JP4236289B2 - Vibration motor device - Google Patents

Vibration motor device Download PDF

Info

Publication number
JP4236289B2
JP4236289B2 JP01535796A JP1535796A JP4236289B2 JP 4236289 B2 JP4236289 B2 JP 4236289B2 JP 01535796 A JP01535796 A JP 01535796A JP 1535796 A JP1535796 A JP 1535796A JP 4236289 B2 JP4236289 B2 JP 4236289B2
Authority
JP
Japan
Prior art keywords
rotor
vibration
stator
rotation
motor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01535796A
Other languages
Japanese (ja)
Other versions
JPH09215356A (en
Inventor
大助 佐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP01535796A priority Critical patent/JP4236289B2/en
Publication of JPH09215356A publication Critical patent/JPH09215356A/en
Application granted granted Critical
Publication of JP4236289B2 publication Critical patent/JP4236289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ステータの圧電体に高周波電圧を印加させたときの振動を利用して、弾性体に発生した振動(振動波)によって、移動体を駆動する振動モータを含む振動モータ装置に関するものである。
【0002】
【従来の技術】
従来、振動モータは、超音波振動を利用したモータ、超音波以外の各種振動を利用したモータがあり、一般的に超音波モータ、表面波モータ、振動波モータなどと呼ばれている。振動モータの種類には、回転タイプのモータ、リニヤタイプのモータ又はロッドタイプのモータなどがある。
【0003】
例えば、回転タイプの振動モータでは、装置内に組み込まれた場合にステータにより駆動されるリング状ロータが回転補助部材により装置内に設置される。この場合にリング状ロータと回転補助部材とを直接設置するか、あるいは両者の設置面にロータの振動を回転補助部材に伝達しない様に、防振部材例えばゴム部材を配置したものがある。
【0004】
一般的には、回転補助部材に当設するロータの設置面は、ラッピイング等の機械的処理により平面度が出される。しかし、その平面加工処理中に加工処理装置に固定されるリング状ロータが、その装置の固定力によりロータ自体にひずみが発生し、そのひずみが平面度に悪影響を与える。
本発明は、移動体の回転ムラを低減させること目的とする。
【0005】
【発明が解決しようとする課題】
振動モータのステータの振動が、大変微小(数μm)であるので従来の方法では、上述の加工処理中の平面度への悪影響により、ロータと回転補助部材の設置平面で設置関係が不安定となり、図4のグラフAに示すような設置平面の平面度に依存した回転ムラを生じてしまう課題がある。また、防振性の強い防振部材を配置すると正常なロータの振動までも吸収してしまい振動モータ自体の性能が低下してしまうと言う課題がある。
【0006】
【課題を解決するための手段】
前記の課題を解決するために、本発明による振動モータ装置は、圧電体の励振により弾性体に振動を発生するステータと、前記振動によって駆動される移動体と、前記ステータと前記移動体とを加圧接触させる加圧部材と、前記移動体の前記ステータ側の部分に接着されたスライダー材と、前記移動体に対して前記スライダー材と反対側に設けられ、前記移動体の運動を受けて駆動される移動補助部材と、前記移動体と前記移動補助部材の前記加圧部材による加圧方向と交差する面の間に設けられた、がたつきを低減する低減部材とを有することを特徴とする。
【0007】
【発明の実施の形態】
図1は、振動モータを含む振動モータ装置の実施の形態を示す断面図である。
この図1により、実施の形態の全体の構成を説明する。
この振動モータは、回転タイプのリング状振動モータであり、ステータ1の圧電体に高周波電圧を印加させたときの超音波振動を利用して、弾性体1aに発生した振動(振動波)によって、ロータ2(移動体)を駆動するものである。振動モータ装置は、この振動モータを含み、振動モータを固定部10に固定する各種部材を含むものである。固定部10は、カメラの交換レンズであったり、カメラ本体であったり、各種装置が想定できる。
【0008】
リング状のステ−タ1は、リング状弾性体1aと、弾性体1aに接着されたリング状圧電体1bとから構成される。ステータ1はリング状のステータ固定部材8に固着設置され、前記ステータ固定部材8はリング状の固定部設置部材9により筒状の固定部10に設置される。また、固定部設置部材9に固定された配線回路基盤11は、振動モータの圧電体に高周波電圧を印可する配線が成されている。
この固定部設置部材9は、固定部10にねじ結合されている。
【0009】
一方、ロ−タ2は、図2に示されるように振動波による振動を受け振動するロータ振動部2a−1と、このロータ振動部2a−1の中立軸近傍から延び、ロータ振動部2a-1を支持するフランジ状のロータ支持部材2a−2と、前記ステータからの駆動力を外部に伝えるとともに、加圧力を伝達するロータ伝達部2a−3から構成されるロ−タ母材2aと、ロ−タのロータ振動部2a−1に接着されたスライダ−材2bとから構成される。
【0010】
ロータ2は、図1に示されるように、がたつき低減部材3を介して回転補助部材4と連結され、回転補助部材4は加圧力をロータ2に伝達するように配置されている。
このがたつき低減部材3は、防振性の少ない紙、不織布、織布、防振性の低い合成樹脂や金属薄膜を使用する
この回転補助部材4は、ロータ伝達部2a−3を受ける、ロータ受け部材4aと、ボール4b、リテーナー4c、ボール位置調整部材4d、ボール受け部材4eとから構成される。
【0011】
加圧部材6により発生された加圧力は、加圧力伝達部材5により前記回転補助部材4に伝達されるように構成されている。加圧力の発生は加圧力調整部材7の位置により、加圧部材6から発生されように構成されている。この加圧部材6は、8つ板バネ片からなり、加圧力伝達部材5上に円周方向に等間隔で配置されている。
【0012】
前記の構成により、ロータ2がステータ1に加圧接触され、圧電体1bの励振により弾性体1aに発生した振動波により駆動されるようになる。
図2の(a)にロータ2のロータ伝達部2a−3の平面度の様子を示す。この平面度は、
がたつき低減部材3に接する側のロータ伝達部2a−3の設置面の平面度である(図2(c)の矢印で示す面の平面度)。図2(a)は、図2(b)に示す上記設置面の周方向の角度位置による平面のずれ量を示しており、ほぼ対称に山谷があることから全体的に2つに折れているものを示している。この形状としては、2つ折れ、3つ折れなどが現れる。なお、図2(b)は、ロータ2の平面図であり、図2(c)はロータ2の断面図である。
【0013】
同様に、図3にロータ受け部材4aの平面度の様子を示す。この平面度は、がたつき低減部材3に接する側のロータ受け部材4aの設置面の平面度である(図3(b)の矢印で示す面の平面度)。図3(a)は、角度位置による平面のずれ量を示しており、ほぼ対称に山谷があることから全体的に2つに折れているものを示している。この形状としは、2つ折れ、3つ折れなどが現れる。なお、図3(b)は、ロータ受け部材4aの断面図であり、図3(c)はロータ受け部材4aの平面図である。
【0014】
ロータ2と回転補助部材4のロータ受け部材4aとの設置面の間に、防振性の少ないがたつき低減部材3を配置すると、図4のグラフBに示すように、設置面の平面度に依存した周期的な回転ムラがほとんど、排除することができるようになり、回転ムラの大きさも減少することができる様になった。
【0015】
【実施例】
ロータ伝達部2a−3(以下、ロータ2の設置面と称す)やロータ受け部材4a(以下、回転補助部材4の設置面と称す)が上述のような形状をもつ場合には、回転中はロータ2と回転補助部材4との設置面で設置関係が不安定となり、図4のグラフAで示すような設置面の平面度に依存した周期的な回転ムラを生じてしまうという問題点があった。
【0016】
この問題点を解決するために、ロータ2と回転補助部材4との設置面の間に、がたつき低減部材3を配置する。具体的にどの程度の改善が成されたかを、図5から図7に示す。
図5は、回転補助部材4の設置面の平面度に対するロータ2の回転ムラの発生量を示し、ロータ2の設置面の平面度が1.15μmの時に、がたつき低減部材(不織布)を使用した時(グラフ X)と使用しない時(グラフ Y)におけるロータ2の回転ムラの発生量の比較を示す。このときの振動モータは、回転数60rpmになるような駆動周波数を圧電体に印加して駆動した場合の回転ムラをプロットした実験結果を示す。
【0017】
また、図6は、回転補助部材4の設置面の平面度に対するロータ2の回転ムラの発生量を示し、ロータ2の設置面の平面度が2.35μmの時に、がたつき低減部材(不織布)を使用時(グラフ X1)と未使用時(グラフ Y1)におけるロータ2の回転ムラの発生量の比較を示す。
また、図7は、回転補助部材4の設置面の平面度に対するロータ2の回転ムラの発生量を示し、ロータ2の設置面の平面度が5.6μmの時に、がたつき低減部材(不織布)を使用した時(グラフ X2)と使用しない時(グラフ Y2)におけるロータ2の回転ムラの発生量の比較を示す。
【0018】
この実験結果によると、がたつき低減部材3を使用しない場合は、設置面の平面度に依存して、回転ムラが増大しているのがわかる。しかし、本発明の構成のように、がたつき低減部材を使用すると設置面の平面度の依存を押さえることができるようになり、回転ムラを大きく低減できる様になることがわかる。またこれにより、部品精度の超高精度化を抑制することができるようになる。
【0019】
このがたつき低減部材3は、紙、不織布、織布、防振性の低い合成樹脂や金属薄膜を使用することで、効果が得られる事を確認した。特に紙、不織布、織布は、ポリエステル、カーボン、ケブラーなどの繊維状のものから構成されたものが好ましい。また、設置平面の平面度が数μm程度であれば、合成樹脂としてPTFEシール材を使用することもできる。
【0020】
また、図8に示すように、ロータ2の設置面の平面度が、6μm以上と、6μm未満とでは低減部材3の材料として適する材料が異なることが確認されていた。
また、この低減部材3の効果が特に顕著となるロータの構成は、図2に示すロータ2のようなロータ振動部2a−1がその中立軸近傍から延びたフランジ状のロータ支持部材2a−2で支持されるような構成である。
【0021】
なお本件発明は、上述の回転タイプの振動モータに限らず、種々のタイプの振動モータに適用できる。また、低減部材3として上述の複数の材料の組み合わせで、最適な効果を得るようにもできる。
【0022】
【発明の効果】
以上のように本発明によれば、モータ性能の低下を起こさず、回転ムラを低減した高精度回転の振動モータを提供することができようになる。また、部品精度の超高精度化を抑制する事ができるようになり低コスト化が図れるようになる。
【図面の簡単な説明】
【図1】 本発明の一実施形態である振動モータ装置の断面図である。
【図2】(a)はロータの平面度を表した図、(b)はロータの平面図、(c)はロータの断面図である。
【図3】(a)は回転補助部材の平面度表した図、(b)は回転補助部材の断面図、(c)は回転補助部材の平面図である。
【図4】がたつき低減部材を使用又は未使用時のロータの回転状態を表した図である。
【図5】 回転補助部材4の設置面の平面度に対するロータ2の回転ムラの発生量を示し、がたつき低減部材(不織布)の使用時と未使用時におけるロータ2の回転ムラの発生量の比較を示す。
【図6】 回転補助部材4の設置面の平面度に対するロータ2の回転ムラの発生量を示し、がたつき低減部材(不織布)の使用時と未使用時におけるロータ2の回転ムラの発生量の比較を示す。
【図7】 回転補助部材4の設置面の平面度に対するロータ2の回転ムラの発生量を示し、がたつき低減部材(不織布)の使用時と未使用時におけるロータ2の回転ムラの発生量の比較を示す。
【図8】 ロータ2の設置面の平面度が、6μm以上と、6μm未満とにおける低減部材3の材料示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration motor device including a vibration motor that drives a moving body by vibrations (vibration waves) generated in an elastic body using vibrations when a high frequency voltage is applied to a piezoelectric body of a stator. is there.
[0002]
[Prior art]
Conventionally, vibration motors include motors using ultrasonic vibrations and motors using various vibrations other than ultrasonic waves, and are generally called ultrasonic motors, surface wave motors, vibration wave motors, and the like. The types of vibration motors include a rotary type motor, a linear type motor, or a rod type motor.
[0003]
For example, in a rotary type vibration motor, a ring-shaped rotor that is driven by a stator when incorporated in the apparatus is installed in the apparatus by a rotation auxiliary member. In this case, a ring-shaped rotor and a rotation assisting member are either directly installed, or a vibration isolating member such as a rubber member is arranged on the installation surface of both so as not to transmit the vibration of the rotor to the rotation assisting member.
[0004]
In general, the installation surface of the rotor that is placed on the rotation auxiliary member has a flatness by a mechanical process such as wrapping. However, in the ring-shaped rotor that is fixed to the processing apparatus during the planar processing, distortion occurs in the rotor itself due to the fixing force of the apparatus, and the distortion adversely affects the flatness.
An object of the present invention is to reduce rotation unevenness of a moving body.
[0005]
[Problems to be solved by the invention]
Since the vibration of the stator of the vibration motor is very small (several μm), with the conventional method, the installation relationship between the rotor and the rotation auxiliary member becomes unstable due to the adverse effect on the flatness during the processing described above. There is a problem that uneven rotation depending on the flatness of the installation plane as shown in the graph A of FIG. Further, when a vibration isolating member having a strong vibration isolating property is disposed, there is a problem that even the vibration of the normal rotor is absorbed and the performance of the vibration motor itself is deteriorated.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a vibration motor device according to the present invention includes a stator that generates vibration in an elastic body by excitation of a piezoelectric body, a moving body that is driven by the vibration, the stator and the moving body. A pressure member to be brought into pressure contact, a slider material bonded to the portion of the movable body on the stator side, provided on the opposite side of the slider material to the movable body, and subjected to the movement of the movable body A movement assisting member that is driven, and a reduction member that is provided between the movable body and a surface of the movement assisting member that intersects the pressing direction of the pressing member to reduce rattling. And
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view showing an embodiment of a vibration motor device including a vibration motor.
The overall configuration of the embodiment will be described with reference to FIG.
This vibration motor is a rotation type ring-shaped vibration motor, and by using vibration (vibration wave) generated in the elastic body 1a using ultrasonic vibration when a high frequency voltage is applied to the piezoelectric body of the stator 1, The rotor 2 (moving body) is driven. The vibration motor device includes the vibration motor and includes various members that fix the vibration motor to the fixing unit 10. The fixing unit 10 can be an interchangeable lens of a camera, a camera body, or various devices.
[0008]
The ring-shaped stator 1 includes a ring-shaped elastic body 1a and a ring-shaped piezoelectric body 1b bonded to the elastic body 1a. The stator 1 is fixedly installed on a ring-shaped stator fixing member 8, and the stator fixing member 8 is installed on a cylindrical fixing portion 10 by a ring-shaped fixing portion installation member 9. In addition, the wiring circuit board 11 fixed to the fixing portion installation member 9 is provided with wiring for applying a high-frequency voltage to the piezoelectric body of the vibration motor.
The fixed portion installation member 9 is screwed to the fixed portion 10.
[0009]
On the other hand, the rotor 2 extends from the vicinity of the neutral axis of the rotor vibrating portion 2a-1 and the rotor vibrating portion 2a-1 that vibrates in response to vibrations as shown in FIG. A rotor base member 2a composed of a flange-shaped rotor support member 2a-2 for supporting 1 and a rotor transmission portion 2a-3 for transmitting a driving force from the stator to the outside and transmitting a pressing force; And a slider material 2b bonded to the rotor vibration section 2a-1.
[0010]
As shown in FIG. 1, the rotor 2 is connected to the rotation assisting member 4 via the backlash reduction member 3, and the rotation assisting member 4 is arranged to transmit the applied pressure to the rotor 2.
This rattling reducing member 3 uses paper, non-woven fabric, woven fabric, synthetic resin or metal thin film having low vibration proofing properties, and this rotation assisting member 4 receives the rotor transmission portion 2a-3. The rotor receiving member 4a is constituted by a ball 4b, a retainer 4c, a ball position adjusting member 4d, and a ball receiving member 4e.
[0011]
The pressurizing force generated by the pressurizing member 6 is configured to be transmitted to the rotation auxiliary member 4 by the pressurizing force transmitting member 5. The pressure is generated from the pressure member 6 depending on the position of the pressure adjusting member 7. The pressure member 6 is composed of eight leaf spring pieces, and is arranged on the pressure transmission member 5 at equal intervals in the circumferential direction.
[0012]
With the configuration described above, the rotor 2 is brought into pressure contact with the stator 1 and is driven by the vibration wave generated in the elastic body 1a by the excitation of the piezoelectric body 1b.
FIG. 2A shows the flatness of the rotor transmission portion 2a-3 of the rotor 2. FIG. This flatness is
This is the flatness of the installation surface of the rotor transmission portion 2a-3 on the side in contact with the rattling reduction member 3 (the flatness of the surface indicated by the arrow in FIG. 2C). FIG. 2 (a) shows the amount of plane displacement due to the angular position in the circumferential direction of the installation surface shown in FIG. 2 (b). Since there are peaks and valleys that are almost symmetrical, the entire surface is folded in two. Shows things. As this shape, two or three folds appear. Incidentally, FIG. 2 (b) is a plan view of the rotor 2, FIG. 2 (c) is a sectional view of the rotor 2.
[0013]
Similarly, FIG. 3 shows the flatness of the rotor receiving member 4a. This flatness is the flatness of the installation surface of the rotor receiving member 4a on the side in contact with the rattling reducing member 3 (the flatness of the surface indicated by the arrow in FIG. 3B). FIG. 3A shows the amount of displacement of the plane depending on the angular position, and shows that it is folded in two because there are peaks and valleys that are almost symmetrical. And this shape is two fold, three fold, etc. appear. FIG. 3B is a cross-sectional view of the rotor receiving member 4a, and FIG. 3C is a plan view of the rotor receiving member 4a.
[0014]
When the rattling reduction member 3 having a small vibration proofing property is disposed between the installation surfaces of the rotor 2 and the rotor receiving member 4a of the rotation assisting member 4, the flatness of the installation surface as shown in the graph B of FIG. It is now possible to eliminate the periodic rotation unevenness that depends on the rotation and to reduce the size of the rotation unevenness.
[0015]
【Example】
When the rotor transmission part 2a-3 (hereinafter referred to as the installation surface of the rotor 2) or the rotor receiving member 4a (hereinafter referred to as the installation surface of the rotation auxiliary member 4) has the above-described shape, There is a problem that the installation relationship between the rotor 2 and the rotation auxiliary member 4 becomes unstable, and periodic rotation unevenness depending on the flatness of the installation surface as shown by the graph A in FIG. 4 occurs. It was.
[0016]
In order to solve this problem, the rattling reduction member 3 is disposed between the installation surfaces of the rotor 2 and the rotation auxiliary member 4. Specifically, how much improvement has been made is shown in FIGS.
FIG. 5 shows the amount of rotation unevenness of the rotor 2 with respect to the flatness of the installation surface of the rotation auxiliary member 4. When the flatness of the installation surface of the rotor 2 is 1.15 μm, the rattling reducing member (nonwoven fabric) is removed. A comparison of the amount of rotation unevenness of the rotor 2 when it is used (graph X) and when it is not used (graph Y) is shown. The vibration motor at this time shows an experimental result in which rotation unevenness is plotted when the piezoelectric motor is driven by applying a driving frequency such that the rotational speed is 60 rpm.
[0017]
FIG. 6 shows the amount of rotation unevenness of the rotor 2 with respect to the flatness of the installation surface of the rotation assisting member 4. When the flatness of the installation surface of the rotor 2 is 2.35 μm, the rattling reducing member (nonwoven fabric) ) Is used (graph X1) and non-use (graph Y1) comparison of the amount of rotation unevenness of the rotor 2 is shown.
FIG. 7 shows the amount of rotation unevenness of the rotor 2 with respect to the flatness of the installation surface of the rotation assisting member 4. When the flatness of the installation surface of the rotor 2 is 5.6 μm, the rattling reducing member (nonwoven fabric) ) Is used (graph X2) and not used (graph Y2).
[0018]
According to this experimental result, it can be seen that the rotation unevenness is increased depending on the flatness of the installation surface when the rattling reducing member 3 is not used. However, it can be seen that the use of the rattling reducing member as in the configuration of the present invention makes it possible to suppress the dependence on the flatness of the installation surface and greatly reduce the rotation unevenness. This also makes it possible to suppress an increase in the component accuracy.
[0019]
It has been confirmed that the rattling reducing member 3 can obtain an effect by using paper, non-woven fabric, woven fabric, synthetic resin or metal thin film having low vibration proofing properties. In particular, the paper, non-woven fabric, and woven fabric are preferably composed of fibrous materials such as polyester, carbon, and kevlar. If the flatness of the installation plane is about several μm, a PTFE sealing material can be used as the synthetic resin.
[0020]
Further, as shown in FIG. 8, it has been confirmed that the material suitable as the material of the reducing member 3 is different when the flatness of the installation surface of the rotor 2 is 6 μm or more and less than 6 μm.
In addition, the rotor configuration in which the effect of the reducing member 3 is particularly remarkable is that the rotor vibrating portion 2a-1 such as the rotor 2 shown in FIG. 2 has a flange-like rotor support member 2a-2 extending from the vicinity of the neutral axis. It is the structure which is supported by.
[0021]
The present invention is not limited to the rotary type vibration motor described above, but can be applied to various types of vibration motors. Further, an optimum effect can be obtained by combining the plurality of materials described above as the reducing member 3.
[0022]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a high-accuracy rotation vibration motor in which rotation unevenness is reduced without causing deterioration in motor performance. In addition, it becomes possible to suppress the ultra-high accuracy of the component accuracy, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a vibration motor device according to an embodiment of the present invention.
2A is a view showing the flatness of the rotor, FIG. 2B is a plan view of the rotor, and FIG. 2C is a cross-sectional view of the rotor.
3A is a view showing the flatness of the rotation assisting member, FIG. 3B is a cross-sectional view of the rotation assisting member, and FIG. 3C is a plan view of the rotation assisting member.
FIG. 4 is a view showing a rotation state of a rotor when a rattling reducing member is used or not used.
FIG. 5 shows the amount of uneven rotation of the rotor 2 with respect to the flatness of the installation surface of the rotation assisting member 4, and the amount of uneven rotation of the rotor 2 when the rattling reducing member (nonwoven fabric) is used and when not used. A comparison of is shown.
6 shows the amount of rotation unevenness of the rotor 2 with respect to the flatness of the installation surface of the rotation assisting member 4, and the amount of rotation unevenness of the rotor 2 when the rattling reduction member (nonwoven fabric) is used and when not used. A comparison of is shown.
7 shows the amount of uneven rotation of the rotor 2 with respect to the flatness of the installation surface of the rotation assisting member 4, and the amount of uneven rotation of the rotor 2 when the rattling reducing member (nonwoven fabric) is used and when not used. A comparison of is shown.
FIG. 8 is a diagram showing materials of the reducing member 3 when the flatness of the installation surface of the rotor 2 is 6 μm or more and less than 6 μm.

Claims (6)

圧電体の励振により弾性体に振動を発生するステータと、
前記振動によって駆動される移動体と、
前記ステータと前記移動体とを加圧接触させる加圧部材と、
前記移動体の前記ステータ側の部分に接着されたスライダー材と、
前記移動体に対して前記スライダー材と反対側に設けられ、前記移動体の運動を受けて駆動される移動補助部材と、
前記移動体と前記移動補助部材の前記加圧部材による加圧方向と交差する面の間に設けられた、がたつきを低減する低減部材と
を有することを特徴とする振動モータ装置。
A stator that generates vibration in an elastic body by excitation of a piezoelectric body;
A moving body driven by the vibration;
A pressurizing member that pressurizes and contacts the stator and the moving body;
A slider material bonded to a portion of the moving body on the stator side;
A movement auxiliary member provided on the opposite side of the slider material to the moving body and driven by the movement of the moving body;
A vibration motor device comprising: a moving member and a reduction member provided between a surface of the movement assisting member that intersects a pressing direction of the pressing member by the pressing member to reduce rattling.
圧電体の励振により弾性体に振動を発生するステータと、
前記振動によって回転駆動されるロータと、
前記ステータと前記ロータとを加圧接触させる加圧部材と、
前記ロータの前記ステータ側の部分に接着されたスライダー材と、
前記ロータに対して前記スライダー材と反対側に設けられ、前記ロータの回転を受けて回転駆動される回転補助部材と、
前記ロータと前記回転補助部材の前記ロータの回転の軸と交差する面の間に設けられた、がたつきを低減する低減部材と
を有することを特徴とする振動モータ装置。
A stator that generates vibration in an elastic body by excitation of a piezoelectric body;
A rotor driven to rotate by the vibration;
A pressure member that pressurizes and contacts the stator and the rotor;
A slider material bonded to the stator side portion of the rotor;
A rotation auxiliary member that is provided on the opposite side of the slider material with respect to the rotor, and that is rotated by the rotation of the rotor;
A vibration motor device comprising: a reduction member that reduces rattling, provided between the rotor and a surface of the rotation auxiliary member that intersects with the rotation axis of the rotor .
前記低減部材は、紙、不織布、織布の少なくとも1つから成ることを特徴とする請求項1又は2記載の振動モータ装置。  The vibration motor device according to claim 1, wherein the reduction member is made of at least one of paper, nonwoven fabric, and woven fabric. 前記低減部材は、防振性の低い合成樹脂あるいは金属薄膜から成ることを特徴とする請求項1又は2記載の振動波モータ装置。  3. The vibration wave motor device according to claim 1, wherein the reduction member is made of a synthetic resin or a metal thin film having a low vibration proofing property. 前記低減部材は、カーボン、ポリエステル、ケブラーの少なくとも1つから成ることを特徴とする請求項1又は2記載の振動モータ装置。  3. The vibration motor device according to claim 1, wherein the reducing member is made of at least one of carbon, polyester, and kevlar. 前記低減部材は、PTFEシール材から成ることを特徴とする請求項1又は2記載の振動モータ装置。  The vibration motor device according to claim 1, wherein the reduction member is made of a PTFE seal material.
JP01535796A 1996-01-31 1996-01-31 Vibration motor device Expired - Lifetime JP4236289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01535796A JP4236289B2 (en) 1996-01-31 1996-01-31 Vibration motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01535796A JP4236289B2 (en) 1996-01-31 1996-01-31 Vibration motor device

Publications (2)

Publication Number Publication Date
JPH09215356A JPH09215356A (en) 1997-08-15
JP4236289B2 true JP4236289B2 (en) 2009-03-11

Family

ID=11886558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01535796A Expired - Lifetime JP4236289B2 (en) 1996-01-31 1996-01-31 Vibration motor device

Country Status (1)

Country Link
JP (1) JP4236289B2 (en)

Also Published As

Publication number Publication date
JPH09215356A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
JPS61224881A (en) Vibration wave motor
JP3107933B2 (en) Vibration wave driving device and device provided with vibration wave driving device
US7786650B2 (en) Ultrasonic motor
US8049396B2 (en) Piezoelectric ultrasonic motor and method of manufacturing the same
JPH08280185A (en) Ultrasonic actuator
JPH11235062A (en) Vibration actuator driver and lens barrel
JPH0532991B2 (en)
JP4236289B2 (en) Vibration motor device
JPH0636673B2 (en) Drive
JP4026930B2 (en) Vibration wave device and vibration wave drive device
EP0553827B1 (en) A vibration driven actuator
JP3728606B2 (en) Vibration motor
KR100318861B1 (en) Flat Linear Ultrasonic Motors
JP4333179B2 (en) Manufacturing method of vibration actuator
JP2950537B2 (en) Ultrasonic motor
JPH1169849A (en) Oscillation actuator drive device
JPH08182351A (en) Ultrasonic actuator
JP4835042B2 (en) Vibration wave motor
JPH02311184A (en) Ultrasonic motor
JPH062478Y2 (en) Ultrasonic motor
JP2000245178A (en) Vibrating actuator
JPH07178370A (en) Vibrator and vibrating actuator
JP4622403B2 (en) Vibration actuator
JP3566696B2 (en) Vibration wave drive
JP4144229B2 (en) Vibration wave motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070502

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141226

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141226

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term