JP4236404B2 - Superconducting coil cooling system - Google Patents

Superconducting coil cooling system Download PDF

Info

Publication number
JP4236404B2
JP4236404B2 JP2001352637A JP2001352637A JP4236404B2 JP 4236404 B2 JP4236404 B2 JP 4236404B2 JP 2001352637 A JP2001352637 A JP 2001352637A JP 2001352637 A JP2001352637 A JP 2001352637A JP 4236404 B2 JP4236404 B2 JP 4236404B2
Authority
JP
Japan
Prior art keywords
superconducting coil
superconducting
coil
cooling
pulse tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001352637A
Other languages
Japanese (ja)
Other versions
JP2003151822A (en
Inventor
賢 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2001352637A priority Critical patent/JP4236404B2/en
Publication of JP2003151822A publication Critical patent/JP2003151822A/en
Application granted granted Critical
Publication of JP4236404B2 publication Critical patent/JP4236404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、均一冷却が可能で、かつ装置構成を小型化できる磁気浮上式鉄道に搭載する超電導コイルの冷却装置に関するものである。
【0002】
【従来の技術】
近年、磁気浮上式鉄道,医療機器(医療用MRI等),エネルギ−貯蔵装置,発電機等に超電導コイルを用いた超電導磁石の使用が試みられているが、これらの機器類では、その稼働時に超電導コイルを超電導状態とするための“超電導コイルを臨界温度以下の極低温に冷却するための装置”が不可欠である。
【0003】
例えば、図2は、Nb−Ti系超電導材料製の超電導コイルを使用した浮上式鉄道用超電導磁石に用いられている“超電導コイルの冷却装置”の説明図である。
この超電導コイルの冷却装置では、ヘリウム圧縮機11で圧縮したヘリウムガスを高圧ヘリウム配管を通じてGMサイクル冷凍機12に導入し、この冷凍機のディスプレ−サ−を往復運動させてヘリウムガスを冷却した後、冷却したヘリウムガスから熱交換器と絞り弁による Lindeサイクルにより沸点が 4.2Kの液体ヘリウムを生成させて液体ヘリウム溜13に溜め、これを複数の超電導コイル14を収納した内槽15の中に供給することにより超電導コイルを液体ヘリウムに浸して冷却する構成が採られている。
なお、当該装置では、上記内槽15を覆う形で液体窒素にて冷却された輻射熱シ−ルド板16が設置されており、これらが外槽17と呼ばれるアルミニウム製の容器内に収容された形態となっている。この外槽17は地上コイルからの変動磁界を遮蔽する役割も担っており、外槽17の内側でかつ内槽15の外側の輻射熱シ−ルド板16を含む空間部分は熱伝導を遮断するために真空に保持されている。
【0004】
図3は、上記装置における超電導コイル収納部分の内部構造をより具体的に示した説明図であり、超電導コイル14は高剛性のステンレス鋼から成るコイル保持容器3に収納され、電磁気的な変形力や走行中の振動等により相対ズレが生じないように両者間は取付金具18で強固に締結されている。
ところで、極低温に保たれた超電導コイル14及びコイル保持容器3には地上コイルとの相互作用による推進,浮上,案内といった強力な磁力が働くので、これらの力を支持しつつその力を常温部の台車に伝えるため、コイル保持容器3は荷重支持材4により台車部分に強固に固設されている。そして、この荷重支持材4は、軽量で強度が高くて熱伝導率の小さいアルミナ繊維強化プラスチックス製の円筒状のものが好適であるとされている。
【0005】
しかし、このような従来形式の冷却装置には、極低温の冷却媒体(液体ヘリウム)をコイル保持容器に送り込んで超電導コイルを冷却する方式であるので、極低温の冷却媒体を取り扱うための様々な設備や注意が必要であって、設備スペ−ス,設備コスト,取り扱い面等で不利であるだけでなく、冷却温度域の調整が難しいという難点があった。
また、上記冷却装置では、用いられているGMサイクル冷凍機はモ−タで駆動されるディスプレ−サ−や磁性蓄冷材を構成要素としているために磁石(超電導コイル)の近くに配置するのが好ましくないにもかかわらず、極低温の冷却媒体(液体ヘリウム)を生成し供給するGMサイクル冷凍機を超電導コイルに近接配置して冷却媒体への入熱を極力阻まなければならないという問題も有しており、更に、ディスプレ−サ−やディスプレ−サ−駆動モ−タを有したGMサイクル冷凍機を超電導コイルに近接配置しなければならないので超電導コイル近辺部の一層の小型化が叶わないなどの問題もあった。
【0006】
【発明が解決しようとする課題】
このようなことから、本発明が目的としたのは、磁気的な悪影響を及ぼすことなく超電導コイルの的確な冷却を行うことができる上、冷却温度を幅広い領域で調整することも可能で、かつ超電導コイル近辺部の更なる小型化を叶え得る取り扱いの容易な超電導コイルの冷却装置を提供することである。
【0007】
【課題を解決するための手段】
本発明者は、上述の観点に立って鋭意研究を行ったところ、超電導コイル冷却装置の冷凍機としてこれまで用いられていた“ピストンを有するスタ−リングサイクル冷凍機”や“ディスプレ−サ−を有するGMサイクル冷凍機”に代えてバブルモ−タと複数の“パルスチュ−ブ冷凍機”を適用し、この複数のパルスチュ−ブ冷凍機の低温端(コ−ルドヘッド)をコイル保持容器の構成部材の複数箇所に配置することによって前記目的を達成できることを見出した。
【0008】
本発明は、上記知見事項等に基づいてなされたものであり、次に示す超電導コイルの冷却装置を提供するものである。
冷媒ガス圧縮機にガス分配用のバルブモ−タを介して複数のパルスチュ−ブ冷凍機の高温端を接続し、当該パルスチュ−ブ冷凍機の低温端を、低温系への熱侵入源となる“超電導コイルを収容したコイル保持容器を支持する複数の円筒状荷重支持材”に内挿して超電導コイルの接触伝導冷却を行うようにさせて成る、磁気浮上式鉄道に搭載する超電導コイルの冷却装置。
【0009】
以下、本発明を実施例に基づいて具体的に説明する。
【発明の実施の形態】
図1は、本発明に係る超電導コイル冷却装置の一例であり、磁気浮上式鉄道に搭載する超電導コイル冷却装置例の要部説明図である。
この冷却装置では、冷却媒体であるヘリウムを圧縮するためのヘリウム圧縮機(COMP)には、ガス分配用のバルブモ−タ1を介して複数のパルスチュ−ブ冷凍機2の高温端を接続されている。なお、ヘリウム圧縮機とバルブモ−タ1との間は、従前のヘリウム圧縮機にGMサイクル冷凍機を接続する場合と同様に常温のヘリウム配管で接続される。
【0010】
そして、ガス分配用のバルブモ−タ1に高温端を接続した複数のパルスチュ−ブ冷凍機2の低温端(コ−ルドヘッド)は、超電導コイルを収納・固定したコイル保持容器3の複数箇所、即ちこの例では4箇所でコイル保持容器を支持する荷重支持材4に配置され固設されている。
【0011】
なお、パルスチュ−ブ冷凍機は、冷却媒体がチュ−ブ内に止まっており、その低温端を被冷却物に接触させて伝導冷却を行う方式であるため、被冷却物の均一冷却が難しいものである。
しかし、上述のようにバルブモ−タを介在させることによって、1基の冷却媒体圧縮機に複数のパルスチュ−ブ冷凍機を取り付けることができる上、それら複数のパルスチュ−ブ冷凍機の低温端をコイル保持容器の複数箇所に配置することによって、伝導冷却方式の欠点である“被冷却物(超電導コイル)の温度分布の不均一”を防止することができる。
【0012】
勿論、パルスチュ−ブ冷凍機2の低温端はコイル保持容器3を支持する荷重支持材4以外の箇所に固設しても良いが、通常はアルミナ繊維強化プラスチックス製円筒が用いられるコイル保持容器を支持する荷重支持材4の中に挿入して内蔵させるのが好ましい。なぜなら、コイル保持容器を支持する荷重支持材4は低温系(超電導コイル近辺)への熱侵入源となる部位であり、この部位を直接冷却することににより熱の侵入を効果的に防止することができる。更に、上述のようにパルスチュ−ブ冷凍機2の低温端をコイル保持容器構造材の内部に埋め込むことにより、装置の省スペ−ス化(小型化)も達成される。
【0013】
なお、この場合にはバルブモ−タも複数必要となるが、それでも従来のGMサイクル冷凍機等を付設する場合に比べれば装置の小型化が可能となる上、超電導コイル部位と極力近接配置することが必要であったGMサイクル冷凍機等と違ってパルスチュ−ブ冷凍機の場合はその高温端は超電導コイル部分にそれほど近接配置する必要がないので、パルスチュ−ブ冷凍機の高温端を接続するバルブモ−タは設置場所の選択範囲が拡大される。従って、この点も装置の省スペ−ス化設計にとって有利な条件となる。
【0014】
また、バルブモ−タも磁場の影響を受けるので極力磁場の低い場所に設置する必要があるが、前述したようにバルブモ−タの設置場所は選択可能範囲が大きいため、磁場の影響の少ない設置場所を選ぶことも可能になる。
【0015】
何よりも、本発明に係る超電導コイル冷却装置は、パルスチュ−ブ冷凍機の適用を可能としたので極低温の冷却媒体を送給したり管理したりする設備を必要とせず、また極低温冷却媒体の取り扱いに付随する様々な配慮を要しないという大きな便益を有している。
【0016】
ところで、パルスチュ−ブ冷凍機はその高温端から低温端にかけて温度勾配をもった冷却がなされるので、このパルスチュ−ブ冷凍機を適用した本発明に係る超電導コイル冷却装置では極低温からそれよりも比較的高い温度まで幅広い温度領域で冷却能力を発揮することができる。
そのため、本発明に係る超電導コイル冷却装置は、金属系超電導コイルの冷却に必要な液体ヘリウム(沸点:4.2K)温度に冷却する場合だけでなく、むしろ近年注目されている酸化物系高温超電導体で構成された超電導コイルの冷却(20K程度乃至は100K前後への冷却)に一層好適なものであると言える。
【0017】
上述のように、本発明に係る超電導コイル冷却装置では、ヘリウム圧縮機と冷凍機を常温のヘリウム配管で接続する構成は従来のGMサイクル冷凍機を用いた冷却装置と同様であるが、冷凍機部分が複数に分割されていてそれらの低温端が超電導磁石のコイル保持容器を構成する部材の複数部位に配置されている(好ましくはコイル保持容器の構造材の内部に埋め込まれている)ので、次のような便益を享受することができる。
(a) 極低温の冷却媒体を送給したり管理したりする設備を必要とせず、また極低温冷却媒体の取り扱いに付随する様々な配慮を要しない,
(b) パルスチュ−ブ冷凍機を使用してはいても、伝導冷却型冷凍の欠点である“被冷却物の温度分布の不均一”という問題を抑えることができる,
(c) 省スペ−ス化によって超電導磁石装置の小型化が図れる,
(d) 比較的高温から極低温まで幅広い温度領域で冷却能力を発揮できるので様々な材料の超電導コイルの冷却に適用することができ、冷却装置の効率向上が期待できる。
【0018】
なお、この実施例では冷媒ガスとしてヘリウム(He)を使用したが、窒素等の他のガスを冷媒ガスとして用いても良いことは言うまでもない
【0019】
【発明の効果】
以上に説明した如く、この発明によれば、超電導コイルの均一冷却が可能であり、また高温(例えば高温超電導体の臨界温度)から低温(例えばNb−Ti系超電導体の臨界温度)までの幅広い温度領域で冷却能力を発揮でき、超電導磁石の小型化を図ることができる取り扱いの容易な超電導コイルの冷却装置を提供することが可能となって超電導磁石を用いる磁気浮上式鉄道の性能向上に大きく寄与することができるなど、産業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明に係る超電導コイルの冷却装置例の概要説明図である。
【図2】 Nb−Ti系超電導材料製の超電導コイルを使用した浮上式鉄道用超電導磁石に用いられている“超電導コイルの冷却装置”の説明図である。
【図3】図2に係る装置の超電導コイル収納部分の内部構造をより具体的に示した説明図である。
【符号の説明】
1 バルブモ−タ
2 パルスチュ−ブ冷凍機
3 コイル保持容器
4 荷重支持材
11 ヘリウム圧縮機
12 GMサイクル冷凍機
13 液体ヘリウム溜
14 超電導コイル
15 内槽
16 輻射熱シ−ルド板
17 外槽
18 取付金具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling device for a superconducting coil mounted on a magnetically levitated railway that can be uniformly cooled and can be downsized.
[0002]
[Prior art]
In recent years, attempts have been made to use superconducting magnets using superconducting coils in magnetic levitation railways, medical equipment (medical MRI, etc.), energy storage devices, generators, etc. An “apparatus for cooling the superconducting coil to a cryogenic temperature lower than the critical temperature” for putting the superconducting coil into a superconducting state is indispensable.
[0003]
For example, FIG. 2 is an explanatory diagram of a “superconducting coil cooling device” used in a superconducting magnet for a floating railway using a superconducting coil made of an Nb—Ti superconducting material.
In this superconducting coil cooling device, helium gas compressed by the helium compressor 11 is introduced into the GM cycle refrigerator 12 through a high-pressure helium pipe, and the displacer of the refrigerator is reciprocated to cool the helium gas. Then, liquid helium having a boiling point of 4.2K is generated from the cooled helium gas by a Linde cycle using a heat exchanger and a throttle valve, and is stored in the liquid helium reservoir 13, which is stored in an inner tank 15 containing a plurality of superconducting coils 14. A configuration is adopted in which the superconducting coil is cooled by being immersed in liquid helium.
In the apparatus, a radiant heat shield plate 16 cooled with liquid nitrogen is installed so as to cover the inner tank 15, and these are accommodated in an aluminum container called an outer tank 17. It has become. The outer tub 17 also plays a role of shielding the fluctuating magnetic field from the ground coil, and the space portion including the radiant heat shield plate 16 inside the outer tub 17 and outside the inner tub 15 is used to block heat conduction. Is held in a vacuum.
[0004]
FIG. 3 is an explanatory view showing more specifically the internal structure of the superconducting coil housing portion in the above-mentioned apparatus. The superconducting coil 14 is housed in a coil holding container 3 made of high-rigidity stainless steel and is electromagnetically deformed. The mounting bracket 18 is firmly fastened between the two so as not to cause a relative shift due to vibration during running or the like.
By the way, the superconducting coil 14 and the coil holding container 3 kept at a very low temperature are subjected to strong magnetic forces such as propulsion, levitation, and guidance due to the interaction with the ground coil. The coil holding container 3 is firmly fixed to the carriage portion by the load support material 4 in order to transmit to the carriage. The load support material 4 is preferably a cylindrical material made of alumina fiber reinforced plastics that is lightweight, has high strength, and has low thermal conductivity.
[0005]
However, since the cooling device of such a conventional type is a system in which the superconducting coil is cooled by sending a cryogenic cooling medium (liquid helium) into the coil holding container, there are various types for handling the cryogenic cooling medium. Equipment and caution are required, which is not only disadvantageous in terms of equipment space, equipment cost, handling, etc., but also difficult to adjust the cooling temperature range.
In the above cooling device, the GM cycle refrigerator used is composed of a displacer driven by a motor or a magnetic regenerator, so that it is disposed near a magnet (superconducting coil). Although it is not preferable, there is a problem that a GM cycle refrigerator that generates and supplies a cryogenic cooling medium (liquid helium) must be placed close to the superconducting coil to prevent heat input to the cooling medium as much as possible. Furthermore, since a GM cycle refrigerator having a displacer and a displacer drive motor must be disposed close to the superconducting coil, further miniaturization of the vicinity of the superconducting coil cannot be realized. There was also a problem.
[0006]
[Problems to be solved by the invention]
For this reason, the object of the present invention is that it is possible to accurately cool the superconducting coil without adversely affecting magnetic properties, and it is also possible to adjust the cooling temperature in a wide range, and It is an object of the present invention to provide an easy-to-handle superconducting coil cooling device that can achieve further miniaturization in the vicinity of the superconducting coil.
[0007]
[Means for Solving the Problems]
The present inventor conducted intensive research from the above viewpoint, and found that a “Stirling cycle refrigerator having a piston” and a “disperser” that have been used as refrigerators for superconducting coil cooling devices have been used. A bubble motor and a plurality of “pulse tube refrigerators” are applied in place of the “GM cycle refrigerator”, and the low temperature ends (cold heads) of the plurality of pulse tube refrigerators are used as components of the coil holding container. It has been found that the object can be achieved by disposing in a plurality of places.
[0008]
The present invention has been made based on the above knowledge and the like, and provides a cooling device for a superconducting coil described below.
The high temperature ends of a plurality of pulse tube refrigerators are connected to the refrigerant gas compressor via a gas distribution valve motor, and the low temperature ends of the pulse tube refrigerators serve as a heat intrusion source to the low temperature system. composed by to perform contact conduction cooling of the superconducting coil by interpolating a plurality of cylindrical load supporting member "for supporting the coil holding container containing a superconducting coil, the superconducting coil to be mounted on the maglev cooling device .
[0009]
Hereinafter, the present invention will be specifically described based on examples.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an example of a superconducting coil cooling device according to the present invention, and is an explanatory view of a main part of an example of a superconducting coil cooling device mounted on a magnetically levitated railway.
In this cooling device, a high temperature end of a plurality of pulse tube refrigerators 2 is connected to a helium compressor (COMP) for compressing helium as a cooling medium via a valve motor 1 for gas distribution. Yes. The helium compressor and the valve motor 1 are connected by a normal temperature helium pipe as in the case of connecting a GM cycle refrigerator to a conventional helium compressor.
[0010]
The low-temperature ends (cold heads) of the plurality of pulse tube refrigerators 2 connected to the gas distribution valve motor 1 at the high-temperature ends are located at a plurality of locations in the coil holding container 3 in which the superconducting coils are housed and fixed. In this example, the load supporting member 4 that supports the coil holding container at four locations is arranged and fixed.
[0011]
The pulse tube refrigerator is a system in which the cooling medium is stopped in the tube and the low temperature end is in contact with the object to be cooled to conduct conduction cooling. Therefore, it is difficult to uniformly cool the object to be cooled. It is.
However, by interposing a valve motor as described above, a plurality of pulse tube refrigerators can be attached to one cooling medium compressor, and the low temperature ends of the plurality of pulse tube refrigerators can be coiled. By disposing the holding container at a plurality of locations, it is possible to prevent “nonuniform temperature distribution of the object to be cooled (superconducting coil)”, which is a drawback of the conduction cooling method.
[0012]
Of course, the low-temperature end of the pulse tube refrigerator 2 may be fixed at a place other than the load support material 4 that supports the coil holding container 3, but a coil holding container in which an alumina fiber reinforced plastic cylinder is usually used. It is preferable to insert it into the load support material 4 that supports the internal structure. This is because the load supporting material 4 that supports the coil holding container is a part that becomes a heat intrusion source to the low temperature system (near the superconducting coil), and it is possible to effectively prevent heat from entering by directly cooling this part. Can do. Furthermore, by embedding the low temperature end of the pulse tube refrigerator 2 in the coil holding container structure as described above, space saving (miniaturization) of the apparatus can also be achieved.
[0013]
In this case, a plurality of valve motors are required. However, compared with the case where a conventional GM cycle refrigerator or the like is added, the apparatus can be reduced in size, and the superconducting coil portion should be arranged as close as possible. Unlike the GM cycle refrigerator, etc., which required a high temperature end of a pulse tube refrigerator, the high temperature end of the pulse tube refrigerator does not need to be placed very close to the superconducting coil portion. -The selection range of the installation location is expanded. Therefore, this point is also an advantageous condition for space-saving design of the apparatus.
[0014]
In addition, since the valve motor is also affected by the magnetic field, it must be installed in a location where the magnetic field is as low as possible. However, as described above, the installation location of the valve motor is small because the selectable range is large. Can also be selected.
[0015]
Above all, since the superconducting coil cooling device according to the present invention enables the application of a pulse tube refrigerator, it does not require a facility for supplying or managing a cryogenic cooling medium, and the cryogenic cooling medium. It has the great advantage that it does not require various considerations associated with the handling.
[0016]
By the way, since the pulse tube refrigerator is cooled with a temperature gradient from the high temperature end to the low temperature end, the superconducting coil cooling device according to the present invention to which the pulse tube refrigerator is applied has a very low temperature. The cooling ability can be exhibited in a wide temperature range up to a relatively high temperature.
Therefore, the superconducting coil cooling device according to the present invention is not only used for cooling to the liquid helium (boiling point: 4.2 K) temperature necessary for cooling the metal superconducting coil, but rather has recently attracted attention as an oxide-based high temperature superconductor. It can be said that this is more suitable for cooling the superconducting coil constituted by (cooling to about 20K or about 100K).
[0017]
As described above, in the superconducting coil cooling device according to the present invention, the configuration in which the helium compressor and the refrigerator are connected by a normal temperature helium pipe is the same as that of the conventional cooling device using the GM cycle refrigerator. Since the portion is divided into a plurality of parts and their low-temperature ends are arranged in a plurality of parts of the member constituting the coil holding container of the superconducting magnet (preferably embedded in the structural material of the coil holding container), The following benefits can be enjoyed.
(a) No equipment for supplying or managing the cryogenic cooling medium is required, and various considerations associated with the handling of the cryogenic cooling medium are not required.
(b) Even if a pulse tube refrigerator is used, the problem of “non-uniform temperature distribution of the object to be cooled”, which is a drawback of conduction cooling type refrigeration, can be suppressed.
(c) The superconducting magnet device can be miniaturized by saving space.
(d) Since the cooling ability can be exhibited in a wide temperature range from a relatively high temperature to a very low temperature, it can be applied to the cooling of superconducting coils of various materials, and an improvement in the efficiency of the cooling device can be expected.
[0018]
In this embodiment, helium (He) is used as the refrigerant gas, but it goes without saying that other gases such as nitrogen may be used as the refrigerant gas .
[0019]
【The invention's effect】
As described above, according to the present invention, the superconducting coil can be uniformly cooled and can be widely used from a high temperature (for example, a critical temperature of a high-temperature superconductor) to a low temperature (for example, a critical temperature of an Nb-Ti superconductor). It is possible to provide an easy-to-handle superconducting coil cooling device that can exhibit cooling capacity in the temperature range and can reduce the size of the superconducting magnet, greatly improving the performance of magnetically levitated railways using superconducting magnets. Industrially useful effects such as being able to contribute are brought about.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of an example of a cooling device for a superconducting coil according to the present invention.
FIG. 2 is an explanatory diagram of a “superconducting coil cooling device” used in a superconducting magnet for a floating railway using a superconducting coil made of Nb—Ti superconducting material.
FIG. 3 is an explanatory view showing more specifically the internal structure of the superconducting coil storage portion of the apparatus according to FIG. 2;
[Explanation of symbols]
1 Valve Motor 2 Pulse Tube Refrigerator 3 Coil Holding Container 4 Load Support Material
11 Helium compressor
12 GM cycle refrigerator
13 Liquid helium reservoir
14 Superconducting coil
15 Inner tank
16 Radiant heat shield plate
17 Outer tank
18 Mounting bracket

Claims (1)

冷媒ガス圧縮機にガス分配用のバルブモ−タを介して複数のパルスチュ−ブ冷凍機の高温端を接続し、当該パルスチュ−ブ冷凍機の低温端を、低温系への熱侵入源となる“超電導コイルを収容したコイル保持容器を支持する複数の円筒状荷重支持材”に内挿して超電導コイルの接触伝導冷却を行うようにさせて成る、磁気浮上式鉄道に搭載する超電導コイルの冷却装置。The high temperature ends of a plurality of pulse tube refrigerators are connected to the refrigerant gas compressor via a gas distribution valve motor, and the low temperature ends of the pulse tube refrigerators serve as a heat intrusion source to the low temperature system. composed by to perform contact conduction cooling of the superconducting coil by interpolating a plurality of cylindrical load supporting member "for supporting the coil holding container containing a superconducting coil, the superconducting coil to be mounted on the maglev cooling device .
JP2001352637A 2001-11-19 2001-11-19 Superconducting coil cooling system Expired - Fee Related JP4236404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352637A JP4236404B2 (en) 2001-11-19 2001-11-19 Superconducting coil cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001352637A JP4236404B2 (en) 2001-11-19 2001-11-19 Superconducting coil cooling system

Publications (2)

Publication Number Publication Date
JP2003151822A JP2003151822A (en) 2003-05-23
JP4236404B2 true JP4236404B2 (en) 2009-03-11

Family

ID=19164783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352637A Expired - Fee Related JP4236404B2 (en) 2001-11-19 2001-11-19 Superconducting coil cooling system

Country Status (1)

Country Link
JP (1) JP4236404B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668345B (en) 2010-11-08 2015-09-09 川崎重工业株式会社 Rotor core and the superconducting rotary machine with this rotor core
JP2012104781A (en) * 2010-11-15 2012-05-31 Railway Technical Research Institute High-temperature superconductive magnet cooling system with vehicle-mounted pulse tube refrigerator
JP2013137131A (en) * 2011-12-28 2013-07-11 Japan Superconductor Technology Inc In-field heat treatment device
JP2016142468A (en) * 2015-02-03 2016-08-08 大陽日酸株式会社 Dilution refrigeration device
CN115109896B (en) * 2022-07-12 2023-05-05 四川大学 Bit-direction-adjustable high-frequency pulse magnetic field cryogenic coupling processing device and processing method

Also Published As

Publication number Publication date
JP2003151822A (en) 2003-05-23

Similar Documents

Publication Publication Date Title
US5744959A (en) NMR measurement apparatus with pulse tube cooler
EP1158256B1 (en) Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
US5584184A (en) Superconducting magnet and regenerative refrigerator for the magnet
CN100580824C (en) Magnetic resonance component and superconducting magnet system
JP4468388B2 (en) Magnetic field generator
JP4031121B2 (en) Cryostat equipment
JPH11243007A (en) Superconducting magnet for magnetic resonance imaging
JPH05275231A (en) Superconductive magnet and its assembling method
JPH08168235A (en) Superconductive rotor
JP2002335024A (en) Cryogenic cooling system
JP2008035604A (en) Gm freezer, pulse tube freezer, cryopump, mri device, super-conductive magnet system, nmr device, and freezer for cooling of semiconductor
JP6951889B2 (en) Magnetic shield structure of cryogenic refrigerators and cryogenic refrigerators
JP2020031160A (en) Superconducting magnet cooling device and superconducting magnet cooling method
JP4855990B2 (en) Recondensing device, mounting method thereof and superconducting magnet using the same
US6923009B2 (en) Pre-cooler for reducing cryogen consumption
JP4236404B2 (en) Superconducting coil cooling system
JP3102492B2 (en) Anti-vibration cryostat
JPH11283822A (en) Superconducting magnet
JP3678793B2 (en) Superconducting magnet
CN216928214U (en) Superconducting magnet device
JP3858269B2 (en) Cooling tube and cryogenic cryostat using the same
JPH11182959A (en) Proof stress means for cryostat system
JP2003111745A (en) Superconductive magnet for magnetic resonance imaging equipment
JP2854424B2 (en) Cryogenic cooling device
JPH11329834A (en) Superconducting device with conductor formed of superconducting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4236404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees