JP4236414B2 - Nozzle for composite structure production - Google Patents

Nozzle for composite structure production Download PDF

Info

Publication number
JP4236414B2
JP4236414B2 JP2002052836A JP2002052836A JP4236414B2 JP 4236414 B2 JP4236414 B2 JP 4236414B2 JP 2002052836 A JP2002052836 A JP 2002052836A JP 2002052836 A JP2002052836 A JP 2002052836A JP 4236414 B2 JP4236414 B2 JP 4236414B2
Authority
JP
Japan
Prior art keywords
aerosol
nozzle
opening
composite structure
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002052836A
Other languages
Japanese (ja)
Other versions
JP2003251227A (en
Inventor
達郎 横山
広典 鳩野
万也 辻道
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toto Ltd
Priority to JP2002052836A priority Critical patent/JP4236414B2/en
Publication of JP2003251227A publication Critical patent/JP2003251227A/en
Application granted granted Critical
Publication of JP4236414B2 publication Critical patent/JP4236414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の技術分野】
本発明は、微粒子を含むエアロゾルを基板に吹き付け、構造物を基板上に形成させることによって基板と構造物からなる複合構造物を作製するときに使用する複合物作製用ノズルに関する。
【0002】
【従来の技術】
基板上の膜の形成方法としては数μm以上の厚膜の場合、溶射法が一般に知られているが、その他ガスデポジション法(加集誠一郎:金属 1989年1月号)が提案されている。この方法は金属やセラミックスの超微粒子をガス攪拌にてエアロゾル化し、微少なノズルを通して加速せしめ、基材表面に超微粒子の圧粉体層を形成させ、これを加熱して焼成させることにより被膜を形成する。
【0003】
上記ガスデポジション法を改良した先行技術として微粒子ビーム堆積法あるいはエアロゾルデポジション法と呼ばれる脆性材料の膜あるいは構造物の形成方法がある。これは、脆性材料の微粒子を含むエアロゾルをノズルから高速で基板に向けて噴射し、基板に微粒子を衝突させて、その機械的衝撃力を利用して脆性材料の多結晶構造物を基板上にダイレクトに形成させる方法であり、特開平11−21677号公報、特開2000−212766号公報に開示されるものが知られている。
【0004】
特開平11−21677号公報に開示される技術は、前記した超微粒子を含むエアロゾルを運搬する際あるいはセラミックスなどを加熱蒸発させる際に、超微粒子同士が凝集して大きな粒子となるのを防止するために、中間の経路に分級装置を配置するようにしている。
【0005】
特開2000−212766号公報は、粒径が10nmから5μmの範囲にあるセラミックスなどの超微粒子をガスに分散させてエアロゾルとした後、ノズルより高速の超微粒子流として基板に向けて噴射して堆積物を形成させる。このときに超微粒子や基板に、イオン、原子、分子ビームや低温プラズマなどの高エネルギー原子などを照射して作製される構造物を強固なものにする工夫がなされている。
【0006】
【発明が解決しようとする課題】
従来法においては、エアロゾルデポジション法によって構造物を作製する場合、矩形の開口の長辺方向が最大5mm程度の比較的小さな導出開口を備えたノズルを使用し、導出開口からエアロゾルを基材に噴射して構造物を作製していた。
従って、例えば、矩形の導出開口の長辺方向以上の被覆面積を持つ構造物を基材に作製させる場合、エアロゾルを基材に噴射している状態で、基材を固定しているステージを長辺方向に垂直な水平方向のみではなく、長辺方向に平行な水平方向にも作動させる必要があった。そのために以下のような問題を生じていた。
1)上記垂直方向から上記水平方向への切り替えがスムーズにいかないとその部分のみ厚膜になる。
2)一度塗布した部分に隣接する部分に構造物を形成する場合に重なり合って厚膜になりやすい。
3)大面積の構造物の形成に時間がかかる。
【0007】
上記1)〜3)の問題点を解消するために、単純に導出開口の矩形の長辺方向を長くして基材を固定しているステージを長辺方向に垂直な水平方向のみ移動させて複合構造物を形成する方法が考えられるが、この方法では導出開口の矩形の長辺方向の外縁部と中心部と比較した場合に、中心部の方がエアロゾルの濃度が高くなってしまい、エアロゾルの濃度が高い部分には厚く、またエアロゾルの濃度が低い部分には薄く構造物が成膜され、均一な膜厚である構造物を作製することが出来なかった。
【0008】
又は、特公平3−23218号で開示されている細いノズルを収束せしめた束状ノズルを用い、基材を固定しているステージを長辺方向に垂直な水平方向のみ移動させて複合構造物を形成する場合も短時間で大面積の複合構造物を形成することは可能であるが、ノズル間のクリアランス部分が存在するために、構造物表面に小さな凹凸が存在してしまい、均一な膜厚の構造物を得ることが出来なかった。
【0009】
本発明では、上記事情に鑑み、一定の比較的大きな面積の複合構造物を形成するに際し、均一な膜厚の構造物を短時間で作製するための複合構造物形成用ノズルを提供することを目的とする。
【0010】
【課題を解決しようとする手段】
ここで本発明のノズルを用いた複合構造物形成法であるエアロゾルデポジション法について説明する。
延展性を持たない脆性材料(セラミックス)に機械的衝撃力を付加すると、結晶子同士の界面などの劈開面に沿って結晶格子のずれを生じたり、あるいは破砕される。そして、これらの現象が起こると、ずれ面や破面には、もともと内部に存在し別の原子として結合していた原子が剥き出しの状態となった新生面が形成される。この新生面の原子一層の部分は、もともと安定した原子結合状態から外力により強制的に不安定な表面状態に晒され、表面エネルギーが高い状態となる。この活性面が隣接した脆性材料表面や同じく隣接した脆性材料の新生面或いは基板表面と接合して安定状態に移行する。外部からの連続した機械的衝撃力の付加は、この現象を継続的に発生させ、粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料構造物が形成される。
【0011】
そして、上記機械的衝撃を搬送ガスにて脆性材料を基板に衝突させるようにした方法がエアロゾルデポジション法である。
この方法は、ガスデポジション法により発展してきた手法であり、脆性材料の微粒子をガス中に分散させたエアロゾルを運搬し、高速で基板表面に噴射して衝突させ、微粒子を破砕・変形せしめ、基板との界面にアンカー層を形成して接合させるとともに、破砕した断片粒子同士を接合させることにより、基材との密着性が良好で強度の大きい脆性材料構造物を基板状にダイレクトに形成させることが出来る。
【0012】
本発明はエアロゾルデポジション法に都合が良いばかりではなく、ガスデポジション法などの微粒子を噴射させる方法などにも利用できる。
【0013】
ここで、図面を使用して複合構造物作製装置の一般的な装置構成を説明する。
図1は、複合構造物作製装置の装置図であり、窒素を内蔵するガスボンベ11は、ホース状の搬送管12を介してエアロゾル発生器13に連結され、さらに搬送管を通じて構造物形成室14内に円形の導入部と矩形の開口を持つ開口部を備えたノズル15が設置される。コンピュータにより上下(Z)、前後左右(XY)に制動できる基板ホルダ17に基材16がノズルに対向して配置される。構造物形成室14は排気ポンプ18に接続している。
【0014】
また、ノズル15と基材16の間にエアロゾル濃度を測定するためのセンサ装置21を配置し、センサ装置21から出力される信号は、フィードバック制御回路22へ送られ、そして処理され、エアロゾル発生器13やガスボンベ11それぞれの制御部へ配線23を通って送られ、エアロゾル濃度を制御するように、また、基材に衝突するエアロゾルの量を任意量供給するように制御を行う。
【0015】
ノズル15の導入部形状は、ホース状の搬送管12でエアロゾルが搬送されてくるため、導入部形状はホース径にあわせた形状が望ましい。また、ホース径は大きいとエアロゾルを運搬するためにガス量を多くしなければならないので、数mm程度が妥当である。また開口部形状は、基材に作製させる複合構造物の大きさに合わせて矩形の長辺方向と短辺方向の長さを決定する。
【0016】
本発明におけるノズルの一態様としては、微粒子をガス中に分散させたエアロゾルを基材に衝突させ、前記基材表面に前記微粒子の構成材料からなる構造物を形成させる複合構造物形成装置に用いられるノズルにおいて、前記ノズルが、前記エアロゾルが通過するエアロゾル通過空間を有するノズル本体と、前記エアロゾルを導入するための導入開口と、前記エアロゾルを噴射させるための矩形の導出開口とを具備し、前記導入開口を複数有し、且つ前記導出開口は1つとする。
【0017】
本発明においては、前記導出開口の長辺方向長さを拡大すると、前記導入開口と前記導出開口の距離が短い場合、前記導出開口長辺方向の外縁部まで微粒子が広がらず、前記導出開口から噴射するエアロゾルの濃度に、例えば中央部のエアロゾル濃度が高く、外縁部のエアロゾル濃度が低くなる等のばらつきが生じるが、前記導入開口を複数ヶ備えることによって、例えば、前記導出開口が従来の導出開口を長辺方向に複数個並べた状態と同様の寸法の場合、前記導出開口の長辺方向のエアロゾル濃度は中央部から外縁部まで均一な濃度のエアロゾルを基材に照射することができ、均一な膜厚の構造物を短時間で作製することが可能である。
【0018】
又、複数の導入開口に対し、1ヶの導出開口のみを持ち合わせ、前記エアロゾル通過空間を構成する前記ノズルに形成された溝は、前記導入開口に通じる複数の上流側部分と、前記上流側部分が合流して前記導出開口に通じる下流側部分からなり、前記導出開口の矩形の短辺方向の上流側部分の寸法が下流側に向かって徐々に小さくなり、前記導出開口の矩形の長辺方向の上流側部分の寸法が下流側に向かって徐々に大きくなるとともに、前記上流側部分では前記エアロゾル通過空間の断面積が下流側に向かって徐々に狭くなるようにしているため、特公平3−23218号で開示されたノズルのように、構造物表面に前記導入開口に対応した小さな凹凸は存在しないので、均一な膜厚の構造物を短時間で作製することが可能である。
【0019】
又、前記導出開口の長辺寸法を同じにした場合、前記導入開口から前記導出開口までの距離を、前記導入開口を1ヶのみ備えるものに比べて短くすることが出来るため、前記ノズルの大きさを小さくすることが可能となり、複合構造物作製装置の構造物形成室の大きさを小さくすることが可能となる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を、図面により詳細に説明する。
図2は、本発明の一態様としての脆性材料構造物作製装置で使用するノズル31であり、図3はノズルを構成する一方の板状部材の斜視図である。
ノズル31は金属或いはセラミックからなる2枚の板状部材311、312を貼り合わせてなり、一方の板状部材312の表面には一端が1個の導出開口32で他端が3個の導入開口33となる溝313が形成され、他方の板状部材311には溝を形成していない。尚、両方の板状部材に溝を形成してもよい。
前記溝313は3本に分岐した上流側部分313aと1本に合流した下流側部分313bからなり、上流側部分313aについては、下流側に向かって(Z方向に沿って)、短辺方向(X方向)の寸法が徐々に小さくなり、長辺方向(Y方向)の寸法が徐々に大きくなるようにし、しかも、上流側部分313aではエアロゾル通過空間の断面積が下流側に向かって徐々に狭くなるようにしている。また下流側部分313bについては短辺方向及び長辺方向の寸法を変化させずに略等しくしている。
このノズルの具体的な寸法としては、10mm×0.5mmの矩形の1個の導出開口32を持ち、3.0mm×3.0mmの矩形の3個の導入開口33を持つ。
尚、図示例はは実施の一例を示したものであり、ノズルの形状は上記に限るものではない。
【0021】
次に本発明のノズル31を図1で示した複合構造物製造装置のノズル15として使用し、30mm×30mmの面積で膜厚が10μmで均一の脆性材料構造物を得ようとした場合を述べる。
【0022】
ノズル31は導入開口を3ヶ持っているため、各々の導入開口53にエアロゾル発生器13を装着する。これにより、エアロゾル発生器13に負荷をかけることなく、脆性材料構造物を作製する時間を1/3に短縮できる。
【0023】
又、ノズル31は、上流側部分313aを複数本に分岐しているため、エアロゾルが溝内で十分に広がり、開口部32中央部と外縁部とでエアロゾルの濃度差を少なくすることが可能である。よって、研磨工程などの作業なしで30mm×30mmの凹凸の少ないセラミック構造物を作製することが可能であり、セラミック構造物作製時間を短縮することが可能である。
【0024】
又、ノズル31は、図3で示したように30mm×0.5mmの矩形の導出開口32を1カ所、3.0mm×3.0mmの導入開口33を3カ所持っているため、例えば幅10mmのノズルを3つ隙間無く並べた場合だと、作製する脆性材料構造物に凹凸部が3カ所出来てしまい、凹凸を平坦にするような研磨加工などの作業が必要になるが、ノズル31の場合、ノズル内部でエアロゾルの流路が3カ所から1カ所に合流しているため、作製される脆性材料構造物の凹凸が減少して研磨加工などの作業が不必要となるので脆性材料構造物作製時間を短縮することが可能である。
【0025】
又、上流側部分313aを複数本に分岐しているため、長辺方向の長さを急激に広げなくとも導出開口32の長辺方向の長さを広げることができ、ノズル31の導入開口33から導出開口32までの距離を従来のノズルに比べて短くすることが可能であり、小型化することが可能である。
【0026】
又、ノズル31は導入開口33に各々エアロゾル発生器13を備えているため、各々のエアロゾル発生器13から供給するエアロゾルの濃度をそれぞれ調節することによって、導出開口32から噴射するエアロゾル濃度に変化を与えることができ、作製される脆性材料構造物の形状を任意に制御することが可能である。
【0027】
図4は本発明のノズルの使用の一態様を示す斜視図であり、本発明のノズルを使用する場合には、マスクは必ずしも必要としないが、この例にあっては基板40の表面にマスク41を被せ、マスク41の開口42に倣った形状の脆性材料構造物を形成し、その後マスク41を剥離するようにしている。この手法は例えば表面に金属薄膜を形成した基板に、所定のパターンで誘電体層を形成して静電チャックとする場合や、同一形状の脆性材料構造物を多数個取りする場合などに応用可能である。
【0028】
【発明の効果】
本発明によれば、一定の比較的大きな面積の複合構造物を形成するに際し、均一な膜厚の構造物を短時間で作製するための複合構造物形成用ノズルとして、充分な幅でしかも均一な濃度でエアロゾルを噴出するノズルを提供することが可能となる。
【図面の簡単な説明】
【図1】従来使用されている複合構造物作製装置の一般的な構成を示した図。
【図2】本発明のノズルの全体構成を示した図。
【図3】ノズルを構成する一方の板状部材の斜視図。
【図4】本発明のノズルの使用の一態様を示す斜視図
【符号の説明】
11…ガスボンベ、12…搬送管、13…エアロゾル発生器、14…構造物形成室、15…ノズル、16…基材、17…基材ホルダ、18…排気ポンプ、21…センサ装置、22…フィードバック制御回路、23…配線、31…ノズル、32…10mm×0.5mmの矩形の導出開口、33…3.0mm×3.0mmの矩形の導入開口、311、312…板状部材、313…溝、313a…溝の上流側部分、313b…溝の下流側部分。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite preparation nozzle used when a composite structure including a substrate and a structure is manufactured by spraying aerosol containing fine particles onto the substrate to form the structure on the substrate.
[0002]
[Prior art]
As a method for forming a film on a substrate, in the case of a thick film of several μm or more, a spraying method is generally known, but another gas deposition method (Seiichiro Kashu: Metal January 1989 issue) has been proposed. . In this method, ultrafine particles of metal or ceramics are aerosolized by gas stirring and accelerated through a minute nozzle to form a green compact layer of ultrafine particles on the surface of the substrate, which is heated and fired to form a coating. Form.
[0003]
As a prior art improved from the gas deposition method, there is a method of forming a film or structure of a brittle material called a fine particle beam deposition method or an aerosol deposition method. This is because an aerosol containing fine particles of brittle material is sprayed from a nozzle toward the substrate at high speed, the fine particles collide with the substrate, and the polycrystalline structure of the brittle material is applied onto the substrate using the mechanical impact force. This is a direct forming method, and those disclosed in JP-A-11-21676 and JP-A-2000-212766 are known.
[0004]
The technique disclosed in Japanese Patent Application Laid-Open No. 11-21677 prevents the ultrafine particles from aggregating into large particles when transporting the aerosol containing the ultrafine particles or heating and evaporating ceramics. For this reason, a classifier is arranged in an intermediate path.
[0005]
Japanese Patent Laid-Open No. 2000-212766 discloses that after dispersing ultrafine particles such as ceramics having a particle diameter in the range of 10 nm to 5 μm in a gas to form an aerosol, the fine particle flow at a higher speed than the nozzle is sprayed toward the substrate. A deposit is formed. At this time, an effort has been made to strengthen a structure produced by irradiating ultrafine particles or a substrate with high-energy atoms such as ions, atoms, molecular beams, and low-temperature plasma.
[0006]
[Problems to be solved by the invention]
In the conventional method, when a structure is manufactured by the aerosol deposition method, a nozzle having a relatively small outlet opening whose long side direction of the rectangular opening is about 5 mm at the maximum is used, and the aerosol is used as a base material from the outlet opening. The structure was made by spraying.
Therefore, for example, when a structure having a covering area equal to or longer than the long side direction of the rectangular lead-out opening is formed on the base material, the stage that fixes the base material is long while the aerosol is sprayed onto the base material. It was necessary to operate not only in the horizontal direction perpendicular to the side direction but also in the horizontal direction parallel to the long side direction. Therefore, the following problems have occurred.
1) If switching from the vertical direction to the horizontal direction is not smooth, only that portion becomes thick.
2) When a structure is formed in a portion adjacent to a portion that has been applied once, it tends to overlap and become a thick film.
3) It takes time to form a large area structure.
[0007]
In order to solve the above problems 1) to 3), the long side direction of the rectangle of the outlet opening is simply lengthened and the stage fixing the substrate is moved only in the horizontal direction perpendicular to the long side direction. A method of forming a composite structure is conceivable, but in this method, the aerosol concentration is higher in the central portion than the outer edge portion and the central portion in the long side direction of the rectangular of the outlet opening, and the aerosol is A structure having a uniform film thickness could not be produced because a thick structure was formed on a portion where the concentration of selenium was high and a thin structure was formed on a portion where the concentration of aerosol was low.
[0008]
Alternatively, the composite structure can be obtained by moving the stage fixing the substrate only in the horizontal direction perpendicular to the long side direction using a bundled nozzle in which narrow nozzles disclosed in Japanese Patent Publication No. 3-23218 are converged. Even when forming, it is possible to form a composite structure with a large area in a short time, but since there is a clearance portion between the nozzles, there are small irregularities on the surface of the structure, and a uniform film thickness The structure of could not be obtained.
[0009]
In view of the above circumstances, the present invention provides a composite structure forming nozzle for forming a structure having a uniform film thickness in a short time when forming a composite structure having a certain relatively large area. Objective.
[0010]
[Means to solve the problem]
Here, the aerosol deposition method which is a composite structure forming method using the nozzle of the present invention will be described.
When a mechanical impact force is applied to a brittle material (ceramics) that does not have spreadability, the crystal lattice shifts along the cleaved surface such as the interface between crystallites or is crushed. When these phenomena occur, a new surface is formed on the slipping surface or fracture surface, in which atoms originally present inside and bonded as another atom are exposed. The part of the atomic layer on the new surface is exposed to an unstable surface state by an external force from a stable atomic bond state, and the surface energy is high. The active surface joins the adjacent brittle material surface, the newly formed brittle material surface, or the substrate surface, and shifts to a stable state. The addition of continuous mechanical impact force from the outside causes this phenomenon to occur continuously, and the joining is progressed and densified by repeated deformation and crushing of the particles, thereby forming a brittle material structure.
[0011]
An aerosol deposition method is a method in which a brittle material is caused to collide with a substrate with a carrier gas by the mechanical impact.
This method has been developed by the gas deposition method.It transports an aerosol in which fine particles of brittle material are dispersed in a gas, and jets and collides with the substrate surface at high speed to crush and deform the fine particles. An anchor layer is formed and bonded to the interface with the substrate, and the crushed fragment particles are bonded to each other, so that a brittle material structure having good adhesion and high strength is directly formed on the substrate. I can do it.
[0012]
The present invention is not only convenient for the aerosol deposition method, but can also be used for a method of injecting fine particles such as a gas deposition method.
[0013]
Here, a general apparatus configuration of the composite structure manufacturing apparatus will be described with reference to the drawings.
FIG. 1 is an apparatus diagram of a composite structure manufacturing apparatus, in which a gas cylinder 11 containing nitrogen is connected to an aerosol generator 13 through a hose-shaped transport pipe 12, and further inside the structure forming chamber 14 through the transport pipe. Nozzle 15 having a circular introduction portion and an opening portion having a rectangular opening is installed. A base material 16 is arranged opposite to the nozzles on a substrate holder 17 that can be braked vertically (Z), front-back, left-right (XY) by a computer. The structure forming chamber 14 is connected to an exhaust pump 18.
[0014]
In addition, a sensor device 21 for measuring the aerosol concentration is arranged between the nozzle 15 and the substrate 16, and a signal output from the sensor device 21 is sent to the feedback control circuit 22 and processed to generate an aerosol generator. Control is performed so as to control the aerosol concentration and to supply an arbitrary amount of aerosol that collides with the substrate.
[0015]
As the shape of the introduction portion of the nozzle 15, aerosol is conveyed by the hose-shaped conveyance pipe 12, the shape of the introduction portion is preferably matched to the diameter of the hose. Also, if the hose diameter is large, the amount of gas has to be increased in order to carry the aerosol, so a few mm is appropriate. The shape of the opening determines the length in the long side direction and the short side direction of the rectangle according to the size of the composite structure to be produced on the base material.
[0016]
As an embodiment of the nozzle in the present invention, the present invention is applied to a composite structure forming apparatus that causes an aerosol in which fine particles are dispersed in a gas to collide with a base material to form a structure composed of the constituent material of the fine particles on the base material surface. In the nozzle, the nozzle comprises a nozzle body having an aerosol passage space through which the aerosol passes, an introduction opening for introducing the aerosol, and a rectangular lead-out opening for injecting the aerosol, It is assumed that there are a plurality of introduction openings and that there is one lead-out opening.
[0017]
In the present invention, when the length in the long side direction of the lead-out opening is increased, when the distance between the lead-in opening and the lead-out opening is short, the fine particles do not spread to the outer edge in the long-side direction of the lead-out opening. The concentration of the aerosol to be sprayed varies, for example, the aerosol concentration at the center is high and the aerosol concentration at the outer edge is low. In the case of the same size as the state in which a plurality of openings are arranged in the long side direction, the aerosol concentration in the long side direction of the lead-out opening can irradiate the substrate with an aerosol having a uniform concentration from the central part to the outer edge part, A structure with a uniform film thickness can be manufactured in a short time.
[0018]
The groove formed in the nozzle that has only one outlet opening with respect to the plurality of introduction openings, and that forms the aerosol passage space, includes a plurality of upstream portions that communicate with the introduction openings, and the upstream portion. Is formed of a downstream portion that leads to the lead-out opening, and the size of the upstream portion in the short side direction of the lead-out opening rectangle gradually decreases toward the downstream side, and the rectangular long-side direction of the lead-out opening The size of the upstream portion of the aerosol gradually increases toward the downstream side, and the cross-sectional area of the aerosol passage space gradually decreases toward the downstream side in the upstream portion. Unlike the nozzle disclosed in No. 23218, there is no small unevenness corresponding to the introduction opening on the surface of the structure, so that a structure with a uniform film thickness can be manufactured in a short time.
[0019]
Further, when the long side dimension of the lead-out opening is made the same, the distance from the lead-in opening to the lead-out opening can be made shorter than that having only one lead-in opening. Accordingly, the size of the structure forming chamber of the composite structure manufacturing apparatus can be reduced.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 is a nozzle 31 used in the brittle material structure manufacturing apparatus as one embodiment of the present invention, and FIG. 3 is a perspective view of one plate-like member constituting the nozzle.
The nozzle 31 is formed by bonding two plate-like members 311 and 312 made of metal or ceramic. One end of the plate-like member 312 has one outlet opening 32 and the other end has three inlet openings. A groove 313 to be 33 is formed, and no groove is formed in the other plate-like member 311. A groove may be formed in both plate-like members.
The groove 313 is composed of an upstream portion 313a branched into three and a downstream portion 313b joined together, and the upstream portion 313a is directed toward the downstream side (along the Z direction) in the short side direction ( The dimension in the X direction is gradually reduced, the dimension in the long side direction (Y direction) is gradually increased, and the cross-sectional area of the aerosol passage space is gradually narrowed toward the downstream side in the upstream portion 313a. It is trying to become. Further, the downstream portion 313b is made substantially equal without changing the dimensions in the short side direction and the long side direction.
As specific dimensions of this nozzle, it has one lead-out opening 32 having a rectangular shape of 10 mm × 0.5 mm and three introduction openings 33 having a rectangular shape of 3.0 mm × 3.0 mm.
The illustrated example shows an example of implementation, and the shape of the nozzle is not limited to the above.
[0021]
Next, a case where the nozzle 31 of the present invention is used as the nozzle 15 of the composite structure manufacturing apparatus shown in FIG. 1 to obtain a uniform brittle material structure with an area of 30 mm × 30 mm and a film thickness of 10 μm will be described. .
[0022]
Since the nozzle 31 has three introduction openings, the aerosol generator 13 is attached to each introduction opening 53. Thereby, the time which produces a brittle material structure can be shortened to 1/3, without applying a load to the aerosol generator 13. FIG.
[0023]
Further, since the nozzle 31 branches the upstream portion 313a into a plurality of portions, the aerosol spreads sufficiently in the groove, and it is possible to reduce the difference in aerosol concentration between the central portion of the opening 32 and the outer edge portion. is there. Therefore, it is possible to produce a ceramic structure with less unevenness of 30 mm × 30 mm without work such as a polishing step, and it is possible to shorten the ceramic structure production time.
[0024]
Further, as shown in FIG. 3, the nozzle 31 has a rectangular lead-out opening 32 of 30 mm × 0.5 mm and three introduction openings 33 of 3.0 mm × 3.0 mm. If three nozzles are arranged without gaps, three rugged portions are formed in the brittle material structure to be manufactured, and it is necessary to perform an operation such as polishing to flatten the ruggedness. In this case, since the flow path of the aerosol is merged from 3 to 1 inside the nozzle, the unevenness of the brittle material structure to be produced is reduced, and work such as polishing is not required, so the brittle material structure The manufacturing time can be shortened.
[0025]
Further, since the upstream portion 313a is branched into a plurality of pieces, the length in the long side direction of the outlet opening 32 can be increased without abruptly increasing the length in the long side direction, and the introduction opening 33 of the nozzle 31 can be expanded. It is possible to shorten the distance from the lead-out opening 32 to that of the conventional nozzle, and it is possible to reduce the size.
[0026]
Further, since the nozzles 31 are respectively provided with the aerosol generators 13 in the introduction openings 33, the concentration of the aerosol supplied from each of the aerosol generators 13 is adjusted to change the aerosol concentration injected from the outlet opening 32. The shape of the brittle material structure to be produced can be arbitrarily controlled.
[0027]
FIG. 4 is a perspective view showing an embodiment of the use of the nozzle of the present invention. When the nozzle of the present invention is used, a mask is not necessarily required. In this example, the mask is not formed on the surface of the substrate 40. 41, a brittle material structure having a shape following the opening 42 of the mask 41 is formed, and then the mask 41 is peeled off. This method can be applied, for example, when a dielectric layer is formed in a predetermined pattern on a substrate with a metal thin film on the surface to form an electrostatic chuck, or when a large number of brittle material structures of the same shape are taken. It is.
[0028]
【The invention's effect】
According to the present invention, when forming a composite structure having a certain relatively large area, it is sufficient in width and uniform as a composite structure forming nozzle for producing a structure with a uniform film thickness in a short time. It is possible to provide a nozzle that ejects aerosol at a high concentration.
[Brief description of the drawings]
FIG. 1 is a diagram showing a general configuration of a composite structure manufacturing apparatus that has been conventionally used.
FIG. 2 is a diagram showing an overall configuration of a nozzle according to the present invention.
FIG. 3 is a perspective view of one plate-like member constituting the nozzle.
FIG. 4 is a perspective view showing one mode of use of the nozzle of the present invention.
DESCRIPTION OF SYMBOLS 11 ... Gas cylinder, 12 ... Conveyance pipe, 13 ... Aerosol generator, 14 ... Structure formation chamber, 15 ... Nozzle, 16 ... Base material, 17 ... Base material holder, 18 ... Exhaust pump, 21 ... Sensor device, 22 ... Feedback Control circuit, 23 ... wiring, 31 ... nozzle, 32 ... 10 mm x 0.5 mm rectangular lead-out opening, 33 ... 3.0 mm x 3.0 mm rectangular introduction opening, 311, 312 ... plate member, 313 ... groove 313a: upstream portion of the groove, 313b: downstream portion of the groove.

Claims (1)

微粒子をガス中に分散させたエアロゾルを基材に衝突させ、前記基材表面に前記微粒子の構成材料からなる構造物を形成させるエアロゾルデポジション法による複合構造物形成装置に用いられるノズルにおいて、前記ノズルが、前記エアロゾルが通過するエアロゾル通過空間を有するノズル本体と、前記エアロゾルを導入するための導入開口と、前記エアロゾルを噴射させるための矩形の導出開口とを具備し、前記導入開口を複数有し、且つ前記導出開口は1つであり、前記エアロゾル通過空間を構成する前記ノズルに形成された溝は、前記導入開口に通じる複数の上流側部分と、前記上流側部分が合流して前記導出開口に通じる下流側部分からなり、前記導出開口の矩形の短辺方向の上流側部分の寸法が下流側に向かって徐々に小さくなり、前記導出開口の矩形の長辺方向の上流側部分の寸法が下流側に向かって徐々に大きくなるとともに、前記上流側部分では前記エアロゾル通過空間の断面積が下流側に向かって徐々に狭くなることを特徴とする複合構造物形成用ノズル。In a nozzle used in a composite structure forming apparatus by an aerosol deposition method in which an aerosol in which fine particles are dispersed in a gas is collided with a base material to form a structure made of the constituent material of the fine particles on the base material surface, The nozzle includes a nozzle body having an aerosol passage space through which the aerosol passes, an introduction opening for introducing the aerosol, and a rectangular lead-out opening for injecting the aerosol, and has a plurality of the introduction openings. And the number of the outlet openings is one, and the groove formed in the nozzle constituting the aerosol passage space has a plurality of upstream portions that communicate with the inlet opening and the upstream portion join together to derive the outlet. It consists of a downstream part that leads to the opening, and the dimension of the upstream part in the short side direction of the rectangular of the outlet opening gradually decreases toward the downstream side. With the dimensions of the upstream-side portion in the long side direction of the rectangular of the derived opening gradually increases toward the downstream side, cross-sectional area of the aerosol passage space that gradually narrows toward the downstream side in the upstream portion A nozzle for forming a composite structure characterized by the above.
JP2002052836A 2002-02-28 2002-02-28 Nozzle for composite structure production Expired - Lifetime JP4236414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002052836A JP4236414B2 (en) 2002-02-28 2002-02-28 Nozzle for composite structure production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052836A JP4236414B2 (en) 2002-02-28 2002-02-28 Nozzle for composite structure production

Publications (2)

Publication Number Publication Date
JP2003251227A JP2003251227A (en) 2003-09-09
JP4236414B2 true JP4236414B2 (en) 2009-03-11

Family

ID=28664423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052836A Expired - Lifetime JP4236414B2 (en) 2002-02-28 2002-02-28 Nozzle for composite structure production

Country Status (1)

Country Link
JP (1) JP4236414B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608202B2 (en) * 2003-11-21 2011-01-12 富士フイルム株式会社 Deposition equipment
JP4593947B2 (en) * 2004-03-19 2010-12-08 キヤノン株式会社 Film forming apparatus and film forming method
JP4661703B2 (en) * 2006-06-27 2011-03-30 パナソニック電工株式会社 Insulating film formation method
JP4595893B2 (en) * 2006-06-27 2010-12-08 パナソニック電工株式会社 Insulating film formation method

Also Published As

Publication number Publication date
JP2003251227A (en) 2003-09-09

Similar Documents

Publication Publication Date Title
US6887516B2 (en) Method and apparatus for applying a powder coating
US6251488B1 (en) Precision spray processes for direct write electronic components
US20040058064A1 (en) Spray system with combined kinetic spray and thermal spray ability
US20060251823A1 (en) Kinetic spray application of coatings onto covered materials
JP4236414B2 (en) Nozzle for composite structure production
JP2001181859A (en) Method and apparatus for manufacturing composite structure
US20020170890A1 (en) Precision spray processes for direct write electronic components
JP3824074B2 (en) Nozzle for composite structure manufacturing, composite structure manufacturing apparatus, and composite structure manufacturing method
US7244466B2 (en) Kinetic spray nozzle design for small spot coatings and narrow width structures
JP2006032485A (en) Method of forming piezoelectric film
JP2006249490A (en) Aerosol spraying device for film formation apparatus, and film formation apparatus
JP3613255B2 (en) Deposition equipment
JP2003213451A (en) Method of fabricating composite structure
US7351450B2 (en) Correcting defective kinetically sprayed surfaces
JP3994895B2 (en) Composite structure forming device
JP4590594B2 (en) Aerosol deposition system
JP4925520B2 (en) Composite structure forming nozzle, composite structure forming apparatus, and composite structure forming method
JP2005103377A (en) Nozzle for making composite structure
JP2005256017A (en) Apparatus and method for arranging particles
JP3812660B2 (en) Composite structure manufacturing method and composite structure manufacturing apparatus
JP3874683B2 (en) Composite structure manufacturing method
JP2003313656A (en) Device and method for producing ultrafine particle film
JP2005046696A (en) Nozzle for making composite structure
JP2006241544A (en) Method and apparatus for forming film of fine particles
JP2004154739A (en) Deposition method and deposition system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Ref document number: 4236414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term