JP4237013B2 - Manufacturing method of surface modified fine diamond abrasive - Google Patents

Manufacturing method of surface modified fine diamond abrasive Download PDF

Info

Publication number
JP4237013B2
JP4237013B2 JP2003285106A JP2003285106A JP4237013B2 JP 4237013 B2 JP4237013 B2 JP 4237013B2 JP 2003285106 A JP2003285106 A JP 2003285106A JP 2003285106 A JP2003285106 A JP 2003285106A JP 4237013 B2 JP4237013 B2 JP 4237013B2
Authority
JP
Japan
Prior art keywords
diamond
iron
group metal
diamond particles
iron group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003285106A
Other languages
Japanese (ja)
Other versions
JP2005054025A (en
Inventor
石塚博
Original Assignee
株式会社石塚研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石塚研究所 filed Critical 株式会社石塚研究所
Priority to JP2003285106A priority Critical patent/JP4237013B2/en
Publication of JP2005054025A publication Critical patent/JP2005054025A/en
Application granted granted Critical
Publication of JP4237013B2 publication Critical patent/JP4237013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は表面改質微細ダイヤモンド研磨材、特にスラリー状研磨材としてガラス製ハードディスク基板や磁気ヘッド等の精密研磨等、電子材料の精密研磨加工に適した微細ダイヤモンド研磨材に関する。   The present invention relates to a surface-modified fine diamond abrasive, and more particularly to a fine diamond abrasive suitable for precision polishing of electronic materials, such as precision polishing of a glass hard disk substrate or a magnetic head as a slurry-like abrasive.

近年、光学部品、電子部品や精密機械部品などに対して、益々高性能化、高機能化が要求されてきており、使用される材料も金属系材料、セラミックス、ガラス、プラスチックと多岐にわたり、加工仕上げ面の粗さ表示はナノメータからオングストローム領域に移行しつつある。   In recent years, there has been an increasing demand for higher performance and higher functionality for optical parts, electronic parts, precision machine parts, etc., and the materials used are wide-ranging, such as metal materials, ceramics, glass, and plastics. The roughness indication of the finished surface is shifting from nanometer to angstrom region.

この様な部品の精密研磨加工には、グラファイトを原料とし爆薬を用いた衝撃加圧によって合成される多結晶ダイヤモンドが広く使用されているが、これと並んで、プレス等の静的加圧により合成された単結晶質ダイヤモンドの粉砕によって得られる、微細単結晶ダイヤモンドも、同様に使用されている。   For precision polishing of such parts, polycrystalline diamond synthesized by impact pressing using graphite as a raw material is widely used, but along with this, by static pressing such as press Fine single crystal diamond obtained by pulverization of synthesized single crystal diamond is also used.

単結晶質微細ダイヤモンドは、精密粉砕技術と精密分級・捕集技術との連携した進歩に依って、100nm以下の粒度まで、狭い粒度範囲で入手可能である。単結晶質ダイヤモンドは最近、角ばった粒子の突き出し高さの減少や潤滑性増加を目的として、表面の一部をグラファイト乃至非ダイヤモンド炭素化する手法が開発され、利用されている。 Single crystalline fine diamonds are available in a narrow particle size range down to 100nm or less, due to advances in cooperation between precision grinding technology and precision classification and collection technology. Single crystal diamond has recently been developed and used in the form of graphite or non-diamond carbon for part of its surface for the purpose of reducing the protruding height of angular particles and increasing lubricity.

この場合、不純物を含まないダイヤモンドは熱に対して比較的安定であり、1400℃くらいに加熱しないと非ダイヤモンドへの転化は生じない。特別な例として、表面を親水化処理した微細ダイヤモンドは、表面に酸素原子や親水基を有するので、この作用により1000℃以上への加熱によって、主としてグラファイトからなる非ダイヤモンドへの転化が進行する。この際、結晶に細かいクラックが入って破砕性が増すので、両方の構造変化を積極的に利用した微細ダイヤモンドが開発されている。
特許3411239号公報
In this case, diamond containing no impurities is relatively stable to heat, and conversion to non-diamond does not occur unless heated to about 1400 ° C. As a special example, fine diamond whose surface has been hydrophilized has oxygen atoms or hydrophilic groups on the surface, and by this action, conversion to non-diamond mainly composed of graphite proceeds by heating to 1000 ° C. or higher. At this time, since fine cracks enter the crystal and the friability increases, fine diamond has been developed that actively utilizes both structural changes.
Japanese Patent No. 3411239

しかし親水基を有するダイヤモンドを1000℃以上の温度に、グラファイトが検出される程度に加熱するとダイヤモンド粒子本体の機械的強度は低下し、この低下は、100nm以下のような細かい粒径において顕著になる。   However, when diamond having a hydrophilic group is heated to a temperature of 1000 ° C. or more to such an extent that graphite is detected, the mechanical strength of the diamond particle body decreases, and this decrease becomes remarkable at a fine particle size of 100 nm or less. .

一方、スラリーとして使用されるダイヤモンドは精密加工技術の一般化により200nmから100nmへ、さらに80nmというように、益々細かい粒径へ移行しつつある。これに伴い、より強度の大きな、これらの粒径の微細ダイヤモンド粒子が求められていた。   On the other hand, diamond used as a slurry is becoming increasingly finer from 200 nm to 100 nm and further to 80 nm due to the generalization of precision processing technology. Accordingly, there has been a demand for fine diamond particles having a larger particle size and higher strength.

さらに一方では、スラリーで効率的に研磨作業を行うためには、ダイヤモンド粒子が突き刺さるなどにより定盤上に固着されることが必要であるが、従来の微細なダイヤモンド粒子は強度が小さく、突き刺さることができず、定盤上を転がるので、作業効率は低く、また充分に研磨作業に寄与せずに排出されるダイヤモンド粒子の割合が大きかった。   On the other hand, in order to perform polishing work efficiently with the slurry, it is necessary to fix the diamond particles on the surface plate by, for example, piercing, but conventional fine diamond particles have low strength and pierce. However, the work efficiency is low, and the ratio of diamond particles that are discharged without sufficiently contributing to the polishing work is large.

従って本発明の主な目的の一つは、粒子表面に本体のダイヤモンドから転化した非ダイヤモンド層を有しながら、しかもダイヤモンド固有の機械的強度を保持するスラリー用の高強度微細ダイヤモンド研磨材を提供することである。   Accordingly, one of the main objects of the present invention is to provide a high-strength fine diamond abrasive for slurry that has a non-diamond layer converted from diamond of the main body on the surface of the particle and that retains the mechanical strength inherent to diamond. It is to be.

本発明によれば、静的超高圧法により調製されたダイヤモンドの粉砕によって得られる、平均粒径(D50値)が5μm以下の微細単結晶粒子の非凝集集合体であって、該ダイヤモンド粒子が固有の機械的強度を保持し、かつ粒子表面が、粒子を構成するダイヤモンドからの転化によって生成した非ダイヤモンド炭素で被覆されている、表面改質微細ダイヤモンド研磨材が提供される。   According to the present invention, non-aggregated aggregates of fine single crystal particles having an average particle diameter (D50 value) of 5 μm or less obtained by pulverizing diamond prepared by a static ultrahigh pressure method, A surface-modified fine diamond abrasive is provided that retains its inherent mechanical strength and that the particle surface is coated with non-diamond carbon produced by conversion from the diamond that constitutes the particle.

このような微細ダイヤモンド研磨材は、本発明によれば、静的超高圧合成により生成された、平均粒径(D50値)5μm以下のダイヤモンド粒子を、鉄族金属又は鉄族金属酸化物と密に接触させ、非酸化性雰囲気中で1000℃未満の処理温度に加熱保持することによって得ることができる。この方法は本発明の別の側面を構成する。   According to the present invention, such a fine diamond abrasive material is obtained by combining diamond particles having an average particle size (D50 value) of 5 μm or less produced by static ultrahigh pressure synthesis with an iron group metal or an iron group metal oxide. And heated and maintained at a treatment temperature of less than 1000 ° C. in a non-oxidizing atmosphere. This method constitutes another aspect of the present invention.

上記金属酸化物は、金属表面に析出させた金属塩を非酸化性雰囲気中で加熱することによっても得ることができる。従って、本発明のさらなる側面は、平均粒径(D50値)5μm以下のダイヤモンド粒子を、鉄族金属又は鉄族金属の塩酸、硝酸又は硫酸塩から選ばれる処理剤の水溶液中に浸漬して表面に該塩を析出させ、さらに非酸化性雰囲気中で1000℃未満の処理温度に加熱保持することである。   The metal oxide can also be obtained by heating a metal salt deposited on the metal surface in a non-oxidizing atmosphere. Accordingly, a further aspect of the present invention is to immerse diamond particles having an average particle diameter (D50 value) of 5 μm or less in an aqueous solution of a treatment agent selected from iron group metals or hydrochloric acid, nitric acid or sulfate of iron group metals. And the salt is deposited and further heated and maintained at a treatment temperature of less than 1000 ° C. in a non-oxidizing atmosphere.

本発明の微細ダイヤモンド研磨材は、ダイヤモンド粒子の表面に、本体ダイヤモンドから転化した非ダイヤモンド炭素、特にグラフェン構造の層を有する。この層は
(1) スラリーとして使用される時に研磨盤(定盤)との間に介在することによって研磨盤へのなじみ(固着性)を増すので、ダイヤモンド粒子が効果的に働き、研磨速度の向上及び無駄な消費が減少する。
(2) 粒子表面の非ダイヤモンド炭素薄膜はグラフェン構造のを有するので、潤滑効果も得られる。
(3) 特に800℃以下で加熱処理したダイヤモンド粒子は、粒径100nm以下の粒子に至るまで処理前のダイヤモンド固有の機械的強度を保持しており、特に超精密加工において、大きな研磨速度が達成できる。
(4) 上記の場合においても、非ダイヤモンド炭素被覆によって刃先の突き出し高さが減少し、細やかな仕上げ面が得られる。
The fine diamond abrasive of the present invention has a layer of non-diamond carbon converted from main diamond, particularly a graphene structure, on the surface of diamond particles. This layer
(1) When used as a slurry, it interposes with the polishing plate (surface plate) to increase the familiarity (adhesiveness) to the polishing plate, so that the diamond particles work effectively, improving the polishing rate and wastefulness. Consumption is reduced.
(2) Since the non-diamond carbon thin film on the particle surface has a graphene structure, a lubricating effect can also be obtained.
(3) Diamond particles that have been heat-treated especially at temperatures below 800 ° C retain the mechanical strength inherent to diamond prior to treatment, up to particles with a particle size of 100 nm or less. it can.
(4) Even in the above case, the protrusion height of the cutting edge is reduced by the non-diamond carbon coating, and a fine finished surface can be obtained.

本発明に用いるミクロン乃至サブミクロンダイヤモンドの強度を測定する方法はまだ開発されていない。加熱によって合成ダイヤモンドの強度が低下する原因は、主として合成反応の際にダイヤモンド粒子内に取り込まれた鉄族金属の作用によって黒鉛化が促進され、この際の体積増加に起因するクラックの発生によるものと推定されている。そこで便宜上、メッシュサイズのダイヤモンドにおける熱影響現象から、微細なダイヤモンドの挙動を推定する方法が用いられている。   A method for measuring the strength of micron to submicron diamond used in the present invention has not yet been developed. The reason why the strength of synthetic diamond decreases due to heating is mainly due to the generation of cracks due to the increase in volume at this time due to the action of iron group metal incorporated in the diamond particles during the synthesis reaction. It is estimated that. Therefore, for the sake of convenience, a method of estimating the behavior of fine diamond from the heat effect phenomenon in mesh size diamond is used.

本発明者は、鉄族金属不純物の含有量がそれぞれ2000ppmおよび500ppmである2種類の、平均粒径150μmのダイヤモンドを窒素雰囲気中で加熱して、700℃までは強度低下が認められなかったが、800℃での加熱においては、前者の場合破砕強度は室温強度の94%、後者は99%という結果を得た。   The present inventor heated two kinds of diamonds having an average particle size of 150 μm having an iron group metal impurity content of 2000 ppm and 500 ppm, respectively, in a nitrogen atmosphere, and no decrease in strength was observed up to 700 ° C. In heating at 800 ° C., the crushing strength in the former case was 94% of the room temperature strength, and the latter was 99%.

ダイヤモンドの粉砕微粉の製造工程においては、粉砕工程に続いて金属成分を除去する酸洗い工程が付随することから、微粉ダイヤモンド中に含まれる不純物金属はメッシュサイズのダイヤモンドに比して桁違いに小さく、平均粒径100nmのダイヤモンドにおいては100ppm以下である。従って粉砕工程を経た微粉ダイヤモンドは、少なくとも800℃までは強度低下を生じないとみなすことができる。また処理温度の選定により、ダイヤモンドの強度を制御することも可能である。   In the manufacturing process of diamond fine powder, the pickling process to remove the metal components follows the grinding process, so the impurity metal contained in the fine diamond is orders of magnitude smaller than that of mesh-sized diamond. In a diamond having an average particle diameter of 100 nm, it is 100 ppm or less. Therefore, it can be considered that the fine diamond subjected to the pulverization process does not cause a decrease in strength until at least 800 ° C. It is also possible to control the strength of the diamond by selecting the treatment temperature.

本発明者はまた、非ダイヤモンドへの転化は、500℃付近から生起することを知見した。この点から、本発明における加熱処理温度としては、500℃〜800℃が適当である。   The inventor has also found that the conversion to non-diamond occurs from around 500 ° C. From this point, the heat treatment temperature in the present invention is suitably 500 ° C to 800 ° C.

ダイヤモンドの非ダイヤモンドへの転化は、処理前全質量に対する比率において0.5%以上になると、表面が灰色に変化することによって検知できるが、このような低比率ではX線回折での検出限界外である。転化率は加熱処理温度及び保持時間によって制御できる。転化率が低い範囲では、非ダイヤモンド炭素はグラフェンを主体とする構造を採ることが知られている。転化率が大きくなるとグラファイトとして検出される。   The conversion of diamond to non-diamond can be detected by changing the surface to gray when the ratio to the total mass before treatment is 0.5% or more, but at such a low ratio, it is outside the detection limit in X-ray diffraction. . The conversion rate can be controlled by the heat treatment temperature and the holding time. In a range where the conversion rate is low, it is known that non-diamond carbon adopts a structure mainly composed of graphene. When the conversion rate increases, it is detected as graphite.

本発明においては超精密加工用の研磨材提供を目的とすることから平均粒径が5μm以下のダイヤモンド粒子を用いる。特に上記平均粒径が1μm以下のダイヤモンド粒子においては低温(1000℃未満)加熱処理による効果、即ちクラックが無く機械的強度が保持される利点が著しい。   In the present invention, diamond particles having an average particle diameter of 5 μm or less are used for the purpose of providing an abrasive for ultraprecision machining. In particular, the diamond particles having an average particle diameter of 1 μm or less have a remarkable effect of heat treatment at low temperature (less than 1000 ° C.), that is, the advantage that mechanical strength is maintained without cracks.

本発明においてダイヤモンドと共に加熱する鉄族金属は、鉄、コバルト及びニッケルから選ばれる単体金属の1種又は組合せ、或いはこれらの単体金属を含有する合金、典型的にはインバー、コバール等から選ぶことができる。これらの金属又は金属酸化物は微細な粉末としてダイヤモンド粉末と密に混合して、加熱処理に供する。   In the present invention, the iron group metal heated together with diamond may be selected from one or a combination of single metals selected from iron, cobalt and nickel, or an alloy containing these single metals, typically Invar, Kovar, etc. it can. These metals or metal oxides are intimately mixed with diamond powder as a fine powder and subjected to heat treatment.

処理剤として塩化鉄又は硝酸鉄を用いる場合、ダイヤモンド粒子の表面に析出した鉄塩にアンモニア水を噴射するなどしてこれを中和、水酸化物に変えることも有用である。この操作によって昇華性の塩化鉄が、より安定な低級酸化物に変わるので、表面非ダイヤモンド化を行うことができる。   When iron chloride or iron nitrate is used as the treatment agent, it is also useful to neutralize the iron salt deposited on the surface of the diamond particles and change it into a hydroxide. By this operation, the sublimable iron chloride is changed to a more stable lower oxide, so that the surface can be made non-diamond.

処理剤は必ずしも試薬級のFeCl2、Fe(NO3)2水溶液である必要はない。本発明においては、ダイヤモンド調製の過程で発生する、反応回収物から金属成分の除去やその他の各段階で使用されFe2+やCo2+イオンを含有するに至った処理廃液も、有効に利用可能である。 The treating agent is not necessarily a reagent grade FeCl 2 or Fe (NO 3 ) 2 aqueous solution. In the present invention, the treatment waste liquid generated in the process of diamond preparation, which is used in the removal of metal components from the reaction recovery product and other stages, and which contains Fe 2+ and Co 2+ ions, is also effectively used. Is possible.

トーメイダイヤ製D50値平均粒径150nmのダイヤモンド粉末を濃度10%の塩化鉄水溶液中に浸漬した。これを取り出して軽く乾燥した後、アンモニア水の噴射によって酸を中和し、さらに空気中200℃で乾燥した。ダイヤモンド粒子の表面には析出物が付着していたが、これは、XRDにより水酸化鉄と同定された。
上記ダイヤモンド粉末を水素雰囲気中で400℃に加熱して析出物を金属鉄に還元し、次いで窒素雰囲気中600℃にて12時間の加熱処理に供した。処理から回収したダイヤモンド粉末は灰色を呈しており、硝酸−硫酸混液を用いた湿式酸化処理によって、粒子表面の非ダイヤモンド炭素を定量し、1.5%と見積もられた。
A diamond powder having a D50 value average particle diameter of 150 nm manufactured by Tomei Diamond was immersed in an aqueous iron chloride solution having a concentration of 10%. This was taken out and lightly dried, and then the acid was neutralized by injection of aqueous ammonia, and further dried in air at 200 ° C. Deposits were deposited on the surfaces of the diamond particles, which were identified as iron hydroxide by XRD.
The diamond powder was heated to 400 ° C. in a hydrogen atmosphere to reduce the precipitate to metallic iron, and then subjected to a heat treatment at 600 ° C. for 12 hours in a nitrogen atmosphere. The diamond powder recovered from the treatment had a gray color, and the non-diamond carbon on the particle surface was quantified by a wet oxidation treatment using a nitric acid-sulfuric acid mixed solution and estimated to be 1.5%.

トーメイダイヤ製平均粒径100nmのダイヤモンドを濃度5%の硝酸ニッケル水溶液中に浸漬し、空気中200℃で乾燥し、ダイヤモンド粉末表面にニッケル化合物を付着させた。この粉末をアルゴン雰囲気で750℃に12時間保持した。加熱処理を施した粉末は固く凝集した黒灰色の塊であった。硝酸−硫酸混液を用いた湿式酸化処理によって、粒子表面に生じた非ダイヤモンド炭素の量は3%と見積もられた。   Diamond with an average particle diameter of 100 nm manufactured by Tomei Diamond was immersed in an aqueous nickel nitrate solution having a concentration of 5%, and dried in air at 200 ° C. to attach a nickel compound to the surface of the diamond powder. This powder was held at 750 ° C. for 12 hours in an argon atmosphere. The heat-treated powder was a hard, agglomerated black gray mass. The amount of non-diamond carbon generated on the particle surface by wet oxidation using a nitric acid-sulfuric acid mixture was estimated to be 3%.

本発明は表面改質微細ダイヤモンド研磨材、特にスラリー状研磨材としてガラス製ハードディスク基板や磁気ヘッド等の精密研磨等、電子材料の精密研磨加工に適する。   The present invention is suitable for precision polishing of electronic materials such as surface-modified fine diamond abrasives, particularly precision abrasives such as glass hard disk substrates and magnetic heads as slurry-like abrasives.

Claims (7)

静的超高圧合成により生成された、平均粒径(D50値)5μm以下のダイヤモンド粒子を、鉄族金属又は鉄族金属酸化物と密に接触させ、非酸化性雰囲気中で1000℃未満の処理温度に加熱保持することによりダイヤモンド粒子の表面を一部非ダイヤモンド炭素に転化することを特徴とする、表面改質微細ダイヤモンド研磨材の製造法。 Diamond particles with an average particle size (D50 value) of 5 μm or less, produced by static ultra-high pressure synthesis, are in intimate contact with an iron group metal or iron group metal oxide and treated at a temperature below 1000 ° C. in a non-oxidizing atmosphere. characterized by converting the surface of the diamond particles to some non-diamond carbon by heating maintained at a temperature, Table Men'aratameshitsu preparation of fine diamond abrasive. 上記非酸化性雰囲気中での加熱保持に先立ち、上記ダイヤモンド粒子を鉄族金属又は鉄族金属の塩酸、硝酸又は硫酸塩から選ばれる処理剤の水溶液中に浸漬して表面に該塩を析出させる、請求項1に記載の方法 Prior to heating and holding in the non-oxidizing atmosphere, the diamond particles are immersed in an aqueous solution of a treatment agent selected from iron group metal or hydrochloric acid, nitric acid or sulfate of an iron group metal to deposit the salt on the surface. The method of claim 1 . 上記鉄族金属が、鉄、コバルト、ニッケル、及びこれらのいずれかを含有する合金から選ばれる1種である、請求項1に記載の方法The method according to claim 1, wherein the iron group metal is one selected from iron, cobalt, nickel, and an alloy containing any of these. 上記処理剤が塩化鉄、又は硝酸鉄であり、ダイヤモンド粒子の表面に鉄塩を析出後中和して水酸化物に変える、請求項に記載の方法。 The method according to claim 2 , wherein the treatment agent is iron chloride or iron nitrate, and the iron salt is deposited on the surface of the diamond particles and then neutralized to be converted into a hydroxide. 上記処理温度が800℃以下である、請求項1又は2に記載の方法The method according to claim 1 or 2, wherein the treatment temperature is 800 ° C or lower. 上記処理温度が500℃以上である、請求項1又は2に記載の方法The method according to claim 1 or 2, wherein the treatment temperature is 500 ° C or higher. 上記非酸化性雰囲気が1Pa以下への減圧及び窒素、アルゴン、CO又は水素ガス雰囲気から選ばれる、請求項1又は2に記載の方法The method according to claim 1 or 2 , wherein the non-oxidizing atmosphere is selected from a reduced pressure to 1 Pa or less and a nitrogen, argon, CO or hydrogen gas atmosphere.
JP2003285106A 2003-08-01 2003-08-01 Manufacturing method of surface modified fine diamond abrasive Expired - Fee Related JP4237013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285106A JP4237013B2 (en) 2003-08-01 2003-08-01 Manufacturing method of surface modified fine diamond abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285106A JP4237013B2 (en) 2003-08-01 2003-08-01 Manufacturing method of surface modified fine diamond abrasive

Publications (2)

Publication Number Publication Date
JP2005054025A JP2005054025A (en) 2005-03-03
JP4237013B2 true JP4237013B2 (en) 2009-03-11

Family

ID=34364850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285106A Expired - Fee Related JP4237013B2 (en) 2003-08-01 2003-08-01 Manufacturing method of surface modified fine diamond abrasive

Country Status (1)

Country Link
JP (1) JP4237013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105086939A (en) * 2015-08-21 2015-11-25 北京保利世达科技有限公司 Monocrystalline diamond grit and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115303A (en) * 2006-11-06 2008-05-22 Hiroshi Ishizuka Resin material for polishing tool and its manufacturing method
JP5316053B2 (en) * 2009-02-12 2013-10-16 日立工機株式会社 Porous vitrified bond whetstone and method for manufacturing the same
CN106112831B (en) * 2016-06-22 2019-01-01 常州第六元素材料科技股份有限公司 A kind of graphene modified ceramic grinding tool material and preparation method thereof
KR101926449B1 (en) * 2017-08-02 2018-12-07 새솔다이아몬드공업 주식회사 Polishing pad dresser with pores on the surface of diamond and the manufacuring method thereof
CN111994904A (en) * 2020-09-15 2020-11-27 河南工业大学 Method for preparing graphene on surface of diamond
CN113880082B (en) * 2021-09-27 2023-11-07 郑州昊诚超硬工具有限公司 Preparation method of diamond micro powder for precision machining

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411239B2 (en) * 1998-08-28 2003-05-26 石塚 博 Diamond abrasive particles and method for producing the same
JP3820080B2 (en) * 2000-05-22 2006-09-13 石塚 博 Fine diamond abrasive particles and method for producing the same
JP2002060733A (en) * 2000-08-17 2002-02-26 Ishizuka Kenkyusho:Kk Diamond-polishing material particle and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105086939A (en) * 2015-08-21 2015-11-25 北京保利世达科技有限公司 Monocrystalline diamond grit and preparation method thereof
CN105086939B (en) * 2015-08-21 2017-05-10 北京保利世达科技有限公司 Monocrystalline diamond grit and preparation method thereof

Also Published As

Publication number Publication date
JP2005054025A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
US9758708B2 (en) Abrasive particles having a unique morphology
KR102186023B1 (en) Abrasive particles having a unique morphology
JP4257690B2 (en) Sintered active metal powders and alloy powders for powder metallurgy applications, methods for their production and their use
JP4237013B2 (en) Manufacturing method of surface modified fine diamond abrasive
EA005506B1 (en) Diamond abrasive material particles and production method therefor
Novikov et al. Detonation diamonds in Ukraine
AU695628B2 (en) Cobalt metal agglomerates, process for their production and their use
JP5411210B2 (en) Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder
Borovinskaya et al. Self-propagating high-temperature synthesis of ultrafine tungsten carbide powders
CN114787315A (en) Breakable diamond abrasive grain and method for producing same
Lavrinenko et al. Surface modification of synthetic grinding powders diamond with heat-resistant oxides and chlorides liquid phase application method
Koroleva Synthesis and abrasive properties of nanoparticulate MoO 2-modified Al 2− x Fe x O 3 and Fe 2− y Al y O 3 solid solutions
JP2003509579A (en) Al2O3 / SiC-nanocomposite abrasive particles, their production and use
Daoush et al. Fabrication of Polycrystalline Cubic Boron Nitride/Metal Composite Particles by Surface Metallization Followed by Electroless Deposition Technique. Materials 2021, 14, 7906
CN116332649A (en) Group diamond micro powder applied to fine grinding wheel
KR20210057737A (en) Cubic boron nitride particle population with highly etched particle surface and high toughness index
Derby Engineering Materials and Processes

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Ref document number: 4237013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees