JP4238693B2 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP4238693B2
JP4238693B2 JP2003358308A JP2003358308A JP4238693B2 JP 4238693 B2 JP4238693 B2 JP 4238693B2 JP 2003358308 A JP2003358308 A JP 2003358308A JP 2003358308 A JP2003358308 A JP 2003358308A JP 4238693 B2 JP4238693 B2 JP 4238693B2
Authority
JP
Japan
Prior art keywords
holding member
sealing member
optical device
sealing
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003358308A
Other languages
Japanese (ja)
Other versions
JP2005123477A5 (en
JP2005123477A (en
Inventor
好伸 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2003358308A priority Critical patent/JP4238693B2/en
Priority to US10/891,422 priority patent/US7391153B2/en
Priority to DE102004063978.7A priority patent/DE102004063978B4/en
Priority to DE102004034166.4A priority patent/DE102004034166B4/en
Priority to CNB2004100712619A priority patent/CN100472820C/en
Priority to CN2009100096747A priority patent/CN101476710B/en
Publication of JP2005123477A publication Critical patent/JP2005123477A/en
Publication of JP2005123477A5 publication Critical patent/JP2005123477A5/ja
Application granted granted Critical
Publication of JP4238693B2 publication Critical patent/JP4238693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、光デバイスに関し、特に、発光素子の高出力化に対して、耐熱性、長期信頼性に優れるガラス材でLED素子を封止するようにした光デバイスに関する。   The present invention relates to an optical device, and more particularly to an optical device in which an LED element is sealed with a glass material that has excellent heat resistance and long-term reliability with respect to higher output of a light emitting element.

近年、高出力のLED(Light-Emitting Diode:発光ダイオード)の開発が進められており、すでに数ワットの大出力タイプも製品化されている。LEDは発熱の少ないことが特徴であるが、高出力(高輝度)タイプのLED素子は大電流が流れるため、無視できないレベルの発熱が生じる。   In recent years, high-power LEDs (Light-Emitting Diodes) have been developed, and a high-power type of several watts has already been commercialized. LEDs are characterized by low heat generation, but high power (high brightness) type LED elements generate a large amount of current, and therefore generate heat that cannot be ignored.

従来、LED素子には高出力型がなく、従って特に放熱対策はとられておらず、リード部分から放熱させることで済んでいた。そして、発熱が問題になる場合には、LED素子を搭載している部材の下面に銅製の放熱板を取り付けるなどの対策が取られていた(例えば、特許文献1参照。)。   Conventionally, the LED element does not have a high output type, and therefore, no special heat dissipation measures are taken, and it is only necessary to dissipate heat from the lead portion. And when heat_generation | fever becomes a problem, measures, such as attaching a copper heat sink to the lower surface of the member which mounts the LED element, were taken (for example, refer patent document 1).

特許文献1のLEDパッケージでは、ヒートシンクとなるスラグがインサートモールドされると共に成形された埋め込みプラスチック材料を有するリードフレームに挿入される。スラグには、熱伝導性に優れる副基台を介して発光ダイオードダイ(LEDダイ)が直接的又は間接的に取り付けられ、LEDダイにはLEDが実装される。LED及び発光ダイオードダイとリードフレームとの間は、ワイヤによって接続される。LEDは光学的に透明なレンズおよびカプセル材によって覆われている。   In the LED package of Patent Document 1, a slag to be a heat sink is insert-molded and inserted into a lead frame having a molded plastic material. A light emitting diode die (LED die) is directly or indirectly attached to the slag via a sub-base having excellent thermal conductivity, and the LED is mounted on the LED die. The LED and light emitting diode die and the lead frame are connected by wires. The LED is covered with an optically transparent lens and encapsulant.

このような構成にすることで、LEDダイはスラグに熱的に結合されているため、LEDダイは従来のパッケージよりも低い接合温度に維持される。温度が低くなることで、LEDダイは大きな熱応力を受けることがなくなり、大電力動作における信頼性及び良好な特性を維持することができる。
特開2000−150967号公報([0008]、図2)
With this configuration, the LED die is thermally bonded to the slug, so that the LED die is maintained at a lower junction temperature than the conventional package. By lowering the temperature, the LED die is not subjected to large thermal stress, and the reliability and good characteristics in high power operation can be maintained.
Japanese Patent Laid-Open No. 2000-150967 ([0008], FIG. 2)

しかし、従来の発光装置によると、以下のような問題がある。
(1)保持部材に対し封止部材を直接接着、あるいは保持するものでないため、2次的な保持材料(例えば、埋め込みプラスチック材料)が必要になり、部品点数が増加するとともにコンパクトなパッケージを実現することができない。
(2)また、2次的な保持材料が樹脂で形成されているため、鉛フリーのリフロー炉対応の耐熱性がない。
However, the conventional light emitting device has the following problems.
(1) Since the sealing member is not directly bonded to or held by the holding member, a secondary holding material (for example, embedded plastic material) is required, increasing the number of parts and realizing a compact package. Can not do it.
(2) Moreover, since the secondary holding material is formed of resin, it does not have heat resistance corresponding to a lead-free reflow furnace.

一方、耐久性及び耐熱性に優れる材料としてはガラス材があるが、ガラスを用いて封止する場合、加熱加工に耐える耐熱性が要求される。また、ガラス材は、高温で加工されるため、接着される部材によっては封止時に熱膨張収縮の差に基づく界面剥離が発生し易くなる。   On the other hand, there is a glass material as a material excellent in durability and heat resistance. However, when sealing with glass, heat resistance to withstand heat processing is required. Further, since the glass material is processed at a high temperature, depending on the member to be bonded, interfacial peeling is likely to occur due to a difference in thermal expansion and contraction during sealing.

従って、本発明の目的は、耐熱性、耐光性を有するとともに熱膨張収縮によって破壊することのない光デバイスを提供することにある。   Accordingly, an object of the present invention is to provide an optical device that has heat resistance and light resistance and is not destroyed by thermal expansion and contraction.

本発明は、上記の目的を達成するため、光学素子と、前記光学素子を搭載し、熱膨張率が前記光学素子に対して同等であり、前記光学素子を搭載する面の面積が前記光学素子の2倍以下の素子マウント部と、前記素子マウント部を嵌合するための孔を備え、前記素子マウント部より熱膨張率の大なる保持部材と、前記光学素子を封止するとともに対象波長に対して透光性を有し、ガラス材で形成される封止部材とを有し、前記素子マウント部は、前記光学素子を搭載する面が前記封止部材側に前記保持部材の前記孔から露出するように配置され、前記保持部材と前記封止部材とが接合され、前記保持部材と前記封止部材との熱膨張率の差が、前記保持部材の熱膨張率に対して15%以内であることを特徴とする光デバイスを提供する。 In order to achieve the above object, the present invention mounts an optical element and the optical element, and has a thermal expansion coefficient equivalent to that of the optical element, and an area of the surface on which the optical element is mounted is the optical element. and 2 times or less of the element mount portion of provided with a hole for fitting the element mount portion, and a large consisting holding member of the element mounting portion by Rinetsu expansion rate, wavelength of interest as well as sealing the optical element have a light-transmitting property with respect to, and a sealing member formed of a glass material, the element mount portion, the hole of the holding member surface for mounting the optical element on the sealing member side The holding member and the sealing member are joined to each other, and the difference in thermal expansion coefficient between the holding member and the sealing member is 15 with respect to the thermal expansion coefficient of the holding member. An optical device characterized by being within% is provided.

前記光学素子は、複数であり、The optical element is plural,
前記素子マウント部は、複数の前記光学素子ごとに設けられ、互いに島状に配置されていてもよい。The element mount portion may be provided for each of the plurality of optical elements and may be arranged in an island shape.

記封止部材は、前記光学素子及びその周囲を封止する第1の封止部材と、前記第1の封止部材及び前記保持部材の上面の露出面を封止する第2の封止部材とを備え、
前記第1の封止部材は、前記素子マウント部と前記第2の封止部材との中間の熱膨張率を有することが好ましい。
Before Kifu stop member, the second sealing for sealing the first sealing member for sealing the optical element and the periphery thereof, the exposed surface of the upper surface of the first sealing member and the retaining member With members,
It said first sealing member, it is preferable to have a thermal expansion coefficient intermediate between the second sealing member and the element mounting portion.

前記素子マウント部は、前記保持部材と凹凸嵌合可能な断面凸状に形成されていることが好ましい。 It is preferable that the element mount portion is formed in a convex cross section that can be engaged with the holding member.

前記保持部材は、セラミック材料で形成されていても良い。   The holding member may be made of a ceramic material.

前記保持部材は、ガラス含有のAl23材料で形成されていても良い。 The holding member may be formed of a glass-containing Al 2 O 3 material.

前記保持部材は、配線パターンを断面内に積層した多層基板であっても良い。   The holding member may be a multilayer board in which wiring patterns are laminated in a cross section.

前記光学素子は、発光素子であっても良い。   The optical element may be a light emitting element.

前記光学素子は、フリップチップ接合されるものであっても良い。   The optical element may be flip-chip bonded.

前記光学素子は、フェイスアップタイプの発光素子であり、前記発光素子と電気的に接続されるワイヤとともに耐熱性材料によって覆われているものであっても良い。   The optical element is a face-up type light emitting element, and may be covered with a heat resistant material together with a wire electrically connected to the light emitting element.

前記素子マウント部は、底面に放熱部を有していても良い。 The element mount portion may have a heat radiating portion on the bottom surface.

本発明の光デバイスによれば、光学素子と素子マウント部材の熱膨張率を同等として、光学素子および素子マウント部材の箇所での温度差によるストレスを低減するようにしたため、デバイス製造時の加工温度やリフロー炉雰囲気温度、あるいは使用に伴って生じる発熱に起因する熱膨張収縮による光学素子への応力ダメージが生じないものとした。そして、更に保持部材と封止部材との熱膨張率を同等とし、保持部材の貫通孔に素子マウント部材を嵌入して保持する構成であるとともに、素子マウント部材のLED素子をマウントする面は略LED素子サイズとしてあるため、ガラス加工時の高温状態と常温状態の温度差によって生じるストレスを、接触面積が広く、直線距離も長い保持部材と封止部材との間は低く抑え、剥離やクラックが生じないものとすることにより、ガラス封止を可能とし、対象とする波長の光に対する耐光性、耐熱性を確保できるとともにコンパクトなパッケージが実現できる。   According to the optical device of the present invention, the thermal expansion coefficients of the optical element and the element mount member are made equal, and the stress due to the temperature difference at the location of the optical element and the element mount member is reduced. In addition, stress damage to the optical element due to thermal expansion and contraction caused by the atmospheric temperature of the reflow furnace or the heat generated by use was not caused. Further, the holding member and the sealing member have the same thermal expansion coefficient, and the element mounting member is inserted and held in the through hole of the holding member, and the surface of the element mounting member for mounting the LED element is substantially the same. Due to the LED element size, the stress caused by the temperature difference between the high temperature state and the normal temperature state during glass processing is kept low between the holding member and the sealing member with a wide contact area and a long linear distance, and peeling and cracking are not caused. When it does not occur, glass sealing is possible, and light resistance and heat resistance with respect to light of a target wavelength can be secured and a compact package can be realized.

図1は、本発明の第1の実施の形態に係る光デバイスの構成を示す図であり、(a)は平面図、(b)はA−A断面図である。この発光装置1は、LED素子11と、このLED素子11が搭載される素子マウント部12と、この素子マウント部12を貫通孔部分に搭載する保持部材13と、素子マウント部12及びその周囲の保持部材13を封止する封止部材14(ガラス封止部)とを備えて構成される。   1A and 1B are diagrams showing a configuration of an optical device according to a first embodiment of the present invention, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA. The light emitting device 1 includes an LED element 11, an element mount portion 12 on which the LED element 11 is mounted, a holding member 13 for mounting the element mount portion 12 on a through-hole portion, an element mount portion 12 and its surroundings. A sealing member 14 (glass sealing portion) that seals the holding member 13 is provided.

LED素子11は、GaN、AlInGaP等の材料(熱膨張率4〜6×10-6/℃)を用いて作られた高出力型であり、下面には保持部材12の配線層との接続に用いられる電極11a(又は半田バンプ)が設けられたフリップチップ型である。 The LED element 11 is a high output type made of a material such as GaN or AlInGaP (thermal expansion coefficient 4-6 × 10 −6 / ° C.), and the lower surface is connected to the wiring layer of the holding member 12. The flip chip type is provided with the electrode 11a (or solder bump) to be used.

素子マウント部12は、LED素子11と同等の熱膨張率を有する材料、例えば、Al23(酸化アルミニウム:熱膨張率7×10-6/℃)が用いられる。そして、素子マウント部12の上面(保持部材13から露出する部分)の面積は、LED素子11の2倍以下、好ましくは同程度とする。素子マウント部12は、その上面から側面に及ぶように配線層12a,12bが形成されており、LED素子11の電極11aとの接続が行われる。また、保持部材12は、必要に応じて素子破壊防止用のツェナーダイオード等を内蔵することができる。 The element mount portion 12 is made of a material having a thermal expansion coefficient equivalent to that of the LED element 11, for example, Al 2 O 3 (aluminum oxide: thermal expansion coefficient 7 × 10 −6 / ° C.). The area of the upper surface of the element mount portion 12 (the portion exposed from the holding member 13) is not more than twice that of the LED element 11, and preferably about the same. The element mount portion 12 is formed with wiring layers 12a and 12b extending from the upper surface to the side surface, and is connected to the electrode 11a of the LED element 11. Further, the holding member 12 can incorporate a zener diode or the like for preventing element destruction as required.

保持部材13は、セラミックである、ガラス含有のAl23(熱膨張率13×10-6/℃)が用いられ、所定位置には素子マウント部12を嵌入するための貫通孔が形成されている。この貫通孔には、保持部材13の上面、貫通孔内の側面及び保持部材13の下面にかけて、配線層12a,12bに接続される配線層13a,13bが形成されている。 The holding member 13 is made of ceramic, glass-containing Al 2 O 3 (thermal expansion coefficient 13 × 10 −6 / ° C.), and a through-hole for inserting the element mount 12 is formed at a predetermined position. ing. Wiring layers 13 a and 13 b connected to the wiring layers 12 a and 12 b are formed in the through hole over the upper surface of the holding member 13, the side surface in the through hole, and the lower surface of the holding member 13.

封止部材14は、保持部材13と同等の熱膨張率(保持部材13の熱膨張率に対する保持部材13と封止部材14との熱膨張率の差が15%以内)の透光性の低融点ガラス(熱膨張率11×10-6/℃)を用いる。なお、低融点ガラスは、一般のガラスに対して熱膨張率が大きい。また、低融点ガラスを用いなければ、LED素子11は加工時に熱的なダメージを受ける。 The sealing member 14 has a low coefficient of thermal expansion that is equivalent to that of the holding member 13 (the difference between the thermal expansion coefficients of the holding member 13 and the sealing member 14 with respect to the thermal expansion coefficient of the holding member 13 is within 15%). Melting glass (thermal expansion coefficient 11 × 10 −6 / ° C.) is used. The low melting point glass has a larger coefficient of thermal expansion than general glass. Moreover, if low melting glass is not used, the LED element 11 is thermally damaged during processing.

次に、発光装置1の製造工程について説明する。   Next, the manufacturing process of the light emitting device 1 will be described.

素子マウント部12には、別工程により、予め配線層12a,12bが形成され、また、LED素子11には電極11aが予め形成されているものとする。まず、保持部材13の所定の位置に素子マウント部12を嵌合可能な貫通孔を形成し、次に、貫通孔を通して配線層13a,13bが形成される。次に、保持部材13の貫通孔内に、素子マウント部12を嵌入する。このとき、配線層12a,12bと配線層13a,13bが向き合うようにし、ろう材(Au−Si系)を介して嵌入する。この状態のまま、400℃以上の温度雰囲気に置き、配線層間のろう材を溶融させることによって素子マウント部12を保持部材13に固定する。なお、保持部材13を予め素子マウント部12に実装済にしておいてから、このLED素子11を保持部材13に搭載する順序であっても良い。   It is assumed that wiring layers 12 a and 12 b are formed in advance in the element mount portion 12 by a separate process, and an electrode 11 a is formed in advance in the LED element 11. First, a through hole in which the element mount 12 can be fitted is formed at a predetermined position of the holding member 13, and then the wiring layers 13a and 13b are formed through the through hole. Next, the element mount portion 12 is inserted into the through hole of the holding member 13. At this time, the wiring layers 12a and 12b and the wiring layers 13a and 13b face each other and are inserted through a brazing material (Au—Si system). In this state, the element mounting portion 12 is fixed to the holding member 13 by placing in a temperature atmosphere of 400 ° C. or higher and melting the brazing material between the wiring layers. The order in which the LED element 11 is mounted on the holding member 13 after the holding member 13 has already been mounted on the element mounting portion 12 may be used.

次に、配線層12a,12bと電極11aとの極性を合致させて、素子マウント部12の上面にAuバンプを介してLED素子11を搭載することにより、LED素子11の接続及び固定が完了する。次に、LED素子11及びその周囲の保持部材13の上面を覆うように封止部材14が封止される。図1では、一様な厚みになるように封止部材14を設けたが、LED素子11上にレンズが形成されるような形状に封止を行っても良い。   Next, the polarities of the wiring layers 12a, 12b and the electrode 11a are matched, and the LED element 11 is mounted on the upper surface of the element mount portion 12 via an Au bump, thereby completing the connection and fixing of the LED element 11. . Next, the sealing member 14 is sealed so as to cover the upper surfaces of the LED element 11 and the surrounding holding member 13. In FIG. 1, the sealing member 14 is provided so as to have a uniform thickness, but the sealing may be performed so that a lens is formed on the LED element 11.

例えば、配線層13aがLED素子11のアノード側に接続されているとすると、配線層13aに直流電源(図示せず)のプラス側が接続され、配線層13bにはマイナス側が接続される。電源供給に伴い、電流は、配線層13a→配線層12a→LED素子11→配線層12b→配線層13bの経路で流れ、LED素子11が発光する。LED素子11の上面から出た光は封止部材14内を通過して外部へ出光する。   For example, if the wiring layer 13a is connected to the anode side of the LED element 11, the plus side of a DC power supply (not shown) is connected to the wiring layer 13a, and the minus side is connected to the wiring layer 13b. Along with the power supply, current flows through a route of the wiring layer 13a → the wiring layer 12a → the LED element 11 → the wiring layer 12b → the wiring layer 13b, and the LED element 11 emits light. The light emitted from the upper surface of the LED element 11 passes through the sealing member 14 and exits to the outside.

上記した第1の実施の形態によると、以下の効果が得られる。
(1)封止部材14を対象波長に対して透光性を有するガラスで形成しているため、光や熱による劣化が封止樹脂に対して極めて小であり、長期にわたって安定した発光特性が得られる。
(2)LED素子11と素子マウント部12の熱膨張率を同等としたので、ガラス加工時の高温状態と常温状態の温度差や、LED素子11の点滅動作に伴って生じる温度差によるLED素子11および素子マウント部12の箇所でのストレスを低減し、信頼性に優れるものとすることができる。
(3)保持部材13と封止部材14との熱膨張率を同等とし、保持部材13の貫通孔に素子マウント部12を嵌入して保持する構成であるとともに、素子マウント部12のLED素子11をマウントする面は略LED素子サイズとしてあるため、ガラス加工時の高温状態と常温状態の温度差によって生じるストレスを、接触面積が広く、直線距離も長い保持部材13と封止部材14との間は低く抑え、剥離やクラックが生じないものとしてある。また、封止部材14に対し、低熱膨張率となるLED素子11と素子マウント部12とは、極力小サイズ(LED素子11のサイズ)であることと、ガラス加工時の冷却時に圧縮力が加わることで、剥離やクラックが生じないものとしてある。こうして、ガラス封止されたLEDを具体化できる。
(4)保持部材13と封止部材14は、封止部材14にガラスを用いていることにより、化学反応による接合がなされるため、封止部材14として樹脂を用いた場合に比べて界面剥離が生じにくくなる。更に、コンパクトなパッケージを実現でき、保持部材13と封止部材14の接着面積が狭くても、充分な接着力を得ることができる。
(5)保持部材13の一方に封止部材14、もう一方に外部端子としての配線層13a、13bを設けることができ、コンパクトな表面実装型光デバイスとすることができる。
(6)構成部材は、全て耐熱性部材であり、温度変化によるストレスも低く抑えてあるので、鉛フリーはんだのリフロー炉処理にも耐えることができる。
According to the first embodiment described above, the following effects are obtained.
(1) Since the sealing member 14 is made of glass having translucency with respect to the target wavelength, deterioration due to light and heat is extremely small compared to the sealing resin, and stable light emission characteristics over a long period of time. can get.
(2) Since the thermal expansion coefficients of the LED element 11 and the element mounting portion 12 are made equal, the LED element is caused by a temperature difference between a high temperature state and a normal temperature state during glass processing or a temperature difference caused by a blinking operation of the LED element 11. 11 and the element mounting portion 12 can be reduced in stress and excellent in reliability.
(3) The thermal expansion coefficients of the holding member 13 and the sealing member 14 are made equal to each other, the element mount portion 12 is fitted and held in the through hole of the holding member 13, and the LED element 11 of the element mount portion 12 is held. Since the surface on which the lens is mounted is approximately the size of the LED element, the stress caused by the temperature difference between the high temperature state and the normal temperature state during glass processing is applied between the holding member 13 and the sealing member 14 having a wide contact area and a long linear distance. Is kept low and does not cause peeling or cracking. In addition, the LED element 11 and the element mounting portion 12 that have a low thermal expansion coefficient with respect to the sealing member 14 are as small as possible (the size of the LED element 11), and a compressive force is applied during cooling during glass processing. Therefore, no peeling or cracking occurs. Thus, a glass-sealed LED can be realized.
(4) Since the holding member 13 and the sealing member 14 are bonded to each other by a chemical reaction by using glass for the sealing member 14, the interfacial peeling is performed as compared with the case where a resin is used as the sealing member 14. Is less likely to occur. Further, a compact package can be realized, and a sufficient adhesive force can be obtained even if the adhesive area between the holding member 13 and the sealing member 14 is small.
(5) The sealing member 14 can be provided on one side of the holding member 13 and the wiring layers 13a and 13b as external terminals can be provided on the other side, so that a compact surface mount optical device can be obtained.
(6) The constituent members are all heat-resistant members, and the stress due to temperature changes is also kept low, so that they can withstand the reflow furnace treatment of lead-free solder.

なお、封止部材14に用いられるガラスは、有機材料と無機材料とを複合して形成したハイブリッドガラスでも良い。このような材料でも耐熱性、耐光性とともに低融点化を実現できるが、熱膨張率が一般のガラスに対して大であることは前述の低融点ガラスと同じである。   The glass used for the sealing member 14 may be a hybrid glass formed by combining an organic material and an inorganic material. Although such a material can also achieve a low melting point as well as heat resistance and light resistance, it has the same thermal expansion coefficient as that of the low melting point glass described above.

また、素子マウント部12については、Al23の他に、AlNやシリコンで形成することも可能である。 In addition to the Al 2 O 3 , the element mount portion 12 can be formed of AlN or silicon.

また、保持部材13に素子マウント部12を嵌入するための貫通孔を形成するものとして説明したが、素子マウント部12の封止部材側への露出面積が大きくなければ必ずしも貫通孔とする必要はない。   Further, although it has been described that a through hole for fitting the element mount portion 12 into the holding member 13 is formed, if the exposed area of the element mount portion 12 on the sealing member side is not large, the through hole is not necessarily required. Absent.

図2は、第1の実施の形態の光デバイスにおける保持部材の変形例を示す部分断面図である。ここでは、LED素子搭載部を中心にした主要部のみを図示を省略し、封止部材等の図示は省略している。図1の発光装置1では、搭載するLED素子は1個としたが、R、G、Bの3色、又は同一色でも発光数を多くして輝度を大にする、あるいは演色性を高める等の目的に応じてLED素子を複数個にすることができる。   FIG. 2 is a partial cross-sectional view showing a modification of the holding member in the optical device according to the first embodiment. Here, only the main part centering on the LED element mounting part is not shown, and the sealing member and the like are not shown. In the light emitting device 1 of FIG. 1, the number of LED elements to be mounted is one, but the luminance is increased by increasing the number of light emission in three colors of R, G, B, or the same color, or the color rendering property is improved. Depending on the purpose, a plurality of LED elements can be provided.

この場合、図2に示すように、発光装置20の素子マウント部21は、搭載するLED素子の数に応じて最上面の搭載部の面積を大にする。ここでは、素子マウント部21にLED素子22a,22b,22cの3個が搭載されるものとする。素子マウント部21は大きさが異なるのみで、使用材料等は素子マウント部12と同じである。なお、この場合についても素子マウント部21の最上面の搭載部の面積を3個のLED素子22a,22b,22cが搭載可能な最小限の面積とすることが上記したストレス緩和において好ましい。   In this case, as shown in FIG. 2, the element mounting portion 21 of the light emitting device 20 increases the area of the uppermost mounting portion according to the number of LED elements to be mounted. Here, it is assumed that three LED elements 22a, 22b, and 22c are mounted on the element mounting portion 21. The element mount portion 21 is different only in size, and the material used is the same as that of the element mount portion 12. Also in this case, it is preferable in the above-described stress relaxation that the area of the mounting portion on the uppermost surface of the element mounting portion 21 is set to a minimum area where the three LED elements 22a, 22b, and 22c can be mounted.

図2に示す発光装置20は、LED素子22a,22b,22cが同一平面上に等間隔に配設されている。LED素子22a,22b,22cは、その全数が同一発光色であっても、3色(R,G,B)に応じて1個ずつに別けて搭載されていても良い。素子マウント部21は、上記した配線層12a,12bのほか、LED素子22bに接続される電極21a、及びLED素子22a,22cの他方の電極に接続される電極21b,21cが上面に設けられている。これら電極21a,21b,21cは、素子マウント部21内のスルーホール又は上面に設けた図示せぬ配線層を通してアノード同士又はカソード同士の接続が行われる。   In the light emitting device 20 shown in FIG. 2, the LED elements 22a, 22b, and 22c are arranged on the same plane at equal intervals. The LED elements 22a, 22b, and 22c may be mounted separately for each of the three colors (R, G, and B), even if all of them have the same emission color. In addition to the wiring layers 12a and 12b described above, the element mount portion 21 is provided with an electrode 21a connected to the LED element 22b and electrodes 21b and 21c connected to the other electrode of the LED elements 22a and 22c on the upper surface. Yes. The electrodes 21a, 21b, and 21c are connected to each other between anodes or cathodes through through holes in the element mount 21 or wiring layers (not shown) provided on the upper surface.

このような構成によると、複数のLED素子22a,22b,22cを搭載した場合でも保持部材13と封止部材(図示せず)との間の熱膨張収縮に基づくストレスを抑え、かつ、LED素子11および素子マウント部12の箇所での熱膨張収縮に基づくストレスを低減して信頼性に優れる発光装置を実現できる。   According to such a configuration, even when a plurality of LED elements 22a, 22b, and 22c are mounted, stress based on thermal expansion and contraction between the holding member 13 and the sealing member (not shown) is suppressed, and the LED element 11 and the light emitting device with excellent reliability by reducing the stress based on thermal expansion and contraction at the element mounting portion 12.

図3は、第2の実施の形態に係る光デバイスの構成を示す図であり、(a)は断面図、(b)は半田層と金属リードの配置状態を示す概略平面図である。第2の実施の形態は基本的に第1の実施の形態と同じであるが、異なるところは、素子マウント部の材質と形状の点と、保持部材33を多層基板とし、基板内に回路パターンを形成した点と、保持部材33と金属ベース部32との接合箇所とにある。すなわち、発光装置30は、180W・m-1・k-1の高熱伝導性を有するAlN(窒化アルミニウム:熱膨張率5×10-6/℃)を材料とし、下側が広い面積になるように段差を形成した断面凸状の素子マウント部31にし、金属ベース部32との接合部の面積が広くなるようにしている。また、金属ベース部32の上面は平坦に加工し、金属ベース部32と保持部材33との間に接合面が生じるようにしている。 3A and 3B are diagrams showing the configuration of the optical device according to the second embodiment, where FIG. 3A is a cross-sectional view, and FIG. 3B is a schematic plan view showing the arrangement of solder layers and metal leads. The second embodiment is basically the same as the first embodiment, except that the material and shape of the element mounting portion and the holding member 33 are a multilayer substrate, and a circuit pattern is formed in the substrate. And the joint between the holding member 33 and the metal base portion 32. That is, the light emitting device 30 is made of AlN (aluminum nitride: coefficient of thermal expansion: 5 × 10 −6 / ° C.) having a high thermal conductivity of 180 W · m −1 · k −1 so that the lower side has a large area. The element mounting part 31 having a convex cross section formed with a step is formed so that the area of the joint part with the metal base part 32 is widened. In addition, the upper surface of the metal base portion 32 is processed to be flat so that a joint surface is formed between the metal base portion 32 and the holding member 33.

発光装置30は、配線層13a,13bに代えて、金属リード34a,34bを有する。この金属リード34a,34bが金属ベース部32に接触しないように、保持部材33に凹部33d,33eを形成し、この凹部33d,33e内に金属リード34a,34bの先端部を接続している。金属リード34a,34bとの接続のために、電極33a,33bが凹部33d,33eの下面に設けられている。配線層13a,13bに代えて素子マウント部31及び保持部材33には、内部に配線層又はスルーホールを形成し、LED素子11の電極11aから電極33a,33bに到る接続経路が形成されるようにしている。   The light emitting device 30 includes metal leads 34a and 34b instead of the wiring layers 13a and 13b. Recesses 33d and 33e are formed in the holding member 33 so that the metal leads 34a and 34b do not contact the metal base portion 32, and the tips of the metal leads 34a and 34b are connected to the recesses 33d and 33e. Electrodes 33a and 33b are provided on the lower surfaces of the recesses 33d and 33e for connection to the metal leads 34a and 34b. Instead of the wiring layers 13a and 13b, the element mounting portion 31 and the holding member 33 are formed with wiring layers or through holes inside, and a connection path from the electrode 11a of the LED element 11 to the electrodes 33a and 33b is formed. I am doing so.

素子マウント部31の金属ベース部32と接触する部分には、電気的接続には用いない金属パターンが形成されているとともに金属ベース部32と半田付けされた半田層31aが形成され、また、これにより金属ベース部32への放熱性を高めることができる。また、保持部材33には金属ベース部32と接触する部分に半田層33cが形成されている。半田層33cは“ロ”の字形に形成されているため、保持部材33と金属ベース部32との接触面により、封止部材35と保持部材33と金属ベース部32とでLED素子11と素子マウント部31とを封止することができる。   A metal pattern that is not used for electrical connection is formed on a portion of the element mount portion 31 that contacts the metal base portion 32, and a solder layer 31a soldered to the metal base portion 32 is formed. Therefore, the heat dissipation to the metal base part 32 can be improved. In addition, a solder layer 33 c is formed on the holding member 33 at a portion in contact with the metal base portion 32. Since the solder layer 33 c is formed in a “B” shape, the LED element 11 and the element are formed by the sealing member 35, the holding member 33, and the metal base portion 32 by the contact surface between the holding member 33 and the metal base portion 32. The mount part 31 can be sealed.

LED素子11及び保持部材33の所定範囲を覆うように設けられる封止部材35は、封止部材14と同じ材料及び同等の熱伝導率を有するものが使用され、封止部材14と同様の形状に封止される。   The sealing member 35 provided so as to cover a predetermined range of the LED element 11 and the holding member 33 is the same material as the sealing member 14 and has the same thermal conductivity, and has the same shape as the sealing member 14. Sealed.

発光装置30の製造手順は、金属リード34a,34bの装着を除いて、第1の実施の形態の発光装置1と同じである。金属リード34a,34bは、金属ベース部32を取り付ける前に、全体を裏返しにして位置決めし、次に、金属ベース部32を素子マウント部31及び保持部材33上に位置決めする。この状態を保持したまま、リフロー炉に搬入し、半田溶着により金属リード34a,34b及び金属ベース部32を本体側に固定する。   The manufacturing procedure of the light-emitting device 30 is the same as that of the light-emitting device 1 of the first embodiment except that the metal leads 34a and 34b are attached. The metal leads 34 a and 34 b are positioned with the whole turned upside down before the metal base portion 32 is attached, and then the metal base portion 32 is positioned on the element mount portion 31 and the holding member 33. While maintaining this state, it is carried into a reflow furnace, and the metal leads 34a, 34b and the metal base portion 32 are fixed to the main body side by solder welding.

発光装置30への通電は、金属リード34a,34bが図1の配線層13a,13bに入れ代わるのみで、第1の実施の形態の発光装置10と同じである。   Energization of the light emitting device 30 is the same as that of the light emitting device 10 of the first embodiment, except that the metal leads 34a and 34b are replaced with the wiring layers 13a and 13b of FIG.

上記した第2の実施の形態によると、第1の実施の形態の好ましい効果に加え、素子マウント部31の熱伝導性が高く、LED素子11をマウントする面は、LED素子11と同等であるが、下側は広がっており、伝熱経路が広く取られているため、LED素子11が発する熱は金属ベース部32に伝わり易く、LED素子11点灯時の温度上昇を低く抑え、信頼性を高めることができる。更に、LED素子11と素子マウント部31とは、封止部材35と保持部材33と金属ベース部32とで封止されており、水分等の侵入を受けることがない。また、電気的接続のための電気端子エリアを確保でき、素子マウント部31と保持部材33との高さを容易に正確に合わせることができる。また、保持部材33を多層基板で形成しているため、金属リード34a,34bの接合における制約を低減することができる。   According to the second embodiment described above, in addition to the preferable effects of the first embodiment, the element mount portion 31 has high thermal conductivity, and the surface on which the LED element 11 is mounted is equivalent to the LED element 11. However, since the lower side is widened and the heat transfer path is wide, the heat generated by the LED element 11 is easily transmitted to the metal base portion 32, and the temperature rise when the LED element 11 is lit is suppressed to a low level. Can be increased. Furthermore, the LED element 11 and the element mount part 31 are sealed by the sealing member 35, the holding member 33, and the metal base part 32, and do not receive intrusion of moisture or the like. In addition, an electric terminal area for electrical connection can be secured, and the heights of the element mount portion 31 and the holding member 33 can be easily and accurately matched. In addition, since the holding member 33 is formed of a multilayer substrate, it is possible to reduce restrictions on joining of the metal leads 34a and 34b.

なお、素子マウント部31は、熱伝導率180W・m-1・k-1のAlNを用いたものとして説明したが、熱伝導率は100W・m-1・k-1以上あれば十分な効果があり、熱膨張率がLED素子11と同等であればAlN以外の材料であっても良い。 Incidentally, the element mounting part 31 has been described as using AlN thermal conductivity 180W · m -1 · k -1, thermal conductivity is a sufficient 100W · m -1 · k -1 or more effect As long as the coefficient of thermal expansion is equivalent to that of the LED element 11, a material other than AlN may be used.

図4は、第2の実施の形態における保持部材33の変形例を示す図であり、(a)は、保持部材表面に反射膜を設けた構成、(b)は、保持部材の凹部に反射膜を設けた構成である。図3の保持部材33では、その上面は素材のままとしたが、LED素子11の近傍に反射膜を設けてLED素子11から放射される光の反射効率を高めている。   4A and 4B are diagrams showing a modification of the holding member 33 in the second embodiment. FIG. 4A is a configuration in which a reflective film is provided on the surface of the holding member, and FIG. 4B is a reflection in the concave portion of the holding member. It is the structure which provided the film | membrane. In the holding member 33 in FIG. 3, the upper surface is left as it is, but a reflection film is provided in the vicinity of the LED element 11 to increase the reflection efficiency of light emitted from the LED element 11.

図4(a)は貫通孔41の上部の周囲に反射膜33fを設けた構成であり、図4(b)は貫通孔41の上部にすり鉢形の凹部33gを形成し、その内面に反射膜33hを設けた構成である。反射膜33f、33hは、銀蒸着、銀メッキ等による鏡面仕上げのほか、白色又は銀色の表面処理により設けることができる。   4A shows a configuration in which a reflective film 33f is provided around the upper portion of the through hole 41. FIG. 4B shows a mortar-shaped recess 33g formed on the upper portion of the through hole 41, and a reflective film on the inner surface thereof. 33h is provided. The reflective films 33f and 33h can be provided by white or silver surface treatment in addition to mirror finishing by silver vapor deposition, silver plating, or the like.

図4(a)では、図3に示した保持部材33及び素子マウント部31の厚み(高さ)を大きくしたが、素子マウント部31の高さを図3(a)のままにし、保持部材33のみを薄くしても良い。   In FIG. 4A, the thickness (height) of the holding member 33 and the element mounting portion 31 shown in FIG. 3 is increased, but the height of the element mounting portion 31 is left as in FIG. Only 33 may be thinned.

このような構成によると、第2の実施の形態の好ましい効果に加えて、素子マウント部31と保持部材33との設計に自由度を与えることができる。   According to such a configuration, a degree of freedom can be given to the design of the element mount portion 31 and the holding member 33 in addition to the preferable effect of the second embodiment.

図4では、2例のみを示したが、例えば、専用の反射鏡をLED素子11を囲むようにして保持部材33の上面に配設する構成であっても良い。また、凹部33gに半円状の凹凸を形成したり、ダイヤカット状の多面形状を施しても良い。   Although only two examples are shown in FIG. 4, for example, a configuration in which a dedicated reflecting mirror is disposed on the upper surface of the holding member 33 so as to surround the LED element 11 may be employed. Moreover, semicircular unevenness | corrugation may be formed in the recessed part 33g, and a diamond-cut polyhedral shape may be given.

図5は、第3の実施の形態に係る光デバイスの構成を示す図であり、(a)は平面図、(b)は(a)のB−B断面図である。図2の発光装置20は、1つの素子マウント部上に複数のLED素子を搭載した構成であったが、第3の実施の形態における発光装置50は、LED素子毎に素子マウント部を用意しているところに構成上の違いがある。   5A and 5B are diagrams showing a configuration of an optical device according to the third embodiment, in which FIG. 5A is a plan view and FIG. 5B is a sectional view taken along line BB in FIG. The light emitting device 20 of FIG. 2 has a configuration in which a plurality of LED elements are mounted on one element mounting portion. However, the light emitting device 50 in the third embodiment prepares an element mounting portion for each LED element. There are structural differences.

発光装置50は、1つの金属ベース部51と、この金属ベース部51上に所定間隔に搭載された16個の素子マウント部52a,52b,52c,52d,52e,52f,52g,52h,52i,52j,52k,52l,52m,52n,52o,52pと(図5では、16個の内の52e,52f,52g,52hのみを示す。)、素子マウント部52a〜52pに対応して設けられた貫通孔に素子マウント部52a〜52pが嵌入される保持部材53と、素子マウント部52a〜52pのそれぞれの上面に搭載される16個のLED素子54a,54b,54c,54d,54e,54f,54g,54h,54i,54j,54k,54l,54m,54n,54o,54pと、保持部材53及びLED素子54a〜54pを覆うように封止される封止部材55とを備えて構成されている。なお、図5においては、素子マウント部及びLED素子は、それぞれを16個にしたが、客先の要求等に応じて任意数にすることができる。   The light emitting device 50 includes one metal base portion 51 and 16 element mount portions 52a, 52b, 52c, 52d, 52e, 52f, 52g, 52h, 52i, which are mounted on the metal base portion 51 at predetermined intervals. 52j, 52k, 52l, 52m, 52n, 52o, and 52p (in FIG. 5, only 16 of 52e, 52f, 52g, and 52h are shown) and provided corresponding to the element mounting portions 52a to 52p. A holding member 53 in which the element mounts 52a to 52p are inserted into the through holes, and 16 LED elements 54a, 54b, 54c, 54d, 54e, 54f, and 54g mounted on the upper surfaces of the element mounts 52a to 52p, respectively. , 54h, 54i, 54j, 54k, 54l, 54m, 54n, 54o, 54p, and the holding member 53 and the LED elements 54a to 54p are covered. It is constituted by a sealing member 55 to be sealed to. In addition, in FIG. 5, although the element mount part and the LED element were each 16 pieces, it can be made into arbitrary numbers according to the request | requirement etc. of a customer.

素子マウント部52a〜52p、保持部材53(多層基板)、LED素子54a〜54p、及び封止部材55は、例えば、第2の実施の形態における素子マウント部12、保持部材13、及び封止部材14と同一の材料、及び特性(熱膨張率等)のものが使用される。素子マウント部52a〜52p及び保持部材53の下面(金属ベース部51側の面)には銅箔層が設けられており、金属ベース部との接合に用いられるが、ここでは素子マウント部52a〜52p及び保持部材53における各銅箔層をまとめて銅箔層58としている。   The element mount parts 52a to 52p, the holding member 53 (multilayer substrate), the LED elements 54a to 54p, and the sealing member 55 are, for example, the element mount part 12, the holding member 13, and the sealing member in the second embodiment. 14 and the same material and characteristics (thermal expansion coefficient, etc.) are used. A copper foil layer is provided on the lower surfaces (surfaces on the metal base portion 51 side) of the element mount portions 52a to 52p and the holding member 53, and are used for joining to the metal base portion. Here, the element mount portions 52a to 52p are used. The copper foil layers in the 52p and the holding member 53 are combined into a copper foil layer 58.

LED素子54a〜54pは、R,G,Bの3色に対応してグループ分けされたLED素子群と、同一色(例えば、青)を複数にグループ分けされたLED素子群である。具体的には、16個のLED素子は、54a〜54dからなる第1のグループと、54e〜54hからなる第2のグループと、54i〜54lからなる第3のグループと、54m〜54pからなる第4のグループの4つのグループに分けられ、各4個のLED素子は極性を合わせて直列接続されている。4つのグループの一方の極(例えば、アノード)は、素子マウント部52a〜52p及び保持部材53に形成された不図示の配線によって共通接続され、端子56eに接続されている。   The LED elements 54a to 54p are an LED element group that is grouped corresponding to three colors of R, G, and B, and an LED element group that is grouped into a plurality of the same color (for example, blue). Specifically, the 16 LED elements are composed of a first group composed of 54a to 54d, a second group composed of 54e to 54h, a third group composed of 54i to 54l, and 54m to 54p. The fourth group is divided into four groups, and each of the four LED elements is connected in series with the same polarity. One pole (for example, anode) of the four groups is commonly connected by a wiring (not shown) formed in the element mount portions 52a to 52p and the holding member 53, and is connected to the terminal 56e.

第1〜第4のグループの他方の極(例えば、カソード)は、端子56a〜56dに個別に接続され、端子56a〜56dには電流制限のための抵抗R1〜R4の一端が接続され、抵抗R1〜R4の他端は電源用端子57a〜57dに接続されている。抵抗R1〜R4は、素子マウント部52a〜52pや保持部材53には内蔵されず、外付けにする。例えば、端子57aと端子56eの間に所定電圧の直流電源が接続されるとLED素子54a〜54dの4個が同時に発光し、端子57a及び57dと端子56eの間に電源が接続された場合にはLED素子54a〜54d及び54m〜54pの8個が同時に発光する。   The other poles (for example, cathodes) of the first to fourth groups are individually connected to terminals 56a to 56d, and one ends of resistors R1 to R4 for current limiting are connected to the terminals 56a to 56d. The other ends of R1 to R4 are connected to power supply terminals 57a to 57d. The resistors R1 to R4 are not built in the element mounts 52a to 52p and the holding member 53, but are externally attached. For example, when a DC power source having a predetermined voltage is connected between the terminal 57a and the terminal 56e, four LED elements 54a to 54d emit light at the same time, and a power source is connected between the terminals 57a and 57d and the terminal 56e. LED elements 54a to 54d and 54m to 54p emit light simultaneously.

上記した第3の実施の形態によると、以下の効果が得られる。
(1)発光装置50は、素子マウント部をLED素子毎に設けているため、第2の実施の形態の好ましい効果に加えてLED素子の使用数が増減しても、LED素子54a〜54p点灯時の温度上昇を低く抑えることができる。また、LED素子の個数が変更される度に素子マウント部を新規に設計する必要がなくなり、設計の融通性が向上するほか、客先の注文に対する納期の短縮も可能になる。
(2)封止部材55の熱膨張率を保持部材53と同等に形成するとともに、素子マウント部52a〜52pを保持部材53へ島状に配置しているため、素子マウント部52a〜52pより熱膨張率の大きい封止部材55や保持部材53の熱膨張収縮に対し、各素子マウント部がその膨張収縮に合わせて移動し、複数個のLED素子を配列しても温度に起因する応力は単一のLED素子の際と同等であり、LED素子と素子マウント部間での応力は生じず、さらに封止部材55と保持部材53との間での界面剥離等が生じない。
(3)LED素子54a〜54pが発した熱は、素子マウント部52a〜52pを通して保持部材53に伝熱して放熱が行われるため、熱効率が向上し、LED素子54a〜54pが高出力型であっても、LED素子54a〜54p、素子マウント部52a〜52p、保持部材53、ガラス封止部55等にダメージを及ぼすことがなくなり、耐熱性、耐候性、耐久性が向上する。
(4)多層基板からなる保持部材53を用いたことによって、放熱性を阻害することなく任意の回路パターンを形成することができる。
According to the above-described third embodiment, the following effects can be obtained.
(1) Since the light-emitting device 50 is provided with an element mount for each LED element, the LED elements 54a to 54p are lit even if the number of LED elements used increases or decreases in addition to the preferable effect of the second embodiment. The temperature rise at the time can be kept low. In addition, it is not necessary to design a new element mount portion each time the number of LED elements is changed, thereby improving design flexibility and shortening the delivery time for customer orders.
(2) Since the thermal expansion coefficient of the sealing member 55 is formed to be the same as that of the holding member 53 and the element mount portions 52a to 52p are arranged in an island shape on the holding member 53, heat is generated from the element mount portions 52a to 52p. With respect to the thermal expansion and contraction of the sealing member 55 and the holding member 53 having a large expansion coefficient, each element mounting portion moves in accordance with the expansion and contraction. This is equivalent to the case of one LED element, no stress is generated between the LED element and the element mounting portion, and no interfacial peeling between the sealing member 55 and the holding member 53 occurs.
(3) Since the heat generated by the LED elements 54a to 54p is transferred to the holding member 53 through the element mounts 52a to 52p and radiated, the heat efficiency is improved, and the LED elements 54a to 54p are of high output type. However, the LED elements 54a to 54p, the element mount parts 52a to 52p, the holding member 53, the glass sealing part 55 and the like are not damaged, and the heat resistance, weather resistance, and durability are improved.
(4) By using the holding member 53 made of a multilayer substrate, an arbitrary circuit pattern can be formed without hindering heat dissipation.

図6は、第4の実施の形態に係る光デバイスの構成を示す図であり、(a)は平面図、(b)は(a)のC−C断面図である。第4の実施の形態に係る発光装置60は、基本的な構成は図5の発光装置50と同じである。異なるところは、ガラス含有のAl23材料からなる保持部材53上に第2の放熱器と反射鏡を兼ねる金属反射鏡を設けたことにある。従って、図5の発光装置50と同一又は同一機能を有するものには同一引用数字を用いて説明する。なお、図6においては、金属ベース部の図示を省略している。 6A and 6B are diagrams showing a configuration of an optical device according to the fourth embodiment, in which FIG. 6A is a plan view and FIG. 6B is a cross-sectional view taken along the line C-C in FIG. The light emitting device 60 according to the fourth embodiment has the same basic configuration as the light emitting device 50 of FIG. The difference is that a metal reflector serving as a second radiator and a reflector is provided on the holding member 53 made of a glass-containing Al 2 O 3 material. Accordingly, the same reference numerals are used for the same or the same functions as those of the light emitting device 50 of FIG. In addition, in FIG. 6, illustration of a metal base part is abbreviate | omitted.

金属反射鏡61は、銅材で形成されており、LED素子54a〜54pのそれぞれが中心になるようにして、16個の反射面61aを形成するための16個の凹部がプレス成形により所定間隔に設けられている。反射面61aは、16個の凹部のそれぞれの内面には銀蒸着、銀メッキ等による鏡面仕上げ加工、あるいは白色又は銀色の表面処理を施すことにより形成される。なお、反射面61aは、その下地としてNiメッキを施し、凹部内のみに銀蒸着や銀メッキを施すようにする。Niメッキは、ガラスとの密着性に優れるという特徴があり、剥離防止性が向上する。   The metal reflecting mirror 61 is formed of a copper material, and 16 recesses for forming the 16 reflecting surfaces 61a are formed at predetermined intervals by press molding so that each of the LED elements 54a to 54p is centered. Is provided. The reflection surface 61a is formed by applying mirror finishing by silver vapor deposition, silver plating or the like, or white or silver surface treatment on the inner surface of each of the 16 recesses. The reflective surface 61a is Ni-plated as a base, and silver deposition or silver plating is performed only in the recesses. Ni plating is characterized by excellent adhesion to glass, and the anti-peeling property is improved.

この金属反射鏡61は、約900℃の熱処理に基づいて酸化物を介して保持部材53と接着されている。16個の反射面61a内及び金属反射鏡61上には、所定の高さに封止部材62が充填される。封止部材62は、前記実施の形態における封止部材14と同じ材料及び特性(熱膨張率等)のガラスが用いられる。   The metal reflecting mirror 61 is bonded to the holding member 53 via an oxide based on a heat treatment at about 900 ° C. A sealing member 62 is filled at a predetermined height in the sixteen reflecting surfaces 61 a and on the metal reflecting mirror 61. The sealing member 62 is made of glass having the same material and characteristics (thermal expansion coefficient and the like) as the sealing member 14 in the above embodiment.

上記した第4の実施の形態によると、第1、第2、および第3の実施の形態の好ましい効果に加えて、以下の効果が得られる。
(1)LED素子54a〜54pのそれぞれに対応して16個の反射面61aを有する金属反射鏡61が保持部材53に配設されているため、LED素子54a〜54pによる光を反射形状に応じた所望の方向に効果的に取り出すことができる。
(2)封止部材62の熱膨張率を保持部材53、さらに金属反射鏡61と同等に形成してあるので、封止部材62と保持部材53との中間に金属反射鏡61を設けても温度に起因する応力が発生せず、界面剥離等が生じることがない。
According to the fourth embodiment described above, the following effects can be obtained in addition to the preferable effects of the first, second, and third embodiments.
(1) Since the metal reflecting mirror 61 having 16 reflecting surfaces 61a corresponding to each of the LED elements 54a to 54p is disposed on the holding member 53, the light from the LED elements 54a to 54p is reflected according to the reflection shape. Can be effectively taken out in the desired direction.
(2) Since the thermal expansion coefficient of the sealing member 62 is equal to that of the holding member 53 and the metal reflecting mirror 61, the metal reflecting mirror 61 may be provided between the sealing member 62 and the holding member 53. Stress due to temperature does not occur, and interface peeling or the like does not occur.

図7は、第4の実施の形態の保持部材の変形例を示す部分断面図である。ここでは、LED素子54iの近傍についてのみ図示し、他は省略している。   FIG. 7 is a partial cross-sectional view showing a modification of the holding member according to the fourth embodiment. Here, only the vicinity of the LED element 54i is illustrated, and the others are omitted.

保持部材70は、断面内に配線パターンを積層して形成される多層基板であり、下面及び上面には銅箔層71,76が形成され、内部にはLED素子54iに接続される内部配線層72が設けられている。内部配線層72は放熱のための配線層73を迂回して設けられており、配線層73は、銅箔層71から76に放熱する伝熱経路となっている。素子マウント部52iは、下面に銅箔層74が形成されており、内部にはLED素子54iの電極と内部配線層72を接続するスルーホール75が形成されている。   The holding member 70 is a multilayer substrate formed by laminating wiring patterns in a cross section, copper foil layers 71 and 76 are formed on the lower surface and the upper surface, and an internal wiring layer connected to the LED element 54i inside. 72 is provided. The internal wiring layer 72 is provided to bypass the wiring layer 73 for heat dissipation, and the wiring layer 73 is a heat transfer path for radiating heat from the copper foil layers 71 to 76. A copper foil layer 74 is formed on the lower surface of the element mount portion 52i, and a through hole 75 for connecting the electrode of the LED element 54i and the internal wiring layer 72 is formed therein.

このように、伝熱経路となる配線層73を設けたことで、LED素子54iが発する熱を
、素子マウント部52i、銅箔層74、(図示されていない金属ベース)、銅箔層71、配
線層73、銅箔層76を通し、金属反射鏡61へ伝えやすくでき、放熱性向上を図ることができる。
Thus, by providing the wiring layer 73 that becomes a heat transfer path, the heat generated by the LED element 54i is transferred to the element mount portion 52i, the copper foil layer 74, a metal base (not shown), the copper foil layer 71, The wiring layer 73 and the copper foil layer 76 can be easily transmitted to the metal reflecting mirror 61, so that the heat dissipation can be improved.

図8は、第5の実施の形態に係る光デバイスの構成を示す図であり、(a)は第5の実施の形態に係る発光装置の基本構成を示す断面図、(b)は(a)の変形例を示す断面図である。第5の実施の形態に係る発光装置80は、前記各実施の形態が保持部材に絶縁体を用いていたのに対し、導体である金属板を保持部材に用いたところに特徴がある。   8A and 8B are diagrams showing the configuration of the optical device according to the fifth embodiment. FIG. 8A is a cross-sectional view showing the basic configuration of the light emitting apparatus according to the fifth embodiment, and FIG. It is sectional drawing which shows the modification of (). The light emitting device 80 according to the fifth embodiment is characterized in that a metal plate which is a conductor is used for the holding member, whereas each of the above embodiments uses an insulator for the holding member.

発光装置80は、LED素子81と、最上面にLED素子81が搭載される素子マウント部82と、1つの貫通孔に素子マウント部82が嵌め込まれる金属板83と、LED素子81及び金属板83の上面を封止する封止部材84とを備えて構成されている。   The light emitting device 80 includes an LED element 81, an element mount portion 82 on which the LED element 81 is mounted on the uppermost surface, a metal plate 83 in which the element mount portion 82 is fitted into one through hole, and the LED element 81 and the metal plate 83. And a sealing member 84 that seals the upper surface of the substrate.

LED素子81及び素子マウント部82は、発光装置1のLED素子11及び素子マウント部12と同じものが用いられる。素子マウント部82は、両側の中間部には突出部82a,82bが形成されており、この突出部82a,82bの上面が金属板83の貫通孔内に接するように金属板83に搭載される。この突出部82a,82bの下面には、電極82c,82dが設けられ、電極82c,82dとLED素子81の電極81a(又は、半田バンプ)を接続するために、素子マウント部82内にはスルーホール82e,82fが設けられている。また、上面には電極81aと電気的に接続される電極82Aが設けられている。電極82c,82dには、電源装置からの電源供給が行われるが、この電極82c,82dに直接に電源供給を行うことも、別途基板を介在させて行うことも可能である。   The LED element 81 and the element mount portion 82 are the same as the LED element 11 and the element mount portion 12 of the light emitting device 1. The element mount portion 82 has protrusions 82 a and 82 b formed at intermediate portions on both sides, and is mounted on the metal plate 83 so that the upper surfaces of the protrusions 82 a and 82 b are in contact with the through holes of the metal plate 83. . Electrodes 82c and 82d are provided on the lower surfaces of the protrusions 82a and 82b. In order to connect the electrodes 82c and 82d and the electrode 81a (or solder bump) of the LED element 81, a through-hole is provided in the element mount 82. Holes 82e and 82f are provided. An electrode 82A that is electrically connected to the electrode 81a is provided on the upper surface. The electrodes 82c and 82d are supplied with power from a power supply device. However, the electrodes 82c and 82d can be directly supplied with power, or can be separately provided through a substrate.

金属板83は放熱器として機能するもので、その材料には熱伝導率の高い銅等の金属が用いられ、先端部は段差を有するように加工されている。封止部材84は、発光装置1の封止部材14と同様に、低融点及び透光性のガラスが用いられると共に、保持部材である金属板83と同等の熱膨張率のものが用いられる。   The metal plate 83 functions as a radiator, and a metal such as copper having high thermal conductivity is used as the material, and the tip is processed to have a step. As with the sealing member 14 of the light emitting device 1, the sealing member 84 is made of low melting point and translucent glass and has a thermal expansion coefficient equivalent to that of the metal plate 83 that is a holding member.

以下に、発光装置80の組み立て手順について説明する。まず、金属板83の貫通孔に素子マウント部82を図8の下側から嵌入する。次に、素子マウント部82の上面にLED素子81を搭載する。次に、封止部材84の封止を行えば発光装置80が完成する。   Below, the assembly procedure of the light-emitting device 80 is demonstrated. First, the element mount 82 is inserted into the through hole of the metal plate 83 from the lower side of FIG. Next, the LED element 81 is mounted on the upper surface of the element mount portion 82. Next, if the sealing member 84 is sealed, the light emitting device 80 is completed.

なお、素子マウント部82の上面にLED素子81を搭載してから、金属板83の貫通孔に素子マウント部82を嵌入するようにしても良い。また、金属板83の表面に反射鏡を設ける構成とすることも可能である。   Alternatively, the LED element 81 may be mounted on the upper surface of the element mount portion 82 and then the element mount portion 82 may be fitted into the through hole of the metal plate 83. In addition, a configuration in which a reflecting mirror is provided on the surface of the metal plate 83 is also possible.

上記した第5の実施の形態によると、第1および第2の実施の形態の好ましい効果に加え、金属板83が素子マウント部82を保持する保持部材として機能すると共に、放熱器として機能する。従って、金属ベース部を設けなくとも、ある程度の放熱効果が得られるため、光デバイスの薄型化を図ることができる。   According to the fifth embodiment described above, in addition to the preferable effects of the first and second embodiments, the metal plate 83 functions as a holding member that holds the element mount portion 82 and also functions as a radiator. Accordingly, a certain degree of heat dissipation effect can be obtained without providing a metal base portion, and thus the optical device can be made thinner.

上記したように、図8(a)の構成でも、金属板83によってかなりの放熱効果が得られる。しかし、更に放熱効果を高めたいときには、図8(b)のように、銅やアルミニウムによる金属ベース部を追加すれば良い。図8(b)に示す発光装置85は、素子マウント部82の下面に設けられた半田層82gによる半田溶着により装着される。金属板83の下面には、絶縁性基板としてのポリイミド基板86が配設される。ポリイミド基板86の内部には、配線層(図示せず)が形成されており、この配線層に電極82c,82dが接続される。   As described above, a considerable heat radiation effect can be obtained by the metal plate 83 even in the configuration of FIG. However, when it is desired to further enhance the heat dissipation effect, a metal base portion made of copper or aluminum may be added as shown in FIG. The light emitting device 85 shown in FIG. 8B is mounted by solder welding using a solder layer 82g provided on the lower surface of the element mount portion 82. A polyimide substrate 86 as an insulating substrate is disposed on the lower surface of the metal plate 83. A wiring layer (not shown) is formed inside the polyimide substrate 86, and electrodes 82c and 82d are connected to the wiring layer.

図9は、ポリイミド基板の接続に係る変形例を示す図であり、(a)は断面図、(b)は素子マウント部の底面図である。ポリイミド基板86は、カソードである電極82cに接続される配線層86aとアノードである電極82dに接続される配線層86bとを積層して構成されており、素子マウント部82の一方に接続されている。   FIGS. 9A and 9B are diagrams showing a modification example relating to the connection of the polyimide substrate, in which FIG. 9A is a cross-sectional view and FIG. 9B is a bottom view of the element mounting portion. The polyimide substrate 86 is configured by laminating a wiring layer 86a connected to the electrode 82c serving as the cathode and a wiring layer 86b connected to the electrode 82d serving as the anode, and is connected to one of the element mounting portions 82. Yes.

このような構成とすることで、ポリイミド基板86と素子マウント部82との簡易な配線を実現できる。また、ポリイミド基板86を設けない側は金属ベース部87への伝熱経路として活用でき、熱引き性に優れる。   With such a configuration, a simple wiring between the polyimide substrate 86 and the element mounting portion 82 can be realized. Further, the side where the polyimide substrate 86 is not provided can be used as a heat transfer path to the metal base portion 87, and is excellent in heat drawability.

図10は、第5の実施の形態の他の変形例を示す光デバイスの部分断面図である。図10においては、図8(a)に示した部材と同一又は同一機能を有するものには同一引用数字を付している。   FIG. 10 is a partial cross-sectional view of an optical device showing another modification of the fifth embodiment. In FIG. 10, the same reference numerals are given to the members having the same or the same function as the members shown in FIG.

発光装置90は、図8の金属板83の厚みを大きくした金属板91が用いられ、金属板91の所定の位置に設けられた貫通孔90aには、素子マウント部82が挿入される。貫通孔90aの上部にはすり鉢形に凹部が形成(凹部の底面が素子マウント部82の上面と略同一高さになるように形成。)され、この凹部の内面に反射面91bが形成されている。反射面91bは、銀蒸着、銀メッキ等による鏡面仕上げのほか、白色又は銀色の塗装等により形成される。更に、反射面91b内を埋め、かつ、金属板91の上部に所定の厚みになるように低融点ガラスからなる封止部材84が充填される。   The light emitting device 90 uses a metal plate 91 in which the thickness of the metal plate 83 in FIG. 8 is increased, and an element mount portion 82 is inserted into a through-hole 90 a provided at a predetermined position of the metal plate 91. A concave portion is formed in the shape of a mortar in the upper portion of the through hole 90a (formed so that the bottom surface of the concave portion is substantially flush with the upper surface of the element mount portion 82), and a reflection surface 91b is formed on the inner surface of the concave portion. Yes. The reflective surface 91b is formed by a white or silver coating or the like in addition to a mirror finish by silver vapor deposition, silver plating or the like. Furthermore, a sealing member 84 made of low-melting glass is filled so as to fill the reflecting surface 91b and to have a predetermined thickness on the upper portion of the metal plate 91.

また、素子マウント部82は、上面に形成された電極82Aが対応する電極82cおよび82dと内部配線層によって電気的に接続されている。   In the element mounting portion 82, the electrode 82A formed on the upper surface is electrically connected to the corresponding electrodes 82c and 82d by the internal wiring layer.

なお、封止部材84は、上記した低融点ガラスに限定されず、エポキシ樹脂やシリコン樹脂であっても良い。樹脂では低融点ガラスのような金属レベルの熱膨張率の実現は困難であり、金属より数倍大きな熱膨張率となるが、加工温度が低融点ガラスの加工温度より低いことから膨張量が大にならないことと、保持部材である金属板83は素子マウント部のように小さな熱伝導率ではないことから、剥離やクラックが生じないものとすることが可能である。   The sealing member 84 is not limited to the low melting point glass described above, and may be an epoxy resin or a silicon resin. It is difficult to achieve the thermal expansion coefficient at the metal level of low melting point glass with resin, and the thermal expansion coefficient is several times higher than that of metal, but the expansion is large because the processing temperature is lower than the processing temperature of low melting glass. Since the metal plate 83 as a holding member does not have a small thermal conductivity like the element mount portion, it is possible to prevent peeling and cracking.

上記した第5の実施の形態によると、第4の実施の形態に加えて、金属板91に反射面91bが形成されていることにより、LED素子81の光出射効率が向上する。更に、反射面91bを設けるために金属板91の厚みが大きくなることから、放熱器としての放熱抵抗を小さくできるため、放熱効率を高めることができる。   According to the fifth embodiment described above, the light emission efficiency of the LED element 81 is improved by forming the reflective surface 91b on the metal plate 91 in addition to the fourth embodiment. Furthermore, since the thickness of the metal plate 91 is increased in order to provide the reflecting surface 91b, the heat dissipation resistance as a radiator can be reduced, and thus the heat dissipation efficiency can be increased.

図11は、第6の実施の形態に係る光デバイスの構成を示す部分断面図である。前記各実施の形態がフェイスダウン型のLED素子を用いていたのに対し、本実施の形態は、給電側との接続をワイヤで行うフェイスアップ型のLED素子を用いた光デバイスとしたところに特徴がある。   FIG. 11 is a partial cross-sectional view showing the configuration of the optical device according to the sixth embodiment. While each of the above embodiments uses a face-down type LED element, this embodiment is an optical device using a face-up type LED element that is connected to the power supply side with a wire. There are features.

発光装置100は、LED素子101と、このLED素子101が搭載される素子マウント部102と、素子マウント部102を保持する保持部材103と、素子マウント部102の配線層102a及び102bとLED素子101の電極(図示せず)とを接続するワイヤ104a,104bと、LED素子101、ワイヤ104a,104b及びその周囲を封止する耐熱部材としての第1の封止部材105と、この第1の封止部材105及び保持部材103の上面の露出面を封止する第2の封止部材106とを備えて構成されている。   The light emitting device 100 includes an LED element 101, an element mount portion 102 on which the LED element 101 is mounted, a holding member 103 that holds the element mount portion 102, wiring layers 102 a and 102 b of the element mount portion 102, and the LED element 101. Wires 104a and 104b for connecting the electrodes (not shown), a first sealing member 105 as a heat-resistant member for sealing the LED element 101, the wires 104a and 104b and their surroundings, and the first sealing. The stopper member 105 and the second sealing member 106 that seals the exposed surface of the upper surface of the holding member 103 are provided.

LED素子101は、タイプは異なるがLED素子11と同様の半導体を用いて構成されている。素子マウント部102及び保持部材103は、素子マウント部12及び保持部材13と同じ材料及び熱膨張率のものを用いる。保持部材103には、素子マウント部102が嵌入される貫通孔が形成されていると共に、両側の突出部の下面には電極103a,103bが設けられている。電極103a,103bは、保持部材103の内部に設けられた配線層(破線)を通して、素子マウント部102の配線層102a,102bに接続される。   The LED element 101 is configured using a semiconductor similar to the LED element 11 although the type is different. The element mount unit 102 and the holding member 103 are made of the same material and thermal expansion coefficient as the element mount unit 12 and the holding member 13. The holding member 103 is formed with a through hole into which the element mount portion 102 is inserted, and electrodes 103 a and 103 b are provided on the lower surfaces of the protruding portions on both sides. The electrodes 103 a and 103 b are connected to the wiring layers 102 a and 102 b of the element mount portion 102 through a wiring layer (broken line) provided inside the holding member 103.

ワイヤ104a,104bは、Au線やアルミニウム線が用いられる。ワイヤ104a,104bは封止部材106の圧入によって変形したり押し潰される可能性がある。そこで、ワイヤ104a,104b部分の封止には、素子マウント部102と第2の封止部材106との中間の熱膨張率部材となるセラミックコート部材である第1の封止部材105を用い、ワイヤ104a,104bの変形や潰れを防止している。この第1の封止部材105を覆うように封止される第2の封止部材106は、保持部材103と同等の熱膨張率とし、他の部材との接触面で応力が発生するのを防止している。   Au wires and aluminum wires are used for the wires 104a and 104b. The wires 104a and 104b may be deformed or crushed by the press-fitting of the sealing member 106. Therefore, the first sealing member 105, which is a ceramic coat member serving as an intermediate thermal expansion member between the element mounting portion 102 and the second sealing member 106, is used for sealing the wires 104a and 104b. The deformation and crushing of the wires 104a and 104b are prevented. The second sealing member 106 sealed so as to cover the first sealing member 105 has a thermal expansion coefficient equivalent to that of the holding member 103, and stress is generated on the contact surface with other members. It is preventing.

なお、図11では、説明のため、素子マウント部102が保持部材103から露出する部分がLED素子101のサイズに対して大になるように図示されているが、実際にはワイヤボンディングスペースを設けることによってやや広がる程度であり、LED素子101の面積の2倍以内のLED素子サイズと略同等であることが望ましい。特に、第1の封止部材105に弾性材料あるいは素子マウント部102と第2の封止部材106との中間の熱膨張率部材等の緩衝効果のあるものであれば、露出する部分はそれより大であっても良い。   In FIG. 11, for the sake of explanation, the portion where the element mounting portion 102 is exposed from the holding member 103 is illustrated so as to be larger than the size of the LED element 101, but a wire bonding space is actually provided. It is desirable that the size of the LED element is substantially the same as the LED element size within twice the area of the LED element 101. In particular, if the first sealing member 105 has a buffering effect such as an elastic material or a thermal expansion coefficient member intermediate between the element mounting portion 102 and the second sealing member 106, the exposed portion is It may be large.

次に、発光装置100の製造工程について説明する。   Next, a manufacturing process of the light emitting device 100 will be described.

まず、保持部材103の所定の位置に設けられている貫通孔内に素子マウント部102を図の下側から嵌入する。素子マウント部102には、予め配線層102a,102bが設けられている。次に、LED素子101が、素子マウント部102の所定の位置に搭載される。次に、LED素子101の上面の電極(図示せず)と配線層102a,102bとが、ワイヤ104a,104bによってボンディングされる。このワイヤ104a,104bを包み込むようにして、第1の封止部材105が封止される。更に、第1の封止部材105を包み込むようにして第2の封止部材106の封止が行われる。   First, the element mount 102 is inserted into the through hole provided at a predetermined position of the holding member 103 from the lower side of the drawing. In the element mount portion 102, wiring layers 102a and 102b are provided in advance. Next, the LED element 101 is mounted at a predetermined position of the element mount portion 102. Next, an electrode (not shown) on the upper surface of the LED element 101 and the wiring layers 102a and 102b are bonded by wires 104a and 104b. The first sealing member 105 is sealed so as to enclose the wires 104a and 104b. Further, the second sealing member 106 is sealed so as to enclose the first sealing member 105.

上記した第6の実施の形態によれば、封止部材が二重構成であるため、ワイヤ104a,104bが封止時の加圧力から保護され、ワイヤ104a,104bに変形や潰れを生じることがなくなり、フェイスアップタイプのLED素子101を用いても、前述の実施の形態と同様の効果が得られる。   According to the sixth embodiment described above, since the sealing member has a double structure, the wires 104a and 104b are protected from the applied pressure during sealing, and the wires 104a and 104b may be deformed or crushed. Even if the face-up type LED element 101 is used, the same effect as the above-described embodiment can be obtained.

図12は、第7の実施の形態に係る光デバイスの構成を示す部分断面図である。第7の実施の形態における発光装置110は、第1の封止部材105に弾性部材であるシリコーン樹脂を用いるとともにフェイスダウン素子(フリップチップ)を用いる構成と、その製造工程が第6の実施の形態の発光装置100と相違しており、図11と同一の部分については共通の引用数字を付している。   FIG. 12 is a partial cross-sectional view showing the configuration of the optical device according to the seventh embodiment. In the light emitting device 110 according to the seventh embodiment, the first sealing member 105 uses a silicone resin that is an elastic member and uses a face-down element (flip chip), and the manufacturing process thereof is the sixth embodiment. Unlike the light emitting device 100 of the embodiment, the same parts as those in FIG.

この発光装置110を製造するには、まず、保持部材103をガラス接触面が白金からなる金型にセットする。この金型は、素子マウント部102を嵌入するための凸状の窪みに一致した形状を有し、かつ、保持部材103の上面から突出する部分が素子収容スペース形状面106bの形状に応じた半球状の形状を有するものである。次に、低融点ガラスを加熱加工して第2の封止部材106を接着するとともにレンズ面106aおよびLED素子収納スペース形成面106bを形成する。次に、LED素子収納スペース形成面106bの内側のLED素子収納スペースへ第1の封止樹脂105となるシリコーン樹脂を注入して硬化させる。次に、LED素子101を素子マウント部102へマウントする。次に、保持部材103の所定の位置に設けられている貫通孔内に素子マウント部102を図12の下側から嵌入し、ろう材を用いて保持部材103と素子マウント部102とを固定する。この際、シリコーン樹脂は弾性があり、LED素子101を圧入することでLED素子101の表面形状に対応した形状に変形し、LED素子101を封止することができる。   To manufacture the light emitting device 110, first, the holding member 103 is set in a mold whose glass contact surface is made of platinum. This mold has a shape corresponding to a convex depression for fitting the element mounting portion 102, and a portion protruding from the upper surface of the holding member 103 is a hemisphere corresponding to the shape of the element housing space shape surface 106b. It has a shape. Next, the low melting point glass is heated to bond the second sealing member 106 and form the lens surface 106a and the LED element storage space forming surface 106b. Next, a silicone resin serving as the first sealing resin 105 is injected into the LED element storage space inside the LED element storage space forming surface 106b and cured. Next, the LED element 101 is mounted on the element mounting portion 102. Next, the element mount portion 102 is fitted into the through hole provided at a predetermined position of the holding member 103 from the lower side of FIG. 12, and the holding member 103 and the element mount portion 102 are fixed using a brazing material. . At this time, the silicone resin has elasticity, and by pressing the LED element 101, it is deformed into a shape corresponding to the surface shape of the LED element 101, and the LED element 101 can be sealed.

なお、素子マウント部102の固定については、ろう材以外にはんだ材を用いることもできる。   For fixing the element mounting portion 102, a solder material can be used in addition to the brazing material.

上記した第7の実施の形態によると、以下の効果が得られる。
(1)図の下側に金属ベースを設けることで第2の実施の形態と同様に水分等の侵入を受けることがない。
(2)LED素子101がガラス加工時の高温雰囲気にさらされることなく、耐熱性の低いLED素子101でも用いることができる。あるいは、低融点ガラスに限らず、融点の高いガラスを用いることができる。
(3)第1の封止部材105はガラス部材の第2の封止部材106で覆われているため、光デバイスとしてはレンズ面106aの形状を保つことができる。なお、純粋なシリコーン樹脂は熱や光による劣化は少ないが、樹脂硬化のための添加剤が変色要因となる。第7の実施の形態によれば、第1の封止部材105をオイル状の純粋なシリコーン樹脂とすることにより、熱や光による劣化による光出力低下が生じにくい、信頼性の高いものとすることができる。
According to the seventh embodiment described above, the following effects are obtained.
(1) Providing a metal base on the lower side of the figure prevents moisture and the like from entering as in the second embodiment.
(2) LED element 101 with low heat resistance can be used without exposing LED element 101 to a high-temperature atmosphere during glass processing. Or not only low melting glass but glass with high melting | fusing point can be used.
(3) Since the first sealing member 105 is covered with the second sealing member 106 made of a glass member, the shape of the lens surface 106a can be maintained as an optical device. A pure silicone resin is less susceptible to deterioration by heat or light, but an additive for curing the resin becomes a color change factor. According to the seventh embodiment, the first sealing member 105 is made of an oily pure silicone resin, so that the light output is not easily lowered due to deterioration due to heat or light, and is highly reliable. be able to.

なお、上記した発光装置1,30,50,60,80,85,90,100、110においては、波長変換のための蛍光体層をガラス封止部内に配設することができる。蛍光体層は、例えば、LED素子が青色発光である場合、この青色光によって励起されることにより黄色光を放射する特性を有するCe(セリウム):YAG(イットリウム・アルミニウム・ガーネット)等の蛍光体を用いることができる。   In the light emitting devices 1, 30, 50, 60, 80, 85, 90, 100, and 110 described above, a phosphor layer for wavelength conversion can be disposed in the glass sealing portion. The phosphor layer is, for example, a phosphor such as Ce (cerium): YAG (yttrium, aluminum, garnet) having a characteristic of emitting yellow light when excited by the blue light when the LED element emits blue light. Can be used.

また、前記各実施の形態において、金属ベース部15,32,51,87、金属板83,90、及び金属反射鏡61に放熱フィンを形成し、あるいは取り付けることが可能である。これにより、放熱効果を更に高めることができる。   Further, in each of the above embodiments, heat radiation fins can be formed or attached to the metal base portions 15, 32, 51, 87, the metal plates 83, 90, and the metal reflector 61. Thereby, the heat dissipation effect can be further enhanced.

更に、封止部材14,35はフラットな形状にしたが、これに限定されるものではなく、例えば、砲弾型、ダイヤカット型等であっても良い。   Furthermore, although the sealing members 14 and 35 are formed in a flat shape, the shape is not limited to this, and may be, for example, a shell type or a diamond cut type.

また、本発明は、発光装置に限定されるものではなく、例えば、太陽電池等の受光素子を用いた半導体装置等の光デバイスにも適用可能であり、封止部材がガラスであるため、太陽光に長時間さらされても劣化しないものとなり、集光レンズを備え受光素子サイズを小型にした太陽電池としての光デバイスなどともできる。本発明の適用により、温度上昇に伴う変換効率の低下が抑制されるほか、耐候性、耐熱性等を向上させることができる。   Further, the present invention is not limited to the light emitting device, and can be applied to, for example, an optical device such as a semiconductor device using a light receiving element such as a solar cell, and the sealing member is glass. Even if it is exposed to light for a long time, it does not deteriorate, and it can be used as an optical device as a solar cell provided with a condensing lens and having a small light receiving element size. By applying the present invention, a decrease in conversion efficiency accompanying a temperature rise is suppressed, and weather resistance, heat resistance, and the like can be improved.

本発明の第1の実施の形態に係る光デバイスの構成を示す図であり、(a)は平面図、(b)はA−A断面図である。It is a figure which shows the structure of the optical device which concerns on the 1st Embodiment of this invention, (a) is a top view, (b) is AA sectional drawing. 第1の実施の形態の光デバイスにおける保持部材の変形例を示す部分断面図である。It is a fragmentary sectional view which shows the modification of the holding member in the optical device of 1st Embodiment. 第2の実施の形態に係る光デバイスの構成を示す図であり、(a)は断面図、(b)は半田層と金属リードの配置状態を示す概略平面図である。It is a figure which shows the structure of the optical device which concerns on 2nd Embodiment, (a) is sectional drawing, (b) is a schematic plan view which shows the arrangement | positioning state of a solder layer and a metal lead. 第2の実施の形態における保持部材の変形例を示す図であり、(a)は保持部材表面に反射膜を設けた構成、(b)は保持部材の凹部に反射膜を設けた構成である。It is a figure which shows the modification of the holding member in 2nd Embodiment, (a) is the structure which provided the reflecting film in the holding member surface, (b) is the structure which provided the reflecting film in the recessed part of the holding member. . 第3の実施の形態に係る光デバイスの構成を示す図であり、(a)は平面図、(b)は(a)のB−B断面図である。It is a figure which shows the structure of the optical device which concerns on 3rd Embodiment, (a) is a top view, (b) is BB sectional drawing of (a). 第4の実施の形態に係る光デバイスの構成を示す図であり、(a)は平面図、(b)は(a)のC−C断面図である。It is a figure which shows the structure of the optical device which concerns on 4th Embodiment, (a) is a top view, (b) is CC sectional drawing of (a). 第4の実施の形態の保持部材の変形例を示す部分断面図である。It is a fragmentary sectional view showing the modification of the holding member of a 4th embodiment. 第5の実施の形態に係る光デバイスの構成を示す図であり、(a)は第5の実施の形態に係る光デバイスの基本構成を示す断面図、(b)は(a)の変形例を示す断面図である。It is a figure which shows the structure of the optical device which concerns on 5th Embodiment, (a) is sectional drawing which shows the basic composition of the optical device which concerns on 5th Embodiment, (b) is a modification of (a). FIG. 第5の実施の形態の変形例を示す光デバイスの部分断面図である。It is a fragmentary sectional view of the optical device which shows the modification of 5th Embodiment. 第5の実施の形態の他の変形例を示す光デバイスの部分断面図である。It is a fragmentary sectional view of the optical device which shows the other modification of 5th Embodiment. 第6の実施の形態に係る光デバイスの構成を示す部分断面図である。It is a fragmentary sectional view showing the composition of the optical device concerning a 6th embodiment. 第7の実施の形態に係る光デバイスの構成を示す部分断面図である。It is a fragmentary sectional view showing the composition of the optical device concerning a 7th embodiment.

符号の説明Explanation of symbols

1,20,30,50,60,80,85,90,100,110 発光装置
11 LED素子
11a 電極
12 素子マウント部
12a,12b,13a,13b 配線層
12c 半田層
13 保持部材
14 封止部材
15 金属ベース部
15a 凸部
21 素子マウント部
21a,21b,21c 電極
22a,22b,22c LED素子
31 素子マウント部
32 金属ベース部
33 保持部材
33a,33b 電極
33c 半田層
33d,33e,33g 凹部
33f,33h 反射膜
34a,34b 金属リード
35 封止部材
41 貫通孔
51 金属ベース部
52a〜52p 素子マウント部
53 保持部材
54a〜54p LED素子
55 封止部材
56a〜56e 端子
57a〜57d 電源用端子
58,71,74,76 銅箔層
61 金属反射鏡
61a 反射面
62,70 封止部材
72 内部配線層
73,75 スルーホール
81 LED素子
81a 電極
82 素子マウント部
82a,82b 突出部
82c,82d 電極
82e,82f スルーホール
82g 半田層
83 金属板
84 封止部材
86 ポリイミド基板
90a 貫通孔
91 金属板
92 反射面
101 LED素子
102 素子マウント部
102a,102b 配線層
103 保持部材
104a,104b ワイヤ
105 第1の封止部材
106 第2の封止部材
R1〜R4 抵抗

1, 20, 30, 50, 60, 80, 85, 90, 100, 110 Light-emitting device 11 LED element 11a Electrode 12 Element mount 12a, 12b, 13a, 13b Wiring layer 12c Solder layer 13 Holding member 14 Sealing member 15 Metal base part 15a Convex part 21 Element mount part 21a, 21b, 21c Electrode 22a, 22b, 22c LED element 31 Element mount part 32 Metal base part 33 Holding member 33a, 33b Electrode 33c Solder layer 33d, 33e, 33g Concave part 33f, 33h Reflective film 34a, 34b Metal lead 35 Sealing member 41 Through hole 51 Metal base portion 52a-52p Element mount portion 53 Holding member 54a-54p LED element 55 Sealing member 56a-56e Terminal 57a-57d Power supply terminal 58, 71, 74,76 Copper foil layer 61 Metal Mirror 61a Reflecting surface 62, 70 Sealing member 72 Internal wiring layer 73, 75 Through hole 81 LED element 81a Electrode 82 Element mounting part 82a, 82b Protruding part 82c, 82d Electrode 82e, 82f Through hole 82g Solder layer 83 Metal plate 84 Sealing Stop member 86 Polyimide substrate 90a Through hole 91 Metal plate 92 Reflecting surface 101 LED element 102 Element mounting portion 102a, 102b Wiring layer 103 Holding member 104a, 104b Wire 105 First sealing member 106 Second sealing member R1-R4 resistance

Claims (11)

光学素子と、
前記光学素子を搭載し、熱膨張率が前記光学素子に対して同等であり、前記光学素子を搭載する面の面積が前記光学素子の2倍以下の素子マウント部と
前記素子マウント部を嵌合するための孔を備え、前記素子マウント部より熱膨張率の大なる保持部材と、
前記光学素子を封止するとともに対象波長に対して透光性を有し、ガラス材で形成される封止部材とを有し、
前記素子マウント部は、前記光学素子を搭載する面が前記封止部材側に前記保持部材の前記孔から露出するように配置され、前記保持部材と前記封止部材とが接合され、
前記保持部材と前記封止部材との熱膨張率の差が、前記保持部材の熱膨張率に対して15%以内であることを特徴とする光デバイス。
An optical element;
Mounting the optical element, the thermal expansion coefficient is equivalent to that of the optical element, and the area of the surface on which the optical element is mounted has an element mounting portion that is twice or less the optical element ;
Includes a hole for fitting the element mount portion, and a large consisting holding member of the element mounting portion by Rinetsu expansion,
It said optical element have a light-transmitting property with respect to the wavelength of interest as well as sealing, and a sealing member formed of a glass material,
The element mounting portion is disposed so that a surface on which the optical element is mounted is exposed from the hole of the holding member on the sealing member side, and the holding member and the sealing member are joined ,
An optical device , wherein a difference in thermal expansion coefficient between the holding member and the sealing member is within 15% with respect to a thermal expansion coefficient of the holding member .
前記光学素子は、複数であり、
前記素子マウント部は、複数の前記光学素子ごとに設けられ、互いに島状に配置されることを特徴とする請求項1に記載の光デバイス。
The optical element is plural,
The optical device according to claim 1, wherein the element mounting portion is provided for each of the plurality of optical elements and is arranged in an island shape .
記封止部材は、前記光学素子及びその周囲を封止する第1の封止部材と、前記第1の封止部材及び前記保持部材の上面の露出面を封止する第2の封止部材とを備え、
前記第1の封止部材は、前記素子マウント部と前記第2の封止部材との中間の熱膨張率を有することを特徴とする請求項1または2に記載の光デバイス。
Before Kifu stop member, the second sealing for sealing the first sealing member for sealing the optical element and the periphery thereof, the exposed surface of the upper surface of the first sealing member and the retaining member With members,
It said first sealing member is an optical device according to claim 1 or 2, characterized in that have a thermal expansion coefficient intermediate between the second sealing member and the element mounting portion.
前記素子マウント部は、前記保持部材と凹凸嵌合可能な断面凸状に形成されていることを特徴とする請求項1からのいずれかに記載の光デバイス。 The element mounting portion, the optical device according to any one of claims 1 to 3, characterized in that it is formed in the holding member and the concave-convex can fit a convex cross section. 前記保持部材は、セラミック材料からなることを特徴する請求項1からのいずれか1項に記載の光デバイス。 The holding member is an optical device according to claim 1, any one of 4 to characterized in that it consists of a ceramic material. 前記保持部材は、ガラス含有のAl材料からなることを特徴する請求項5に記載の光デバイス。 The optical device according to claim 5, wherein the holding member is made of a glass-containing Al 2 O 3 material. 前記保持部材は、配線パターンを断面内に積層した多層基板であることを特徴する請求項5または6に記載の光デバイス。 The optical device according to claim 5 , wherein the holding member is a multilayer substrate in which wiring patterns are laminated in a cross section. 前記光学素子は、発光素子であることを特徴とする請求項1からのいずれか1項に記載の光デバイス。 The optical element, the optical device according to any one of claims 1 to 7, characterized in that a light-emitting element. 前記光学素子は、フリップチップ接合されることを特徴とする請求項8に記載の光デバイス。 The optical device according to claim 8, wherein the optical element is flip-chip bonded. 前記光学素子は、フェイスアップタイプの発光素子であり、前記発光素子と電気的に接続されるワイヤとともに耐熱性材料によって覆われていることを特徴とする請求項8に記載の光デバイス。 The optical device according to claim 8, wherein the optical element is a face-up type light emitting element, and is covered with a heat resistant material together with a wire electrically connected to the light emitting element. 前記素子マウント部は、底面に放熱部を有することを特徴とする請求項1から10のいずれか1項に記載の光デバイス。 The element mounting portion, the optical device according to any one of claims 1 to 10, characterized in that it has a heat radiating portion on the bottom surface.
JP2003358308A 2003-07-17 2003-10-17 Optical device Expired - Fee Related JP4238693B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003358308A JP4238693B2 (en) 2003-10-17 2003-10-17 Optical device
DE102004063978.7A DE102004063978B4 (en) 2003-07-17 2004-07-15 Light-emitting device
DE102004034166.4A DE102004034166B4 (en) 2003-07-17 2004-07-15 Light-emitting device
US10/891,422 US7391153B2 (en) 2003-07-17 2004-07-15 Light emitting device provided with a submount assembly for improved thermal dissipation
CNB2004100712619A CN100472820C (en) 2003-07-17 2004-07-16 Illuminating device
CN2009100096747A CN101476710B (en) 2003-07-17 2004-07-16 Illuminating device and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358308A JP4238693B2 (en) 2003-10-17 2003-10-17 Optical device

Publications (3)

Publication Number Publication Date
JP2005123477A JP2005123477A (en) 2005-05-12
JP2005123477A5 JP2005123477A5 (en) 2007-09-13
JP4238693B2 true JP4238693B2 (en) 2009-03-18

Family

ID=34614917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358308A Expired - Fee Related JP4238693B2 (en) 2003-07-17 2003-10-17 Optical device

Country Status (1)

Country Link
JP (1) JP4238693B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351964A (en) * 2005-06-17 2006-12-28 Matsushita Electric Works Ltd Board for mount thereon of light emitting element and manufacturing method thereof
JP4679268B2 (en) * 2005-06-29 2011-04-27 シーアイ化成株式会社 Light emitting diode composite element
JP4679267B2 (en) * 2005-06-29 2011-04-27 シーアイ化成株式会社 Light emitting diode composite element
KR100694847B1 (en) 2005-09-26 2007-03-13 알티전자 주식회사 Light emitting diode and manufacturing method thereof
JP2007150233A (en) * 2005-11-02 2007-06-14 Trion:Kk Color-temperature controllable light-emitting device
JP3992059B2 (en) 2005-11-21 2007-10-17 松下電工株式会社 Method for manufacturing light emitting device
JP4013077B2 (en) 2005-11-21 2007-11-28 松下電工株式会社 Light emitting device and manufacturing method thereof
JP2007173369A (en) * 2005-12-20 2007-07-05 Rohm Co Ltd Semiconductor light-emitting element and manufacturing method thereof
JP2007234846A (en) * 2006-03-01 2007-09-13 Ngk Spark Plug Co Ltd Ceramic package for light-emitting element
JP2008004640A (en) * 2006-06-20 2008-01-10 Toyoda Gosei Co Ltd Light emitting device
CN101578473B (en) * 2007-01-11 2013-04-10 松下电器产业株式会社 Light source
KR100850666B1 (en) * 2007-03-30 2008-08-07 서울반도체 주식회사 Led package with metal pcb
JP4969332B2 (en) * 2007-06-19 2012-07-04 シャープ株式会社 Substrate and lighting device
JP5139916B2 (en) * 2008-08-06 2013-02-06 シチズン電子株式会社 Light emitting device
JP5379465B2 (en) * 2008-12-17 2013-12-25 パナソニック株式会社 Light emitting device
JP5305950B2 (en) * 2009-01-29 2013-10-02 京セラ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP5370238B2 (en) * 2010-03-30 2013-12-18 豊田合成株式会社 Method for manufacturing light emitting device
JP2013157592A (en) * 2012-01-05 2013-08-15 Canon Components Inc Flexible circuit board for mounting light emitting element
JP5274586B2 (en) 2011-01-17 2013-08-28 キヤノン・コンポーネンツ株式会社 Flexible circuit board
US9232634B2 (en) 2011-01-17 2016-01-05 Canon Components, Inc. Flexible circuit board for mounting light emitting element, illumination apparatus, and vehicle lighting apparatus
JP6427313B2 (en) * 2013-11-01 2018-11-21 株式会社タムラ製作所 Light emitting device
JP6398996B2 (en) * 2014-01-24 2018-10-03 Agc株式会社 Light emitting element substrate and light emitting device
JP2016184653A (en) * 2015-03-26 2016-10-20 京セラ株式会社 Package for housing light-emitting element, and light-emitting device
JP6537883B2 (en) * 2015-05-14 2019-07-03 スタンレー電気株式会社 Semiconductor light emitting element and semiconductor light emitting element array
EP3345464B1 (en) * 2015-09-03 2021-01-20 Lumileds LLC Method of making an led device
CN107565002B (en) 2016-06-30 2022-03-25 日亚化学工业株式会社 Light emitting device and method for manufacturing the same
JP6477734B2 (en) * 2016-06-30 2019-03-06 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP7291675B2 (en) * 2020-07-30 2023-06-15 日本特殊陶業株式会社 Semiconductor package array

Also Published As

Publication number Publication date
JP2005123477A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4238693B2 (en) Optical device
US7391153B2 (en) Light emitting device provided with a submount assembly for improved thermal dissipation
JP4192742B2 (en) Light emitting device
JP4303550B2 (en) Light emitting device
USRE46851E1 (en) High power light emitting diode package
TWI484665B (en) High powered light emitter packages with compact optics
JP4029843B2 (en) Light emitting device
JP4990355B2 (en) Semiconductor light emitting device package submount and semiconductor light emitting device package including the submount
US7777237B2 (en) Semiconductor light-emitting device and method of fabricating the same
TWI528508B (en) Method for manufacturing ceramic package structure of high power light emitting diode
KR20050092300A (en) High power led package
JP2007514320A (en) Surface mount light emitting chip package
JP4254470B2 (en) Light emitting device
JP2004207367A (en) Light emitting diode and light emitting diode arrangement plate
JP2008108836A (en) Semiconductor light emitting device and method for manufacturing the same
KR100875702B1 (en) High Power LED Package
JP4147353B2 (en) Light emitting device
JP5126127B2 (en) Method for manufacturing light emitting device
JP4016925B2 (en) Light emitting device
JP2008193125A (en) Method of manufacturing light emitting device
JP4678389B2 (en) Light emitting device
JP4797621B2 (en) Semiconductor device and manufacturing method thereof
JP2005217308A (en) Semiconductor light emitting device and method for manufacturing the same
JP4720943B1 (en) Package for semiconductor device and light emitting device using the same
KR100878398B1 (en) High power led package and fabrication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4238693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees