JP4234802B2 - Manufacturing method of thin magnetic element - Google Patents

Manufacturing method of thin magnetic element Download PDF

Info

Publication number
JP4234802B2
JP4234802B2 JP27668897A JP27668897A JP4234802B2 JP 4234802 B2 JP4234802 B2 JP 4234802B2 JP 27668897 A JP27668897 A JP 27668897A JP 27668897 A JP27668897 A JP 27668897A JP 4234802 B2 JP4234802 B2 JP 4234802B2
Authority
JP
Japan
Prior art keywords
coil
core
magnetic
thin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27668897A
Other languages
Japanese (ja)
Other versions
JPH11102818A (en
Inventor
治 篠浦
博 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP27668897A priority Critical patent/JP4234802B2/en
Publication of JPH11102818A publication Critical patent/JPH11102818A/en
Application granted granted Critical
Publication of JP4234802B2 publication Critical patent/JP4234802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面実装に適した超薄型の電子機器に使用されるインダクタ、トランス、チョークコイル等の磁気素子の製造方法に関する。
【0002】
【従来の技術】
高度情報化社会の進展につれ電子機器は高性能化とともに小型化が強く求められている。このため容積の小さな電子部品の開発が進んでいる。特に薄型化は重要なトレンドである。磁性体コアの周りにコイルを巻き線した磁気素子はインダクタ、トランス、チョークコイルとして広く使用されているが、電子部品の中では比較的、大型であるので、小型化、薄型化の研究が進んでいるが、いまだ充分に薄型化できていない。
【0003】
例えば特開平9−205023号には、板状導線を巻いた空芯コイルと、この空芯コイルを内部に収容するための空洞を形成する複数に分割された平板状コアとから構成し、これらの平板状コアを組み込んで前記空芯コイルを周回する閉磁路を形成するに際して、引き出し導線の引き出し方を工夫することによりインダクタを薄型化することを開示している。
【0004】
また特開平9−199347号には、導線をスパイラル巻きした第一の平面コイルの外周部に続けて、第二の平面コイルを同様にスパイラル巻きし、こうして得た扁平な二重コイルの表裏を直径方向に取り囲む平板帯状コアで囲むことによりほぼ閉磁路構造のシートトランスを作製すること、薄型化の目的で第一の平面コイルと第二の平面コイルの引出部の位置をずらすことが記載されている。
【0005】
また平成9年度電気学会全国大会要旨集S.8−5にはフェライト基板に溝を設け、めっき法で平面コイルを形成した平面トランス、インダクタが開示されている。さらに特公平3−55961号にはめっき法により作製されたプリントコイルをフェライト基板に設けた溝の中に埋没するロータリートランスの製造方法が開示されている。
また、薄型化のためにはめっき等の導電膜を半導体同様のフォトリソグラフィでエッチングしたりあるいは導電ペーストを使用した印刷法によりパターニングした薄型コイルを使用することが有効である。
【0006】
【発明が解決しようとする課題】
しかし、特開平9ー205023号や特開平9−199347号のように、平板状巻線を用いる方式では、導線を平面巻きすることは安価という点では非常に優れた製造方法であるが、平面に均一にコイルを巻くことは困難であり生産能率は低いものであった。
また平成9年度電気学会全国大会要旨集S.8−5や、特公平3−55961号のように、ロータリートランス等のためにフェライト基板の面内に溝を設けることは成型時の金型設計により可能である。しかし、より細い溝は成形後にバイト等を用いた機械加工により1本ずつ多数の溝を作製する必要があり複雑な工程となっていた。
また、薄型化のためにはめっき等の導電膜を半導体同様のフォトリソグラフィでエッチングしたりあるいは導電ペーストを使用した印刷法によりパターニングした薄型コイルを使用することが有効であるが、しかしプロセスコストは非常に高く、安価に大量生産するには不向きであった。
【0007】
【課題を解決するための手段】
本発明は、上記の問題点を解決することを課題とするもので、巻線が容易で薄型化された薄型磁気素子の製造方法を安価に提供する。
すなわち本発明は、丸棒状の磁性体の、後で形成される周回溝の内端に相当する位置に貫通孔を形成し、厚さがDの円形回転研削ブレードを用いて前記磁性体の側面に幅がほぼDの前記周回溝を形成し、前記磁性体を厚さがTとなるように切断したのち、この周回溝の中に前記貫通孔から半径rで断面がほぼ円形の導線を挿通して平面巻きスパイラルコイルを施し、その際に0.3mm<T<3mm、2r<D<3rであり、0.1mm<D<0.5mm、且つ(T−D)/2≧0.1mmを満足させることを特徴とする薄型磁気素子の製造方法を提供する
【0008】
【発明の実施の形態】
本発明の薄型磁気素子は、焼結フェライト等の丸棒状の磁性体を用意し、回転研削ブレードDにより所定の溝幅d(Dにほぼ等しい)を有する1本の周回溝形成し、所定の円板状の所定のフェライトコアが形成されるように同じ回転研削ブレードを使用して棒状の磁性体の残りの部分から切り離す。この工程を繰り返すことにより、多数のコアを製作し、得られたコアの各溝に所定の半径を有する導線を巻線して所望のインダクタの薄型磁気素子を得る。
この工程によれば、コアは棒状の磁性体の状態で周回溝の形成と切断が行われ、単一部品として製造されるので、次の工程で単に周回溝に巻線をすれば良く、部品点数が少なく、巻線工程を含むが組立て工程が容易で、特性が均一で、且つ安価な薄型化された薄型磁気素子およびその製造方法が提供できる。
【0009】
以下、本発明の具体的構成について詳細に説明する。
図1に本発明の磁界検出素子の断面図を示す。厚さがTの磁気コア10の側面に幅がdの周回溝11が形成されている。コア10の周囲にはさらに同じ厚さTの環状の外周磁気コア13がほぼ密着して取り付けられている。磁気コア10の周回溝11には半径rの導線20がスパイラル巻きされている。導線20はコア10の周回溝11の内端に開口する貫通孔12を通して周回溝11に挿通され、単層平面巻きされ、導線の他端は外周磁気コア13に設けた貫通孔または両コア10、13の隙間から外部に引き出される。
【0010】
ここで2r<d<3rとすることが最も重要であり、前記範囲以下では溝の中にコイルを巻き線できない。前記範囲以上では平面コイルとならず乱れた多段巻きコイルになってしまいやすく、素子間での特性ばらつきが多くなる。すなわちこの条件を満たすことで簡単に平面巻きスパイラルコイルを巻き線することが可能である。
ここで導線の半径rとは絶縁被覆を施した状態での半径であり、実際の導電体の半径とは異なる。特にこの導線を導電体の表面に自己融着性被覆を形成したものとすることで生産の効率化を高めることが可能である。
溝の幅、dは0.1mm<d<0.5mmであることが好ましく、前記範囲以下では使用する導線の取り扱いが困難であり、前記範囲以上では薄型化が困難であると同時に多くの巻数を巻くことが出来ない。
なお導線に断面が円形でなく、矩形の平角導線を用いることも可能であり、この場合には導線の半径rとは矩形断面の対角線の半分長さを意味することになる。
【0011】
磁性体としてはフェライトが安価で大量生産に適しており特に好ましい。磁性体の厚さTはインダクタの場合には0.3mm<T<3mmであることが必要で前記範囲以下では製造工程での破損する危険性が高く、前記範囲以上では、小型装置内への表面実装が困難である。機械的強度の面から、周回溝で隔てられる各壁の厚さは、少なくとも0.1mmにすべきであり、全厚を抑えるためには各壁の厚さは1.5mm未満とすべきである。インダクタの場合にはこの厚さは(T−d)/2≧0.1mmとなる。
【0012】
磁性体の側面に溝を形成するには、図4に示すように厚さがDの円形回転研削ブレード30を用い、丸棒状のフェライト等の磁性体15を回転させながら切削する。円形ブレードはダイシング加工に広く使用されており、ダイヤモンド等の高硬度砥粒を特殊メタルボンドで固定したものであり、その厚さの公差は0.025mm程度である。厚さDのブレードで溝加工することで、幅dがほぼDの周回溝が形成される。すなわち回転溝の取りしろ分が溝として形成される。
【0013】
また2本の溝を有する構造の1つの磁気コアを用い、2つの平面コイルを形成することでトランスとして使用することも可能である。すなわち1次コイルと2次コイルを近接して設けた別の溝の中に平面コイルとして形成する。
図3はこの構造を示し、磁気コア10の側面に幅がdの周回溝11が形成されている。コア10の周囲にはさらに同じ厚さの環状の外周磁気コア13がほぼ密着して取り付けられている。磁気コア10の周回溝11、11’には半径rの導線20、20’がスパイラル巻きされている。導線20、20’はコア10の周回溝11の内端に開口する貫通孔12を通して周回溝11、11’に挿通され、各々単層平面巻きされ、導線の他端は外周磁気コア13に設けた貫通孔または両コア10、13の隙間から外部に引き出される。このトランスの例でも全厚は3mm未満が好ましいが、周回溝11、11で隔てられる各壁の厚さが0.1mmないし1.5mm未満となるように制限するならより厚くても良い。
【0014】
なお、導線の挿入を行うための貫通孔12は、図5に示すように丸棒状の磁性体に軸線はずれの貫通孔16を穿孔しておき、次いで周回溝11の切り込みを行うのが能率的である。
【0015】
【実施例】
以下、本発明の実施例、比較例について詳細に説明する。
直径5mm、長さ5cmの円筒形NiZn焼結フェライトを素材として用いた。図5(a)に示すように中心から1mmの位置に直径0.15mmの貫通孔16をドリル加工により形成した。この貫通孔を空けた円筒形フェライトを治具に固定し、120rpmで回転させながら、端面から1mmの部分に厚さDが0.12mmのダイヤモンドブレード(3000rpm)にて直径2mmの中心部を残した溝加工を施した(図5b)。溝の幅dは0.122mmであった。さらに溝の端から1mmの部分を溝加工と同様の条件で、今度は切断加工し、磁気コア10を作製した(図5c)。すなわち、最初に設けた貫通孔16は最終的には貫通孔12となる。
この磁気コアの中央部の穴から半径0.05mmの有機物被覆銅線を通し、溝の部分にスパイラル巻き線を行った。さらに別に作製した外周部磁気コアを取り付け、薄型インダクタ1とした。
同様の工程で表1に示すT、D、rを変えた各種の薄型インダクタを試作した。いずれも10個ずつ製作し、1MHzのインダクタンスを測定しその平均値、ばらつき(最大値と最小値の差)を計算した。またDC−DCコンバータ基板に表面実装し、他の電子部品との基板面からの高さを比較した結果を表2に示す。
【0016】
【表1】

Figure 0004234802
【0017】
【表2】
Figure 0004234802
【0018】
以上の結果から、本発明のインダクタまたはトランスを構成する薄型磁性素子によると、導線を平面巻きするに際して平面に均一にコイルを巻くことが可能となり、生産能率が向上する。また加工方法も単に単一の丸棒状磁性体を回転研削ブレードにより周回溝の形成と切断を反復するだけの工程でよくコアの製作が比較的単純である。
本発明の磁気素子は厚さが薄く小型機器への使用が可能であり、かつ特性の安定した平面コイルを有する。
【図面の簡単な説明】
【図1】 本発明の方法により製造される薄型インダクタの1例の断面図を示す。
【図2】 本発明の方法により製造される薄型インダクタの1例の上面図を示す。
【図3】 参考例の方法により製造される薄型トランスの1例の断面図を示す。
【図4】 本発明の方法における薄型インダクタの溝加工の概要を示す。
【図5】 本発明の方法による薄型インダクタの磁気コア加工の概要を示し、(a)、(b)及び(c)は工程順を示す。
【符号の説明】
10 磁気コア
11 周回溝
12 貫通孔
13 外周磁気コア
15 棒状磁性体
16 貫通孔
20 導線
30 回転研削ブレード[0001]
BACKGROUND OF THE INVENTION
The present invention includes an inductor for use in ultra-thin electronic device suitable for surface mounting, the transformer, a method of manufacturing a magnetic element such as a choke coil.
[0002]
[Prior art]
As an advanced information society advances, electronic devices are strongly demanded to be miniaturized with high performance. For this reason, development of electronic parts with a small volume is progressing. Thinning in particular is an important trend. Magnetic elements in which a coil is wound around a magnetic core are widely used as inductors, transformers, and choke coils. However, since they are relatively large among electronic components, research into miniaturization and thinning has advanced. However, it is still not thin enough.
[0003]
For example, in Japanese Patent Laid-Open No. 9-205023, an air-core coil wound with a plate-shaped lead wire and a flat core that is divided into a plurality of parts to form a cavity for accommodating the air-core coil therein, When forming a closed magnetic circuit that circulates the air-core coil by incorporating a flat core, the inductor is made thin by devising how to draw out the lead wire.
[0004]
Japanese Patent Laid-Open No. 9-199347 discloses a spiral double coil that is spirally wound around the outer periphery of the first planar coil in which a conductive wire is spirally wound. It describes that a sheet transformer having a substantially closed magnetic circuit structure is manufactured by surrounding it with a flat strip-shaped core that surrounds in the diametrical direction, and that the positions of the lead portions of the first planar coil and the second planar coil are shifted for the purpose of thinning. ing.
[0005]
The 1997 Annual Meeting of the IEEJ National Conference 8-5 discloses a planar transformer and inductor in which grooves are formed in a ferrite substrate and a planar coil is formed by a plating method. Further, Japanese Patent Publication No. 3-55961 discloses a method of manufacturing a rotary transformer in which a printed coil produced by a plating method is buried in a groove provided in a ferrite substrate.
In order to reduce the thickness, it is effective to use a thin coil in which a conductive film such as plating is etched by photolithography similar to a semiconductor or patterned by a printing method using a conductive paste.
[0006]
[Problems to be solved by the invention]
However, as disclosed in Japanese Patent Application Laid-Open Nos. 9-205023 and 9-199347, a method using a flat coil is a very excellent manufacturing method in that it is inexpensive to wind a conductive wire in a plane. It was difficult to wind the coil uniformly, and the production efficiency was low.
The 1997 Annual Meeting of the IEEJ National Conference As in 5-5 and Japanese Patent Publication No. 3-55961, it is possible to provide a groove in the surface of the ferrite substrate for a rotary transformer or the like by a mold design at the time of molding. However, a thinner groove has been a complicated process because it is necessary to produce a large number of grooves one by one by machining using a bite after molding.
In order to reduce the thickness, it is effective to use a thin coil obtained by etching a conductive film such as plating by photolithography similar to a semiconductor or patterning by a printing method using a conductive paste. It is very expensive and unsuitable for mass production at low cost.
[0007]
[Means for Solving the Problems]
An object of the present invention is to solve the above-described problems, and to provide a method for manufacturing a thin magnetic element with easy winding and thinning at low cost.
That is, according to the present invention, a through hole is formed at a position corresponding to an inner end of a circular groove formed later in a round bar-like magnetic body, and a side surface of the magnetic body is formed using a circular rotary grinding blade having a thickness D. After forming the circumferential groove having a width of approximately D and cutting the magnetic body to a thickness of T, a conducting wire having a radius of r and a substantially circular cross section is inserted into the circumferential groove from the through hole. Then, a plane spiral coil is applied, in which case 0.3 mm <T <3 mm, 2r <D <3r, 0.1 mm <D <0.5 mm, and (T−D) /2≧0.1 mm A thin magnetic element manufacturing method characterized by satisfying the above is provided .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The thin magnetic element of the present invention is prepared by preparing a round bar-like magnetic body such as sintered ferrite, and forming a single circumferential groove having a predetermined groove width d (substantially equal to D) by the rotating grinding blade D, The same rotary grinding blade is used to cut off the remaining portion of the rod-like magnetic body so that a predetermined disc-shaped ferrite core is formed. By repeating this process, it produced a large number of cores, and winding a wire having a predetermined radius to each groove of the resultant core to obtain a thin magnetic element of the desired inductor.
According to this process, since the core is formed and cut as a single part in the state of a rod-like magnetic body, the core is manufactured as a single part. It is possible to provide a thin magnetic element and a method for manufacturing the thin magnetic element that have a small number of points, include a winding process, have an easy assembly process, have uniform characteristics, and are inexpensive.
[0009]
Hereinafter, a specific configuration of the present invention will be described in detail.
FIG. 1 shows a cross-sectional view of the magnetic field detection element of the present invention. A circumferential groove 11 having a width d is formed on a side surface of the magnetic core 10 having a thickness T. An annular outer peripheral magnetic core 13 having the same thickness T is attached to the periphery of the core 10 in close contact with each other. A conducting wire 20 having a radius r is spirally wound around the circumferential groove 11 of the magnetic core 10. The conducting wire 20 is inserted into the circumferential groove 11 through a through hole 12 opened at the inner end of the circumferential groove 11 of the core 10 and is wound in a single layer plane, and the other end of the conducting wire is a through hole provided in the outer magnetic core 13 or both cores 10. , 13 is pulled out to the outside.
[0010]
Here, it is most important that 2r <d <3r, and a coil cannot be wound in the groove below the above range. Above the above range, the coil is not a flat coil but is likely to be a disordered multi-stage coil, resulting in a large variation in characteristics between elements. That is, when this condition is satisfied, it is possible to easily wind the planar spiral coil.
Here, the radius r of the conducting wire is a radius in a state where the insulating coating is applied, and is different from the radius of the actual conductor. In particular, it is possible to increase the production efficiency by making this conductor a self-fusing coating on the surface of the conductor.
The width of the groove, d, is preferably 0.1 mm <d <0.5 mm. If the width is less than the above range, it is difficult to handle the conductive wire to be used. Can not be wound.
It is also possible to use a rectangular rectangular conductor having a circular cross section as the conductor, and in this case, the radius r of the conductor means a half length of the diagonal of the rectangular section.
[0011]
As a magnetic material, ferrite is particularly preferable because it is inexpensive and suitable for mass production. In the case of an inductor, the thickness T of the magnetic material needs to be 0.3 mm <T <3 mm. If the thickness is less than the above range, there is a high risk of breakage in the manufacturing process. Surface mounting is difficult . In terms of machine械的strength, the thickness of each wall being separated by circumferential grooves should be at least 0.1 mm, the thickness of each wall in order to reduce the total thickness should be less than 1.5mm It is. In the case of an inductor, this thickness is (T−d) /2≧0.1 mm.
[0012]
In order to form a groove on the side surface of the magnetic material, a circular rotary grinding blade 30 having a thickness D is used as shown in FIG. A circular blade is widely used for dicing, and is formed by fixing high-hardness abrasive grains such as diamond with a special metal bond, and its thickness tolerance is about 0.025 mm. By performing grooving with a blade having a thickness D, a circumferential groove having a width d of approximately D is formed. That is, the margin of the rotating groove is formed as a groove.
[0013]
It is also possible to use as a transformer by using a single magnetic core having a structure having two grooves and forming two planar coils. That is, the primary coil and the secondary coil are formed as planar coils in separate grooves provided close to each other.
FIG. 3 shows this structure, and a circumferential groove 11 having a width d is formed on the side surface of the magnetic core 10. Around the core 10, an annular outer peripheral magnetic core 13 having the same thickness is attached in close contact. Conductive wires 20 and 20 ′ having a radius r are spirally wound around the circumferential grooves 11 and 11 ′ of the magnetic core 10. The conducting wires 20 and 20 ′ are inserted into the circumferential grooves 11 and 11 ′ through the through-holes 12 opened at the inner end of the circumferential groove 11 of the core 10, and each is wound in a single layer plane, and the other end of the conducting wire is provided on the outer magnetic core 13. It is pulled out from the through hole or the gap between both cores 10 and 13. In this example of the transformer, the total thickness is preferably less than 3 mm, but may be thicker if the thickness of each wall separated by the circumferential grooves 11 and 11 is limited to 0.1 mm to less than 1.5 mm.
[0014]
As shown in FIG. 5, the through-hole 12 for inserting the conducting wire is efficiently formed by drilling a through-hole 16 that is off the axis in a round bar-shaped magnetic body and then cutting the circumferential groove 11. It is.
[0015]
【Example】
Examples of the present invention and comparative examples will be described in detail below.
Cylindrical NiZn sintered ferrite having a diameter of 5 mm and a length of 5 cm was used as a material. As shown in FIG. 5A, a through hole 16 having a diameter of 0.15 mm was formed by drilling at a position 1 mm from the center. While fixing this cylindrical ferrite with a through hole to a jig and rotating it at 120 rpm, a diamond blade (3000 rpm) with a thickness D of 0.12 mm is left in the 1 mm portion from the end face, leaving a central portion of 2 mm in diameter. Grooving was performed (FIG. 5b). The width d of the groove was 0.122 mm. Further, a portion 1 mm from the end of the groove was cut and processed under the same conditions as in the groove processing to produce a magnetic core 10 (FIG. 5c). That is, the first through hole 16 that is provided first becomes the through hole 12.
An organic-coated copper wire having a radius of 0.05 mm was passed through the hole in the center of the magnetic core, and spiral winding was performed on the groove. Further, a separately manufactured outer peripheral magnetic core was attached to form a thin inductor 1.
Various thin inductors with different T, D, and r shown in Table 1 in the same process were made as trial products. 10 pieces of each were manufactured, 1 MHz inductance was measured, and the average value and variation (difference between the maximum value and the minimum value) were calculated. Table 2 shows the results of surface mounting on a DC-DC converter substrate and comparing the height from the substrate surface with other electronic components.
[0016]
[Table 1]
Figure 0004234802
[0017]
[Table 2]
Figure 0004234802
[0018]
From the above results, according to the thin magnetic element constituting the inductor or the transformer of the present invention, it is possible to uniformly wind a coil on a plane when the conductor wire is wound on a plane, and the production efficiency is improved. The processing method may be a process of simply forming and cutting a circular groove on a single round bar-shaped magnetic body with a rotating grinding blade, and the manufacture of the core is relatively simple.
The magnetic element of the present invention is thin and can be used for small equipment, and has a planar coil with stable characteristics.
[Brief description of the drawings]
FIG. 1 shows a cross-sectional view of an example of a thin inductor manufactured by the method of the present invention.
FIG. 2 shows a top view of an example of a thin inductor manufactured by the method of the present invention.
FIG. 3 shows a cross-sectional view of an example of a thin transformer manufactured by the method of the reference example .
FIG. 4 shows an outline of groove processing of a thin inductor in the method of the present invention.
FIG. 5 shows an outline of processing of a magnetic core of a thin inductor by the method of the present invention, wherein (a), (b) and (c) show the order of steps.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Magnetic core 11 Circumferential groove 12 Through-hole 13 Outer peripheral magnetic core 15 Rod-shaped magnetic body 16 Through-hole 20 Conductor 30 Rotating grinding blade

Claims (1)

丸棒状の磁性体の、後で形成される周回溝の内端に相当する位置に貫通孔を形成し、厚さがDの円形回転研削ブレードを用いて前記磁性体の側面に幅がほぼDの前記周回溝を形成し、前記磁性体を厚さがTとなるように切断したのち、この周回溝の中に前記貫通孔から半径rで断面がほぼ円形の導線を挿通して平面巻きスパイラルコイルを施し、その際に0.3mm<T<3mm、2r<D<3rであり、0.1mm<D<0.5mm、且つ(T−D)/2≧0.1mmを満足させることを特徴とする薄型磁気素子の製造方法。  A through hole is formed at a position corresponding to the inner end of a circular groove formed later in a round bar-like magnetic body, and the width of the side of the magnetic body is approximately D using a circular rotary grinding blade having a thickness of D. And the magnetic body is cut so that the thickness becomes T, and then a conductive wire having a radius r from the through hole is inserted into the circumferential groove to obtain a planar spiral Coil is applied, and 0.3 mm <T <3 mm, 2r <D <3r, 0.1 mm <D <0.5 mm, and (T−D) /2≧0.1 mm are satisfied. A method for manufacturing a thin magnetic element.
JP27668897A 1997-09-25 1997-09-25 Manufacturing method of thin magnetic element Expired - Fee Related JP4234802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27668897A JP4234802B2 (en) 1997-09-25 1997-09-25 Manufacturing method of thin magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27668897A JP4234802B2 (en) 1997-09-25 1997-09-25 Manufacturing method of thin magnetic element

Publications (2)

Publication Number Publication Date
JPH11102818A JPH11102818A (en) 1999-04-13
JP4234802B2 true JP4234802B2 (en) 2009-03-04

Family

ID=17572945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27668897A Expired - Fee Related JP4234802B2 (en) 1997-09-25 1997-09-25 Manufacturing method of thin magnetic element

Country Status (1)

Country Link
JP (1) JP4234802B2 (en)

Also Published As

Publication number Publication date
JPH11102818A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US6512438B1 (en) Inductor core-coil assembly and manufacturing thereof
KR100360970B1 (en) Multilayer inductor
US4392072A (en) Dynamoelectric machine stator having articulated amorphous metal components
US6525635B2 (en) Multilayer inductor
US20090029185A1 (en) Magnetic device and manufacturing method thereof
US6918173B2 (en) Method for fabricating surface mountable chip inductor
JP4234802B2 (en) Manufacturing method of thin magnetic element
JPH04131919U (en) coil parts
EP0747913A1 (en) Surface mount electronic component with a grooved core and a method for making
JP2001068364A (en) Toroidal coil and its manufacturing method
JP2004006696A (en) Wire-wound inductor
KR102310477B1 (en) Inductor and producing method of the same
JP2002334813A (en) Coil assembly method of manufacturing the same, and chip bead inductor
JP2001257120A (en) Multiple cylindrical choke coil
KR20020090507A (en) Manufacturing surface mounted chip inductor and method therefor
JP2004221177A (en) Coil component
JPH02256214A (en) Chip inductor and its manufacture
JP2003163125A (en) Inductor for power source
KR100386307B1 (en) Method for manufacturing surface mounted chip inductor
JP2004221178A (en) Method for manufacturing coil component
JP2004047942A (en) Winding type inductor
JP2001338811A (en) Flat coil body and manufacturing method thereof, electromagnetic equipment and manufacturing method thereof
JPH06333762A (en) Choke coil, its manufacturing method, and hybrid integrated circuit
KR102459952B1 (en) Inductor
JP2004241587A (en) Winding coil component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080131

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080131

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees