JP4234896B2 - HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM - Google Patents

HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM Download PDF

Info

Publication number
JP4234896B2
JP4234896B2 JP2000304455A JP2000304455A JP4234896B2 JP 4234896 B2 JP4234896 B2 JP 4234896B2 JP 2000304455 A JP2000304455 A JP 2000304455A JP 2000304455 A JP2000304455 A JP 2000304455A JP 4234896 B2 JP4234896 B2 JP 4234896B2
Authority
JP
Japan
Prior art keywords
resin
temperature
wiring board
endothermic peak
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000304455A
Other languages
Japanese (ja)
Other versions
JP2002105221A (en
Inventor
浩一郎 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2000304455A priority Critical patent/JP4234896B2/en
Publication of JP2002105221A publication Critical patent/JP2002105221A/en
Application granted granted Critical
Publication of JP4234896B2 publication Critical patent/JP4234896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エレクトロニクス用部材等として好適に使用できる耐熱性フィルム及びこれを基材とするプリント配線基板並びにこれらの製造方法に関する。
【0002】
【従来の技術】
ポリエーテルエーテルケトン樹脂に代表される結晶性ポリアリールケトン樹脂は、耐熱性、難燃性、耐加水分解性、耐薬品性などに優れている為、航空機部品、電気・電子部品を中心に多く採用されている。しかしながら、ポリアリールケトン樹脂は原料価格が非常に高価な上、樹脂自体のガラス転移温度が約140〜170℃程度と比較的低いことから、耐熱性等の改良検討が種々行われてきた。その中でも良好な相溶性を示す系として、非晶性ポリエーテルイミド樹脂とのブレンドが注目されている。
例えば、特開昭59−187054号公報や特表昭61−500023号公報には、結晶性ポリアリールケトン樹脂と非晶性ポリエーテルイミド樹脂との混合組成物が開示されており、また、特開昭59−115353号公報には、これらの組成物が回路板基材に有用であることも開示されている。さらに、本発明者等も特開2000−38464号公報、特開2000−200950号公報等で上記混合組成物を用いたプリント配線基板及びその製造方法を提案している。
【0003】
しかしながら、結晶性ポリアリールケトン樹脂と非晶性ポリエーテルイミド樹脂との混合組成物(通常、寸法安定性向上のため無機充填材等を含む)からなるフィルムを用いて、フレキシブルプリント配線基板を作製すると、寸法安定性や耐熱性等は良好なものの、機械的強度、特に端裂強度は必ずしも充分なレベルにはなく、耐折性、耐屈曲性が損なわれるため基板の接続信頼性が確保出来ず、用途範囲が限定されてしまうという問題があり、その改良が望まれていた。また、上記の特許公報には、この原因や改良方法に関して何ら技術的開示がなく示唆する記載もなかった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、エレクトロニクス用部材等として好適な、特に端裂強度が向上された耐熱性フィルム及びこれを基材とするプリント配線基板並びにこれらの製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者は、鋭意検討を重ねた結果、結晶性ポリアリールケトン樹脂と非晶性ポリエーテルイミド樹脂との樹脂組成物を主成分とし、特定の熱特性を付与することで、上記課題を解決することのできる耐熱性フィルム及びこれを基材とするプリント配線基板並びにこれらの製造方法を見出し、本発明を完成するに至った。
すなわち、本発明の要旨とするところは、結晶融解ピーク温度が260℃以上であるポリアリールケトン樹脂(A)70〜30重量%と非晶性ポリエーテルイミド樹脂(B)30〜70重量%とからなる樹脂組成物100重量部に対して無機充填材を5〜50重量部の範囲で混合し、結晶化処理したフィルムであって、該フィルムを示差走査熱量測定により加熱速度10℃/分で昇温した時に吸熱ピークが少なくとも2つ現れ、これらの吸熱ピークのうち、ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃未満であることを特徴とする耐熱性フィルムに存する。
【0006】
また、本発明の別の要旨は、結晶融解ピーク温度が260℃以上であるポリアリールケトン樹脂(A)70〜30重量%と非晶性ポリエーテルイミド樹脂(B)30〜70重量%とからなる樹脂組成物100重量部に対して無機充填材を5〜50重量部の範囲で混合したフィルムの少なくとも片面に接着層を介することなく導体箔を熱融着・結晶化処理し、この導体箔に導電性回路を形成してなるプリント配線基板において、該フィルムを示差走査熱量測定により加熱速度10℃/分で昇温した時に吸熱ピークが少なくとも2つ現れ、これらの吸熱ピークのうち、ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃未満であることを特徴とするプリント配線基板に存する。
【0007】
さらに、本発明の別の要旨は、上記の結晶化処理を下記関係式を満足する温度範囲で行うことを特徴とする上記のプリント配線基板の製造方法に存する。
Tc(A+B)−20≦Tx≦Tg(B)+20
ここで式中、Tc(A+B)は、結晶性ポリアリールケトン樹脂(A)と非晶性ポリエーテルイミド樹脂(B)からなる樹脂組成物を示差走査熱量測定により昇温したときに発現する結晶化温度(℃)を示し、また、Tg(B)は、非晶性ポリエーテルイミド樹脂(B)単体のガラス転移温度(℃)を示し、さらにTxは、結晶化処理温度(℃)を示す。また、上記結晶性ポリアリールケトン樹脂としては、下記構造式(1)の繰り返し単位を有するポリエーテルエーテルケトン樹脂、非晶性ポリエーテルイミド樹脂としては、下記構造式(2)の繰り返し単位を有するポリエーテルイミド樹脂を主成分として特に好適に用いることができる。
【0008】
【式1】

Figure 0004234896
【0009】
【式2】
Figure 0004234896
【0010】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明のフィルムは、結晶性ポリアリールケトン樹脂(A)70〜30重量%と非晶性ポリエーテルイミド樹脂(B)30〜70重量%とからなる樹脂組成物100重量部に対して無機充填材を5〜40重量部の範囲で混合したフィルムである。本発明にいうフィルムには肉厚が比較的厚い500μm程度以上のシートも含んでいる。
ここで、本発明を構成する結晶性ポリアリールケトン樹脂は、その構造単位に芳香核結合、エーテル結合及びケトン結合を含む熱可塑性樹脂であり、その代表例としては、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等があるが、本発明においては、下記構造式(1)に示す繰り返し単位を有するポリエーテルエーテルケトンが好適に使用される。この繰り返し単位を有するポリエーテルエーテルケトンは、VICTREX社製の商品名「PEEK151G」「PEEK381G」「PEEK450G」などとして市販されている。なお、使用する結晶性ポリアリールケトン樹脂は、1種類を単独で、2種類以上を組み合わせて用いることが出来る。
【0011】
【式1】
Figure 0004234896
【0012】
また、非晶性ポリエーテルイミド樹脂は、その構造単位に芳香核結合、エーテル結合及びイミド結合を含む非晶性熱可塑性樹脂であり、特に制限されるものでない。具体的には、下記構造式(2)、(3)に示す繰り返し単位を有するポリエーテルイミドがそれぞれ、ゼネラルエレクトリック社製の商品名「Ultem CRS5001」「Ultem 1000」として市販されており、ともに適用することができる。本発明においては、下記構造式(2)に示す繰り返し単位を有するポリエーテルイミドが、特に、好適に使用される。この理由は明らかではないが、おそらく上記構造式(1)を有するポリエーテルエーテルケトンと下記構造式(2)を有するポリエーテルイミド樹脂との混合組成物では、分子間の電子的な相互作用が、上記構造式(1)を有するポリエーテルエーテルケトンと下記構造式(3)を有するポリエーテルイミド樹脂との混合組成物とは異なり、相溶性が異なるため特有の高次構造を形成し、このことも機械的強度(端裂強度)の向上に寄与しているものと思われる。
【0013】
【式2】
Figure 0004234896
【0014】
【式3】
Figure 0004234896
【0015】
非晶性ポリエーテルイミド樹脂の製造方法は特に限定されるものではないが、通常、上記構造式(2)を有する非晶性ポリエーテルイミド樹脂は、4,4´−[イソプロピリデンビス(p−フェニレンオキシ)ジフタル酸二無水物とp−フェニレンジアミンとの重縮合物として、また上記構造式(3)を有する非晶性ポリエーテルイミド樹脂は、4,4´−[イソプロピリデンビス(p−フェニレンオキシ)ジフタル酸二無水物とm−フェニレンジアミンとの重縮合物として公知の方法によって合成される。また、上述した非晶性ポリエーテルイミド樹脂には、本発明の主旨を超えない範囲で共重合可能な他の単量体単位を導入してもかまわない。なお、使用する非晶性ポリエーテルイミド樹脂は、1種類を単独で、2種類以上を組み合わせて用いることが出来る。
【0016】
上記樹脂組成物において、結晶性ポリアリールケトン樹脂が70重量%を越えたり、非晶性ポリエーテルイミド樹脂が30重量%未満では、組成物全体としての結晶性が高く、結晶化処理を行うと球晶などの結晶構造が高度に成長、発達するため機械的強度(端裂強度)が低下しやすく、また、結晶化に伴う体積収縮(寸法変化)が大きくなり回路基板としての信頼性が低下する為好ましくない。また、結晶性ポリアリールケトン樹脂が30重量%未満であったり、非晶性ポリエーテルイミド樹脂が70重量%を越えると組成物全体としての結晶性自体が低く、また結晶化速度も遅くなり過ぎ、結晶融解ピーク温度が260℃以上であってもはんだ耐熱性が低下するため好ましくない。このことから本発明においては、上記ポリアリールケトン樹脂65〜35重量%と非晶性ポリエーテルイミド樹脂35〜65重量%とからなる樹脂組成物が好適に用いられる。
【0017】
また、上述した樹脂組成物100重量部に対して混合する無機充填材が50重量部を超えると、フィルムの可とう性、引き裂き強度などの機械的強度が低下するため好ましくない。一方、5重量部未満では、線膨張係数を低下して寸法安定性を向上させる効果が少ないため好ましくない。このことから好適な無機充填材の混合量は、上述した樹脂組成物100重量部に対して10〜30重量部である。用いる無機充填材としては、特に制限はなく、公知のいかなるものも使用することができる。例えば、タルク、マイカ、クレー、ガラス、アルミナ、シリカ、窒化アルミニウム、窒化珪素などが挙げられ、これらは1種類を単独で、2種類以上を組み合わせて用いることができる。また、用いる無機充填材には、チタネートなどのカップリング剤処理、脂肪酸、樹脂酸、各種界面活性剤処理などの表面処理を行ってもよい。特に、平均粒径が1〜20μm程度、平均アスペクト比(粒径/厚み)が20〜30程度以上の無機充填材が、低添加量(10〜25重量部程度)で、機械的強度を低下させることなく寸法安定性を向上させる効果が高く好ましい。
【0018】
次に、本発明のフィルムは、上述した混合組成物からなるフィルムを結晶化処理したフィルムであって、該フィルムを示差走査熱量測定により加熱速度10℃/分で昇温した時に吸熱ピークが少なくとも2つ現れ、これらの吸熱ピークのうち、ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃未満であることを特徴とする耐熱性フィルムである。
ここで、本発明において結晶化処理とは、結晶化処理後のフィルムを用いて示差走査熱量測定を行った際に得られる特性値が、下記の関係式を満たすことをいう。
[(ΔHm−ΔHc)/ΔHm]≧0.90
上記の式において、ΔHmは、示差走査熱量測定により昇温した時に測定される結晶融解熱量(J/g)のことであり、ΔHcは、昇温中の結晶化により発生する結晶化熱量(J/g)のことである。
なお、結晶融解熱量ΔHm(J/g)と結晶化熱量ΔHc(J/g)は、次のようにして求めた値である。すなわち、パーキンエルマー社製DSC−7を用いて、試料10mgをJIS−K7122に準じて、加熱速度10℃/分で室温から400℃まで昇温したときのサーモグラムから求めた。
【0019】
上記の関係式[(ΔHm−ΔHc)/ΔHm]の値は、原料ポリマーの種類・分子量・組成物の比率等にも依存するが、フィルムの成形・加工条件、特に結晶化処理条件に大きく依存する。すなわち、フィルムを製膜する際に、原料ポリマーを溶融させた後、速やかに冷却すれば該数値は小さくなる。また、結晶化処理条件において、ある処理温度で処理時間を長くすれば、該数値を大きくすることができる。該数値の最大値は1.0であり、数値が大きいほど結晶化が進行していることを意味している。
ここで該数値が、0.90未満では、充分に結晶化が進行しておらず、寸法安定性が低下したり、はんだ耐熱性が不充分となり易く好ましくない。
【0020】
また、示差走査熱量測定によりポリアリールケトン樹脂の結晶融解に由来する吸熱ピーク温度は、結晶性ポリアリールケトン樹脂の種類により異なるが、例えば、ポリエーテルエーテルケトン(PEEK)では、330〜340℃程度、ポリエーテルケトン(PEK)では、370〜380℃程度に現れる。
本発明においては、示差走査熱量測定により加熱速度10℃/分で昇温した時に得られるポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃未満であることが最も重要である。
【0021】
ここで、ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃以上であると、端裂強度が低下するため好ましくない。この理由は明らかではないが、該ピーク温度が上昇するほどポリアリールケトン樹脂(A)の結晶成分に由来する球晶などの結晶構造が高度に成長、発達し、これらの界面が欠陥となり機械的強度(端裂強度)が低下するものと思われる。このことからポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度の好適な範囲は200℃以上、260℃未満である。上記ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が200℃未満であると、結晶化が不十分となり好ましくない。
本発明において、ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度は、主に結晶化処理条件に依存する。すなわち、結晶化処理温度が高く、処理時間が長いほど該ピーク温度は高温側にシフトし、逆に結晶化処理温度が低く、処理時間が短いほど該ピーク温度は低温側にシフトする。
【0022】
本発明においては、上述した結晶化処理を次の関係式を満足する温度範囲で行うことが好ましい。
Tc(A+B)−20≦Tx≦Tg(B)+20
ここで式中、Tc(A+B)は、結晶性ポリアリールケトン樹脂(A)と非晶性ポリエーテルイミド樹脂(B)からなる樹脂組成物を示差走査熱量測定により昇温したときに発現する結晶化温度(℃)を示し、また、Tg(B)は、非晶性ポリエーテルイミド樹脂(B)単体のガラス転移温度(℃)を示し、さらにTxは、結晶化処理温度(℃)を示す。
上記の関係式において、結晶化処理温度(Tx)がTc(A+B)−20未満、すなわち、結晶性ポリアリールケトン樹脂(A)と非晶性ポリエーテルイミド樹脂(B)からなる樹脂組成物を示差走査熱量測定により昇温したときに発現する結晶化温度(℃)−20℃未満の結晶化処理温度(Tx)では、結晶化の進行速度が遅く、また、結晶化が不十分となり易いため好ましくなく、一方、Tg(B)+20℃を超えると、すなわち、非晶性ポリエーテルイミド樹脂(B)単体のガラス転移温度+20℃を超えると、結晶化は充分進行しはんだ耐熱性も発現するものの、後述する実施例でも説明するように、端裂強度が低下し易く好ましくない。
【0023】
この理由は明確ではないが、おそらく結晶化処理温度(Tx)が非晶性ポリエーテルイミド樹脂(B)単体のガラス転移温度+20℃を超えると、非晶性ポリエーテルイミド樹脂(B)成分の分子運動性が激しくなり、このことからポリアリールケトン樹脂(A)の結晶成分に由来する球晶などの結晶構造が高度に成長、発達し、これらの界面が欠陥となり機械的強度(端裂強度)が低下するものと思われる。このことから好適な熱処理温度範囲は、Tc(A+B)−15℃以上、Tg(B)+15℃以下である。
【0024】
本発明フィルムを構成する樹脂組成物には、その性質を損なわない程度に、他の樹脂や無機充填材以外の各種添加剤、例えば、熱安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤等を適宜配合しても良い。また無機充填材を含めた各種添加剤の混合方法は、公知の方法を用いることができる。例えば、(a)各種添加剤をポリアリールケトン樹脂及び/又は非晶性ポリエーテルイミド樹脂などの適当なベース樹脂に高濃度(代表的な含有量としては10〜60重量%程度)に混合したマスターバッチを別途作製しておき、これを使用する樹脂に濃度を調整して混合し、ニーダーや押出機等を用いて機械的にブレンドする方法、(b)使用する樹脂に直接各種添加剤をニーダーや押出機等を用いて機械的にブレンドする方法などが挙げられる。上記混合方法の中では、(a)のマスターバッチを作製し、混合する方法が分散性や作業性の点から好ましい。さらに、フィルムの表面にはハンドリング性の改良等のために、エンボス加工やコロナ処理等を適宜施してもかまわない。
【0025】
本発明フィルムの製膜方法としては、公知の方法、例えばTダイを用いる押出キャスト法やカレンダー法等を採用することができ、特に限定されるものではないが、フィルムの製膜性や安定生産性等の面から、Tダイを用いる押出キャスト法が好ましい。Tダイを用いる押出キャスト法での成形温度は、組成物の流動特性や製膜性等によって適宜調整されるが、概ね融点以上、430℃以下である。また、該フィルムの厚みは、特に制限されるものではないが、通常10〜500μm程度である。
【0026】
次に、本発明のプリント配線基板は、上述したフィルムの少なくとも片面に接着層を介することなく導体箔を熱融着・結晶化処理し、この導体箔に導電性回路を形成してなる基板である。
上述したように結晶化処理においてその温度条件は非常に重要であるが、その方式は、特に限定されるものではない。例えば、熱処理方式としては、押出キャスト時に結晶化させる方法(キャスト結晶化法)や製膜ライン内で、熱処理ロールや熱風炉等により結晶化させる方法(インライン結晶化法)及び製膜ライン外で、熱風炉や熱プレス等により結晶化させる方法(アウトライン結晶化法)などを挙げることができる。本発明においては、生産の安定性及び物性の均一性から、アウトライン結晶化法が好適に用いられる。また、熱処理時間については、数秒〜数十時間、好適には数分から3時間程度の範囲が適用できる。
【0027】
プリント配線板の製造過程において、上述したフィルムと導体箔を接着層を介することなく熱融着させる方法としては、加熱、加圧できる方法であれば公知の方法を採用することができ、特に限定されるものではない。例えば、熱プレス法や熱ラミネートロール法、又はこれらを組み合わせた方法を好適に採用することができる。
また、導体箔に導電性回路を形成させる方法についても、公知のいかなる方法も採用することができ、特に限定されるものではない。例えば,サブトラクティブ法(エッチング)、アディティブ法(メッキ),ダイスタンプ法(金型)、導体印刷法(導電ペースト)などの公知の方法が適用できる。さらに多層基板とした場合の層間接続の方法としては、例えば、スルーホールに銅メッキする方法やスルーホール、インナーバイアホール中へ導電性ペーストや半田ボールを充填する方法、微細な導電粒子を含有した絶縁層による異方導電性材料を応用する方法などが挙げられる。
【0028】
本発明に使用される導体箔としては、例えば銅、金、銀、アルミニウム、ニッケル、錫等の、厚さ5〜70μm程度の金属箔が挙げられる。金属箔としては、通常銅箔が使用され、さらに表面を黒色酸化処理等の化成処理を施したものが好適に使用される。導体箔は、接着効果を高めるために、フィルムとの接触面(重ねる面)側を予め化学的又は機械的に粗化したものを用いることが好ましい。表面粗化処理された導体箔の具体例としては、電解銅箔を製造する際に電気化学的に処理された粗化銅箔などが挙げられる。
【0029】
【実施例】
以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中に表示されるフィルムについての種々の測定値及び評価は次のようにして行った。ここで、フィルムの押出機からの流れ方向を縦方向、その直交方向を横方向と呼ぶ。
【0030】
(1)ガラス転移温度(Tg)、結晶化温度(Tc)、結晶融解ピーク温度(Tm)
パーキンエルマー(株)製DSC−7を用いて、試料10mgをJIS K7121に準じて、加熱速度を10℃/分で昇温した時のサーモグラムから求めた。なお、表1の樹脂組成物の結晶化温度は、急冷フィルム試料を用いて測定した。
【0031】
(2)(ΔHm−ΔHc)/ΔHm
パーキンエルマー(株)製DSC−7を用いて、試料10mgをJIS K7122に準じて、加熱速度を10℃/分で昇温した時のサーモグラムから、結晶融解熱量ΔHm(J/g)と結晶化熱量ΔHc(J/g)を求め、算出した。
【0032】
(3)接着強度
JIS C6481の常態の引き剥がし強さに準拠して測定した。
【0033】
(4)はんだ耐熱性
JIS C6481の常態のはんだ耐熱性に準拠し、260℃のはんだ浴に試験片を銅箔側とはんだ浴とが接触するように10秒間浮かべ、室温まで冷却した後、膨れやはがれ等の有無を目視によって調べ、良否を判定した。
【0034】
(5)端裂強度
JIS C2151の端裂抵抗試験に準拠して、厚さ75μmのフィルムから幅15mm、長さ300mmの試験片を切り出し、試験金具Bを用いて、引張速度500mm/分の条件で縦方向及び横方向を測定した。
【0035】
(実施例1)
表1に示すようにポリエーテルエーテルケトン樹脂[ビクトレックス社製、PEEK381G、Tg:143℃、Tm:334℃](以下、単にPEEKと略記することがある)50重量部と、ポリエーテルイミド樹脂[ゼネラルエレクトリック社製、Ultem−CRS5001、Tg:226℃](以下、単にPEI−1と略記することがある)50重量部及び市販のマイカ(平均粒径:10μm、アスペクト比:30)20重量部とからなる混合組成物を、Tダイを備えた押出機を用いて設定温度380℃で、厚さ75μmのフィルムに押出し、同時に銅箔(厚さ:18μm、表面粗面化)をラミネートすることにより銅箔積層板を得た。さらに得られた銅箔積層板の巻物(100m巻き)を220℃の恒温槽で180分間結晶化処理することにより目的とする結晶化処理済銅箔積層板を得た。得られた結晶化処理済銅箔積層板を用いて、評価した熱特性や機械的強度などの評価結果を表1に示す。
【0036】
(実施例2)
実施例1において結晶化処理条件を240℃×120分間に変更した以外は、実施例1と同様に目的とする結晶化処理済銅箔積層板を得た。得られた結晶化処理済銅箔積層板を用いて、評価した熱特性や機械的強度などの評価結果を表1に示す。
【0037】
(比較例1)実施例1において結晶化処理条件を260℃×120分間に変更した以外は、実施例1と同様に目的とする結晶化処理済銅箔積層板を得た。得られた結晶化処理済銅箔積層板を用いて、評価した熱特性や機械的強度などの評価結果を表1に示す。
【0038】
(比較例2)実施例1において使用したPEI−1をポリエーテルイミド樹脂[ゼネラルエレクトリック社製、Ultem−1000、Tg:216℃](以下、単にPEI−2と略記することがある)に変更し、結晶化処理条件を240℃×120分間に変更した以外は、実施例1と同様に目的とする結晶化処理済銅箔積層板を得た。得られた結晶化処理済銅箔積層板を用いて、評価した熱特性や機械的強度などの評価結果を表1に示す。
【0039】
【表1】
Figure 0004234896
【0040】
表1より、本発明で規定する成分を有し、かつポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃未満にある実施例1及び2の結晶化処理済銅箔積層板は、いずれもはんだ耐熱性と機械的強度(フィルムの端裂強度が縦、横方向共に50N以上)の両方の特性に優れていることが分かる。これに対して、ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃以上の基板は、はんだ耐熱性は良好なものの横方向の端裂強度が劣ることが分かる。
【0041】
表1より、本発明で規定する成分を有し、かつポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃未満にある実施例1乃至3の結晶化処理済銅箔積層板は、いずれもはんだ耐熱性と機械的強度(フィルムの端裂強度が縦、横方向共に50N以上)の両方の特性に優れていることが分かる。これに対して、ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃以上の基板は、はんだ耐熱性は良好なものの横方向の端裂強度が劣ることが分かる。
【0042】
【発明の効果】
本発明によれば、エレクトロニクス用部材等として好適な、特に端裂強度が向上された耐熱性フィルム及びこれを基材とするプリント配線基板並びにこれらの製造方法が提供できる。
【図面の簡単な説明】
【図1】示差走査熱量測定により昇温した時に得られるポリアリールケトン樹脂の結晶融解に由来する吸熱ピーク及び低温側に現れる吸熱ピークを示す概念図である。
【符号の説明】
1 ポリアリールケトン樹脂の結晶融解に由来する吸熱ピーク
2 ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant film that can be suitably used as an electronic member, a printed wiring board using the heat-resistant film as a base material, and a method for producing the same.
[0002]
[Prior art]
Crystalline polyarylketone resins represented by polyetheretherketone resins are excellent in heat resistance, flame retardancy, hydrolysis resistance, chemical resistance, etc., and are mainly used in aircraft parts and electrical / electronic parts. It has been adopted. However, since the raw material price of polyaryl ketone resin is very high and the glass transition temperature of the resin itself is relatively low at about 140 to 170 ° C., various studies for improving heat resistance and the like have been conducted. Among them, as a system showing good compatibility, a blend with an amorphous polyetherimide resin has attracted attention.
For example, Japanese Patent Application Laid-Open Nos. 59-187054 and 61-500023 disclose a mixed composition of a crystalline polyaryl ketone resin and an amorphous polyetherimide resin. Japanese Utility Model Laid-Open No. 59-115353 also discloses that these compositions are useful for circuit board substrates. Furthermore, the present inventors have also proposed a printed wiring board using the above mixed composition and a method for producing the same in Japanese Patent Application Laid-Open Nos. 2000-38464 and 2000-200150.
[0003]
However, a flexible printed wiring board is produced using a film made of a mixed composition of a crystalline polyaryl ketone resin and an amorphous polyetherimide resin (usually including an inorganic filler for improving dimensional stability). Then, although the dimensional stability, heat resistance, etc. are good, the mechanical strength, especially the edge tear strength, is not necessarily at a sufficient level, and the folding resistance and bending resistance are impaired, so that the connection reliability of the board can be secured. However, there is a problem that the application range is limited, and an improvement thereof has been desired. In addition, the above-mentioned patent gazette has no technical disclosure or suggestion regarding this cause or improvement method.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a heat-resistant film having particularly improved end tear strength, a printed wiring board using this as a base material, and a method for producing them, which are suitable as an electronic member.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor solved the above-mentioned problem by providing a resin composition of a crystalline polyaryl ketone resin and an amorphous polyetherimide resin as a main component and imparting specific thermal characteristics. The present invention has been completed by finding a heat-resistant film that can be used, a printed wiring board using the heat-resistant film as a base material, and a production method thereof.
That is, the gist of the present invention is that the polyaryl ketone resin (A) having a crystal melting peak temperature of 260 ° C. or higher is 70 to 30% by weight and the amorphous polyetherimide resin (B) 30 to 70% by weight. An inorganic filler is mixed in an amount of 5 to 50 parts by weight with respect to 100 parts by weight of the resin composition, and the film is crystallized, and the film is heated at a heating rate of 10 ° C./min by differential scanning calorimetry. At least two endothermic peaks appear when the temperature is raised, and among these endothermic peaks, the endothermic peak temperature appearing on the lower temperature side than the endothermic peak derived from the crystal melting of the polyaryl ketone resin is less than 260 ° C. It exists in a heat resistant film.
[0006]
Another gist of the present invention is that polyaryl ketone resin (A) having a crystal melting peak temperature of 260 ° C. or higher is 70 to 30% by weight and amorphous polyetherimide resin (B) 30 to 70% by weight. Conductive foil is heat-fused and crystallized on at least one surface of a film obtained by mixing an inorganic filler in an amount of 5 to 50 parts by weight with respect to 100 parts by weight of the resin composition, without using an adhesive layer. In a printed wiring board formed with a conductive circuit, at least two endothermic peaks appear when the film is heated at a heating rate of 10 ° C./min by differential scanning calorimetry. Among these endothermic peaks, polyaryl An endothermic peak temperature appearing on a lower temperature side than an endothermic peak derived from the crystal melting of a ketone resin is less than 260 ° C.
[0007]
Furthermore, another gist of the present invention resides in the method for manufacturing a printed wiring board, wherein the crystallization treatment is performed in a temperature range satisfying the following relational expression.
Tc (A + B) −20 ≦ Tx ≦ Tg (B) +20
Here, in the formula, Tc (A + B) is a crystal that appears when the temperature of a resin composition composed of a crystalline polyaryl ketone resin (A) and an amorphous polyetherimide resin (B) is raised by differential scanning calorimetry. Tg (B) indicates the glass transition temperature (° C.) of the amorphous polyetherimide resin (B) alone, and Tx indicates the crystallization temperature (° C.). . The crystalline polyaryl ketone resin includes a polyether ether ketone resin having a repeating unit of the following structural formula (1), and the amorphous polyetherimide resin has a repeating unit of the following structural formula (2). A polyetherimide resin can be particularly preferably used as a main component.
[0008]
[Formula 1]
Figure 0004234896
[0009]
[Formula 2]
Figure 0004234896
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The film of the present invention is inorganicly filled with respect to 100 parts by weight of a resin composition comprising 70 to 30% by weight of a crystalline polyaryl ketone resin (A) and 30 to 70% by weight of an amorphous polyetherimide resin (B). It is the film which mixed the material in 5-40 weight part. The film referred to in the present invention includes a sheet having a relatively thick thickness of about 500 μm or more.
Here, the crystalline polyaryl ketone resin constituting the present invention is a thermoplastic resin containing an aromatic nucleus bond, an ether bond and a ketone bond in its structural unit, and representative examples thereof include polyether ketone and polyether ether. In the present invention, a polyether ether ketone having a repeating unit represented by the following structural formula (1) is preferably used. Polyetheretherketone having this repeating unit is commercially available under the trade names “PEEK151G”, “PEEK381G”, “PEEK450G”, etc., manufactured by VICTREX. In addition, crystalline polyaryl ketone resin to be used can be used individually by 1 type and in combination of 2 or more types.
[0011]
[Formula 1]
Figure 0004234896
[0012]
The amorphous polyetherimide resin is an amorphous thermoplastic resin containing an aromatic nucleus bond, an ether bond and an imide bond in the structural unit, and is not particularly limited. Specifically, polyetherimides having repeating units represented by the following structural formulas (2) and (3) are commercially available under the trade names “Ultem CRS5001” and “Ultem 1000” manufactured by General Electric, respectively. can do. In the present invention, a polyetherimide having a repeating unit represented by the following structural formula (2) is particularly preferably used. The reason for this is not clear, but in a mixed composition of polyetheretherketone having the above structural formula (1) and polyetherimide resin having the following structural formula (2), the electronic interaction between molecules is Unlike the mixed composition of the polyether ether ketone having the structural formula (1) and the polyetherimide resin having the following structural formula (3), the compatibility is different so that a unique higher order structure is formed. This also seems to contribute to the improvement of mechanical strength (end tear strength).
[0013]
[Formula 2]
Figure 0004234896
[0014]
[Formula 3]
Figure 0004234896
[0015]
The method for producing the amorphous polyetherimide resin is not particularly limited. Usually, the amorphous polyetherimide resin having the structural formula (2) is 4,4 ′-[isopropylidenebis (p As the polycondensate of -phenyleneoxy) diphthalic dianhydride and p-phenylenediamine, and the amorphous polyetherimide resin having the above structural formula (3), 4,4 '-[isopropylidenebis (p It is synthesized by a known method as a polycondensation product of -phenyleneoxy) diphthalic dianhydride and m-phenylenediamine. Moreover, you may introduce | transduce into the amorphous polyetherimide resin mentioned above the other monomer unit which can be copolymerized in the range which does not exceed the meaning of this invention. In addition, the amorphous polyetherimide resin to be used can be used individually by 1 type and in combination of 2 or more types.
[0016]
In the above resin composition, if the crystalline polyaryl ketone resin exceeds 70% by weight or the amorphous polyetherimide resin is less than 30% by weight, the crystallinity of the entire composition is high, and crystallization treatment is performed. Crystal structures such as spherulites grow and develop at a high level, so the mechanical strength (end tear strength) tends to decrease, and volume shrinkage (dimensional change) accompanying crystallization increases, reducing the reliability of the circuit board. Therefore, it is not preferable. When the crystalline polyaryl ketone resin is less than 30% by weight or the amorphous polyetherimide resin exceeds 70% by weight, the crystallinity of the composition as a whole is low and the crystallization rate is too slow. Even if the crystal melting peak temperature is 260 ° C. or higher, the solder heat resistance is lowered, which is not preferable. Therefore, in the present invention, a resin composition comprising 65 to 35% by weight of the above polyaryl ketone resin and 35 to 65% by weight of an amorphous polyetherimide resin is preferably used.
[0017]
Moreover, when the inorganic filler mixed with respect to 100 parts by weight of the resin composition exceeds 50 parts by weight, it is not preferable because mechanical strength such as flexibility and tear strength of the film is lowered. On the other hand, if it is less than 5 parts by weight, the effect of reducing the linear expansion coefficient and improving the dimensional stability is small, which is not preferable. From this, the suitable mixing amount of the inorganic filler is 10 to 30 parts by weight with respect to 100 parts by weight of the resin composition described above. There is no restriction | limiting in particular as an inorganic filler to be used, Any well-known thing can be used. For example, talc, mica, clay, glass, alumina, silica, aluminum nitride, silicon nitride, and the like can be mentioned. These can be used alone or in combination of two or more. Further, the inorganic filler to be used may be subjected to a surface treatment such as a coupling agent treatment such as titanate, a fatty acid, a resin acid, or various surfactant treatments. In particular, an inorganic filler having an average particle size of about 1 to 20 μm and an average aspect ratio (particle size / thickness) of about 20 to 30 or more reduces mechanical strength with a low addition amount (about 10 to 25 parts by weight). Therefore, the effect of improving the dimensional stability without increasing the thickness is preferable.
[0018]
Next, the film of the present invention is a film obtained by crystallizing a film comprising the above-described mixed composition, and has an endothermic peak at least when the film is heated at a heating rate of 10 ° C./min by differential scanning calorimetry. Two of these endothermic peaks appear, and the endothermic peak temperature that appears on the lower temperature side than the endothermic peak derived from the crystal melting of the polyarylketone resin is less than 260 ° C.
Here, in the present invention, the crystallization treatment means that the characteristic value obtained when differential scanning calorimetry is performed using the film after the crystallization treatment satisfies the following relational expression.
[(ΔHm−ΔHc) / ΔHm] ≧ 0.90
In the above equation, ΔHm is the heat of crystal fusion (J / g) measured when the temperature is raised by differential scanning calorimetry, and ΔHc is the amount of crystallization generated by crystallization during the temperature rise (J / G).
The crystal melting heat quantity ΔHm (J / g) and the crystallization heat quantity ΔHc (J / g) are values obtained as follows. That is, using a DSC-7 manufactured by PerkinElmer, a 10 mg sample was obtained from a thermogram when the temperature was raised from room temperature to 400 ° C. at a heating rate of 10 ° C./min according to JIS-K7122.
[0019]
The value of the above relational expression [(ΔHm−ΔHc) / ΔHm] depends on the type, molecular weight, composition ratio, etc. of the starting polymer, but greatly depends on the film forming / processing conditions, particularly the crystallization treatment conditions. To do. That is, when the film is formed, the numerical value becomes small if the raw material polymer is melted and then cooled quickly. In addition, when the treatment time is increased at a certain treatment temperature under the crystallization treatment conditions, the numerical value can be increased. The maximum value is 1.0, and the larger the value, the more crystallization is progressing.
If the numerical value is less than 0.90, crystallization is not sufficiently progressed, so that dimensional stability is deteriorated and solder heat resistance is liable to be insufficient.
[0020]
In addition, the endothermic peak temperature derived from the crystal melting of the polyaryl ketone resin by differential scanning calorimetry is different depending on the type of the crystalline polyaryl ketone resin. For example, in the case of polyether ether ketone (PEEK), about 330 to 340 ° C. In polyether ketone (PEK), it appears at about 370 to 380 ° C.
In the present invention, the endothermic peak temperature appearing on the lower temperature side than the endothermic peak derived from crystal melting of the polyaryl ketone resin obtained when the heating rate is 10 ° C./min by differential scanning calorimetry is less than 260 ° C. It is most important.
[0021]
Here, it is not preferable that the endothermic peak temperature appearing at a lower temperature side than the endothermic peak derived from crystal melting of the polyaryl ketone resin is 260 ° C. or more because the end tear strength decreases. The reason for this is not clear, but as the peak temperature rises, the crystal structure such as spherulites derived from the crystal components of the polyaryl ketone resin (A) grows and develops more and these interfaces become defects and become mechanical. It seems that strength (end tear strength) decreases. From this, the preferable range of the endothermic peak temperature appearing on the lower temperature side than the endothermic peak derived from crystal melting of the polyaryl ketone resin is 200 ° C. or more and less than 260 ° C. When the endothermic peak temperature appearing on the lower temperature side than the endothermic peak derived from the crystal melting of the polyaryl ketone resin is less than 200 ° C., crystallization is unsatisfactory.
In the present invention, the endothermic peak temperature appearing on the lower temperature side than the endothermic peak derived from crystal melting of the polyaryl ketone resin mainly depends on the crystallization treatment conditions. That is, the higher the crystallization treatment temperature and the longer the treatment time, the higher the peak temperature shifts. On the contrary, the lower the crystallization treatment temperature and the shorter the treatment time, the lower the peak temperature.
[0022]
In the present invention, the above-described crystallization treatment is preferably performed in a temperature range that satisfies the following relational expression.
Tc (A + B) −20 ≦ Tx ≦ Tg (B) +20
Here, in the formula, Tc (A + B) is a crystal that appears when the temperature of a resin composition composed of a crystalline polyaryl ketone resin (A) and an amorphous polyetherimide resin (B) is raised by differential scanning calorimetry. Tg (B) indicates the glass transition temperature (° C.) of the amorphous polyetherimide resin (B) alone, and Tx indicates the crystallization temperature (° C.). .
In the above relational expression, a crystallization treatment temperature (Tx) is less than Tc (A + B) -20, that is, a resin composition comprising a crystalline polyaryl ketone resin (A) and an amorphous polyetherimide resin (B). At a crystallization temperature (Tx) of less than -20 ° C., which appears when the temperature is raised by differential scanning calorimetry, the progress of crystallization is slow and the crystallization tends to be insufficient. On the other hand, when Tg (B) + 20 ° C. is exceeded, that is, when the glass transition temperature of the amorphous polyetherimide resin (B) alone exceeds + 20 ° C., crystallization proceeds sufficiently and solder heat resistance is also exhibited. However, as will be described later in the examples, the end tear strength tends to decrease, which is not preferable.
[0023]
The reason for this is not clear, but if the crystallization temperature (Tx) exceeds the glass transition temperature of the amorphous polyetherimide resin (B) alone + 20 ° C., the component of the amorphous polyetherimide resin (B) The molecular mobility becomes violent, and as a result, crystal structures such as spherulites derived from the crystal components of the polyaryl ketone resin (A) are highly grown and developed. ) Is likely to decline. Therefore, a preferable heat treatment temperature range is Tc (A + B) -15 ° C. or higher and Tg (B) + 15 ° C. or lower.
[0024]
In the resin composition constituting the film of the present invention, various additives other than other resins and inorganic fillers, such as heat stabilizers, ultraviolet absorbers, light stabilizers, nucleating agents, to the extent that the properties are not impaired. Colorants, lubricants, flame retardants and the like may be appropriately blended. Moreover, a well-known method can be used for the mixing method of various additives including an inorganic filler. For example, (a) various additives are mixed at a high concentration (typically about 10 to 60% by weight) into an appropriate base resin such as a polyaryl ketone resin and / or an amorphous polyetherimide resin. Prepare a masterbatch separately, adjust the concentration to the resin to be used, mix and mix mechanically using a kneader or extruder, etc. (b) Add various additives directly to the resin to be used Examples of the method include mechanical blending using a kneader or an extruder. Among the above mixing methods, the method of preparing and mixing the master batch (a) is preferable from the viewpoint of dispersibility and workability. Furthermore, the surface of the film may be appropriately subjected to embossing, corona treatment, etc. in order to improve handling properties.
[0025]
As a method for forming the film of the present invention, a known method, for example, an extrusion casting method using a T-die or a calendering method can be adopted, and the film forming property and stable production of the film are not particularly limited. From the viewpoint of properties and the like, an extrusion casting method using a T die is preferable. The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film forming properties of the composition, but is generally about the melting point or higher and 430 ° C. or lower. The thickness of the film is not particularly limited, but is usually about 10 to 500 μm.
[0026]
Next, the printed wiring board of the present invention is a substrate in which a conductive foil is thermally fused and crystallized on at least one surface of the above-described film without an adhesive layer, and a conductive circuit is formed on the conductive foil. is there.
As described above, the temperature condition is very important in the crystallization treatment, but the method is not particularly limited. For example, as a heat treatment method, a method of crystallizing at the time of extrusion casting (cast crystallization method) or a film forming line, a method of crystallizing with a heat treatment roll or a hot air furnace (in-line crystallization method) and outside the film forming line And a method (outline crystallization method) of crystallization by a hot air furnace or a hot press. In the present invention, an outline crystallization method is preferably used from the viewpoint of production stability and uniformity of physical properties. As for the heat treatment time, a range of several seconds to several tens of hours, preferably several minutes to 3 hours can be applied.
[0027]
In the production process of the printed wiring board, as a method for heat-sealing the above-described film and conductor foil without interposing an adhesive layer, a known method can be adopted as long as it can be heated and pressurized, and particularly limited. Is not to be done. For example, a hot pressing method, a hot laminating roll method, or a combination of these methods can be suitably employed.
Also, any known method can be employed for forming the conductive circuit on the conductor foil, and there is no particular limitation. For example, a known method such as a subtractive method (etching), an additive method (plating), a die stamp method (mold), or a conductor printing method (conductive paste) can be applied. Furthermore, as a method of interlayer connection in the case of a multilayer substrate, for example, a method of copper plating in a through hole, a method of filling a through hole, an inner via hole with a conductive paste or a solder ball, and containing fine conductive particles For example, a method of applying an anisotropic conductive material with an insulating layer may be used.
[0028]
Examples of the conductive foil used in the present invention include a metal foil having a thickness of about 5 to 70 μm, such as copper, gold, silver, aluminum, nickel, and tin. As the metal foil, a copper foil is usually used, and a metal foil having a surface subjected to chemical conversion treatment such as black oxidation treatment is preferably used. In order to enhance the adhesive effect, it is preferable to use a conductor foil that has been chemically or mechanically roughened in advance on the contact surface (surface to be overlapped) side with the film. Specific examples of the conductor foil that has been subjected to surface roughening treatment include a roughened copper foil that has been electrochemically treated when an electrolytic copper foil is produced.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the various measured values and evaluation about the film displayed in this specification were performed as follows. Here, the flow direction from the extruder of the film is called the vertical direction, and the orthogonal direction is called the horizontal direction.
[0030]
(1) Glass transition temperature (Tg), crystallization temperature (Tc), crystal melting peak temperature (Tm)
Using DSC-7 manufactured by PerkinElmer Co., Ltd., a 10 mg sample was obtained from a thermogram when the heating rate was raised at 10 ° C./min according to JIS K7121. In addition, the crystallization temperature of the resin composition of Table 1 was measured using the rapidly cooled film sample.
[0031]
(2) (ΔHm−ΔHc) / ΔHm
Using DSC-7 manufactured by PerkinElmer Co., Ltd., from a thermogram when heating a sample at a heating rate of 10 ° C./min according to JIS K7122, the crystal melting heat amount ΔHm (J / g) and the crystal The amount of heat of formation ΔHc (J / g) was determined and calculated.
[0032]
(3) Adhesive strength Measured according to the normal peel strength of JIS C6481.
[0033]
(4) Solder heat resistance In accordance with the normal solder heat resistance of JIS C6481, the test piece is floated in a 260 ° C. solder bath for 10 seconds so that the copper foil side and the solder bath are in contact with each other. The presence or absence of peeling or the like was examined visually to determine whether it was good or bad.
[0034]
(5) End tear strength Based on the end tear resistance test of JIS C2151, a test piece having a width of 15 mm and a length of 300 mm was cut out from a film having a thickness of 75 μm, and using a test fitting B, a condition of a tensile speed of 500 mm / min. The vertical direction and the horizontal direction were measured.
[0035]
Example 1
As shown in Table 1, 50 parts by weight of polyetheretherketone resin [manufactured by Victrex, PEEK381G, Tg: 143 ° C., Tm: 334 ° C.] (hereinafter sometimes simply referred to as PEEK), and polyetherimide resin [General Electric Co., Ultem-CRS5001, Tg: 226 ° C.] (hereinafter sometimes simply referred to as PEI-1) 50 parts by weight and commercially available mica (average particle size: 10 μm, aspect ratio: 30) 20 weights The mixed composition consisting of the parts is extruded into a film having a thickness of 75 μm at a set temperature of 380 ° C. using an extruder equipped with a T die, and at the same time, a copper foil (thickness: 18 μm, surface roughening) is laminated. As a result, a copper foil laminate was obtained. Furthermore, the obtained crystallization-treated copper foil laminated board was obtained by crystallizing the roll (100 m roll) of the obtained copper foil laminated board for 180 minutes in a 220 degreeC thermostat. Table 1 shows evaluation results such as thermal characteristics and mechanical strength evaluated using the obtained crystallized copper foil laminate.
[0036]
(Example 2)
The target crystallized copper foil laminate was obtained in the same manner as in Example 1 except that the crystallization process conditions in Example 1 were changed to 240 ° C. × 120 minutes. Table 1 shows evaluation results such as thermal characteristics and mechanical strength evaluated using the obtained crystallized copper foil laminate.
[0037]
(Comparative Example 1) A target crystallized copper foil laminate was obtained in the same manner as in Example 1 except that the crystallization treatment conditions in Example 1 were changed to 260 ° C x 120 minutes. Table 1 shows evaluation results such as thermal characteristics and mechanical strength evaluated using the obtained crystallized copper foil laminate.
[0038]
(Comparative Example 2) PEI-1 used in Example 1 was changed to a polyetherimide resin [manufactured by General Electric, Ultem-1000, Tg: 216 ° C] (hereinafter sometimes simply referred to as PEI-2). Then , the target crystallized copper foil laminate was obtained in the same manner as in Example 1 except that the crystallization process conditions were changed to 240 ° C. × 120 minutes. Table 1 shows evaluation results such as thermal characteristics and mechanical strength evaluated using the obtained crystallized copper foil laminate.
[0039]
[Table 1]
Figure 0004234896
[0040]
From Table 1, the crystallization of Examples 1 and 2 having the components specified in the present invention and the endothermic peak temperature appearing on the lower temperature side than the endothermic peak derived from crystal melting of the polyaryl ketone resin is less than 260 ° C. It can be seen that all the treated copper foil laminates are excellent in both the solder heat resistance and the mechanical strength (the end tear strength of the film is 50 N or more in both the vertical and horizontal directions). In contrast, a substrate with an endothermic peak temperature of 260 ° C. or higher that appears on the lower temperature side than the endothermic peak derived from the crystal melting of the polyaryl ketone resin has good solder heat resistance but poor lateral edge crack strength. I understand.
[0041]
From Table 1, the crystallization of Examples 1 to 3 having the components specified in the present invention and having an endothermic peak temperature lower than 260 ° C. that appears on the lower temperature side than the endothermic peak derived from crystal melting of the polyaryl ketone resin. It can be seen that all the treated copper foil laminates are excellent in both the solder heat resistance and the mechanical strength (the end tear strength of the film is 50 N or more in both the vertical and horizontal directions). In contrast, a substrate with an endothermic peak temperature of 260 ° C. or higher that appears on the lower temperature side than the endothermic peak derived from the crystal melting of the polyaryl ketone resin has good solder heat resistance but poor lateral edge crack strength. I understand.
[0042]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the heat resistant film which was suitable as a member for electronics etc., especially the edge tear strength improved, the printed wiring board which uses this as a base material, and these manufacturing methods can be provided.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an endothermic peak derived from crystal melting of a polyaryl ketone resin obtained when the temperature is raised by differential scanning calorimetry and an endothermic peak appearing on the low temperature side.
[Explanation of symbols]
1 Endothermic peak derived from crystal melting of polyaryl ketone resin 2 Endothermic peak appearing at lower temperature than endothermic peak derived from crystal melting of polyaryl ketone resin

Claims (3)

結晶融解ピーク温度が260℃以上であるポリアリールケトン樹脂(A)70〜30重量%と非晶性ポリエーテルイミド樹脂(B)30〜70重量%とからなる樹脂組成物100重量部に対して無機充填材を5〜50重量部の範囲で混合したフィルムの少なくとも片面に接着層を介することなく導体箔を熱融着・結晶化処理し、この導体箔に導電性回路を形成してなるプリント配線基板において、結晶性ポリアリールケトン樹脂が下記構造式(1)の繰り返し単位を有するポリエーテルエーテルケトン樹脂が主成分であり、非晶性ポリエーテルイミド樹脂が下記構造式(2)の繰り返し単位を有するポリエーテルイミド樹脂が主成分であるとともに、該フィルムを示差走査熱量測定により加熱速度10℃/分で昇温した時に吸熱ピークが少なくとも2つ現れ、これらの吸熱ピークのうち、ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が260℃未満であることを特徴とするプリント配線基板。
【式1】
Figure 0004234896
【式2】
Figure 0004234896
With respect to 100 parts by weight of a resin composition comprising 70 to 30% by weight of polyaryl ketone resin (A) having a crystal melting peak temperature of 260 ° C. or higher and 30 to 70% by weight of amorphous polyetherimide resin (B) A print formed by thermally bonding and crystallizing a conductive foil on at least one surface of a film in which an inorganic filler is mixed in the range of 5 to 50 parts by weight without using an adhesive layer, and forming a conductive circuit on the conductive foil. In the wiring board, the crystalline polyaryl ketone resin is mainly composed of a polyether ether ketone resin having a repeating unit of the following structural formula (1), and the amorphous polyetherimide resin is a repeating unit of the following structural formula (2). The main component is a polyetherimide resin having a low endothermic peak when the film is heated at a heating rate of 10 ° C./min by differential scanning calorimetry. A printed wiring board characterized in that at least two of these endothermic peaks, the endothermic peak temperature appearing at a lower temperature side than the endothermic peak derived from crystal melting of the polyaryl ketone resin is less than 260 ° C.
[Formula 1]
Figure 0004234896
[Formula 2]
Figure 0004234896
ポリアリールケトン樹脂の結晶融解に由来する吸熱ピークよりも低温側に現れる吸熱ピーク温度が200℃以上、260℃未満の範囲にあり、かつプリント配線基板を構成するフィルムの端裂強度(JIS C2151の端裂抵抗試験に準拠)が、縦方向及び横方向ともに50N以上であることを特徴とする請求項1記載のプリント配線基板。  The endothermic peak temperature appearing on the lower temperature side than the endothermic peak derived from the crystal melting of the polyaryl ketone resin is in the range of 200 ° C. or higher and lower than 260 ° C., and the end tear strength of the film constituting the printed wiring board 2. The printed wiring board according to claim 1, wherein an end tear resistance test is 50 N or more in both the vertical direction and the horizontal direction. 結晶化処理を下記関係式を満足する温度範囲で行うことを特徴とする請求項1又は2記載のプリント配線基板の製造方法。
Tc(A+B)−20≦Tx≦Tg(B)+20
ここで式中、Tc(A+B)は、結晶性ポリアリールケトン樹脂(A)と非晶性ポリエーテルイミド樹脂(B)からなる樹脂組成物を示差走査熱量測定により昇温したときに発現する結晶化温度(℃)を示し、また、Tg(B)は、非晶性ポリエーテルイミド樹脂(B)単体のガラス転移温度(℃)を示し、さらにTxは、結晶化処理温度(℃)を示す。
The method for producing a printed wiring board according to claim 1 or 2, wherein the crystallization treatment is performed in a temperature range satisfying the following relational expression.
Tc (A + B) −20 ≦ Tx ≦ Tg (B) +20
Here, in the formula, Tc (A + B) is a crystal that appears when the temperature of a resin composition composed of a crystalline polyaryl ketone resin (A) and an amorphous polyetherimide resin (B) is raised by differential scanning calorimetry. Tg (B) indicates the glass transition temperature (° C.) of the amorphous polyetherimide resin (B) alone, and Tx indicates the crystallization temperature (° C.). .
JP2000304455A 2000-10-04 2000-10-04 HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM Expired - Lifetime JP4234896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000304455A JP4234896B2 (en) 2000-10-04 2000-10-04 HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000304455A JP4234896B2 (en) 2000-10-04 2000-10-04 HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM

Publications (2)

Publication Number Publication Date
JP2002105221A JP2002105221A (en) 2002-04-10
JP4234896B2 true JP4234896B2 (en) 2009-03-04

Family

ID=18785500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000304455A Expired - Lifetime JP4234896B2 (en) 2000-10-04 2000-10-04 HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM

Country Status (1)

Country Link
JP (1) JP4234896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249443A (en) * 2006-05-19 2006-09-21 Mitsubishi Plastics Ind Ltd Polyarylketone-based resin film

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073631B2 (en) * 2001-01-22 2008-04-09 三菱樹脂株式会社 Polyarylketone resin film and metal laminate using the same
WO2004015011A1 (en) * 2002-08-07 2004-02-19 Mitsubishi Plastics, Inc. Heat-resistant film and metal laminate thereof
EP1634673A4 (en) 2003-04-25 2009-04-08 Nitto Denko Corp Method of producing laser-processed product and adhesive sheet, for laser processing used therefor
ATE553638T1 (en) * 2003-12-25 2012-04-15 Nitto Denko Corp METHOD FOR PRODUCING WORKPIECES BY LASER
JP4873863B2 (en) 2005-01-14 2012-02-08 日東電工株式会社 Manufacturing method of laser processed product and pressure-sensitive adhesive sheet for laser processing
JP4854061B2 (en) 2005-01-14 2012-01-11 日東電工株式会社 Manufacturing method of laser processed product and protective sheet for laser processing
JP2006341596A (en) * 2005-05-12 2006-12-21 Mitsubishi Plastics Ind Ltd Heat resistant resin plate
JP6293524B2 (en) 2014-03-11 2018-03-14 デクセリアルズ株式会社 Anisotropic conductive film, method for producing the same, connection method and joined body
JP6542927B2 (en) * 2018-02-14 2019-07-10 デクセリアルズ株式会社 Anisotropic conductive film, connection method and joined body
WO2022181804A1 (en) * 2021-02-25 2022-09-01 三菱ケミカル株式会社 Prepreg and production method therefor, and molded object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249443A (en) * 2006-05-19 2006-09-21 Mitsubishi Plastics Ind Ltd Polyarylketone-based resin film

Also Published As

Publication number Publication date
JP2002105221A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP4073631B2 (en) Polyarylketone resin film and metal laminate using the same
JP4201965B2 (en) Heat-resistant resin composition, heat-resistant film or sheet comprising the same, and laminated board based thereon
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
JP5709878B2 (en) Film made of polyarylene ether ketone
JP4234896B2 (en) HEAT-RESISTANT FILM, PRINTED WIRING BOARD BASED ON THE SAME, AND METHOD FOR PRODUCING THEM
JP4094211B2 (en) Method for producing metal foil laminate
JP2006008986A (en) Thermoplastic resin film and its production method
JP2000200950A (en) Flexible wiring board and manufacture thereof
JP3714876B2 (en) Heat resistant film
JP3766263B2 (en) Heat resistant film and flexible printed wiring board based on the heat resistant film
US7498086B2 (en) Heat resistant film and metal laminate thereof
JP3803241B2 (en) Method of joining heat-resistant resin molded body and metal body and joined body
JP2006249443A (en) Polyarylketone-based resin film
JP4605950B2 (en) POLYIMIDE LAMINATED FILM, METAL LAMINATE USING SAME, AND METHOD FOR PRODUCING METAL LAMINATE
KR100874080B1 (en) Heat-resistant film and metal laminate thereof
JP2005330378A (en) Thermoplastic resin composition and molded form using the same
JP2005330377A (en) Thermoplastic resin film and method for producing the same
JP2001031818A (en) Heat-resistant insulating film and production of raw board for printed circuit board and substrate by using the same film
JPH0453181A (en) Manufacture of high-frequency copper-plated board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060612

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4234896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350