JP4235972B2 - パターン描画装置およびパターン描画方法 - Google Patents

パターン描画装置およびパターン描画方法 Download PDF

Info

Publication number
JP4235972B2
JP4235972B2 JP2003200225A JP2003200225A JP4235972B2 JP 4235972 B2 JP4235972 B2 JP 4235972B2 JP 2003200225 A JP2003200225 A JP 2003200225A JP 2003200225 A JP2003200225 A JP 2003200225A JP 4235972 B2 JP4235972 B2 JP 4235972B2
Authority
JP
Japan
Prior art keywords
exposure
light
scanning direction
exposure area
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003200225A
Other languages
English (en)
Other versions
JP2004146789A (ja
Inventor
義則 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2003200225A priority Critical patent/JP4235972B2/ja
Publication of JP2004146789A publication Critical patent/JP2004146789A/ja
Application granted granted Critical
Publication of JP4235972B2 publication Critical patent/JP4235972B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原版となるフォトマスク(レクチル)あるいは直接プリント基板やシリコンウェハといった被描画体へ回路パターンなどの描画パターンを形成するパターン描画装置に関する。
【0002】
【従来の技術】
従来、シリコンウェハやLCD(Liquid Crystal Display)、PWB(Printed Wiring Board)など被描画体の表面に、フォトリソグラフィによって回路パターンを形成する描画装置が知られており、あらかじめ作成されたパターンデータに基づき、電子ビームやレーザビームによって露光面が走査される。フォトマスクの表面上において写真感材やフォトレジストなどの感光材料が光に反応することによって、回路パターンが形成される。また、光のON/OFF制御を行う光強度変調デバイスとして、AOM(Acoust-Optic Modulator)などの代わりにLCD(Liquid Crystal Display)、あるいはDMD(Digital Micro-mirror Device)、SLM(Spatial Light Modulators)、を使用した描画装置(露光装置)も知られている。パターン精度を上げて微細なパターンを形成させるため、例えば、隣接する露光領域を重複させながら露光動作が実行され(例えば、特開2001−168003号公報参照)、あるいは逆に、隣り合う画素同士が重ならないように画素ずらしによる露光が実行される(例えば、特開2001−305663号公報参照)。
【0003】
【発明が解決しようとする課題】
上記公報に記載された描画方法の場合、同一エリア付近に対して複雑な露光動作を実行しなければならず、パターン形成に多大な時間が掛かり、作業効率が低下する。さらに、レーザなどの光源から放射される光の強度分布の多くは、通常中心部の強度が高く、周辺部の強度が低い。したがって、同一エリア付近で露光を繰り返し行うと、露光面への光の照射量が不均一となり、精度の高いパターンを形成することができない。
【0004】
そこで本発明では、照明光の特性に応じて露光面に対する光の照射量を均一にすることができるパターン描画装置およびパターン描画方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明のパターン描画装置は、被パターン形成体の露光面にパターンを形成するため光を放射する光源と、規則的に配列される複数の光変調素子を有する光変調ユニットと、光変調ユニットに応じて規定される露光エリアを、被パターン形成体に対し、走査方向および副走査方向に沿って相対的に移動させる露光エリア相対移動制御手段と、露光エリアの走査方向に沿った相対移動に応じて複数の光変調素子それぞれを制御することにより、パターンデータに基づいた露光動作を実行する露光制御手段とを備える。光源は、例えばレーザビームを放射するレーザ発振器が適用される。光変調ユニットにおける光変調素子は、光源からの光を被パターン形成体へ導く第1の状態および被パターン形成体以外へ導く第2の状態のうちいずれかの状態に定められる。例えば、光変調ユニットは、光変調素子としてμmのオーダである微小なマイクロミラーから構成されるDMD(Digital Micro-mirror Device)であるのがよい。この場合、マイクロミラーは、露光面へ導く第1の状態と露光面外へ導く第2の状態いずれかで姿勢が制御される。あるいは、DMDの代わりにSLM、LCDを適用してもよい。DMD、SLM、LCDを使用する場合、例えば露光エリアは矩形状に定められる。被パターン形成体をステージに搭載した場合、露光エリア相対移動制御手段は、例えば、光変調ユニットを停止させた状態でステージを移動させるのがよい。
【0006】
レーザ発振器により放出されるレーザビームやLED(Light Emitting Diode)により放射される光は、一般的に、光軸に近いほど周辺部に比べて光強度が高く、光軸を中心に対称的な強度分布を有する。特に、レーザ発振器の場合、光軸を通り互いに直交する2軸方向に関してガウス分布の特性を有する光が放射される。本発明では、光変調ユニットを介して上記のような強度分布を有する光を露光面に照射させる場合、照射量が副走査方向に沿って実質的に均一となるように、露光エリアが副走査方向に相対移動する。すなわち、露光エリア相対移動制御手段は、露光面への光の照射量が副走査方向に沿って実質的に均一になるように、投影エリアの一部に露光エリアの一部を副走査方向に重ね合わせながら、露光エリアを走査方向に沿って相対移動させる。ただし、投影エリアは、先の走査方向に沿った露光動作によって光が照射されたエリアを示す。以下では、このような同一領域に対し走査方向に沿って重複露光することをオーバラップ露光という。
【0007】
周辺付近の光の強度が中心付近に比べて低く、中心に対し対称性のある強度分布の光であるため、単一の走査動作における投影エリアにおいては副走査方向に露光量の差が発生する。これに対してオーバラップ露光をする事により重ねて露光された部分の光の照射量を副走査方向に沿って均一となるようにすることが可能であり、本発明の露光エリア相対移動制御手段は、照射量が均一となるように露光エリアを相対移動させる。これにより、パターン精度が向上し、微細なパターン形成が可能となる。また、光の照射量を均一にするための照明光学系を設ける必要がないため、照明効率を低下させることなく光を露光面に照射することができる。さらに、露光エリアの副走査方向に沿った相対移動距離を制御するだけであるため、複雑な露光動作を実行する必要がなく、作業効率が低下しない。
【0008】
最も簡易な移動制御によるオーバラップ露光を実現することを考慮し、相対移動制御手段は、露光面の同一領域に対して2回重ねて露光動作が実行されるように、露光エリアの副走査方向に沿った長さの半分の距離だけ、露光エリアを副走査方向に沿って相対移動させることが望ましい。すなわち、副走査方向に沿って露光エリアの半分の距離だけ順次相対移動させながら露光動作を実行する。あるいは、より均一な光の照射量を求めるならば、露光エリア相対移動制御手段は、露光面の同一領域に対して4回重ねて露光動作が実行されるように、露光エリアの副走査方向に沿った長さの1/4の距離だけ、露光エリアを副走査方向に沿って相対移動させるのがよい。すなわち、露光エリアの1/4エリアずつ副走査方向に沿って順次相対移動させながら露光動作を実行する。
【0009】
露光エリアは、複数の光の変調素子それぞれに応じた単位露光エリアから構成される。オーバラップ露光を実行する場合、より光の照射量を均一にするため、前回の走査方向に沿った露光動作における単位露光エリアの位置とまったく同一の位置に単位露光エリアの位置をあわせて露光するのではなく、単位露光エリアの位置をわずかにずらして走査するのが好ましい。すなわち、前回の走査における単位露光エリアによって光の照射されたエリア(単位投影エリア)と今回の走査における単位露光エリアとをずらすのがよい。そのため、露光エリア相対移動制御手段は、複数の光の変調素子それぞれに応じた単位露光エリアをずらしながら露光動作を実行するように、所定量だけ走査方向および副走査方向のうち少なくとも1方向に沿って露光エリアをさらに相対変位させる。この所定量は、オーバラップ露光を実行するための副走査方向に沿った移動距離に比べて小さい。例えば、露光エリア相対移動制御手段は、複数の光変調素子それぞれの中心位置投影像を示す中心投影プロットが交互に等間隔で並ぶように、露光エリアを相対変位させるのがよい。
【0010】
露光エリアの相対移動に関しては、被パターン形成体を載せたステージを連続的に移動させる連続移動方式、あるいは露光動作時にはステージを停止するステップ・アンド・リピート方式のどちらを適用してもよい。しかしながら、より微細で精度あるパターンを形成するためには、連続移動方式を適用し、光変調素子の状態切替タイミングに応じて露光動作を逐次繰り返すのがよい。すなわち、露光エリア相対移動制御手段は、露光エリアを一定速度で走査方向に沿って連続的に相対移動させ、露光制御手段は、複数の光変調素子に対する第1および第2の状態への切替時間間隔および露光エリアの移動速度とに従って、露光面にパターンを形成することが望ましい。
【0011】
光変調ユニットがDMD、SLM、LCDなどである場合、状態を切り替える時間間隔を非常に短く設定することが可能であり、走査方向の露光エリアサイズ分だけ相対移動するのに掛かる時間より光変調素子における切替時間間隔が十分短くなるように露光エリアの相対移動速度を定めれば、単位露光エリアに応じた露光面の単位投影エリア内において複数回露光を実行することが可能である。すなわち、複数の光変調素子がマトリクス状に配置されていた場合、複数の光変調素子それぞれに応じた単位露光エリアの走査方向に沿った長さ分だけ相対移動するのに掛かる単位露光エリア通過時間より切替時間間隔が短くなるように、前記露光エリアの移動速度を定めればよい。この場合、走査方向および副走査方向それぞれに複数回露光を可能とするため、光変調ユニットの投影エリアを走査方向に対し所定角度傾けた状態で相対移動させればよい。
【0012】
レーザ発振器、LEDなどの光源は、光束断面において中心を通り互いに直交する2軸方向に沿ってそれぞれ対称性のある強度分布を有する光を放出する。例えば、2軸方向それぞれに沿った光の強度分布がガウス分布になる光を放射する。また、DMDなどの光変調ユニットに関しては、該2軸方向に応じた縦横方向に関するアスペクト比がテレビジョン規格に従って定められている。DMDなどの微小光変調素子を配列した光変調ユニットに対しては、例えばテレビジョンの表示画面規格に従ってアスペクト比が定められている。アスペクト比と光束断面形状が不一致である場合において、光変調ユニットより十分大きい照明形状にすると強度の高い中心部分の光のみを利用し、強度の低い周辺部分の光はカットしなければならない。あるいは、光変調ユニットより小さい照明形状にすると、カットする光は発生しないが外周部の微小光変調素子には光の当たらない部分が発生して全素子を有効に使用する事ができない為にタクトが長くなる。そのため、描画装置は、該2軸方向に関するアスペクト比を光変調ユニットのアスペクト比に合わせるように、該2軸方向それぞれの強度分布の相似性を独立して維持しながら光束断面形状を修正するビーム成形光学素子をさらに有することが望ましい。ビーム成形光学素子が配置されると、光源から放射される光が実質的にすべて光変調ユニットへ照射される。強度分布の相似性を維持しながら光束断面形状が修正されるため、光全体が光変調ユニットのエリア内に収まるようにビーム成形される。これにより、光変調ユニットの微小変調素子を有効に使用しながら十分な照明光によってパターン形成することができる。
【0013】
ビーム成形をするには、簡易な光学系の構成によって光束断面形状を修正するのが望ましい。そのため、ビーム成形光学素子は、好ましくは2軸方向に沿った発散角をそれぞれ別々に設定可能な拡散板である。すなわち、光を発散させる際に2軸方向それぞれの発散角を別々に設定することにより、光束断面形状を変えることができる。2軸方向の発散角は、光変調ユニットのアスペクト比に従って定められる。例えば、拡散板として、フロスト拡散板を適用するのがよい。フロスト拡散板は、通常、液晶表示などにおいて、単に光を均等に拡散させる目的で使用されているが、本発明においては、光束断面を光変調ユニットのアスペクト比に従って発散角を定めればよい。
【0014】
本発明のパターン描画方法は、被パターン形成体の露光面にパターンを形成するため、光軸に近いほど周辺部に比べて光強度が高く、副走査方向に応じた第1の軸に沿って光軸を中心に対称的な強度分布を有する光を放射し、規則的に配列され、光源からの光を露光面へ導く第1の状態および被パターン形成体以外へ導く第2の状態のうちいずれかの状態に定められる複数の光変調素子を有する光変調ユニットによって光を露光面に導き、光変調ユニットに応じて規定される露光エリアを、被パターン形成体に対し、走査方向および副走査方向に沿って相対的に移動させ、露光エリアの走査方向に沿った相対移動に応じて複数の光変調素子それぞれを制御することにより、パターンデータに基づいた露光動作を実行するパターン描画方法であって、露光面への光の照射量が副走査方向に沿って実質的に均一になるように、露光動作によって光が照射された投影エリアの一部に露光エリアの一部を重ね合わせながら、走査方向に沿って露光エリアを相対移動させることを特徴とする。
【0015】
【発明の実施の形態】
以下では、図面を参照して本発明の実施形態であるパターン描画装置について説明する。
【0016】
図1は、第1の実施形態であるパターン描画装置を模式的に示した斜視図であり、図2は、パターン描画装置に設けられた露光ユニットを模式的に示した図である。第1の実施形態のパターン描画装置は、フォトレジストを表面に塗布したプリント基板やシリコンウェハ等の基板へ直接光を照射することによって回路パターンを形成する描画装置である。
【0017】
パターン描画装置10は、ゲート状構造体12、基台14を備えており、基台14にはX−Yステージ18を支持するX−Yステージ駆動機構19が搭載され、X−Yステージ18上には基板SWが設置されている。ゲート状構造体12には、基板SWの表面に回路パターンを形成するための露光ユニット20が設けられており、X−Yステージ18の移動に合わせて露光ユニット20が動作する。また、描画装置10は、X−Yステージ18の移動および露光ユニット20の動作を制御する描画制御部(ここでは図示せず)を備えている。
【0018】
図2に示すように、露光ユニット20は、DMD(Digital Micro-mirror Device)22、照明光学系24、結像光学系26を備えており、光源として使用されるアルゴンレーザ21とDMD22との間に照明光学系24が配置され、DMD22と基板SWとの間に結像光学系26が配置されている。アルゴンレーザ21から一定の強度で連続的に放射される光(レーザビーム)は、照明光学系24へ導かれる。なお、図2では、1つの露光ユニット20が示されているが、本実施形態では、後述するように3つの露光ユニットが設けられており、3つのDMDはそれぞれ所定間隔をおいて配置されている。
【0019】
照明光学系24は、拡散板24Aとコリメータレンズ24Bから構成されており、レーザビームLBが照明光学系24を通過すると、DMD22を全体的に照明する光束からなる光が成形される。DMD22は、オーダがμmである微小のマイクロミラーがマトリクス状に配列された光変調ユニットであり、各マイクロミラーは、静電界作用により回転変動する。本実施形態では、DMD22はM×N個のマイクロミラーがマトリクス状に配列されることによって構成されており、以下では配列(i,j)の位置に応じたマイクロミラーを“Xij”(1 ≦ i ≦ M,1 ≦ j ≦ N)と表す。また、後述するように、DMD22は、X−Yステージ18に対して微小角度αだけ相対的に傾いた状態で位置決めされている。
【0020】
マイクロミラーXijは、アルゴンレーザ21からの光LBを基板SWの露光面SUの方向へ反射させる第1の姿勢と、露光面SU外の方向へ反射させる第2の姿勢いずれかの姿勢で位置決めされ、描画制御部からの制御信号に従って姿勢が切り替えられる。マイクロミラーXijが第1の姿勢で位置決めされている場合、マイクロミラーXij上で反射した光は、結像光学系26の方向へ導かれる。結像光学系26は、2つの凸レンズ26A、26Cとリフレクタレンズ26Bから構成されており、結像光学系26を通った光は、感光性のあるフォトレジスト層が形成されている露光面SUにおいて所定のスポットを照射する。一方、マイクロミラーXijが第2の姿勢で位置決めされた場合、マイクロミラーXijで反射した光は、光吸収板29の方向へ導かれ、露光面SUには光が照射されない。以下では、マイクロミラーXijが第1の姿勢で支持されている状態をON状態、第2の姿勢で支持されている状態をOFF状態と定める。また、本実施形態では、結像光学系26の倍率は1倍に定められており、1つのマイクロミラーXijによって光が照射された投影スポットYijのサイズ(幅、高さ)は、マイクロミラーXijのサイズと一致する。
【0021】
X−Yステージ18が停止した状態ですべてのマイクロミラーがON状態である場合、露光面SU上にはD×R(=(M×h)×(N×l))のサイズを有する露光エリアEA全面に光が照射される。ただし、マイクロミラーXijの副走査方向(Y方向)に対応する高さをh、走査方向(X方向)に対応する幅をlで示している。本実施形態では、マイクロミラーXijは正方形状であり(h=l)、一片の長さは、ここでは20μmに定められている。DMD22ではマイクロミラーXijがそれぞれ独立してON/OFF制御されるため、DMD22全体に照射した光は、各マイクロミラーにおいて選択的に反射された光の光束から構成される光となって分割される。その結果、露光面SUの露光エリアEAに対応するスポットには、その場所に形成すべき回路パターンに応じた光が照射される。X−Yステージ18が移動することにより、露光エリアEAは走査方向に沿って露光面SU上を相対的に移動する。これにより回路パターンが走査方向に沿って形成されていく。
【0022】
本実施形態では、ラスタ走査に従い、X−Yステージ18が走査方向(X方向)に沿って一定の速度で移動する。DMD22のマイクロミラーXijは、回路パターンに応じたラスタデータに基づいてそれぞれ独立して制御されており、露光エリアEAに位置した露光面SU上の領域に対して所定の回路パターンが形成されるように、マイクロミラーXijが第1の姿勢もしくは第2の姿勢でそれぞれ位置決めされる。X−Yステージ18の移動に伴う露光エリアEAの相対的移動に従って、マイクロミラーXijが順次ON/OFF制御される。1ライン分の走査が終了すると、次のラインを露光できるようにX−Yステージ18が副走査方向(Y方向)へ相対移動し、折り返しX−Yステージ18が走査方向に沿って移動する。すべてのラインが露光されることにより、基板SW上に回路パターンが形成される。
【0023】
DMD22のサイズは、テレビジョンの表示規格に従って定められており、DMD22の走査方向に対応する方向を横方向、副走査方向に対応する方向を縦方向と規定し、幅(横方向長さ)および高さ(縦方向長さ)をそれぞれ「W」、「K」で表すと、本実施形態のDMD22のアスペクト比(横縦比W:K)はここでは3:4と定められている。結像光学系26の倍率は1倍であることから、W=R、K=Dの関係が成り立つ。
【0024】
図3は、拡散板24Aを示した平面図である。
【0025】
図3に示すように、拡散板24Aは、ガラス、フィルムあるいは樹脂などに凹凸を配置したフロスト型拡散板であり、後述するように、アルゴンレーザ21から放出された光の光束断面形状を修正するように、入射した光を縦横方向に沿ってそれぞれ所定の角度で発散させる。本実施形態では、アルゴンレーザ21からの光を実質的にすべてDMD22全面に照射させるように、縦横方向の発散角が定められている。
【0026】
図4は、DMD22へ光が照射されるときの光束断面を示した図であり、図5は、光の強度分布のグラフを示した図である。図4、図5を用いて、拡散板24Aによる光束断面形状の修正について説明する。
【0027】
図5に示すように、アルゴンレーザ21から放射されるレーザビームLBの強度分布は、一般的にガウス分布(正規分布)に従う。すなわち、中心における光強度をI0、光束断面の有効半径を示すスポットサイズをωとした場合、光の強度は以下の式で表される。
I=I0-2 α (α=(x/ω)2) ・・・(1)
ただし、xは光軸からの距離を示し、スポットサイズωは、I=I0×1/e2=0.135I0の強度によって規定されており、図5では、I0=1、ω=1とした場合の強度分布がグラフ化されている。
【0028】
アルゴンレーザ21からのレーザビームLBは、光束断面において規定される2軸方向に対し、強度分布が一致する。ここで、2軸方向は、光束断面における中心を通り、互いに直交する方向である。以下では、2軸方向を符号「x」、「y」で表す。ただし、「x」はDMD22の横方向(j方向)に対応し、「y」はDMD22の縦方向(i方向)に対応する。強度分布がx、y方向とも同じであるため、レーザビームLBの光束断面は円形状になり、スポットサイズωを径として光束断面が形成される。したがって、光束断面における2軸方向x、yに関する比(以下では、光束断面のアスペクト比という)は、実質的に1:1の関係を維持する。
【0029】
拡散板24Aを露光ユニット20内に配置しない場合、DMD22のアスペクト比と光束断面のアスペクト比が一致しない。そのため、通常の拡散レンズおよびコリメータレンズ24Bを通過する過程で拡大整形されたレーザビームLBに関し、DMD22の表面を含む平面上の光束断面を「LF0」と表すと、光束断面LF0のアスペクト比(L:H)は1:1となる。したがって、レーザビームLBの一部はDMD22のエリア内に照射されない(図4参照)。
【0030】
本実施形態では拡散板24Aが露光ユニット20内に配置されており、拡散板24Aの縦横方向の発散角は、光束断面の横縦比(アスペクト比)がDMD22のアスペクト比に対応するようにそれぞれ定められている。すなわち、レーザビームLBは、強度分布の相似関係を維持しながら縦方向および横方向へそれぞれ別々の変換率で拡大され、x方向のスポットサイズωがω’に修正される。これにより、拡散板24Aを通過したレーザビームLBの光束断面のアスペクト比(=L1/H1)は、DMD22のアスペクト比(=W/K)と実質的に等しくなる。その結果、DMD22の表面を含む平面上におけるレーザビームLBの光束断面LF1は、DMD22のエリア内にすべて収まる(図4参照)。
【0031】
図6は、描画装置における描画制御部のブロック図である。
【0032】
描画制御部30は、システムコントロール回路32、DMD制御部34、ステージ制御部38、ステージ位置検出部40、ラスタ変換部42、光源制御部44を備えており、CPU(Central Processing Unit)を含むシステムコントロール回路32は、描画装置10全体を制御する。
【0033】
描画装置10に応じた回路パターンデータがCAMデータとして描画制御部30のラスタ変換部42へ送られると、回路パターンデータがラスタ走査に応じたラスタデータに変換され、DMD制御部34に送られる。DMD制御部34では、ラスタデータに基づいてDMD22におけるマイクロミラーXijそれぞれのON/OFF状態に応じたビットマップデータが生成され、ビットマップメモリ(図示せず)に格納されるビットマップデータとステージ位置検出部40からの相対位置情報に基づいて、マイクロミラーのON/OFF制御信号がDMD22に出力される。ステージ制御部38は、モータ(図示せず)を備えたX−Yステージ駆動機構19を制御し、これによってX−Yステージ18の移動速度等が制御される。ステージ位置検出部40は、X−Yステージ18の露光エリアEAに対するX−Yステージ18の相対的位置を検出する。システムコントロール回路32は、アルゴンレーザ21から光を放出するために光源制御部44へ制御信号を送るとともに、DMD制御部34に対して露光タイミングを制御するための制御信号を出力する。
【0034】
図7は、露光エリアの相対的移動を示した図であり、図8は、露光動作におけるプロット間隔を示した図である。また、図9は、単位露光エリアにおける中心投影プロット分布を示した図である。図7〜図9を用いて、本実施形態の露光動作について説明する。
【0035】
図7に示すように、DMDによる露光エリアEA(D×R)は副走査方向(Y方向)および走査方向(X方向)に対して所定の微小角度αだけ傾いた方向に沿って設置されており、基板SW上において、露光エリアEAの走査方向Xに応じた幅R方向をX”方向、露光エリアEAの副走査方向Yに応じた高さD方向をY”方向と規定する。ただし、角度αは微小であるため、X”、Y”方向は、それぞれ略走査方向、副走査方向に相当する。
【0036】
上述したように、DMD22は3つのDMDから構成され、等間隔で並んで配置されており、3つの露光エリアEA1、EA2、EA3が、略副走査方向(Y”方向)に沿って露光面SU上において規定される。露光面SU上において、露光エリアEA1、EA2、EA3は、Y”方向に沿った各露光エリア長さDの間隔を置いて規定される。DMD22のサイズが露光エリアのサイズと一致しているため、露光エリアEA1、EA2、EA3の間隔Dは、DMD22の高さKに等しい。
【0037】
X−Yステージ18が矢印Bの方向、すなわちX方向へ移動することにより、露光エリアEA1、EA2、EA3は、走査方向(X方向)へ相対的に移動していく(矢印A1、A2、A3参照)。露光エリアEA1、EA2、EA3がX方向に沿って露光面SU上において所定距離だけ移動する、すなわち基板SW上において右端の位置AAから左端の位置BBまで移動すると、露光エリアEAが略副走査方向(Y”方向)に沿った長さの約半分、すなわち、およそD/2だけ副走査方向(Y”方向)に沿って相対移動するように、X−Yステージ18が副走査方向(Y方向)に沿って移動する。
【0038】
さらに、X−Yステージ18が折り返しX方向に沿って移動することにより、露光エリアEA1、EA2、EA3が相対的に位置BBから位置AAまで移動する(矢印B1、B2、B3参照)。略副走査方向に沿っておよそ距離D/2だけ相対移動するため、X方向に沿って露光エリアE1、E2、E3が移動する間、先のX方向に沿って走査されたエリアG1(投影エリア)の半分の領域が重ねて露光される(以下では、オーバラップ露光という)。図7では、露光エリアEA1に関してオーバラップ露光された領域を符号「G2」で示している。
【0039】
露光エリアEA1、EA2、EA3が再び右端位置AAまで到達すると、さらに、露光エリアEA1、EA2、EA3が略副走査方向(Y”方向)に沿って距離D/2だけ相対移動するようにX−Yステージ18が副走査方向に沿って移動した後、再びX方向に沿って相対移動する。このようなラスタ走査が順次行われることにより、基板SWのパターン形成領域PKにおいて回路パターンが形成されていく。DMD制御部34(図6参照)では、オーバラップ露光に従ったビットマップデータに基づいて制御信号がDMD22へ出力されており、検出されるX−Yステージ18の位置に応じてDMD22の各マイクロミラーXijが制御される。
【0040】
図8は、露光エリアが相対的に露光面SU上を移動していくときの各マイクロミラーの中心位置に応じた投影プロットを示している。X−Yステージ18が一定速度で移動している間、マイクロミラーは所定の時間間隔でON/OFF切替可能な構成になっており、ここでは、1回の走査露光(X方向に沿った1ライン分の露光)終了後の各マイクロミラーの中心位置に応じた投影スポットの位置P1をドット状にプロットしている。
【0041】
さらに、X−Yステージ18の移動方向において走査方向Xに対する角度αは、1回の走査露光終了後に中心投影プロットが均一に分布するように定められている。したがって、投影プロットは、X”方向およびY方向に沿ってプロット間隔d0で規則的に分布される。
【0042】
図9では、1つのマイクロミラーXijに応じた露光エリアEa内の中心投影プロットP1の分布が示されている。X−Yステージ18がX方向に対して角度αだけ傾斜しているため、中心投影プロットP1は、露光面SU上から観測すると、単位露光エリアEa内においてX方向(走査方向)に関して角度αだけ傾いて分布される。プロット間隔dが1.25μmとなるようにX方向の露光間隔(=ステージの移動速度×マイクロミラーON/OFFの時間間隔)およびDMD22による露光エリアEA(D×R)の走査方向(X方向)に対する傾きαが定められており、正方形状のマイクロミラーにおける一片の大きさ20μmに対して1/16の大きさに定められている。したがって、単位露光エリアEaには、16×16=256個の投影プロットが分布される。これにより、ミラー投影サイズYij(単位露光エリアEa)以下の分解能(ここでは、1.25μm)により描画される。
【0043】
露光エリアEA1、EA2、EA3がX方向に沿って1ライン分移動すると、露光エリアEA1、EA2、EA3がY方向(副走査方向)に沿ってほぼD/2だけ相対移動する(図7参照)。このとき、図8に示すように、折り返しX方向に沿って走査するときに分布される中心投影プロットP2が前回のX方向走査における中心投影プロットP1と等間隔で交互に並ぶように、X−Yステージ18の微小な位置変動が行われる。すなわち、X”方向、Y方向に沿ってd0/2だけ中心投影プロットP2が移動するように露光エリアEA1の位置が微小変位させられる。このようなオーバラップ露光により、0.625μmの分解能で描画することができる。すなわち、オーバラップ露光により、256回の露光動作を単位露光エリアEa全体に渡って行うことが可能であり、同一領域付近において光の照射量を偏りなく多重露光することができる。
【0044】
図10は、DMD22に対するレーザビームLBの光束断面を示した図であり、図11は、光量変動および光量取得率を示すグラフを表した図である。
【0045】
図10に示すように、DMD22の幅、高さをここではSx、Syと表し、拡散板24Aによって修正された光束断面のx方向に沿った長さをBx、y方向に沿った長さをByとする。ただし、BxおよびByは、スポットサイズ(I0/e2)に従う。光がDMD22に実質的に入射する条件を満たす限り、Bx、Byは、DMD22の幅、高さSx、Syに応じて任意に設定可能である。
【0046】
図11では、1回の走査露光終了後のY”方向移動量をSy/2としてオーバラップさせた場合において走査方向(X方向)における光量取込率を100%とした場合の副走査方向(Y方向)の照明比率による光量変動率および光量取込率が表されている。横軸はByとSyとの比(By/Sy)を示し、縦軸は光量変動率および光量取込率をパーセンテージで示す。図11に示した光量変動率を表す曲線Jからわかるように、By/Syの比がおよそ0.9の場合、光量変動率がおよそ3%になり、光量取込率が高くなる。したがって、By/Syの比が0.9となるように、拡散板24Aの縦横方向の発散角をそれぞれ定めるのがよい。
【0047】
このように本実施形態によれば、X−Yステージ18の移動によってDMD22に応じた露光エリアEA1、EA2、EA3が基板SW上において相対的に移動し、その露光エリアEA1、EA2、EA3の移動に伴ってDMD22のマイクロミラーXijがそれぞれ制御される。そして、露光エリアEAがY方向(副走査方向)へ相対的に移動する場合、実質的に露光エリアEA1、EA2、EA3の半分の距離D/2だけ移動する。その結果、露光エリアEA1、EA2、EA3は、前回走査された投影エリアG1の半分のエリアGA2と重なりながら折り返しX方向(走査方向)に沿って相対移動する(図7参照)。このようなオーバラップ露光が実行されることによって、同一領域に対して2回の露光が実行される。
【0048】
レーザビームLBの光強度分布は、Y方向に沿ってガウス分布であり(図5参照)、露光エリアEA1、EA2、EA3の中心付近に近いほど、周辺付近の照射量に比べて光の照射量が多い。よって、露光エリアEA1、EA2、EA3の半分のエリアずつ順次オーバラップ露光されることにより、Y方向(副走査方向)に沿った光の照射量は、最終的に略一様な分布になる。これにより、精度ある回路パターンを形成することが可能となる。
【0049】
また、1ライン分のX方向の露光動作が終了して次の走査ラインへX−Yステージ18が移動する場合、各マイクロミラーXijの中心位置に応じた中心投影プロットP1とP2が交互に規則的に並ぶように、X方向およびY方向に沿って微小な距離だけX−Yステージ18が変動される(図8参照)。露光エリアEA1、EA2、EA3を微小に変位させることにより、同一領域に対する光の照射量が、さらに均一化される。
【0050】
パターン描画装置においては、パターン形成に掛かる時間を短くすることは重要である。中心投影プロット間隔d0は、X−Yステージ18の移動速度およびマイクロミラーXijのON/OFF切替時間間隔に従って定められる。したがって、X−Yステージ18の移動速度を上げる事により中心投影プロット間隔を広くすれば、露光エリアを走査させる回数が倍増してしまうオーバラップ露光を実行しても、オーバラップ露光をしない場合と同程度の時間で回路パターンを形成することが可能である。
【0051】
本実施形態では、DMDによる露光エリアEA(D×R)が所定角度αだけ走査方向に対してずれた状態で設置されると共に、マイクロミラーXijのON/OFF切替動作が非常に短い時間隔で実行可能であるため、1つのマイクロミラーXijに応じた単位露光エリアEa内に多数の投影プロットP1、P2が分布される。しかしならが、このような移動方式の代わりに、ステップ・アンド・リピート方式によって露光を実行してもよい。この場合、露光エリアEAとともにX−Yステージ18がX方向に沿って移動すればよく、各単位露光エリアEa中心に1つの中心投影プロットが分布される。
【0052】
本実施形態では、できるだけ均一に光が照射されるように露光エリアEA1、EA2、EA3を微小に相対変位させてから次の露光動作を開始するように構成されているが(図8参照)、中心投影プロットP1、P2が一致するようにオーバラップ露光を実行するように構成してもよい。また、アルゴンレーザ以外の光源(例えば、LEDなど)を適用してもよい。
【0053】
本実施形態では、レーザビームLBの光束断面形状修正のため拡散板24Aが設けられているが、通常の拡散レンズを代わりに設けてもよい。
【0054】
次に、図12、図13を用いて、第2の実施形態について説明する。第2の実施形態では、露光エリアを1/4ずつ重複させながら露光動作が実行される。すなわち、同一領域が4回露光される。
【0055】
図12は、第2の実施形態における露光エリアの移動を示した図である。図13は、中心投影プロットの分布を示した図である。図12では、1つの露光エリアEA1の移動のみ示す。
【0056】
露光エリアEA1が1ライン分X方向に沿って位置BBまで移動すると、露光エリアEA1は実質的に距離D/4だけY方向に沿って移動する。そして、折り返し露光エリアEA1が位置AAまで移動すると、露光エリアEA1は距離D/4だけY方向に沿って移動する。このような移動が順次行われることにより、露光エリアEA1の1/4のエリアに対して4回重ねて露光動作が実行される。
【0057】
さらに、図13に示すように、次の走査方向に沿った露光動作を実行するためX−Yステージ18がY方向に沿って移動する場合、中心投影プロットP1〜P4が等間隔で交互に規則的に分布するように、X−Yステージ18の位置が微小に変動される。
【0058】
このように第2の実施形態によれば、同一領域に対して4回重ねて露光動作が実行されるとともに、中心投影プロットがより密になって交互に規則的に分布される。したがって、同一領域内に対し、さらに光の照射量が均一化される。
【0059】
【発明の効果】
このように本発明によれば、光源の特性に応じて露光面に対する光の照射量を均一にすることができる。
【図面の簡単な説明】
【図1】本実施形態であるパターン描画装置を模式的に示した斜視図である。
【図2】パターン描画装置に設けられた露光ユニットを模式的に示した図である。
【図3】拡散板を示した平面図である。
【図4】DMDへ光が照射されるときの光束断面を示した図である。
【図5】光の強度分布のグラフを示した図である。
【図6】描画装置における描画制御部のブロック図である。
【図7】露光エリアの相対的移動を示した図である。
【図8】露光エリアが相対的に露光面上を移動していくときの各マイクロミラーの中心位置に応じた投影プロットを示した図である。
【図9】単位露光エリアにおける中心投影プロット分布を示した図である。
【図10】DMDに対するレーザビームの光束断面を示した図である。
【図11】光量変動および光量取得率を示すグラフを表した図である。
【図12】第2の実施形態における露光エリアの移動を示した図である。
【図13】第2の実施形態における中心投影プロットの分布を示した図である。
【符号の説明】
10 パターン描画装置
19 X―Yステージ駆動機構
21 アルゴンレーザ(光源)
22 DMD(光変調ユニット)
24A 拡散板(ビーム成形光学素子)
32 システムコントロール回路
34 DMD制御部
38 ステージ制御部
40 ステージ位置検出部
EA 露光エリア
ij マイクロミラー(光変調素子)
X 走査方向
Y 副走査方向
SW 基板(被パターン形成体)
SU 露光面
P1、P2、P3、P4 中心投影プロット

Claims (15)

  1. 被パターン形成体の露光面にパターンを形成するための光源と、
    規則的に配列され、前記光源からの光を前記露光面へ導く第1の状態および前記被パターン形成体以外へ導く第2の状態のうちいずれかの状態に定められる複数の光変調素子を有する光変調ユニットと、
    前記光変調ユニットに応じて規定される露光エリアを、前記被パターン形成体に対し走査方向に沿って相対的に移動させ、1ライン分の走査が終了すると露光エリアを副走査方向に沿って相対移動させながらラスタ走査を行う露光エリア相対移動制御手段と、
    前記露光エリアの走査方向に沿った相対移動に応じて前記複数の光変調素子それぞれを制御することにより、パターンデータに基づいた露光動作を実行する露光制御手段とを備え、
    前記光源が、光軸に近いほど周辺部に比べて光強度が高く、副走査方向に応じた第1の軸に沿って光軸を中心に対称的な強度分布を有する光を放射し、1ライン分走査しているときには、前記露光エリアの副走査方向に該強度分布を有する光が前記光変調ユニットによって露光面に照射され、
    前記露光エリア相対移動制御手段が、先の走査による露光動作によって光が照射された投影エリアの一部に前記露光エリアの一部を重ね合わせながら、走査方向に沿って前記露光エリアを相対移動させるとともに、該強度分布に起因して単一の走査のとき前記露光エリアの副走査方向に生じる露光量の差を解消して、前記被パターン形成体に対するラスタ走査によって露光面に照射される光の照射量が最終的に副走査方向に沿って実質的に均一になるように、前記露光エリアを副走査方向に沿って相対移動させることを特徴とするパターン描画装置。
  2. 前記光源が、前記第1の軸方向に沿った光の強度分布がガウス分布になる光を放射することを特徴とする請求項1に記載のパターン描画装置。
  3. 前記露光エリア相対移動制御手段が、前記露光面の同一領域に対して2回重ねて露光動作が実行されるように、前記露光エリアの副走査方向に沿った長さの半分の距離だけ、前記露光エリアを副走査方向に沿って相対移動させることを特徴とする請求項1に記載のパターン描画装置。
  4. 前記露光エリア相対移動制御手段が、前記露光面の同一領域に対して4回重ねて露光動作が実行されるように、前記露光エリアの副走査方向に沿った長さの1/4の距離だけ、前記露光エリアを副走査方向に沿って相対移動させることを特徴とする請求項1に記載のパターン描画装置。
  5. 前記露光エリア相対移動制御手段が、前記複数の光の変調素子それぞれに応じた単位露光エリアをずらしながら露光動作を実行するように、前記単位露光エリアのサイズに応じた所定量だけ走査方向および副走査方向のうち少なくとも1方向に沿って前記露光エリアをさらに相対変位させることを特徴とする請求項1に記載のパターン描画装置。
  6. 前記露光エリア相対移動制御手段が、前記複数の光変調素子それぞれの中心位置投影像を示す中心投影プロットが交互に等間隔で並ぶように、前記露光エリアを相対変位させることを特徴とする請求項5に記載のパターン描画装置。
  7. 前記露光エリア相対移動制御手段が、前記露光エリアを一定速度で走査方向に沿って連続的に相対移動させ、
    前記露光制御手段が、前記複数の光変調素子に対する前記第1および第2の状態への切替時間間隔および前記露光エリアの移動速度とに従って、前記露光面にパターンを形成することを特徴とする請求項1に記載のパターン描画装置。
  8. 前記複数の光変調素子がマトリクス状に配置され、
    前記複数の光変調素子それぞれに応じた単位露光エリアの走査方向のサイズ分だけ相対移動するのに掛かる単位露光エリア通過時間より前記切替時間間隔が短くなるように、前記露光エリアの移動速度が定められることを特徴とする請求項7に記載のパターン描画装置。
  9. 前記光変調ユニットの投影エリアを走査方向に対し所定角度傾けた状態で、前記被パターン形成体が相対移動することを特徴とする請求項7に記載のパターン描画装置。
  10. 前記光変調ユニットが、前記光変調素子としてマイクロミラーから構成されるDMD(Digital Micro−mirror Device)であることを特徴とする請求項1に記載のパターン描画装置。
  11. 前記光源から放射される光の光束断面形状を修正するビーム成形光学素子をさらに有し、
    前記光源が、光束断面において中心を通り互いに直交する2軸であって、前記第1の軸が1つの軸である2軸の方向に沿って、それぞれ対称性のある強度分布を有する光を放射し、
    前記ビーム成形光学素子が、前記光源から放射される光を実質的にすべて前記光変調ユニットへ照射させるため、該2軸方向に関するアスペクト比を前記光変調ユニットのアスペクト比に合わせるように、該2軸方向それぞれの強度分布の相似性を独立して維持しながら光束断面形状を修正することを特徴とする請求項1乃至請求項3のいずれかに記載のパターン描画装置。
  12. 前記ビーム成形光学素子が、前記2軸方向に沿った発散角をそれぞれ別々に設定可能な拡散板であり、
    前記光変調ユニットのアスペクト比に従って前記2軸方向の発散角が定められることを特徴とする請求項10に記載のパターン描画装置。
  13. 前記拡散板が、フロスト型拡散板であることを特徴とする請求項11に記載のパターン描画装置。
  14. 前記ビーム成形光学素子が、前記光変調ユニットの副走査方向の長さと前記ビーム成形光学素子によって修正された光束断面形状の副走査方向の長さとの比が0.9となるように、光束断面形状を修正することを特徴とする請求項11に記載のパターン描画装置。
  15. 被パターン形成体の露光面にパターンを形成するため、光軸に近いほど周辺部に比べて光強度が高く、副走査方向に応じた第1の軸に沿って光軸を中心に対称的な強度分布を有し光を放射し、
    前記露光エリアの副走査方向に該強度分布を有する光を前記光変調ユニットによって露光面に照射し、1ライン分走査しているときには、前記露光エリアの副走査方向に該強度分布を有する光が前記光変調ユニットによって露光面に照射され、
    規則的に配列され、前記光源からの光を前記露光面へ導く第1の状態および前記被パターン形成体以外へ導く第2の状態のうちいずれかの状態に定められる複数の光変調素子を有する光変調ユニットによって前記光を露光面に導き、
    前記光変調ユニットに応じて規定される露光エリアを、前記被パターン形成体に対し、走査方向および副走査方向に沿って相対的に移動させ、
    前記露光エリアの走査方向に沿った相対移動に応じて前記複数の光変調素子それぞれを制御することにより、パターンデータに基づいた露光動作を実行するパターン描画方法であって、
    先の走査による露光動作によって光が照射された投影エリアの一部に前記露光エリアの一部を重ね合わせながら、走査方向に沿って前記露光エリアを相対移動させ、
    該強度分布に起因して単一の走査のとき前記露光エリアの副走査方向に生じる露光量の差を解消して、前記被パターン形成体に対するラスタ走査によって前記露光面へ照射される光の照射量が最終的に副走査方向に沿って実質的に均一になるように、前記露光エリアを副走査方向に沿って相対移動させることを特徴とするパターン描画方法。
JP2003200225A 2002-08-29 2003-07-23 パターン描画装置およびパターン描画方法 Expired - Lifetime JP4235972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200225A JP4235972B2 (ja) 2002-08-29 2003-07-23 パターン描画装置およびパターン描画方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002250849 2002-08-29
JP2003200225A JP4235972B2 (ja) 2002-08-29 2003-07-23 パターン描画装置およびパターン描画方法

Publications (2)

Publication Number Publication Date
JP2004146789A JP2004146789A (ja) 2004-05-20
JP4235972B2 true JP4235972B2 (ja) 2009-03-11

Family

ID=32472784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200225A Expired - Lifetime JP4235972B2 (ja) 2002-08-29 2003-07-23 パターン描画装置およびパターン描画方法

Country Status (1)

Country Link
JP (1) JP4235972B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147760A (ja) 2004-11-18 2006-06-08 Shinko Electric Ind Co Ltd 露光装置および露光方法
JP4801931B2 (ja) * 2005-05-12 2011-10-26 株式会社オーク製作所 描画装置
JP4771753B2 (ja) 2005-06-08 2011-09-14 新光電気工業株式会社 面光源制御装置および面光源制御方法
JP2007219011A (ja) * 2006-02-14 2007-08-30 Hitachi Via Mechanics Ltd マスクレス露光装置及びその露光方法
JP5182913B2 (ja) * 2006-09-13 2013-04-17 大日本スクリーン製造株式会社 パターン描画装置およびパターン描画方法
KR100816494B1 (ko) * 2006-10-09 2008-03-24 엘지전자 주식회사 마스크리스 노광기 및 이를 이용한 표시장치용 기판의 제조방법
CN103777474B (zh) * 2014-03-04 2016-03-23 苏州大学 一种并行激光直写***及光刻方法
KR20240014513A (ko) * 2021-07-05 2024-02-01 가부시키가이샤 니콘 노광 장치, 제어 방법, 및 디바이스 제조 방법

Also Published As

Publication number Publication date
JP2004146789A (ja) 2004-05-20

Similar Documents

Publication Publication Date Title
US9946162B2 (en) Controller for optical device, exposure method and apparatus, and method for manufacturing device
US9158190B2 (en) Optical imaging writer system
US20020092993A1 (en) Scaling method for a digital photolithography system
JP2004514280A (ja) スムーズなデジタル成分を作成するためのデジタルフォトリソグラフィーシステム
TW200400421A (en) Pattern writing apparatus and pattern writing method
JP2009044060A (ja) 描画装置および描画方法
JP2006041530A (ja) ダブルテレセントリック照明を有するリソグラフィ装置
KR101446484B1 (ko) 묘화 시스템
JP2012049433A (ja) 露光装置
JP4235972B2 (ja) パターン描画装置およびパターン描画方法
US8072580B2 (en) Maskless exposure apparatus and method of manufacturing substrate for display using the same
US20070127109A1 (en) Seamless exposure with projection system comprises array of micromirrors with predefined reflectivity variations
US7012674B2 (en) Maskless optical writer
JP2006319098A (ja) 描画装置
JP2004303951A (ja) 露光装置及び露光方法
JP4214547B2 (ja) ビーム成形光学素子およびそれを備えたパターン描画装置
JP4081606B2 (ja) パターン描画装置およびパターン描画方法
JP4897432B2 (ja) 露光方法及び露光装置
JP7427352B2 (ja) 露光装置
KR20070114629A (ko) 묘화 시스템
JP4801931B2 (ja) 描画装置
US20240111215A1 (en) Exposure apparatus, exposure method, and manufacturing method for electronic device
JP4505666B2 (ja) 露光装置、照明装置及びマイクロデバイスの製造方法
JP2006145745A (ja) パターン描画装置およびパターン描画方法
TW202318108A (zh) 曝光裝置及元件製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R150 Certificate of patent or registration of utility model

Ref document number: 4235972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term