される。なお、冷媒の減圧は、第1減圧器4にて行う。
【0030】
したがって、第1室内熱交換器3にて室内空気から蒸発潜熱を奪って冷媒が蒸発して室内空気を冷却する。そして、その室内空気から奪った熱の一部は、第2室内熱交換器10にて室内空気中に放熱され、その他の熱は室外熱交換器2にて室外空気中に放熱される。
なお、この第1除湿運転では、内部熱交換器6にて高圧冷媒と低圧冷媒との間で熱交換が行われ、圧縮機1に吸入される冷媒が加熱されるが、高圧冷媒は、既に2つに熱交換器(第2室内熱交換器10及び室外熱交換器2)で放熱していることに加えて、第1除湿運転では大きな暖房能力を必要とせず、高圧冷媒の圧力が暖房運転時ほど高くないので、圧縮機1に吸入される冷媒の温度は大きく上昇しない。したがって、高圧冷媒の温度が、潤滑油の耐熱温度以上まで上昇することはない。
【0031】
4.第2除湿運転時(図8参照)
圧縮機1から吐出する冷媒が第2室内熱交換器10に向けて流通するように、切換弁7を作動させ、かつ、第1減圧器4を全開とするとともに、電磁弁13を閉じる。
これにより、圧縮機1から吐出した冷媒は、切換弁7、第2室内熱交換器10、第2減圧器11、室外熱交換器2、内部熱交換器6、第1減圧器4、第1室内熱交換器3、アキュムレータ5及び内部熱交換器6の順にこれらの機器を経由して圧縮機1に吸入されて、再び第2室内熱交換器10に向けて吐出される。なお、冷媒の減圧は、第2減圧器11にて行う。
【0032】
したがって、第1室内熱交換器3にて室内空気から蒸発潜熱を奪って冷媒が蒸発して室内空気を冷却する。さらに、室外熱交換器2にて室外空気から熱を吸熱し、第2室内熱交換器10にてその吸熱した熱が室内空気に向けて放熱される。また、内部熱交換器6には、第2減圧器11にて減圧された冷媒が流入するので、内部熱交換器6では、実質的に熱交換は行われない。
【0033】
(第3実施形態)
第2実施形態では、第1、2除湿運転時のみ両室内熱交換器3、10を利用したが、本実施形態は、図9に示すように、第2減圧器11を第1、2室内熱交換器3、10を結ぶ冷媒通路に設けて冷房運転時及び暖房運転時においても両室内熱交換器3、10を利用するようにしたものである。
【0034】
以下、本実施形態の作動を述べる。
1.冷房運転時(図9参照)
圧縮機1から吐出する冷媒が室外熱交換器2に向けて流通するように、切換弁7を作動させるとともに、第2減圧器11を全開とする。
これにより、圧縮機1から吐出した冷媒は、切換弁7、室外熱交換器2、内部熱交換器6、第1減圧器4、第1室内熱交換器3、第2減圧器11、第2室内熱交換器10、切換弁7、アキュムレータ5及び内部熱交換器6の順にこれらの機器を経由して圧縮機1に吸入されて、再び室外熱交換器2に向けて吐出される。なお、冷媒の減圧は、第1減圧器4にて行われる。
【0035】
したがって、第1、2室内熱交換器3、10にて室内空気から蒸発潜熱を奪って冷媒が蒸発して室内空気を冷却し、その室内空気から奪った熱は、室外熱交換器2にて室外空気中に放熱されるとともに、内部熱交換器6で高圧冷媒と低圧冷媒とが熱交換される。
2.暖房運転時(図10参照)
圧縮機1から吐出する冷媒が第2室内熱交換器10に向けて流通するように、切換弁7を作動させ、かつ、第2減圧器11を全閉とする。
【0036】
これにより、圧縮機1から吐出した冷媒は、切換弁7、第2室内熱交換器10、第2減圧器11、第1室内熱交換器3、第1減圧器4、内部熱交換器6、室外熱交換器2、切換弁7、アキュムレータ5及び内部熱交換器6の順にこれらの機器を経由して圧縮機1に吸入されて、再び第2室内熱交換器10に向けて吐出される。なお、冷媒の減圧は、第1減圧器4にて行う。
【0037】
したがって、室外熱交換器2にて室外空気から蒸発潜熱を吸熱して冷媒が蒸発し、その室外空気から吸熱した熱は、第1、2室内熱交換器3、10にて室内空気中に放熱される。
また、内部熱交換器6には、第1減圧器4にて減圧された冷媒が流入するので、内部熱交換器6では、実質的に熱交換は行われない。
【0038】
3.除湿運転時(図11参照)
圧縮機1から吐出する冷媒が第2室内熱交換器10に向けて流通するように、切換弁7を作動させ、かつ、第1減圧器4を全開とする。
これにより、圧縮機1から吐出した冷媒は、切換弁7、第2室内熱交換器10、第2減圧器11、第1室内熱交換器3、第1減圧器4、内部熱交換器6、室外熱交換器2、切換弁7、アキュムレータ5及び内部熱交換器6の順にこれらの機器を経由して圧縮機1に吸入されて、再び室内熱交換器3に向けて吐出される。なお、冷媒の減圧は、第2減圧器11にて行う。
【0039】
したがって、第1室内熱交換器3及び室外熱交換器2にて空気から蒸発潜熱を吸熱して冷媒が蒸発するとともに、その吸熱された熱は、第2室内熱交換器10にて室内空気中に放熱される。
因みに、室外空気の温度が冷媒温度より低い場合には、室外熱交換器2では吸熱は行われず、冷媒の熱は外気中に放熱される。
【0040】
ところで、上述の実施形態では、空調装置を例に本発明に係るヒートポンプサイクルを説明したが、本発明はこれに限定されるものではなく、その他のヒートポンプサイクルにも適用することができる。
また、上述の実施形態では、二酸化炭素を冷媒とするヒートポンプサイクルであったが、本発明はこれに限定されるものではなく、例えば、エチレン、エタン、酸化窒素等の超臨界域で使用する冷媒を用いるヒートポンプサイクルにも適用することができる。
【図面の簡単な説明】
【図1】第1実施形態に係るヒートポンプサイクルの模式図である。
【図2】冷房運転時におけるヒートポンプサイクルのサイクル線図である。
【図3】第1実施形態に係るヒートポンプサイクルの模式図である。
【図4】暖房運転時におけるヒートポンプサイクルのサイクル線図である。
【図5】冷房運転時における第2実施形態に係るヒートポンプサイクルの模式図である。
【図6】暖房運転時における第2実施形態に係るヒートポンプサイクルの模式図である。
【図7】第1除湿運転時における第2実施形態に係るヒートポンプサイクルの模式図である。
【図8】第2除湿運転時における第2実施形態に係るヒートポンプサイクルの模式図である。
【図9】冷房運転時における第3実施形態に係るヒートポンプサイクルの模式図である。
【図10】暖房運転時における第2実施形態に係るヒートポンプサイクルの模式図である。
【図11】除湿運転時における第2実施形態に係るヒートポンプサイクルの模式図である。
【図12】蒸発器内飽和温度と吐出温度との関係を示すグラフである。
【符号の説明】
1…圧縮機、2…室外熱交換器、3…室内熱交換器、4…減圧器、
5…アキュムレータ、6…内部熱交換器、7…切換弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump cycle using a supercritical refrigeration cycle in which the pressure of the high-pressure refrigerant (compressor discharge pressure) is equal to or higher than the critical pressure of the refrigerant, and is effective when applied to an air conditioner.
[0002]
[Prior art]
In recent years, a refrigeration cycle using carbon dioxide (CO 2 ) (hereinafter, referred to as a CO 2 cycle) has been proposed as one of countermeasures against de-fluorocarbons in the refrigeration cycle, for example, as described in Japanese Patent Publication No. 7-18602. ing.
In this CO 2 cycle, the critical temperature of CO 2 is about 31 ° C, which is lower than the critical temperature of Freon, so the refrigerant pressure (discharge pressure) on the radiator side is critical when large refrigeration capacity is required such as in summer. It is necessary to operate the refrigeration cycle at a pressure higher than the pressure (compressed).
[0003]
Therefore, in the invention described in the above publication, in order to improve the efficiency and refrigeration capacity of the refrigeration cycle, and to prevent the liquid-phase refrigerant from being sucked into the compressor, the high-pressure refrigerant and the compressor that have come out of the radiator are used. An internal heat exchanger that exchanges heat with the low-pressure refrigerant that is sucked is provided.
[0004]
[Problems to be solved by the invention]
However, if an internal heat exchanger is installed to exchange heat between the high-pressure refrigerant and the low-pressure refrigerant, the temperature of the low-pressure refrigerant sucked into the compressor increases, so the temperature of the high-pressure refrigerant discharged from the compressor also increases. Resulting in. For this reason, when the CO 2 cycle described in the above publication is applied to a heat pump cycle capable of simply cooling and heating, the following problems occur.
[0005]
That is, in addition to heating the low-pressure refrigerant in the internal heat exchanger, when the heating operation is performed when the outside air temperature is low such as in winter, the pressure of the low-pressure refrigerant becomes lower than that in the cooling operation, and the compression ratio ( Since the ratio between the suction pressure and the discharge pressure becomes larger than that during the cooling operation, the temperature of the high-pressure refrigerant discharged from the compressor becomes higher than that during the cooling operation.
For this reason, since the temperature of the high-pressure refrigerant exceeds the heat resistance temperature of the lubricating oil (refrigeration machine oil) mixed in the refrigerant, the lubricating oil mixed in the refrigerant is decomposed or denatured, and the compressor is damaged. The problem of end up occurs.
[0006]
Incidentally, FIG. 12 shows that HFC134a (Freon) has a high-pressure refrigerant pressure of 15 kgf / cm 2 abs, and CO 2 has a compressor efficiency of 1 when the pressure of the high-pressure refrigerant is 90 kgf / cm 2 abs. 6 is a graph showing a refrigerant temperature discharged from a refrigeration cycle using HFC134a as a refrigerant (temperature of a high-pressure refrigerant) and a refrigerant temperature discharged from CO 2 cycle discharge temperature (temperature of a high-pressure refrigerant) with respect to the saturation temperature of the evaporator.
[0007]
As is clear from FIG. 12, the saturation temperature of the evaporator, that is, the temperature of the high-pressure refrigerant increases as the pressure of the low-pressure refrigerant decreases. Therefore, when the internal heat exchanger is provided during heating operation, the temperature of the discharged refrigerant is increased. It turns out that it rises further.
In view of the above points, an object of the present invention is to prevent the compressor from being damaged during heating operation in a heat pump cycle in which the discharge pressure of the compressor is equal to or higher than the critical pressure of the refrigerant.
[0008]
[Means for Solving the Problems]
To achieve the above object, the invention described in claim 1, a cooling and heating switchable heat pump cycle using carbon dioxide as a refrigerant,
A compressor (1) that sucks the refrigerant and compresses the sucked refrigerant to a critical pressure or higher;
An outdoor heat exchanger (2) for exchanging heat between the outdoor air and the refrigerant;
An indoor heat exchanger (3) for exchanging heat between the indoor air blown into the room and the refrigerant;
A decompressor (4) that is provided in a refrigerant passage connecting the indoor heat exchanger (3) and the outdoor heat exchanger (2), and depressurizes the refrigerant;
An accumulator (5) that is provided on the suction side of the compressor (1), separates the refrigerant into a gas phase refrigerant and a liquid phase refrigerant, and causes the gas phase refrigerant to flow out toward the suction side of the compressor (1). When,
A first refrigerant passage (6a) through which refrigerant flows from the accumulator (5) toward the suction side of the compressor (1), and a second refrigerant passage (6b) adjacent to the first refrigerant passage (6a). And an internal heat exchanger (6) for exchanging heat between the refrigerant passages (6a, 6b),
During the cooling operation, the outdoor heat exchanger (2) is on the heat radiation side of the high-pressure refrigerant and the indoor heat exchanger (3) is on the heat absorption side of the low-pressure refrigerant. On the other hand, during the heating operation, the indoor heat exchanger (3 And a switching valve (7) for switching the refrigerant flow so that the outdoor heat exchanger (2) is on the heat absorption side of the low pressure refrigerant
When the heating operation is performed when the outside air temperature is low, the pressure of the low-pressure refrigerant during the heating operation is lower than during the cooling operation, and the compression ratio during the heating operation is greater than during the cooling operation, This is a supercritical refrigeration cycle in which the temperature of the high-pressure refrigerant discharged from the compressor (1) during the heating operation is higher than during the cooling operation,
During the cooling operation, the high-pressure refrigerant before being decompressed by the decompressor (4) is circulated through the second refrigerant passage (6b), and during the heating operation, the decompressor is disposed in the second refrigerant passage (6b). by circulating a low-pressure refrigerant after being decompressed by (4), and so as not to heat exchange with said low-pressure refrigerant and the high-pressure refrigerant in the internal heat exchanger (6),
During the heating operation, the temperature of the high-pressure refrigerant is maintained in a temperature range that does not exceed the heat resistance temperature of the lubricating oil mixed in the refrigerant .
[0009]
As a result, in the heat pump cycle composed of a supercritical refrigeration cycle using carbon dioxide as the refrigerant, the temperature and pressure of the refrigerant flowing through both refrigerant passages (6a, 6b) are equal during heating operation. Is not heat exchanged. Accordingly, it is possible to prevent the temperature of the high-pressure refrigerant discharged from the compressor (1) from excessively rising during the heating operation at the low outside air temperature, so that the temperature of the high-pressure refrigerant is set to the heat resistant temperature of the lubricating oil mixed in the refrigerant. It can be prevented from exceeding. Accordingly, it is possible to prevent the lubricating oil mixed in the refrigerant from being decomposed or denatured and to prevent the compressor (1) from being damaged .
[0011]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In the present embodiment, the heat pump cycle according to the present invention is applied to an air conditioner using a heat pump cycle using carbon dioxide as a refrigerant, and FIG. 1 is a schematic diagram of the heat pump cycle according to the present embodiment.
[0013]
In FIG. 1, reference numeral 1 denotes a compressor that sucks refrigerant (CO 2 ) and compresses the sucked refrigerant to a critical pressure or higher of the refrigerant. The compressor 1 compresses by sucking lubricating oil together with the refrigerant. Lubrication inside the machine 1 is intended. 2 is an outdoor heat exchanger that exchanges heat between the outdoor air and the refrigerant, and 3 is an indoor heat exchanger that exchanges heat between the indoor air blown into the room and the refrigerant.
[0014]
And between this indoor heat exchanger 3 and the outdoor heat exchanger 2, the decompressor 4 which decompresses a refrigerant | coolant is provided. The decompressor 4 is the same as the pressure control valve described in Japanese Patent Application No. 8-33962, and therefore, detailed description of the decompressor 4 is omitted in this specification.
On the suction side of the compressor 1, an accumulator (gas-liquid separation means) 5 that separates the refrigerant into a gas phase refrigerant and a liquid phase refrigerant and causes the gas phase refrigerant to flow out toward the suction side of the compressor 1. Is provided. Reference numeral 6 denotes an internal heat exchanger for exchanging heat between the refrigerant existing between the accumulator 5 and the compressor 1 and the refrigerant existing between the outdoor heat exchanger 2 and the decompressor 4. The switching valve (four-way valve) switches between a case where the refrigerant discharged from the compressor 1 is circulated toward the outdoor heat exchanger 2 and a case where the refrigerant is circulated toward the indoor heat exchanger 3.
[0015]
The internal heat exchanger 6 includes a first refrigerant passage 6a through which refrigerant flowing from the accumulator 5 toward the suction side of the compressor 1 flows, and a refrigerant passage 6b adjacent to the first refrigerant passage 6a. It is composed of a heavy cylinder. For this reason, heat exchange is performed between the refrigerant flowing through the first refrigerant passage 6a (the refrigerant existing between the accumulator 5 and the compressor 1) and the refrigerant flowing through the second refrigerant passage 6b.
[0016]
Incidentally, 8 is an indoor blower that blows air toward the indoor heat exchanger, 9 is an outdoor blower that blows air toward the outdoor heat exchanger 2, and both the blowers 8, 9 and the switching valve 7 are: It is controlled by an electronic control device (not shown).
Next, the operation of the heat pump cycle according to this embodiment will be described.
1. During cooling operation (see Fig. 1)
The switching valve 7 is operated so that the refrigerant discharged from the compressor 1 flows toward the outdoor heat exchanger 2.
[0017]
Thereby, the refrigerant discharged from the compressor 1 is changed over to the switching valve 7, the outdoor heat exchanger 2, the internal heat exchanger 6, the decompressor 4, the indoor heat exchanger 3, the switching valve 7, the accumulator 5, and the internal heat exchanger 6. In this order, the air is sucked into the compressor 1 through these devices and discharged again toward the outdoor heat exchanger 2. Accordingly, the indoor heat exchanger 3 takes away latent heat of evaporation from the indoor air, the refrigerant evaporates to cool the indoor air, and the heat taken away from the indoor air is radiated into the outdoor air by the outdoor heat exchanger 2. The
[0018]
At this time, since the high-pressure refrigerant before being decompressed by the decompressor 4 in the internal heat exchanger 6 and the low-pressure refrigerant sucked into the compressor 1 are heat-exchanged, ABCD in FIG. As shown in FIG. 5, the specific enthalpy of the refrigerant on the inlet side of the indoor heat exchanger 3 is reduced by δQ as compared with the case where heat exchange is not performed in the internal heat exchanger 6. Therefore, the specific enthalpy difference between the inlet and outlet of the indoor heat exchanger 3 is increased by δQ compared to the case where heat exchange is not performed in the internal heat exchanger 6, so that the refrigerating capacity and efficiency (coefficient of performance) are increased. improves. Incidentally, abcd in FIG. 2 is a diagram showing the cycle behavior when the internal heat exchanger 6 is not provided.
[0019]
Further, since the accumulator 5 is provided on the suction side of the compressor 1, the liquid phase refrigerant is prevented from being sucked into the compressor 1.
In addition, the opening degree of the decompressor 4 is the refrigerant temperature at the outlet side of the outdoor heat exchanger 2 so that the coefficient of performance of the heat pump cycle (refrigeration cycle) is maximized as described in Japanese Patent Application No. 8-33962. Adjusted based on.
[0020]
2. During heating operation (see Fig. 3)
The switching valve 7 is operated so that the refrigerant discharged from the compressor 1 flows toward the indoor heat exchanger 3.
Thereby, the refrigerant discharged from the compressor 1 is changed over to the switching valve 7, the indoor heat exchanger 3, the decompressor 4, the internal heat exchanger 6, the outdoor indoor heat exchanger 2, the switching valve 7, the accumulator 5, and the internal heat exchanger. The air is sucked into the compressor 1 via these devices in the order of 6 and discharged again toward the indoor heat exchanger 3. Therefore, the refrigerant evaporates by absorbing the latent heat of evaporation from the outdoor air in the outdoor heat exchanger 2, and the heat absorbed from the outdoor air is radiated into the indoor air by the indoor heat exchanger 3.
[0021]
At this time, the refrigerant after being decompressed by the decompressor 4 changes its phase at a constant temperature and pressure, as shown by da in FIG. 4, so that both the refrigerant passages 6 a and 6 b of the internal heat exchanger 6 are passed through. The temperature and pressure of the circulating refrigerant become equal. Therefore, heat exchange is not substantially performed between the refrigerant flowing out from the decompressor 4 and the refrigerant flowing out from the accumulator 5, so that the high-pressure refrigerant before being decompressed by the decompressor 4 and the compressor 1 are sucked into the compressor 1. Heat exchange with the low-pressure refrigerant is not performed.
[0022]
Note that the opening of the decompressor 4 is adjusted based on the refrigerant temperature on the outlet side of the indoor heat exchanger 3 so that the coefficient of performance of the heat pump cycle is maximized, as in the cooling operation.
Next, features of the present embodiment will be described.
According to the present embodiment, during the heating operation, heat exchange is not performed in the internal heat exchanger 6, and heat exchange between the high-pressure refrigerant before being decompressed by the decompressor 4 and the low-pressure refrigerant sucked into the compressor 1 is not performed. Therefore, it is possible to prevent the temperature of the high-pressure refrigerant discharged from the compressor 1 from rising excessively.
[0023]
Therefore, the temperature of the high-pressure refrigerant can be prevented from exceeding the heat resistance temperature of the lubricating oil mixed in the refrigerant, so that the lubricating oil mixed in the refrigerant can be prevented from being decomposed or denatured. 1 can be prevented from being damaged.
(Second Embodiment)
In this embodiment, in addition to the cooling operation and the heating operation, a dehumidifying operation can be performed.
[0024]
That is, in this embodiment, as shown in FIG. 5, the indoor air blown into the room on the downstream side of the air flow from the indoor heat exchanger 3 (hereinafter, this indoor heat exchanger is referred to as the first indoor heat exchanger 3). The second indoor heat exchanger 10 that exchanges heat between the air and the refrigerant is provided, and the second decompressor 11 that decompresses the refrigerant in the refrigerant passage that connects the second indoor heat exchanger 10 and the outdoor heat exchanger 2. Is provided. Hereinafter, the decompressor 4 is referred to as a first decompressor 4.
[0025]
Incidentally, 12 is a check valve that allows the refrigerant to flow only in one direction (in this embodiment, only flows toward the outdoor heat exchanger 2), and 13 is an electromagnetic valve that opens and closes the refrigerant passage. is there.
Further, the switching valve 7 according to the present embodiment switches between a case where the refrigerant discharged from the compressor 1 is circulated toward the outdoor heat exchanger 2 and a case where the refrigerant is circulated toward the second indoor heat exchanger 10.
[0026]
Next, the operation of this embodiment will be described.
1. During cooling operation (see Fig. 5)
The switching valve 7 is operated and the electromagnetic valve 13 is closed so that the refrigerant discharged from the compressor 1 flows toward the outdoor heat exchanger 2.
Thereby, the refrigerant discharged from the compressor 1 is changed over to the switching valve 7, the outdoor heat exchanger 2, the internal heat exchanger 6, the first decompressor 4, the first indoor indoor heat exchanger 3, the accumulator 5, and the internal heat exchanger. The air is sucked into the compressor 1 via these devices in the order of 6 and discharged again toward the outdoor heat exchanger 2. Therefore, the first indoor heat exchanger 3 takes away latent heat of evaporation from the indoor air, the refrigerant evaporates to cool the indoor air, and the heat taken from the indoor air is transferred into the outdoor air by the outdoor heat exchanger 2. While radiating heat, the internal heat exchanger 6 exchanges heat between the high-pressure refrigerant and the low-pressure refrigerant.
[0027]
2. During heating operation (see Fig. 6)
The switching valve 7 is operated so that the refrigerant discharged from the compressor 1 flows toward the second indoor heat exchanger 10, the first decompressor 4 is fully closed, and the electromagnetic valve 10 is opened.
Thereby, the refrigerant discharged from the compressor 1 is changed over to the switching valve 7, the second indoor heat exchanger 10, the second decompressor 11, the outdoor heat exchanger 2, the internal heat exchanger 6, the accumulator 5, and the internal heat exchanger 6. In this order, the air is sucked into the compressor 1 via these devices and discharged again toward the second indoor heat exchanger 10. The refrigerant is decompressed by the second decompressor 11.
[0028]
Therefore, the refrigerant evaporates by absorbing the latent heat of evaporation from the outdoor air in the outdoor heat exchanger 2, and the heat absorbed from the outdoor air is radiated into the indoor air by the second indoor heat exchanger 10.
Moreover, since the refrigerant decompressed by the second decompressor 11 flows into the internal heat exchanger 6, the internal heat exchanger 6 does not substantially perform heat exchange.
[0029]
3. During the first dehumidifying operation (see FIG. 7)
The switching valve 7 is operated so that the refrigerant discharged from the compressor 1 flows toward the second indoor heat exchanger 10, the second pressure reducing valve 11 is fully opened, and the electromagnetic valve 13 is closed.
Thereby, the refrigerant discharged from the compressor 1 is changed over to the switching valve 7, the second indoor heat exchanger 10, the second decompressor 11, the outdoor heat exchanger 2, the internal heat exchanger 6, the first decompressor 4, and the first. The indoor heat exchanger 3, the accumulator 5, and the internal heat exchanger 6 are sucked into the compressor 1 through these devices in this order, and discharged again toward the second indoor heat exchanger 10. Note that the decompression of the refrigerant is performed by the first decompressor 4.
[0030]
Therefore, the first indoor heat exchanger 3 takes away latent heat of evaporation from the room air, and the refrigerant evaporates to cool the room air. A part of the heat taken from the indoor air is radiated into the indoor air by the second indoor heat exchanger 10, and the other heat is radiated into the outdoor air by the outdoor heat exchanger 2.
In the first dehumidifying operation, heat exchange is performed between the high-pressure refrigerant and the low-pressure refrigerant in the internal heat exchanger 6 and the refrigerant sucked into the compressor 1 is heated. In addition to radiating heat to the two heat exchangers (the second indoor heat exchanger 10 and the outdoor heat exchanger 2), the first dehumidifying operation does not require a large heating capacity, and the pressure of the high-pressure refrigerant is heated. Since the temperature is not as high as during operation, the temperature of the refrigerant sucked into the compressor 1 does not increase greatly. Therefore, the temperature of the high-pressure refrigerant does not rise above the heat resistance temperature of the lubricating oil.
[0031]
4). During the second dehumidifying operation (see FIG. 8)
The switching valve 7 is operated so that the refrigerant discharged from the compressor 1 flows toward the second indoor heat exchanger 10, the first decompressor 4 is fully opened, and the electromagnetic valve 13 is closed.
Thereby, the refrigerant discharged from the compressor 1 is changed over to the switching valve 7, the second indoor heat exchanger 10, the second decompressor 11, the outdoor heat exchanger 2, the internal heat exchanger 6, the first decompressor 4, and the first. The indoor heat exchanger 3, the accumulator 5, and the internal heat exchanger 6 are sucked into the compressor 1 through these devices in this order, and discharged again toward the second indoor heat exchanger 10. The refrigerant is decompressed by the second decompressor 11.
[0032]
Therefore, the first indoor heat exchanger 3 takes away latent heat of evaporation from the room air, and the refrigerant evaporates to cool the room air. Furthermore, the outdoor heat exchanger 2 absorbs heat from the outdoor air, and the heat absorbed by the second indoor heat exchanger 10 is radiated toward the indoor air. Moreover, since the refrigerant decompressed by the second decompressor 11 flows into the internal heat exchanger 6, the internal heat exchanger 6 does not substantially perform heat exchange.
[0033]
(Third embodiment)
In the second embodiment, the two indoor heat exchangers 3 and 10 are used only during the first and second dehumidifying operations. However, in the present embodiment, as shown in FIG. The heat exchangers 3 and 10 are provided in a refrigerant passage connecting the heat exchangers 3 and 10 so that the indoor heat exchangers 3 and 10 are used even during the cooling operation and the heating operation.
[0034]
The operation of this embodiment will be described below.
1. During cooling operation (see Fig. 9)
The switching valve 7 is operated so that the refrigerant discharged from the compressor 1 flows toward the outdoor heat exchanger 2, and the second decompressor 11 is fully opened.
Thereby, the refrigerant discharged from the compressor 1 is changed over to the switching valve 7, the outdoor heat exchanger 2, the internal heat exchanger 6, the first decompressor 4, the first indoor heat exchanger 3, the second decompressor 11, and the second. The indoor heat exchanger 10, the switching valve 7, the accumulator 5, and the internal heat exchanger 6 are sequentially sucked into the compressor 1 through these devices, and discharged again toward the outdoor heat exchanger 2. Note that the decompression of the refrigerant is performed by the first decompressor 4.
[0035]
Accordingly, the first and second indoor heat exchangers 3 and 10 take away the latent heat of evaporation from the indoor air, the refrigerant evaporates to cool the indoor air, and the heat taken from the indoor air is transferred to the outdoor heat exchanger 2. While being radiated into the outdoor air, the internal heat exchanger 6 exchanges heat between the high-pressure refrigerant and the low-pressure refrigerant.
2. During heating operation (see Fig. 10)
The switching valve 7 is operated so that the refrigerant discharged from the compressor 1 flows toward the second indoor heat exchanger 10, and the second decompressor 11 is fully closed.
[0036]
Thereby, the refrigerant discharged from the compressor 1 is changed over to the switching valve 7, the second indoor heat exchanger 10, the second decompressor 11, the first indoor heat exchanger 3, the first decompressor 4, the internal heat exchanger 6, The outdoor heat exchanger 2, the switching valve 7, the accumulator 5, and the internal heat exchanger 6 are sucked into the compressor 1 through these devices in this order, and discharged again toward the second indoor heat exchanger 10. Note that the decompression of the refrigerant is performed by the first decompressor 4.
[0037]
Therefore, the refrigerant evaporates by absorbing the latent heat of evaporation from the outdoor air in the outdoor heat exchanger 2, and the heat absorbed from the outdoor air is radiated into the indoor air by the first and second indoor heat exchangers 3 and 10. Is done.
Further, since the refrigerant depressurized by the first pressure reducer 4 flows into the internal heat exchanger 6, the internal heat exchanger 6 does not substantially perform heat exchange.
[0038]
3. During dehumidifying operation (see Fig. 11)
The switching valve 7 is operated and the first decompressor 4 is fully opened so that the refrigerant discharged from the compressor 1 flows toward the second indoor heat exchanger 10.
Thereby, the refrigerant discharged from the compressor 1 is changed over to the switching valve 7, the second indoor heat exchanger 10, the second decompressor 11, the first indoor heat exchanger 3, the first decompressor 4, the internal heat exchanger 6, The outdoor heat exchanger 2, the switching valve 7, the accumulator 5, and the internal heat exchanger 6 are sucked into the compressor 1 via these devices in this order, and discharged again toward the indoor heat exchanger 3. The refrigerant is decompressed by the second decompressor 11.
[0039]
Therefore, the first indoor heat exchanger 3 and the outdoor heat exchanger 2 absorb the latent heat of vaporization from the air to evaporate the refrigerant, and the absorbed heat is absorbed in the indoor air by the second indoor heat exchanger 10. Heat is dissipated.
Incidentally, when the temperature of the outdoor air is lower than the refrigerant temperature, the outdoor heat exchanger 2 does not absorb heat and the heat of the refrigerant is radiated into the outside air.
[0040]
By the way, in the above-mentioned embodiment, although the heat pump cycle which concerns on this invention was demonstrated to the example of the air conditioner, this invention is not limited to this, It can apply also to another heat pump cycle.
In the above-described embodiment, the heat pump cycle uses carbon dioxide as a refrigerant. However, the present invention is not limited to this. For example, a refrigerant used in a supercritical region such as ethylene, ethane, or nitrogen oxide. It can also be applied to a heat pump cycle using
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a heat pump cycle according to a first embodiment.
FIG. 2 is a cycle diagram of a heat pump cycle during cooling operation.
FIG. 3 is a schematic diagram of a heat pump cycle according to the first embodiment.
FIG. 4 is a cycle diagram of a heat pump cycle during heating operation.
FIG. 5 is a schematic diagram of a heat pump cycle according to a second embodiment during cooling operation.
FIG. 6 is a schematic diagram of a heat pump cycle according to a second embodiment during a heating operation.
FIG. 7 is a schematic diagram of a heat pump cycle according to a second embodiment during a first dehumidifying operation.
FIG. 8 is a schematic diagram of a heat pump cycle according to a second embodiment during a second dehumidifying operation.
FIG. 9 is a schematic diagram of a heat pump cycle according to a third embodiment during cooling operation.
FIG. 10 is a schematic diagram of a heat pump cycle according to a second embodiment during heating operation.
FIG. 11 is a schematic diagram of a heat pump cycle according to a second embodiment during a dehumidifying operation.
FIG. 12 is a graph showing the relationship between the saturation temperature in the evaporator and the discharge temperature.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Outdoor heat exchanger, 3 ... Indoor heat exchanger, 4 ... Decompressor,
5 ... Accumulator, 6 ... Internal heat exchanger, 7 ... Switching valve.

Claims (1)

冷媒として二酸化炭素を用いる冷暖房切換可能なヒートポンプサイクルであって、
前記冷媒を吸入し、その吸入した冷媒を冷媒の臨界圧力以上まで圧縮する圧縮機(1)と、
室外空気と冷媒との間で熱交換を行う室外熱交換器(2)と、
室内に吹き出す室内空気と冷媒との間で熱交換を行う室内熱交換器(3)と、
前記室内熱交換器(3)と前記室外熱交換器(2)とを結ぶ冷媒通路に設けられ、冷媒を減圧する減圧器(4)と、
前記圧縮機(1)の吸入側に設けられ、冷媒を気相冷媒と液相冷媒とに分離するとともに、気相冷媒を前記圧縮機(1)の吸入側に向けて流出させるアキュムレータ(5)と、
前記アキュムレータ(5)から前記圧縮機(1)の吸入側に向かって流通する冷媒が流通する第1冷媒通路(6a)、及び前記第1冷媒通路(6a)に隣接する第2冷媒通路(6b)を有し、前記両冷媒通路(6a、6b)間で熱交換を行う内部熱交換器(6)と、
冷房運転時には前記室外熱交換器(2)が高圧冷媒の放熱側となるとともに前記室内熱交換器(3)が低圧冷媒の吸熱側となり、これに対し、暖房運転時には前記室内熱交換器(3)が高圧冷媒の放熱側となるとともに前記室外熱交換器(2)が低圧冷媒の吸熱側となるように冷媒流れを切り換える切換弁(7)とを備え、
前記暖房運転を外気温が低いときに行うと、前記暖房運転時の低圧冷媒の圧力が前記冷房運転時よりも低くなって、前記暖房運転時の圧縮比が前記冷房運転時よりも大きくなり、これにより、前記暖房運転時に前記圧縮機(1)から吐出する高圧冷媒の温度が前記冷房運転時よりも高くなる超臨界冷凍サイクルであり、
前記冷房運転時には、前記第2冷媒通路(6b)に前記減圧器(4)にて減圧される前の高圧冷媒を流通させ、前記暖房運転時には、前記第2冷媒通路(6b)に前記減圧器(4)にて減圧された後の低圧冷媒を流通させることにより、前記内部熱交換器(6)にて前記高圧冷媒と前記低圧冷媒とを熱交換させないようになっており、
前記暖房運転時には、前記高圧冷媒の温度が冷媒中に混合される潤滑油の耐熱温度を越えない温度範囲に維持されることを特徴とするヒートポンプサイクル。
A heat pump cycle capable of switching between heating and cooling using carbon dioxide as a refrigerant ,
Sucks the refrigerant, the compressor compresses the sucked refrigerant to a critical pressure or higher of the refrigerant (1),
An outdoor heat exchanger (2) for exchanging heat between the outdoor air and the refrigerant;
An indoor heat exchanger (3) for exchanging heat between indoor air blown into the room and the refrigerant;
A decompressor (4) provided in a refrigerant passage connecting the indoor heat exchanger (3) and the outdoor heat exchanger (2), and decompressing the refrigerant;
An accumulator (5) that is provided on the suction side of the compressor (1) and separates the refrigerant into a gas phase refrigerant and a liquid phase refrigerant, and causes the gas phase refrigerant to flow out toward the suction side of the compressor (1). When,
A first refrigerant passage (6a) through which refrigerant flows from the accumulator (5) toward the suction side of the compressor (1), and a second refrigerant passage (6b) adjacent to the first refrigerant passage (6a) ) has said the two refrigerant passage (6a, 6b) internal heat exchanger for exchanging heat between (6),
In the cooling operation, the outdoor heat exchanger (2) is on the heat dissipation side of the high-pressure refrigerant and the indoor heat exchanger (3) is on the heat absorption side of the low-pressure refrigerant, whereas in the heating operation, the indoor heat exchanger (3 And a switching valve (7) for switching the refrigerant flow so that the outdoor heat exchanger (2) is on the heat absorption side of the low pressure refrigerant
When the heating operation is performed when the outside air temperature is low, the pressure of the low-pressure refrigerant during the heating operation is lower than during the cooling operation, and the compression ratio during the heating operation is greater than during the cooling operation, This is a supercritical refrigeration cycle in which the temperature of the high-pressure refrigerant discharged from the compressor (1) during the heating operation is higher than during the cooling operation,
The cooling In operation, the said pressure reducer in the second refrigerant passage (6b) (4) is passed through the high-pressure refrigerant before being decompressed by the during the heating operation, the pressure reducer in the second refrigerant passage (6b) By circulating the low-pressure refrigerant after being depressurized in (4), the high-pressure refrigerant and the low-pressure refrigerant are not exchanged in the internal heat exchanger (6),
During the heating operation , the heat pump cycle is characterized in that the temperature of the high-pressure refrigerant is maintained in a temperature range that does not exceed the heat resistance temperature of the lubricating oil mixed in the refrigerant .
JP30876698A 1998-10-29 1998-10-29 Heat pump cycle Expired - Fee Related JP4239256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30876698A JP4239256B2 (en) 1998-10-29 1998-10-29 Heat pump cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30876698A JP4239256B2 (en) 1998-10-29 1998-10-29 Heat pump cycle

Publications (2)

Publication Number Publication Date
JP2000130878A JP2000130878A (en) 2000-05-12
JP4239256B2 true JP4239256B2 (en) 2009-03-18

Family

ID=17985049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30876698A Expired - Fee Related JP4239256B2 (en) 1998-10-29 1998-10-29 Heat pump cycle

Country Status (1)

Country Link
JP (1) JP4239256B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195677A (en) * 2000-10-20 2002-07-10 Denso Corp Heat pump cycle
JP2006250492A (en) * 2005-03-14 2006-09-21 Calsonic Kansei Corp Vehicular air conditioning system
JP2008533424A (en) * 2005-03-18 2008-08-21 キャリア・コマーシャル・リフリージレーション・インコーポレーテッド Heat exchanger configuration

Also Published As

Publication number Publication date
JP2000130878A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP4639541B2 (en) Cycle using ejector
JP4016659B2 (en) Air conditioner
EP1489367B1 (en) Refrigerating cycle device
US7461517B2 (en) Refrigerant cycle unit
JP5025605B2 (en) Refrigeration cycle apparatus and air conditioner
KR20090038889A (en) Air conditioning system
US20060070391A1 (en) Air-conditioner having a dual-refrigerant cycle
JP2012180963A (en) Refrigeration cycle
JPH11142007A (en) Refrigerating cycle
JP4989420B2 (en) Air conditioner
KR20050072299A (en) Cooling and heating air conditioning system
JP3303443B2 (en) Air conditioner
JP2001235245A (en) Freezer
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
WO2024078085A1 (en) Heat exchange system, and heat pump apparatus
JP4239256B2 (en) Heat pump cycle
KR100528292B1 (en) Heat-pump type air conditioner
JP4084915B2 (en) Refrigeration system
JP2003287294A (en) Operating method of refrigeration cycle device
JP2004098974A (en) Air conditioner for vehicle
JP2004177064A (en) Air conditioner
KR100688166B1 (en) Air conditioner
KR100248719B1 (en) Cooling cycle and heating cycle
KR100512037B1 (en) Air conditioner
KR100403017B1 (en) An inverter cooling device and process of heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees