JP4235488B2 - 電子線装置、該装置を用いたパターン評価方法及び該装置を用いたデバイス製造方法 - Google Patents

電子線装置、該装置を用いたパターン評価方法及び該装置を用いたデバイス製造方法 Download PDF

Info

Publication number
JP4235488B2
JP4235488B2 JP2003143175A JP2003143175A JP4235488B2 JP 4235488 B2 JP4235488 B2 JP 4235488B2 JP 2003143175 A JP2003143175 A JP 2003143175A JP 2003143175 A JP2003143175 A JP 2003143175A JP 4235488 B2 JP4235488 B2 JP 4235488B2
Authority
JP
Japan
Prior art keywords
mcp
anode
electron beam
gap
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003143175A
Other languages
English (en)
Other versions
JP2004349051A (ja
Inventor
護 中筋
隆男 加藤
徹 佐竹
伸治 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003143175A priority Critical patent/JP4235488B2/ja
Publication of JP2004349051A publication Critical patent/JP2004349051A/ja
Application granted granted Critical
Publication of JP4235488B2 publication Critical patent/JP4235488B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子線装置、該装置を用いたパターン評価方法及び該装置を用いたデバイス製造方法に関する。特に、最小線幅が0.1μm以下のパターンを有する試料の欠陥検査、線幅測定、欠陥レビュー、又はパターンの電位測定等を行うのに適した電子線装置において、MCPの寿命低下を防止することにより、基板の評価を高スループットで行うことができる装置に関する。
【0002】
【従来の技術】
従来の電子線を用いた電子線装置、例えば、欠陥検査装置やCD測長装置では、マルチビームで試料面を走査させ、試料から放出される2次電子群をMCPで増幅した後マルチアノードで電流として検出し、この電流のアナログ情報をA/Dコンバーターでデジタル情報に変えて画像形成回路でパターンの評価を行っている。
【0003】
また、面ビームを試料に照射し、写像光学系で2次電子を拡大し、MCPで上記像を検出して、シンチレーターで光の像に変え、TDIカメラを介してパターンの評価を行う電子線装置の提案も行われている。
【0004】
【発明が解決しようとする課題】
上記MCPは、多数のチャンネルを備えており、かかるチャンネルの内壁には2次電子の放出を助ける材質が塗られている。この内壁に2次電子が当たるとガスが発生し、また、2次電子がマルチアノードに衝突する際にもガスが発生する。一方、上記のような従来の電子線装置においては、MCPとマルチアノードとは、MCPからマルチアノードへ出力される電子ビームのぼけを防止するため、互いに対して近接して配置されていた。そのため、MCPとマルチアノードとの間に形成されるギャップは狭くなり、かかる狭いギャップを通って、上述のように発生したガスが排出されるのが困難になる。従って、このようなガスは、MCPとマルチアノード間に留まり、真空ポンプを使用した場合でも、MCPとマルチアノード間の局部的な空間内から当該真空ポンプで真空状態となっている電子線装置外へのガス抜きが上手くいかなかった。そして、2次電子はガスをイオン化するので、イオン化した荷電粒子が発生する。このイオン化した荷電粒子である正イオンは、2次電子の流れに逆行してMCPに入射し、MCP内部で増倍され、MCPの表側面近くで多くのイオンビームとなり、MCPのチャンネルの内壁に塗られた2次電子放出面を削り取り、感度を劣化させるという寿命低下の問題を招いていた。
【0005】
同様に、MCPとFOPとは、2次電子像がぼけない様に、0.8mm以下で互いに対して近接して配置されていたため、同じ問題を招いていた。
【0006】
本発明は、このような問題点を解決するためのもので、MCPの長寿命化を計り、高スループットでパターン評価が可能な電子線装置、該装置を用いたパターン評価方法、及び該装置を用いたデバイス製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明は、電子銃から放出された電子線をマルチ開口で分離し、マルチビームとして試料上に集束し、走査させる一次光学系と、試料表面から放出される複数の2次電子の互の間隔を拡大する二次光学系と、前記二次光学系から出力された前記2次電子を検出する検出装置とを備えた電子線装置であって、
前記検出装置は、前記二次光学系から出力された前記2次電子を増倍や増幅するためのMCPと、前記MCPから出力された前記2次電子の電気的な量を検出するマルチアノードとを含み、
前記マルチアノードは、該マルチアノードに形成された逃がし通路を有しており、
前記MCPと前記マルチアノードとは、当該MCPと当該マルチアノードとの間に所定間隔のギャップが形成されるように対向して配置されており、前記逃がし通路は、前記ギャップと、当該ギャップの外側にある外側空間とを連通した電子線装置を提供するものである。
【0008】
前記電子線装置において、前記MCPを、前記マルチアノードに形成された前記逃がし通路を介して当該マルチアノード側に露出させ、前記マルチアノードから前記MCPを見た開口比が0.5ないし0.9となるように前記逃がし通路を形成することが好ましい。
【0009】
また、前記MCPを矩形形状にし、前記マルチアノードを複数の環状形状のアノードから構成し、前記複数のアノードを、互いに離隔して配置し、少なくとも前記複数のアノードの間に前記逃がし通路を形成し、前記複数のアノードを、互いに対して絶縁するようにすることが好ましい。
【0010】
前記アノードは、前記MCPの長手方向に沿って、ほぼ一直線状に整合して配置することが好ましい。
【0011】
また、本発明は、電子銃から放出された電子線をマルチ開口で分離し、マルチビームとして試料上に細く集束し、走査させる一次光学系と、試料表面から放出される複数の2次電子群の互の間隔を拡大する二次光学系と、前記二次光学系から出力された前記2次電子を検出する検出装置とを備えた電子線装置であって、
前記検出装置は、前記二次光学系から出力された前記2次電子を増倍するためのMCPと、前記MCPから出力された前記2次電子の電気的な量を検出するマルチアノードとを含み、
前記マルチアノードは、互いに離間して配置された複数のアノードを備えており、
前記MCPと前記マルチアノードとの間の距離を、前記2次電子群が目標とするアノードに隣接する他のアノードに入射しない程度に引き離した電子線装置を提供するものである。
【0012】
前記電子線装置において、前記距離は、少なくとも1mm以上であることが好ましい。
【0013】
さらに、本発明は、熱電子放出電子銃から放出された電子線を矩形形状に成形して試料面に照射する一次光学系と、試料面から放出される矩形形状の2次電子像を拡大する二次光学系と、前記二次光学系から出力された前記矩形形状の2次電子像を検出する検出装置とを備えた電子線装置であって、
前記検出装置は、前記二次光学系から出力された前記2次電子像を増倍するためのMCPと、前記MCPから出力された前記2次電子像を光の像に変換する変換器とを含み、
前記変換器は、ファイバーオプティックプレートと、当該ファイバーオプティックプレートのMCP側の面に設けられたシンチレータとを有し、
前記MCPの出射面と前記シンチレータの入射面は、互いに対し対向しており、前記MCPの出射面と前記シンチレータの入射面は、これらの面の間に所定間隔のギャップが形成されるように配置されており、
前記MCPの出射面及び前記シンチレータの入射面のうちの少なくとも一方は、前記2次電子像が進む方向に対して交差する方向において、そこに写る前記矩形形状の2次電子像とほぼ同じ大きさの矩形形状の寸法に形成された電子線装置を提供するものである。
【0014】
前記電子線装置において、前記電子線装置に、平面状の第1のメッシュと平面状の第2のメッシュとを備え、
前記MCPの出射面及び前記シンチレータの入射面は、それぞれ周縁部を有し、
前記第1のメッシュは、前記MCPの前記出射面の周縁部から外側に向かって延びており、前記第2のメッシュは、前記シンチレータの前記入射面の周縁部から外側に向かって延びている電子線装置を提供するものである。
【0015】
また、本発明は、マルチビームを用いたパターン評価方法であって、
a.熱電子放出電子銃から放出される電子線をマルチ開口に照射する工程と、
b.前記マルチ開口から放出された電子線を縮小し、試料面に合焦し、試料上を走査させる工程と、
c.前記試料面の複数の走査点から放出された電子線を対物レンズを通過させ、拡大する工程と、
d.1段又は1段の前記対物レンズを通過した2次電子群をE×B分離器で一次光学系から分離する工程と、
e.前記E×B分離器で分離後、少なくとも1段のレンズでさらに前記2次電子群の互いの間隔を拡大する工程と、
f.拡大された前記2次電子群をMCPとマルチアノードで、独立に検出する工程と、
g.前記マルチアノードに流れる電流を電圧に変換し、増幅し、A/Dコンバータでデジタル信号に変換する工程と、
h.前記デジタル信号から2次元画像を形成する工程とを備え、
前記マルチアノードから前記MCPを見た開口比が0.5ないし0.9となるように、前記マルチアノードに、前記MCP側に向けて貫通した逃がし通路を形成したパターン評価方法を提供するものである。
【0016】
前記電子線装置において、上述したパターン評価方法を用いて、ウェーハの評価を行うようにしてもよい。
【0017】
【発明の実施の形態】
図1、2及び3を参照して、本発明による電子線装置の第1の実施例について説明する。図1において、本実施の形態による電子線装置が示されている。この電子線装置は、電子銃12から放出された電子線からマルチビームを形成し、マルチビームを試料28上に集束し走査させる一次光学系10と、試料表面から放出される2次電子の互の間隔を拡大する二次光学系40と、二次光学系から出力された2次電子を検出する検出装置50とを備えている。
【0018】
一次光学系10は、電子線を放出する熱電子放出電子銃12と、熱電子放出電子銃12から放出された電子線を分離してマルチビームを形成するマルチ開口としてのマルチ開口板14と、マルチ開口板14の下流側に配置されたNA開口18と、マルチ開口板14とNA開口18との間に配置され、NA開口5でクロスオーバを作るようにマルチビームを集束するコンデンサレンズ16と、NA開口18を通ったマルチビームを縮小する縮小レンズ20と、縮小レンズ20で縮小されたマルチビームをさらに縮小する第1対物レンズ24及び第2対物レンズ26とを備えている。このようにして、一次光学系10は、電子銃12から放出された電子線からマルチビームを形成して、マルチビームを試料28上に細く集束させる。また、一次光学系10に設けられた図示しない偏向器により、マルチビームが試料28上で走査させられる。なお、図1において、参照符号30は一次電子線の軌道の一例を示している。
【0019】
マルチビームが照射された試料表面から放出される2次電子は、第1対物レンズ24と第2対物レンズ26とにより、例えば2次電子線軌道32を通るように移動し、E×B分離器22で二次光学系40の方向へ偏向される。
【0020】
二次光学系40は、E×B分離器22で偏向された2次電子の互いの間隔を拡大する拡大レンズ42と、拡大レンズ42を通った2次電子を小振幅で周期的に偏向させる偏向器44とを備えている。偏向器44は、このように2次電子を小振幅で周期的に偏向させているので、2次電子が、検出装置50に設けられたMCP52上を周期的に移動し、この結果、2次電子がMCP52の同じ場所に常に入射することがない。
【0021】
なお、本実施形態においては、E×B分離器22は、一次光学系10にも二次光学系40にも含まれないものと説明したが、一次光学系10に含まれるととらえることもできるし、二次光学系40に含まれるととらえることもできる。また、一次光学系10及び二次光学系40の両方に含まれるととらえることもできる。
【0022】
検出装置50は、二次光学系40から出力された2次電子を増倍するためのMCP52と、MCP52から出力された2次電子の電気的な量を検出するマルチアノード54とを含んでいる。マルチアノード54は、MCP52の下流側に配置されており、MCP52の周囲に配置された絶縁基板66によって支持されている。
【0023】
MCP52(すなわち、マイクロチャンネルプレート)は、矩形形状、特に本実施形態においては長方形形状をしており、二次電子ビームが入射する入射面53と、二次電子ビームが出射する出射面59とを備えている。MCP52は、多数のチャンネル(貫通孔)72を備えており、チャンネル72は、二次電子ビームの入射面及び出射面と平行な平面に沿って二次元的に分布した構造を有している。また、MCP52は、各チャンネル72に電子が入射してその内壁に衝突した際に、多量の二次電子を発生する電子倍増素子である。各チャンネル72は独立の電子増倍器として働く。MCP52の両面の電極間に電圧を印加した状態で、MCP52の低電位側の面から該MCP52に電子を照射すると、各チャンネル72に入射した電子が各チャンネルの内面に当ることにより、入射した電子よりも多くの二次電子が放出される。この二次電子は、MCP52の両面間に印加された電圧により加速されて、該MCP52の高電位側の面に開口した各チャンネルの開口部から出射する。MCP52の電子増倍率(=出射する電子数/入射した電子数)は、MCP52の両面の電極間に印加する電圧を変化させることにより調整することができる。本実施形態においては、MCP52は、互いのチャンネルが72が1つの通路としてつながるように、2つ重ね合わせている。
【0024】
絶縁基板66は、矩形形状のMCP52より大きな矩形形状であり、MCP52より少し大きな矩形形状の開口部68を有している。この開口部68の中に、連結された2つのMCP52が挿入されている。そして、MCP52の出射面59と絶縁基板66の下流側面67との間に段差ができるように、MCP52の出射面59は開口部68内に位置決めされている。このように、絶縁基板66にMCP52より少し大きな矩形形状の開口部68を形成したので、MCP52から放出された2次電子は、この開口部68を通ってマルチアノード54に入射する。したがって、絶縁基板66を設けたことにより、MCP52とマルチアノード54との間の2次電子の流れが妨げられることがない。
【0025】
マルチアノード54は、複数のアノード56から構成されている。各アノード56は、環状形状をしたアノード電極57と、アノード電極57から延びるシャフト58とを有している。各アノード56は、互いに離隔して配置されており、これによって、各アノード56の間には空間60が形成されている。また、環状形状のアノード電極57には開口部62が設けられている。各アノード56の間の空間60とアノード電極57の開口部62とが、逃がし通路64を構成している。シャフト58は、基端部58aを有しており、この基端部58aが、絶縁基板66の下流側面67にねじ61によってねじ留めされている。このようにして、アノード56は、絶縁基板66の下流側面67から該下流側面67に沿って平行に絶縁基板66の開口部68に向けて延びている。上述したように、絶縁基板66の下流側面67とMCP52の出射面59との間に段差が形成されていることから、アノード56は、MCP52の出射面59から、当該段差に相当する距離だけ離間して位置決めされている。このようにして、MCP52とマルチアノード54との間に所定間隔のギャップ55が形成されるように、MCP52とマルチアノード54は対向して配置されている。逃がし通路64は、55ギャップと、当該ギャップ55の外側にある外側空間(本実施形態においては、マルチアノード54の下流側に形成されている空間)とを連通している。
【0026】
また、互いに隣接されたアノード56は、図2で見て、一方が絶縁基板の右側に固定され、他方が絶縁基板の左側に固定されており、この結果、全体として互い違いになるように配置されている。もっとも、全てのアノードを絶縁基板の一方の側で固定するようにしてもよい。
【0027】
環状形状のアノード電極57は、MCP52の長手方向に沿って、ほぼ一直線上に整合して、MCP52から排出された二次電子が結像する位置に対応した位置に配置されている。
【0028】
絶縁基板66は、下流側面67が帯電しないように金属がコーティングされている。但し、各アノード56が互いに絶縁されるよう、アノード56が絶縁基板66に固定されている箇所の周辺のみ、絶縁基板を構成している絶縁物66aが露出している。
【0029】
MCP52は、マルチアノード54に形成された逃がし通路64を介してマルチアノード側に露出しており、逃がし通路64は、マルチアノード54からMCP52を見た開口比、すなわち、MCP52が露出している面積をMCP52で割った値が0.5ないし0.9となるように形成されている。
【0030】
また、MCP52とマルチアノード54との間の所定間隔、すなわちギャップ55の間隔は、2次電子が目標とするアノードに隣接する他のアノード56に入射しない程度に、少なくとも1mm以上、理想的には2mmとしている。
【0031】
二次光学系40から出力された2次電子は、MCP52に結像され、MCP52のチャンネル72の内壁に衝突して多量の2次電子を発生させ、増幅された2次電子は、マルチアノード54のアノード電極57に衝突する。上述したように偏向器44は、2次電子を小振幅で周期的に偏向させているので、2次電子が、MCP52上を周期的に移動し、この結果、2次電子がMCP52の同じ場所に常に入射することがない。このことにより、MCP52の寿命低下を防止している。この偏向は、マルチアノード54の並びの方向と直角の方向(すなわち、アノード56の長手方向)であるので、2次電子が目標とするアノード56に隣接する他のアノード56に入射し混信することはない。アノード54に衝突した2次電子は、電流として当該アノード54に沿って流れ、電気的な量として検出される。
【0032】
マルチアノード54を通って流れる電流は、導線99を介して、マルチアノード54に接続された抵抗102に出力される。抵抗102には、出力装置100が接続されている。出力装置100は、マルチアノード54からの電流が流れることによって抵抗102に発生するアナログ量の電圧を検出してこれをデジタル量の電圧に変換するA/Dコンバータ104と、A/Dコンバータ104から出力されるアナログ電圧に基づいて試料の画像を形成する画像形成回路106とを備えている。
【0033】
なお、A/Dコンバータ104と画像形成回路106とは、電子線装置の外側、すなわち、大気中に配置されており、一次光学系10と二次光学系40と検出装置50とが、真空状態となっている電子線装置内に配置されている。なお、図1において、点線108が電子線装置の真空壁を示している。
【0034】
2次電子がMCP52のチャンネル72の内壁に衝突する際、及び2次電子がアノード56に衝突する際に、ガスが発生する。このガスは、その大部分が、上述した逃がし通路64を通して、所定間隔のギャップ55から当該ギャップ55の外側の空間に速やかに排出される。
【0035】
従来の電子線装置においては、マルチアノードは板形状となっており、この板形状のマルチアノードとMCPとは、MCPからマルチアノードへ出力される電子ビームのぼけを防止するため、互いに対して近接して配置されていた。そのため、MCPとマルチアノードとの間に形成される所定間隔のギャップは狭くなり、かかる狭いギャップのみを通って排出されていたことから、上述のように発生したガスを速やかに排出するのが困難になっていた。従って、このようなガスは、MCPとマルチアノード間に留まり、真空ポンプを使用した場合でも、この局部的な空間内から当該真空ポンプで真空状態となっている電子線装置外へのガス抜きが上手くいかなかった。そして、2次電子はガスをイオン化するので、イオン化した荷電粒子が発生する。このイオン化した荷電粒子である正イオンは、2次電子の流れに逆行してMCPに入射し、MCP内部で増倍され、MCPの表側面近くで多くのイオンビームとなり、MCPのチャンネルの内壁に塗られた2次電子放出面を削り取り、感度を劣化させるという寿命低下の問題を引き起こしていた。これに対し、本実施形態では、発生したガスの大部分が、上述した逃がし通路64を通して、ギャップ55から当該ギャップ55の外側の空間に速やかに排出されるので、ガスがイオン化されるということが少なくなり、この結果、MCP52の感度を長期にわたって維持することができる。
【0036】
次に、図4及び5を参照して、本発明による電子線装置の第2の実施例について説明する。図4において、本実施の形態による電子線装置が示されている。この電子線装置は、熱電子放出電子銃202から放出された電子線を矩形形状に成形して試料面216に照射する一次光学系200と、試料面216から放出される矩形形状の2次電子像を拡大する二次光学系300と、前記二次光学系から出力された前記矩形形状の2次電子像を検出する検出装置400とを備えている。
【0037】
一次光学系200は、電子銃202から放出された電子線を所望の矩形ビームに成形する図示しない成形開口と、該矩形ビームの光軸を一次光学系光軸208に沿うように修正する軸対象レンズ204、206と、E×B分離器210によって試料面216の方へ偏向された矩形ビームを縮小する第1対物レンズ214と、第2対物レンズ216とを備えている。このようにして、一次光学系は200は、電子銃202から放出された電子線を矩形形状とし、試料面216は矩形ビームで照射される。また、一次光学系に設けられた図示しない偏向器により、矩形ビームが試料面216上で走査させられる。
【0038】
矩形ビームが照射された試料面216から放出される2次電子は、対物レンズ214、212により拡大像をE×B分離器210の偏向主面上に形成する。
【0039】
二次光学系300は、E×B分離器210の偏向主面上に形成された2次電子の拡大像を、さらに拡大する拡大レンズ302、304、306と、2次電子の像を拡大レンズ306の下流にあるMCP402に常に結像する図示しない偏向器とを備えている。
【0040】
なお、本実施形態においても、E×B分離器210は、一次光学系200にも二次光学系300にも含まれないものと説明したが、一次光学系200に含まれるととらえることもできるし、二次光学系300に含まれるととらえることもできる。また、一次光学系200及び二次光学系300の両方に含まれるととらえることもできる。
【0041】
検出装置400は、二次光学系300から出力された2次電子を増倍するためのMCP402と、MCP402から出力された2次電子の像を光の像に変換する変換器403と、MCP402と変換器403との間の電界を一様にする平面状の第1のメッシュ408と、平面状の第2のメッシュ410と、平面状の第3のメッシュ406とを含んでいる。なお、本実施形態においては、第1のメッシュ408と第2のメッシュ410と第3のメッシュ406とを、検出装置400に設けるようにしたが、第1のメッシュ408と第2のメッシュ410と第3のメッシュ406は必ずしも設ける必要はない。
【0042】
MCP402は、第1実施例で説明したのと同様の構造及び機能を有している。MCP402は、2次電子が入射する入射面と、2次電子が出射する出射面412とを有している。
【0043】
変換器403は、MCP402の下流側に配置されている。また、変換器403は、MCPと対向して設けられたシンチレータ404と、シンチレータ404と接して2次電子が出射する面に向かって延びているFOP(すなわち、ファイバーオプティックプレート)405とから構成されている。本実施形態においては、シンチレータ404は、FOP405のうちMCPと対向する面、すなわちMCP側の面に塗ることによって構成されている。最も、板状のシンチレータをFOP405のMCP対向面に取り付けるようにしてもよい。また、シンチレータ404は、MCP402の出射面412に対向して配置された、2次電子が入射する入射面414を有している。このように、MCP402の出射面412とシンチレータ404の入射面414は、互いに対し対向しており、MCP402の出射面412とシンチレータ404の入射面414との間に所定間隔のギャップ416が形成されるように、配置されている。さらに、MCP402の出射面412は、周縁部420を有しており、シンチレータ404の入射面414は、周縁部418を有している。
【0044】
第1のメッシュ408は、MCP402の出射面412の周縁部420から外側に向かって延びており、第2のメッシュ410は、シンチレータ404の入射面414の周縁部418から外側に向かって延びている。第3のメッシュは406は、MCP402の2次電子の入射面から外側に延びている。各平面状のメッシュは、導電体で構成されており、メッシュ構造を有するため、ガスが通過できるようになっている。
【0045】
MCP402から出力された2次電子の像はシンチレータ404で光の像に変換され、FOP405で案内されて下流側に出射される。MCP402とシンチレータ404との間隔は、MCP402で増幅されシンチレータ404に結像する2次電子像がボケない様に、0.8mm以下にしなければならない。本実施形態では、MCP402、シンチレータ404、及びFOP405のそれぞれが、2次電子が進む方向(すなわち、2次電子の光軸方向あるいは軸線方向)に対して交差する方向において、そこに写る矩形形状の2次電子線の像とほぼ同じ大きさの矩形形状の寸法に形成されている。MCP402の出射面412には、図5に示されるような矩形形状の2次電子線の像413が写し出される。そして、この2次電子線の像413は、出射面412を介して出力され、シンチレータ404の入射面414に入射する。MCP402は、2次電子が進む方向に対して交差する方向(図4で見ると図中左右方向、図5で見ると図中上下方向)において、2次電子線の像413とほぼ同じ大きさの矩形形状の寸法に形成されている。また、同様に、シンチレータ404もFOP405も2次電子線の像413とほぼ同じ大きさの矩形形状の寸法に形成されている。最も、MCPの対向面412及びシンチレータの対向面414のうちの少なくとも一方が、2次電子像が進む方向に対して交差する方向において、そこに写る前記矩形形状の2次電子像とほぼ同じ大きさの矩形形状の寸法に形成されていればよい。
【0046】
出力装置500は、リレーレンズ502とTDIカメラ504とを備えており、リレーレンズ502は、FOP405から出力された2次電子像をTDIカメラ504に結像し、TDIカメラ504は、この結像された2次電子像を電子信号に変換する。
【0047】
出力装置500は、さらに、TDIカメラ504とデータ通信可能に接続された制御装置520を備えている。制御装置520は、図4に示されたように、一例として汎用的なパーソナルコンピュータ等から構成することができる。このコンピュータは、所定のプログラムに従って各種制御、演算処理を実行する制御部522と、前記所定のプログラムなどを記憶している記憶装置524と、処理結果や二次電子画像526等を表示するCRTモニター528と、オペレータが命令を入力するためのキーボードやマウス等の入力部530とを備えている。勿論、欠陥検査装置専用のハードウェア、或いは、ワークステーションなどから制御装置520を構成してもよい。
【0048】
従来の電子線装置においては、MCPは円柱形状等を有しており、使用しないチャンネル及び外環を含み、同様にシンチレータも、使用しない部分を含んでおり、光軸方向に対して交差する方向が長くなっていた。また、上述したように、MCPとシンチレータとの間の距離は、0.8mm以下となっている。したがって、MCPとシンチレータとの間に形成されるギャップは、光軸方向に対して交差する方向においては長さが長くなり、光軸方向の幅は狭い。第1実施例と同様の理由で発生したガスは、前記交差方向に距離が長く幅が狭いギャップを通って排出されていたことから、発生したガスを速やかに排出するのが困難になっていた。その為、第1実施例と同様のMCPの寿命低下の問題を引き起こしていた。これに対し、本実施形態では、電子ビームを矩形形状にし、偏向器によって常にMCPの定められたチャンネルに結像するようした。それによって、MCPの使用しないチャンネル及び外環と、シンチレータの使用しない部分とを削除することができ、MCPとシンチレータを、そこに写る矩形形状の2次電子線の像とほぼ同じ大きさの矩形形状の寸法にした。そのため、従来のようなMCPとシンチレータとの間の狭いギャップに留まっていたガスは、このギャップ416からこのギャップ416の外側にある外側空間までの距離が従来技術と比較して短くなったため、ギャップ416の外側にある外側空間に速やかに排出され、ガスがイオン化されるということがなくなり、この結果、MCP402の感度を長期にわたって維持することができる。
【0049】
また、上述したように、MCP402及びシンチレータ404のうちの少なくとも一方を、そこに写る矩形形状の2次電子線の像とほぼ同じ大きさの矩形形状の寸法に形成したことから、MCP402とシンチレータ404との間の電界は、MCP402及びシンチレータ404の縁部周辺で乱れが生じ、該箇所での等電位線が曲がってしまう。このように電界が乱れた箇所をビームが通過すると、ビームの流れにひずみが生じ、シンチレータ404での2次電子の結像が、試料表面から排出された像からずれてしまう。その為、本実施形態においては、導電体でできた第1のメッシュ408及び第2のメッシュ410を設け、MCP402とシンチレータ404との間の電界を一様にしている。これらのメッシュは、図5で示すように、MCP402及びシンチレータ404の外周面420、418から外側に向かって延びているため、MCP402とシンチレータ404との間の2次電子の流れが妨げられることはない。また、メッシュ状の構造を有しているため、ガスの流れが妨げられることもない。拡大レンズ306に使用する静電レンズの種類によっては、MCP402とシンチレータ404との間の電界を一様にすることを助けるため、平面状の第3のメッシュ406を設けてもよい。
【0050】
次に図6及び図7を参照して、上記実施形態で示した電子線装置により半導体デバイスを製造する方法の実施態様を説明する。
【0051】
図6は、本願発明による半導体デバイスの製造方法の一実施例を示すフローチャートである。この実施例の製造工程は以下の主工程を含んでいる。
(1)ウェーハを製造するウェーハ製造工程(又はウェーハを準備するウェーハ準備工程)(ステップ600)
(2)露光に使用するマスクを製造するマスク製造工程(又はマスクを準備するマスク準備工程)(ステップ602)
(3)ウェーハに必要な加工処理を行うウェーハプロセッシング工程(ステップ604)
(4)ウェーハ上に形成されたチップを1個ずつ切り出し、動作可能にならしめるチップ組立工程(ステップ606)
(5)組み立てられたチップを検査するチップ検査工程(ステップ608)
なお、上記のそれぞれの主工程は更に幾つかのサブ工程からなっている。
【0052】
これらの主工程中の中で、半導体デバイスの性能に決定的な影響を及ぼすのが(3)のウェーハプロセッシング工程である。この工程では、設計された回路パターンをウェーハ上に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウェーハプロセッシング工程は以下の各工程を含んでいる。
(A)絶縁層となる誘電体薄膜や配線部、或いは電極部を形成する金属薄膜等を形成する薄膜形成工程(CVDやスパッタリング等を用いる)
(B)この薄膜層やウェーハ基板を酸化する酸化工程
(C)薄膜層やウェーハ基板等を選択的に加工するためにマスク(レチクル)を用いてレジストパターンを形成するリソグラフィー工程
(D)レジストパターンに従って薄膜層や基板を加工するエッチング工程(例えばドライエッチング技術を用いる)
(E)イオン・不純物注入拡散工程
(F)レジスト剥離工程
(G)加工されたウェーハを検査する工程
なお、ウェーハプロセッシング工程は必要な層数だけ繰り返し行い、設計通り動作する半導体デバイスを製造する。
【0053】
図7は、上記ウェーハプロセッシング工程の中核をなすリソグラフィー工程を示すフローチャートである。このリソグラフィー工程は以下の各工程を含む。
(a)前段の工程で回路パターンが形成されたウェーハ上にレジストをコートするレジスト塗布工程(ステップ700)
(b)レジストを露光する工程(ステップ702)
(c)露光されたレジストを現像してレジストのパターンを得る現像工程(ステップ704)
(d)現像されたレジストパターンを安定化するためのアニール工程(ステップ706)
上記の半導体デバイス製造工程、ウェーハプロセッシング工程、リソグラフィー工程については、周知のものでありこれ以上の説明を要しないであろう。
【0054】
上記(G)の検査工程に本願発明に係る欠陥検査方法、欠陥検査装置を用いると、微細なパターンを有する半導体デバイスでも、スループット良く検査できるので、全数検査が可能となり、製品の歩留まりの向上、欠陥製品の出荷防止が可能と成る。
【0055】
以上が、本願発明の各実施形態であるが、本願発明は上記実施形態に限定されるものではない。
【0056】
【発明の効果】
本発明によれば、マルチアノードに逃がし通路を形成し、この逃がし通路により、MCPとマルチアノードとの間のギャップと、このギャップの外側にある外側空間とを連通したので、従来のようにMCPとマルチアノードとの間のギャップに留まっていたガスは、この逃がし通路を通して排出されやすくなった。そのため、このギャップに留まっていたガスが2次電子にイオン化され、イオン化した荷電粒子により形成されるイオンビームがMCPのチャンネルの内壁を傷つけるという問題を招来することは少なくなった。
【0057】
さらに、本発明によれば、MCPの対向面とシンチレータの対向面のうちの少なくとも一方は、2次電子像が進む方向に対して交差する方向において、そこに写る矩形形状の2次電子像とほぼ同じ大きさの矩形形状の寸法に形成した。このことにより、従来のようなMCPと変換器との間の狭いギャップに留まっていたガスは、このギャップからこのギャップの外側にある外側空間までの距離が従来技術と比較して短くなったため、排出されやすくなった。
【図面の簡単な説明】
【図1】図1は、本発明の第1の実施例に係る電子線装置の概略図である。
【図2】図2は、図1に示した電子線装置の検出装置をマルチアノード側から見た拡大上面図である。
【図3】図3は、図2の側面図である。
【図4】図4は、本発明の第2の実施例に係る電子線装置の概略図である。
【図5】図5は、図4に示した電子線装置のMCPを変換器側から見た上面図である。
【図6】図6は、半導体デバイスの製造方法の一実施例を示すフローチャートである。
【図7】図7は、図6の半導体デバイスの製造方法のうちリソグラフィー工程を示すフローチャートである。
【符号の説明】
10 一次光学系 12 熱電子放出電子銃
14 マルチ開口板 16 コンデンサレンズ
18 NA開口 20 縮小レンズ
22 E×B分離器 24 第1対物レンズ
26 第2対物レンズ 28 試料
30 1次電子線軌道 32 2次電子線軌道
40 二次光学系 42 拡大レンズ
44 偏向器 46 二次光学系光軸
50 検出装置 52 MCP
53 MCPの入射面 54 マルチアノード
55 ギャップ 56 アノード
57 アノード電極 58 シャフト
58a シャフト58の延長側端 59 MCP出射面
60 空間 61 ねじ
62 開口部 64 逃がし通路
66 絶縁基板 66a 絶縁物
67 絶縁基板の下流側面 68 開口部
100 出力装置 102 抵抗
104 A/Dコンバータ 106 画像形成回路
200 一次光学系 202 電子銃
204 軸対象レンズ 206 軸対象レンズ
208 一次光学系光軸 210 E×B分離器
212 第1対物レンズ 214 第2対物レンズ
216 試料面 300 二次光学系
302 拡大レンズ 304 拡大レンズ
306 拡大レンズ 400 検出装置
402 MCP 403 変換器
404 シンチレータ 405 FOP
406 第3メッシュ 408 第1メッシュ
410 第2メッシュ 412 出射面
414 入射面 416 ギャップ
418 シンチレータの周縁部 420 MCPの周縁部
500 出力装置 502 リレーレンズ
504 TDIカメラ 520 制御装置
522 制御部 524 記憶装置
526 二次電子画像 528 CRTモニター
530 入力部

Claims (5)

  1. 電子銃から放出された電子線をマルチ開口で分離し、マルチビームとして試料上に集束し、走査させる一次光学系と、試料表面から放出される複数の2次電子の互の間隔を拡大する二次光学系と、前記二次光学系から出力された前記2次電子を検出する検出装置とを備えた電子線装置であって、
    前記検出装置は、前記二次光学系から出力された前記2次電子を増倍するためのMCPと、前記MCPから出力された前記2次電子の電気的な量を検出するマルチアノードとを含み、
    前記マルチアノードは、互いに離隔して配置された複数のアノードを備えており、該複数のアノードの間に逃がし通路が形成されており、前記複数のアノードは、互いに対して絶縁されており、
    前記MCPと前記マルチアノードとは、当該MCPと当該マルチアノードとの間に所定間隔のギャップが形成されるように対向して配置されており、前記逃がし通路は、前記ギャップと、当該ギャップの外側にある外側空間とを連通し、
    前記MCPは、前記マルチアノードに形成された前記逃がし通路を介して当該マルチアノード側に露出しており、前記マルチアノードから前記MCPを見た開口比が0.5ないし0.9となるように前記逃がし通路が形成されており、
    これにより、前記MCPと前記マルチアノードとの間に発生したガスは、前記ギャップから前記逃がし通路を通って、前記ギャップの外側にある外側空間に速やかに排出されることを特徴とする電子線装置。
  2. 請求項1に記載の電子線装置において、
    前記MCPは矩形形状をしており、
    前記複数のアノードは、それぞれ環状形状をしており、
    前記環状のアノードには、開口部である逃がし通路が設けられていることを特徴とする電子線装置。
  3. 請求項に記載の電子線装置において、
    前記複数のアノードは、前記MCPの長手方向に沿って、ほぼ一直線状に整合して配置されていることを特徴とする電子線装置。
  4. マルチビームを用いたパターン評価方法であって、
    a.熱電子放出電子銃から放出される電子線をマルチ開口に照射する工程と、
    b.前記マルチ開口から放出された電子線を縮小し、試料面に合焦し、試料上を走査させる工程と、
    c.前記試料面の複数の走査点から放出された電子線を対物レンズを通過させ、拡大する工程と、
    d.1段又は1段の前記対物レンズを通過した2次電子群をE×B分離器で一次光学系から分離する工程と、
    e.前記E×B分離器で分離後、少なくとも1段のレンズでさらに前記2次電子群の互いの間隔を拡大する工程と、
    f.拡大された前記2次電子群をMCPとマルチアノードで、独立に検出する工程と、
    g.前記マルチアノードに流れる電流を電圧に変換し、増幅し、A/Dコンバータでデジタル信号に変換する工程と、
    h.前記デジタル信号から2次元画像を形成する工程とを備え、
    前記マルチアノードは、互いに離隔して配置された複数のアノードを備えており、該複数のアノードの間に逃がし通路が形成されており、前記複数のアノードは、互いに対して絶縁されており、
    前記MCPと前記マルチアノードとは、当該MCPと当該マルチアノードとの間に所定間隔のギャップが形成されるように対向して配置されており、前記逃がし通路は、前記ギャップと、当該ギャップの外側にある外側空間とを連通し、
    前記MCPは、前記マルチアノードに形成された前記逃がし通路を介して当該マルチアノード側に露出しており、前記マルチアノードから前記MCPを見た開口比が0.5ない し0.9となるように前記逃がし通路が形成されており、
    前記MCPと前記マルチアノードとの間に発生したガスは、前記ギャップから前記逃がし通路を通って、前記ギャップの外側にある外側空間に速やかに排出されることを特徴とするパターン評価方法。
  5. 請求項1乃至のうちのいずれか一項に記載の電子線装置、あるいは、請求項に示したパターン評価方法を用いて、ウェーハの評価を行う事を特徴とするデバイス製造方法。
JP2003143175A 2003-05-21 2003-05-21 電子線装置、該装置を用いたパターン評価方法及び該装置を用いたデバイス製造方法 Expired - Fee Related JP4235488B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143175A JP4235488B2 (ja) 2003-05-21 2003-05-21 電子線装置、該装置を用いたパターン評価方法及び該装置を用いたデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143175A JP4235488B2 (ja) 2003-05-21 2003-05-21 電子線装置、該装置を用いたパターン評価方法及び該装置を用いたデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2004349051A JP2004349051A (ja) 2004-12-09
JP4235488B2 true JP4235488B2 (ja) 2009-03-11

Family

ID=33531034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143175A Expired - Fee Related JP4235488B2 (ja) 2003-05-21 2003-05-21 電子線装置、該装置を用いたパターン評価方法及び該装置を用いたデバイス製造方法

Country Status (1)

Country Link
JP (1) JP4235488B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140723A (ja) * 2006-12-05 2008-06-19 Horiba Ltd 分析装置

Also Published As

Publication number Publication date
JP2004349051A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
US6476390B1 (en) Method and apparatus for inspecting integrated circuit pattern using a plurality of charged particle beams
US7312449B2 (en) Electron beam system and method of manufacturing devices using the system
JP5179253B2 (ja) 電極ユニット、及び荷電粒子線装置
US6265719B1 (en) Inspection method and apparatus using electron beam
EP2365514A1 (en) Twin beam charged particle column and method of operating thereof
US7851756B2 (en) Charged particle beam irradiation system
US7235799B2 (en) System and method for evaluation using electron beam and manufacture of devices
JP3906866B2 (ja) 荷電粒子ビーム検査装置
JP2023110072A (ja) 走査型電子顕微鏡および走査型電子顕微鏡の2次電子検出方法
JP2005208120A (ja) 試料修正装置及び試料修正方法並びに該方法を用いたデバイス製造方法
JP4235488B2 (ja) 電子線装置、該装置を用いたパターン評価方法及び該装置を用いたデバイス製造方法
JP4068003B2 (ja) 電子線装置
JP2006278029A (ja) 電子線装置及び該装置を用いたデバイス製造方法
JP2002352763A (ja) 電子線装置及び該装置を用いたデバイス製造方法
JP2006019032A (ja) パターン評価装置、パターン評価方法及び該方法を用いたデバイス製造方法
JP2002141010A (ja) 電子線装置及びその電子線装置を用いたデバイスの製造方法
JP4230280B2 (ja) 欠陥検査方法及びその検査方法を用いたデバイス製造方法
JP2001283763A (ja) フィルター、電子線装置及びこれらの装置を用いたデバイス製造方法
EP4306945A1 (en) Method of assessing a sample, apparatus for assessing a sample
JP3907943B2 (ja) 欠陥検査方法及びその方法を用いたデバイス製造方法
JP3814968B2 (ja) 検査装置
JP2005085618A (ja) 電子線装置及び該装置を用いたデバイス製造方法
JP2006066181A (ja) 電子線装置及びそれを用いたデバイス製造方法
JP2005158642A (ja) パターンを評価する方法及びデバイス製造方法
JP2003142020A (ja) 電子線装置及びその装置を用いたデバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees