JP4233929B2 - Phosphor and light emitting device using the same - Google Patents

Phosphor and light emitting device using the same Download PDF

Info

Publication number
JP4233929B2
JP4233929B2 JP2003168473A JP2003168473A JP4233929B2 JP 4233929 B2 JP4233929 B2 JP 4233929B2 JP 2003168473 A JP2003168473 A JP 2003168473A JP 2003168473 A JP2003168473 A JP 2003168473A JP 4233929 B2 JP4233929 B2 JP 4233929B2
Authority
JP
Japan
Prior art keywords
phosphor
light
red
light emitting
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003168473A
Other languages
Japanese (ja)
Other versions
JP2004331934A (en
Inventor
秀雄 鈴木
尚生 鈴木
Original Assignee
化成オプトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 化成オプトニクス株式会社 filed Critical 化成オプトニクス株式会社
Priority to JP2003168473A priority Critical patent/JP4233929B2/en
Publication of JP2004331934A publication Critical patent/JP2004331934A/en
Application granted granted Critical
Publication of JP4233929B2 publication Critical patent/JP4233929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、410nmより短波長の近紫外線を発する発光ダイオード(LED)の様な励起光源と、赤色発光蛍光体及びこの蛍光体を用いた白色発光及び多色発光蛍光体との組み合わせにより、種々の発光を呈する照明用、液晶ディスプレイや携帯情報端末等のバックライト用、インジケータ光源用及びディスプレイ用として用いられる発光素子に関する。
【0002】
【従来の技術】
蛍光体の代表的な用途の1つとして蛍光ランプが知られており、古くから照明やディスプレーとして実用されている。周知のように蛍光ランプはガラス管の内壁に形成された蛍光体からなる蛍光膜が、水銀蒸気を封入したガラス管内において、放電で発生する紫外線より励起され発光することを利用し、照明用等の光源として用いられている。
【0003】
ところで、近年、環境問題や省電力の観点から水銀を使用しない、より消費電力の少ない照明用の光源として、発光ダイオード(LED)や半導体レーザー(LD)を励起用光源として用い、これと蛍光体とを組合せて、LEDやLDからの発光を用い蛍光体を励起して発光させ、その時出る光を光源として用いる方法が開発されている。例えば、特許第2,927,279号公報には、LEDチップが発する青色系の可視光と、このLEDチップの青色系発光の一部を吸収して発光するCe付活希土類アルミン酸塩蛍光体からの黄色系の発光との加色混合によって全体として白色系の発光を呈する発光ダイオードが開示されている。
【0004】
しかしながら、特許第2,927,279号に開示されている従来のLED等の励起用光源と蛍光体とを組み合わせたタイプの光源では、LED等の励起用光源の発光波長が限定されることや、用いられる励起用光源により発光し得る蛍光体の種類が極めて限られている等のため、最終的に得られる発光色が白色系に限定されるとかマルチカラー的な色が出せない等の制約があった。また白色についても照明下の色は好ましい色が再現されず、演色性も問題であった。
【0005】
近年、この様な問題を解決するため、2色加色での白色合成の欠点を補う方法として、U.S.P.6294800、U.S.P.6255670等で3成分、緑、青、赤での混合による方法が紹介されている。ここで使用されている蛍光体は緑発光蛍光体としてはCaMg(SiOCl:Eu,Mn、青発光蛍光体としてはBaMgAl1017:Eu等が、また赤色蛍光体としては、YS:EuまたはY:Eu,Bi等があげられている。
【0006】
この3成分の混合による方法は、2色成分法に比べればその光源照明下での映り出される色の再現はかなり改善されて来ている。しかしながら成分として用いられている個々の蛍光体自身の色調が好ましくない場合、その光源の照明下で映り出される色は再現性が乏しく望む色が出せず、前記の様な従来の技術の場合は、特に赤色の蛍光体の色調が望ましい赤色から離れているため、満足な白色光源を得ることができない。
【0007】
この様な問題の改善策として、特開平11−246857で370nm前後の近紫外線を発するLEDチップと蛍光体とを組み合わせたLED発光素子において、(La,Eu,Sm)Sを赤色蛍光体として使用することが報告され、効果があることが示されている。(La,Eu,Sm)S赤色蛍光体は370nm前後の近紫外線に対し、効率的な吸収を有し、ピーク波長が625nm付近の比較的良好な発光色を持ち、輝度についても比較的良好である。
しかしながら、市場要望と照らし合せると、輝度の面でなお不十分であり更なる高輝度が望まれている。また一方白色発光や多色発光の蛍光体及び発光素子についても、輝度及び演色性の面で依然不十分であるのが現状である。
【0008】
【発明が解決しようとする課題】
LED発光素子は、蛍光ランプに代わる照明、液晶や携帯電話バックライト用光源として期待されており、色再現性、演色性、及び輝度や発光効率などの特性の向上が常に望まれている。
(La,Eu)Sや特開平11−246857 で開示されているLED用(La,Eu,Sm)S蛍光体は、ディスプレイ等で汎用されている代表的な赤色蛍光体である(Y,Eu)Sよりも、382nm近辺の近紫外線の励起下ではより高い輝度を示し、比較的良好な蛍光体と考えられるが、しかし実用においては不十分であり一層の輝度向上が望まれている。
【0009】
一方白色蛍光体及び多色蛍光体については、(La,Eu)S又は(La,Eu,Sm)S蛍光体を赤色成分として用い青色発光や緑色発光及び黄色発光の蛍光体と混合し白色発光蛍光体を得た場合、この赤色蛍光体の体色が黄色を呈し、青色及び緑色の波長領域で図1に示される様に粉末反射率が低くなっているため、青色光や緑色光あるいは黄色光等の光は一部赤色蛍光体の結晶に吸収されロスしてしまう。結果白色蛍光体としてのトータル輝度は低下して、十分な輝度が得られない問題があった。
【0010】
本発明はかかる事情を鑑みてなされたもので、360〜410nmの近紫外線の励起で従来の赤色発光の蛍光体より高輝度で、粉末反射率が高く体色の少ない赤色蛍光体と、この赤色蛍光体を含有しこれとは異なる蛍光体を一種以上含有する混合蛍光体で、同近紫外線の励起により白色発光及び多色発光する蛍光体を提供することを目的とする。
また更に、360〜410nmの範囲にピークがある波長の近紫外線を放出するLEDチップ〔発光ダイオードチップ〕とLEDチップからの放射光を受けて発光する蛍光体から構成される赤色発光及び白色発光及び多色発光のLED発光素子も併せて提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記目的達成のため、種々の組成から成る赤色蛍光体を作製し、この組成成分の種類及び製造法が蛍光体の発光輝度と体色に及ぼす影響について検討すると共に、赤色蛍光体とそれ以外の発光を有する青色蛍光体と緑色蛍光体の混合による高輝度な白色発光蛍光体を検討した。
その結果、ユーロピウム付活酸硫化ランタン蛍光体に所定量のSi及びGeの中の少なくとも1種を添加することにより、382nm近辺の近紫外線の照射で発光効率が高く、体色が白く青色及び緑色の可視域での粉末反射率が高い蛍光体を得ることが出来た。
【0012】
また、本発明の赤色蛍光体と青色蛍光体と緑色蛍光体の混合による高輝度な白色発光蛍光体を検討した結果、本発明のSi及びGeの中の少なくとも1種を含有するユーロピウム付活酸硫化ランタン赤色発光蛍光体と特に緑色発光のZnS:Au,Cu,Al又はBaMgAl1017:Eu,Mn、と青色発光のBaMgAl1017:Eu,Mn 又はCaCl:Eu蛍光体を組み合わせ混合した白色発光蛍光体、高輝度であることを見いだし本発明に至った。
【0013】
本発明は下記の構成から成る。
(1)一般式(La1−x,EuSで表される蛍光体(但し、0.02≦x≦0.50)において、該蛍光体重量に対し10ppm〜2000ppmのSi及び/又はeを含有することを特徴とする紫外線励起用赤色発光蛍光体。
)前記紫外線の波長が360〜410nmの近紫外であることを特徴とする前記(1)に記載の紫外線励起用赤色発光蛍光体。
)前記紫外線励起用赤色発光蛍光体において、波長450nm、545nm、及び624nmにおける粉末反射率がそれぞれ84%以上、94%以上及び97%以上であることを特徴とする前記(1)に記載の紫外線励起用赤色発光蛍光体。
【0014】
前記(1)〜(3)のいずれかに記載の紫外線励起用赤色発光蛍光体と、緑色発光蛍光体及びまたは青色発光成分蛍光体との混合蛍光体からなることを特徴とする白色発光蛍光体又は多色発光蛍光体。
)前記緑色発光蛍光体として、ZnS:Cu,Al、ZnS:Au,Al、ZnS:Au,Cu,Al、BaMgAl1017:Eu,Mn及びBaMgAl1017:Mnの中の少なくとも一つの蛍光体を含有し、青色発光蛍光体として、BaMgAl1017:Eu又は(Sr,Ca,Ba,Mg)10(POCl:Eu、CaCl:Eu及びZnS:Ag,Alの中の少なくとも一つの蛍光体を含有することを特徴とする前記)に記載の白色発光蛍光体又は多色発光蛍光体。
)360〜410nmの波長領域に発光ピークを有する近紫外線を放出するLEDチップ〔発光ダイオードチップ〕と、前記LEDチップからの放射光を受けて発光する蛍光体とを備える発光素子であって、前記蛍光体が前記(1)〜(3)のいずれかに記載の紫外線励起用赤色発光蛍光体、又は前記(4)、(5)のいずれかに記載の白色発光蛍光体及び多色発光蛍光体からなることを特徴とする発光素子。
【0015】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
本発明の蛍光体は次の様にして製造される。一般式(La1−x,EuS(但し、0.02≦x≦0.50)の母体組成の構成を有し、不純物添加元素としてSi及びGeの中の少なくとも1種の濃度が母体重量に対し10〜2000ppmとなる様、まず目的不純物が所定量添加された希土類原料(La、Eu)を作製する。
不純物の添加法としては、所定量秤量されたLa、Euに対し所定量の不純物を固形、粉体の形で直接投入し混合する方法と、一旦不純物を含む水溶液又はアルコール液を作製し、それを希土類原料に所定量添加、ペースト混合、乾燥、篩いを施して、目的の不純物が所定量含有した希土類主原料を得る方法とがある。
不純物としては、次のものを使用することができる。Siの場合は珪酸ナトリウム、珪酸カリウム等の珪酸塩、エチルシリケートなどの有機珪酸塩等珪素化合物または珪素等、珪素を含む化合物。Geの場合は酸化ゲルマニウム(GeO)、硫化ゲルマニウム(GeS)及びNaGeOやNaGeなどのゲルマニウム酸塩またはゲルマニウム等、ゲルマニウムを含む化合物が使用される
【0016】
次いで、このようにして得られた目的の不純物を所定量含有した主原料に対し、副原料であるSを一般式で表せる量に対し、焼成工程時のロス分等考慮し理論値より過剰量加える、更に焼成雰囲気保持剤、結晶成長剤としてNaCO、LiPOなどを加えて混合する。上記の様にして得られた原料混合体を蓋付きのアルミナ坩堝等の焼成容器に詰め、1000〜1300℃で2〜6時間焼成する。
焼成を終えた焼成物は、一旦水に漬けた後、水洗を行って焼成時発生した多硫化アルカリ等の不要物を溶解除去し、うすい鉱酸水溶液で洗浄した後水洗を加え、其の後必要に応じボールミル等による分散処理を施した後、水篩等の湿式分級法で不要な大粒子を除くなどの分級処理を加えた後、乾燥、篩いを行うことにより本発明の蛍光体が得られる。更に必要性に応じ耐久性の改善のために無機物又は有機物の表面処理を施してもよい。
【0017】
なお本発明の主要素である不純物の添加量については、10〜2000ppmで輝度の向上効果を示し、10ppm以下では顕著な効果が現れず、また2000ppm以上では効果がないか又は逆に輝度低下を招く。また添加量と実際に蛍光体結晶に取り込まれ含有される量との関係は表1の実施例1(Si添加)、実施例2(Ge添加)、参考例3(Ga添加)、参考例4(Ti添加)、参考例5(Ta添加)の添加量と含有量に示される様に、その元素により取り込まれる程度が異なるため、必要に応じ目的の含有設定量よりも予め多めに添加する必要がある。
【0018】
図1はSi添加の本発明蛍光体(LaS:Eu+Siと表示)の粉末反射スペクトルを示しているが、未添加の未処理蛍光体(LaS:Euと表示)に対し可視全域である波長450nm、545nm、624nmにおける粉末反射率が高くなる特徴を有している。添加される元素の種類及び添加の量にも影響されるが、表1の様にその各波長ポイントにおいて、84%、94%、97%以上の値を示し反射率が高く体色がより白くなっていることを意味している。この様な反射率の高い本発明蛍光体(La,Eu)Sを赤色成分として用いて、青色発光や緑色発光及び黄色発光の蛍光体と混合し白色発光蛍光体を得た場合は、赤色蛍光体の体色が黄色を呈し、青色及び緑色の波長領域(450nm、545nm)で粉末反射率が低く、青色光や緑色光あるいは黄色光等の光が一部赤色蛍光体の結晶に吸収されロスしてしまうと言う従来の問題は軽減、改善することができる。そのため白色発光蛍光体または多色発光蛍光の輝度はトータル的には高くなり改善される。またここで用いられる白色発光蛍光体または多色発光蛍光体の構成成分である青色発光蛍光体としては、BaMgAl1017:Eu又は(Sr,Ca,Ba,Mg)10(POCl:Eu、CaCl:Eu及びZnS:Ag,Alの中の少なくとも一つ、緑色発光蛍光体としては、ZnS:Cu,Al、ZnS:Au,Al、ZnS:Au,Cu,Al、BaMgAl1017:Eu,Mn及びBaMgAl1017:Mnの中の少なくとも一つを用いることができる。
【0019】
また粉末反射率の改善された本発明の赤色発光蛍光体をより効果的に用いるためには、組合せの蛍光体の反射率が同様に高いことが望ましく、緑色発光蛍光体としては体色が黄緑で比較的反射率の低いZnS:Cu,Al、ZnS:Au,Al、ZnS:Au,Cu,Alよりも体色が白く反射率の高いBaMgAl1017:Eu,Mnがより好適と言える。
一方前記の本発明蛍光体を用いた、本発明の発光素子は360〜410nmの範囲にピークがある波長の近紫外線を放出するLEDチップ〔発光ダイオードチップ〕とLEDチップからの放射光を受けて発光する蛍光体から構成される赤色発光及び白色発光及び多色発光のLED発光素子で、図2の様な概略構造を有し具体的には下記の様に作製される。まず構成要素の一つである励起用発光としては、近紫外〜短波長可視光の波長域に発光する発光素子が用いられる。この励起用光源である発光素子としては、比較的入手し易く、しかも発光効率が高くて、蛍光体をより高輝度に発光させ得る点で、その発光ピークの波長λが300〜500nmで、より好ましくは360〜480nmである(Ga1−xIn)N(但し、xは0≦x≦0.5)等の窒化物系化合物半導体からなる発光ダイオード(LED)や半導体レーザー(LD)を使用することができる。
【0020】
本発明の発光素子は、前記の蛍光体が励起用光源からの光を受光して吸収し得るような位置関係にあり、励起光源に対峙するような配置で構成されている。
図2に示されている様に、ステム1上には半導体発光素子チップ3が電気的に接着されており、一方、半導体発光素子チップ3の他方の電極とリード2の1つとがリード線5により電気的に接続されている。
このステム1にはドーム状の透明樹脂被覆蓋体5が固着される。そして、この透明樹脂被覆蓋体5の内面には、蛍光体を分散させた結合剤が塗布され蛍光体層6が形成されている。透明樹脂被覆蓋体5は、エポキシ樹脂、アクリル樹脂、シリコン樹脂、ポリスチレンなどの樹脂やガラス等の光に対して透明な材料で構成され、半導体発光素子チップ3の気密封止用キャップの役割を兼ねてステム1に整固着されている。リード線2に通電することによって半導体発光素子チップ3が発光し、この発光光が空間層を介して透明樹脂被覆蓋体5の内壁面に形成されている蛍光体層6面に照射され、蛍光体層6がこの半導体発光素子チップ3からの発光を吸収して励起され、半導体発光素子チップ3とは異なる発光波長で本発明の構成要素として示された蛍光体に固有の発光を呈する。
【0021】
このような構成を有する本発明の発光素子の一構成要素である蛍光体層において、本発明の赤色蛍光体または発光色の異なる複数の蛍光体と混合された白色発光蛍光体または多色発光蛍光体を用いることにより、高輝度で色再現性、演色性にも問題ない発光素子を得ることができる。この様な発光素子の実現により、照明用、液晶ディスプレイや携帯情報端末等のバックライト用、インジケータ光源用及びディスプレイ用として白色光源に限らず多色光源としても、高輝度で色再現性、演色性にも問題ないものを提供することが可能となる。
【0022】
【実施例】
次に実施例により本発明を説明するが、本発明は以下の実施例に例示した実施の態様に限定されるものではない。
〔実施例1〕
蛍光体出発原料として、La粉末を46.8gと、Euを3.23g混合し、次いで珪酸カリウム(SiO含有量20%)を希釈しSi濃度を5mg/mlに調整した珪酸カリウム溶液を2.3ml添加し、混合物全体がペースト液状になるまで水を添加し混合する。これを乾燥して粉砕・混合した後、NaCOを20gとSを15g投入し、混合して調合物とした。
次に、得られた混合物をアルミナルツボに充填し、蓋をして最高温度1200℃にて3時間焼成した。得られた焼成物を純水にて十分洗浄し多硫化アルカリなどの不純物を取り除いた。ついで、蛍光体スラリー液中に希釈塩酸を加え、PH=1.5以下のスラリーで洗浄したのち水洗を行い、以降は通常の分散処理、乾燥、篩いを行うことにより、実施例1のSi添加量220ppmの蛍光体が得られた。
【0023】
このようにして得られた蛍光体はX線回折分析並びにICP分析により、Siを220ppm含有する(La1−x,EuSなる本発明の蛍光体であることを確認した。また輝度については、Xeランプ光を分光して得た382nmの近紫外線を照射し、蛍光体からの発光を輝度計にて測定し、表1に示されている様に従来の比較蛍光体1に対し14%向上していることが確認した。更に本発明蛍光体の特徴である粉末反射率については、SHIMAZU UV−3100PCを用い測定した結果、表1に示されている様に、波長450nm、545nm、624nmの各点での粉末反射率は未処理の比較蛍光体のそれに比較し高い値を示している。詳細には、図1の粉末反射スペクトルでその差を明確に確認できた。
【0024】
【表1】

Figure 0004233929
表1において、LOS:Euは(La1−x,EuSをLOS:Eu+Siは不純物Siを含む(La1−x,EuSをそれぞれ示す。
【0025】
〔実施例2、参考例1
実施例1でSi濃度を5mg/mlに調整した珪酸カリウム溶液を2.3ml添加することに替え、それぞれGeを硝酸に溶解してGe濃度を5mg/mlに調整した溶液を4.4ml添加すること、Gaを硝酸に溶解してGa濃度を1mg/mlに調整した溶液を21.3ml添加すること、Ti濃度1mg/mlの硫酸水溶液を14.6ml添加すること以外は実施例1と同様にしてGeを20ppm含有する実施例2、Gaを20ppm含有する参考例1、Tiを250ppm含有する参考Taを510ppm含有する参考の本発明の蛍光体を得た。評価については、実施例1同様の方法で行い、Ge、Ga、Ti、Ta添加についても表1に示されている様に多少のレベル差はあるものの、Siと同様の効果があることを確認することができた。
【0026】
〔比較例1〕
出発原料として、La粉末を46.8gとEuを3.23g混合し、次いでNaCOを20gとSを15g投入し混合して調合物とした。調合物の充填及び焼成以降の工程は実施例1と同様にて、特定不純物を含まない従来仕様の(La1−x,EuS蛍光体を作製し比較例1の蛍光体を得た。
【0027】
〔比較例2〕
実施例の蛍光体をカラーテレビなどで一般的に用いられている代表的赤色蛍光体とレベル比較する為に準備した既存の顔料を付着していないYS:Eu蛍光体である。YS:Eu蛍光体は本発明蛍光体に対し輝度が約半分のレベルであることが確認できた。
【0028】
【表2】
Figure 0004233929
表2において、BAM:EuはBaMgAl1017:Eu、BAM:Mn,EuはBaMgAl1017:Eu、CCB:EuはCaCl:Euをそれぞれ示す。
【0029】
〔実施例3〜6、参考例4
実施例1、2に記載の所定の元素を含有する(La1−x,EuS赤色蛍光体の各々について、ZnS:Cu,Al緑色発光蛍光体及びBaMgAl1017:Eu青色発光蛍光体とを色度値がx=0.31,y=0.33となるように適当量混合し、実施3〜、及び参考例4の白色発光の蛍光体を得た。
実施例1同様の方法で評価を行ったが、白色発光蛍光体においても実施例1、2の蛍光体同様、改善効果が反映されており、輝度は表2に示されている様に従来の比較例3の蛍光体に対し、2〜8%向上していることが確認できた。
【0030】
〔実施例
実施例1に記載のSiを含有する(La1−x,EuS赤色蛍光体とBaMgAl1017:Eu,Mn緑色蛍光体及びBaMgAl1017:Eu青色蛍光体とを色度値がx=0.31,y=0.33となるように適当量混合し、実施例の白色発光の蛍光体を得た。組合せの蛍光体を変えても、表2に示されている様に実施例と同様に輝度向上の効果があることが確認できた。
【0031】
〔実施例
実施例1に記載のSiを含有する(La1−x,EuS赤色蛍光体とBaMgAl1017:Eu,Mn緑色蛍光体及びCaCl:Eu青色蛍光体を色度値とをx=0.31,y=0.33となるように適当量混合し実施例の白色発光の蛍光体を得た。前記同様、組合せの蛍光体を変えても、表2に示されている様に同様の効果があることが確認できた。
【0032】
〔比較例3〕
比較例1に記載の(La1−x,EuS赤色蛍光体とZnS:Cu,Al緑色蛍光体及びBaMgAl1017:Eu青色蛍光体とを色度値がx=0.31,y=0.33となるように適当量混合し、比較例3の白色発光の蛍光体を作製した。
【0033】
〔比較例4〕
比較例2に記載の(Y1−x,EuS赤色蛍光体とZnS:Cu,Al緑色蛍光体及びBaMgAl1017:Eu青色蛍光体とを色度値がx=0.31,y=0.33となるように適当量混合し、比較例4の白色発光蛍光体を作製した。
【0034】
〔実施例
本発明蛍光体を用いた、本発明の発光素子については、実施例1に記載のSiを含有する(La1−x,EuS赤色蛍光体10gとエポキシ樹脂(日東電工社製、NT8014)1gと酸無水物系硬化剤1gを混合して蛍光体塗布液を調製した。これとは別に、励起用光源として主ピーク波長400nmの近紫外発光を示す発光ダイオード素子のウエハー部分を水平に保持し、先に調製した蛍光体塗布液をその発光部上に細いノズルから滴下してドーム状の蛍光体塗布膜を作り、次いでこれをそのまま半回転して蛍光体塗布面を逆水平にして表面張力を利用しドーム状の塗膜内で蛍光体を室温で自然乾燥させた後、およそ150℃で3時間更に乾燥して表面に本発明の蛍光体が塗布された発光素子を作製した。
このようにして得られた発光素子の電極に通電したところ、CIE表色系で表される発光色度点がx=0.65、y=0.34である、赤色の発光を示す発光素子が得られた。得られた発光素子の輝度は下記の比較例5に対し15%明るかった。
【0035】
〔実施例〕 実施例に記載のSiを含有する(La1−x,EuS赤色蛍光体と、ZnS:Cu,Al緑色発光蛍光体及びBaMgAl1017:Eu青色発光蛍光体との混合で構成された白色発光蛍光体10gとエポキシ樹脂(日東電工社製、NT8014)1gと酸無水物系硬化剤1gを混合して蛍光体塗布液を調製した。以降実施例と同様にして白色発光の発光素子を作製した。
このようにして得られた発光素子の電極に通電したところ、CIE表色系で表される発光色度点がx=0.34、y=0.38である、白色の発光を示す発光素子が得られた。得られた発光素子の輝度は、下記の比較例6に対し10%明るかった。
【0036】
〔比較例5〕
比較例1に記載のSiを含有しない(La1−x,EuS赤色蛍光体10gとエポキシ樹脂(日東電工社製、NT8014)1gと酸無水物系硬化剤1gを混合して蛍光体塗布液を調製した。以降実施例と同様にして,比較例5の赤色発光の発光素子を作製した。
【0037】
〔比較例6〕
比較例3に記載のSiを含有しない(La1−x,EuS赤色蛍光体を用いた白色発光蛍光体10gとエポキシ樹脂(日東電工社製、NT8014)1gと酸無水物系硬化剤1gを混合して蛍光体塗布液を調製した。以降実施例と同様にして比較例6の白色発光の発光素子を作製した。
【0038】
なお、上記実施例では、赤色発光蛍光体の組成として、(La,Eu)Sを基本として例記したが、本発明の特定不純物添加で輝度向上を図る仕様は、上記組成を基本としてモディファイされた公知技術、例えばEuの一部をSm置換した蛍光体(La,Eu,Sm)S、及び輝度向上のため増感効果を狙って微量の希土類元素Tb,Pr等を添加した蛍光体にも同様に適用できる。
【0039】
【発明の効果】
本発明は、上記の様な構成とすることにより、高輝度の赤色蛍光体及び白色発光蛍光体または多色発光蛍光体を得ることができ、発光素子においても高輝度で色再現性にも問題ないものを得ることができる。この様な発光素子の実現により、照明用、液晶ディスプレイや携帯情報端末等のバックライト用、インジケータ光源用及びディスプレイ用として白色光源に限らず多色光源として、高輝度で色再現性、演色性にも問題ないものを提供することができる。
【0040】
【図面の簡単な説明】
【図1】 Siを含有する本発明の(La1−x,EuS蛍光体とSiを含有しない従来の(La1−x,EuSの反射スペクトルの比較を例示するグラフである。
【図2】 本発明の発光素子の一実施例を示す概略断面図である。
【符号の説明】
1 ステム
2 リード線
3 半導体発光素子チップ(LEDチップ)
4 金線
5 透明樹脂被覆蓋体
6 蛍光体層[0001]
BACKGROUND OF THE INVENTION
The present invention provides various combinations of an excitation light source such as a light emitting diode (LED) that emits near ultraviolet rays having a wavelength shorter than 410 nm, a red light emitting phosphor, and white light emission and multicolor light emission phosphors using this phosphor. The present invention relates to a light-emitting element used for lighting that emits light, for backlights such as liquid crystal displays and portable information terminals, indicator light sources, and displays.
[0002]
[Prior art]
A fluorescent lamp is known as one of the typical uses of a phosphor, and has been practically used as an illumination or a display for a long time. As is well known, a fluorescent lamp uses a fluorescent film made of a phosphor formed on the inner wall of a glass tube to emit light by being excited by ultraviolet rays generated by discharge in a glass tube filled with mercury vapor. It is used as a light source.
[0003]
By the way, in recent years, light emitting diodes (LEDs) and semiconductor lasers (LDs) have been used as excitation light sources as a light source for lighting that consumes less power and does not use mercury from the viewpoint of environmental problems and power saving. In combination with the above, a method has been developed in which light emitted from an LED or LD is used to excite a phosphor to emit light, and the light emitted at that time is used as a light source. For example, Japanese Patent No. 2,927,279 discloses a Ce-activated rare earth aluminate phosphor that emits blue visible light emitted from an LED chip and absorbs part of the blue light emitted from the LED chip. Discloses a light emitting diode that exhibits white light emission as a whole by additive color mixing with yellow light emission.
[0004]
However, in the type of light source that combines the excitation light source such as LED and the phosphor disclosed in Patent No. 2,927,279, the emission wavelength of the excitation light source such as LED is limited. Restrictions such as the fact that the type of phosphor that can be emitted by the excitation light source used is extremely limited, so that the final emission color is limited to white or multicolored colors cannot be produced. was there. In addition, with regard to white, a preferred color is not reproduced under illumination, and color rendering is also a problem.
[0005]
In order to solve such problems in recent years, U.S. Pat. S. P. 6294800, U.S. Pat. S. P. 6255670 et al. Introduces a method of mixing three components, green, blue and red. The phosphors used here are Ca 8 Mg (SiO 4 ) 4 Cl: Eu, Mn as a green light emitting phosphor, BaMgAl 10 O 17 : Eu as a blue light emitting phosphor, and as a red phosphor. Y 2 O 2 S: Eu or Y 2 O 3 : Eu, Bi or the like.
[0006]
Compared with the two-color component method, the method of mixing these three components has considerably improved the reproduction of the colors reflected under the illumination of the light source. However, when the color tone of each phosphor used as a component is not preferable, the color projected under the illumination of the light source is poorly reproducible and the desired color cannot be produced. In particular, since the color tone of the red phosphor is far from the desired red color, a satisfactory white light source cannot be obtained.
[0007]
As a measure for solving such a problem, in Japanese Patent Application Laid-Open No. 11-246857, (La, Eu, Sm) 2 O 2 S is used as a red fluorescent light in an LED light emitting device in which an LED chip that emits near ultraviolet light of around 370 nm and a phosphor are combined. It has been reported for use as a body and has been shown to be effective. The (La, Eu, Sm) 2 O 2 S red phosphor has efficient absorption for near ultraviolet rays around 370 nm, has a relatively good emission color with a peak wavelength of around 625 nm, and also compares luminance. Good.
However, in light of market demand, the luminance is still insufficient, and further high luminance is desired. On the other hand, white phosphors and multicolor phosphors and light emitting elements are still insufficient in terms of luminance and color rendering.
[0008]
[Problems to be solved by the invention]
LED light-emitting elements are expected as light sources for fluorescent lamps, light sources for liquid crystals and mobile phone backlights, and improvements in characteristics such as color reproducibility, color rendering properties, luminance, and luminous efficiency are always desired.
(La, Eu) 2 O 2 S and (La, Eu, Sm) 2 O 2 S phosphors for LEDs disclosed in JP-A-11-246857 are typical red phosphors widely used in displays and the like. Is higher than that of (Y, Eu) 2 O 2 S, which is near 382 nm, and is considered to be a relatively good phosphor, but is insufficient in practical use. Improvement in brightness is desired.
[0009]
On the other hand, for white phosphors and multicolor phosphors, (La, Eu) 2 O 2 S or (La, Eu, Sm) 2 O 2 S phosphors are used as red components to emit blue, green, and yellow light emission. When a white light-emitting phosphor is obtained by mixing with a body, the body color of the red phosphor is yellow, and the powder reflectance is low as shown in FIG. 1 in the blue and green wavelength regions. Light, green light, or yellow light is partially absorbed by the red phosphor crystal and lost. As a result, there was a problem that the total luminance as a white phosphor was lowered and sufficient luminance could not be obtained.
[0010]
The present invention has been made in view of such circumstances, and a red phosphor having a higher luminance than a conventional red light-emitting phosphor by excitation of near ultraviolet rays of 360 to 410 nm, a high powder reflectance, and a low body color, and the red color. An object of the present invention is to provide a phosphor that contains a phosphor and contains at least one phosphor that is different from the phosphor, and emits white light and multicolor light by excitation of near-ultraviolet rays.
Still further, a red light emission and a white light emission composed of an LED chip (light emitting diode chip) that emits near ultraviolet light having a wavelength having a peak in the range of 360 to 410 nm and a phosphor that emits light by receiving light emitted from the LED chip. An object of the present invention is to provide a multicolor LED light emitting device.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors prepared red phosphors having various compositions, examined the effects of the types and production methods of the composition components on the emission luminance and body color of the phosphors, and High-intensity white light-emitting phosphors were studied by mixing phosphors and other blue and green phosphors that emit light.
As a result, by adding at least one of a predetermined amount of Si and Ge to the europium activated lanthanum oxysulfide phosphor, the emission efficiency is high when irradiated with near ultraviolet rays around 382 nm, and the body color is white and blue and green. A phosphor having a high powder reflectance in the visible region was obtained.
[0012]
Further, as a result of studying a high-luminance white light emitting phosphor by mixing the red phosphor, the blue phosphor and the green phosphor of the present invention, the europium activated acid containing at least one of Si and Ge of the present invention Lanthanum sulfide red light-emitting phosphor, and particularly green light-emitting ZnS: Au, Cu, Al or BaMgAl 10 O 17 : Eu, Mn, and blue light-emitting BaMgAl 10 O 17 : Eu, Mn or Ca 2 B 5 O 9 Cl: Eu The present inventors have found that a white light-emitting phosphor obtained by combining and mixing phosphors has high luminance, and has reached the present invention.
[0013]
The present invention has the following configuration.
(1) In the phosphor represented by the general formula (La 1-x , Eu x ) 2 O 2 S (where 0.02 ≦ x ≦ 0.50), 10 ppm to 2000 ppm of Si with respect to the weight of the phosphor and / or ultraviolet excitation for red-emitting phosphor to feature in that it contains a G e.
( 2 ) The ultraviolet light-exciting red light-emitting phosphor as described in (1) above, wherein the wavelength of the ultraviolet light is near-ultraviolet of 360 to 410 nm.
(3) In the ultraviolet excited red-emitting phosphor, wavelength 450 nm, 545 nm, and powder reflectance respectively 84% or more at 624 nm, 94% or more, and said, characterized in that less than 97% (1) The red light-emitting phosphor for ultraviolet excitation as described.
[0014]
(4) the (1) to an ultraviolet excitation red light-emitting phosphor according to any one of (3), and wherein Rukoto such a phosphor mixture of a green-emitting phosphor and / or blue-emitting component phosphor White light emitting phosphor or multicolor light emitting phosphor.
(5) and the green-emitting phosphor, ZnS: Cu, Al, ZnS : Au, Al, ZnS: Au, Cu, Al, BaMgAl 10 O 17: Eu, Mn and BaMgAl 10 O 17: At least in the Mn containing one phosphor, and a blue phosphor, BaMgAl 10 O 17: Eu or (Sr, Ca, Ba, Mg ) 10 (PO 4) 6 Cl 2: Eu, Ca 2 B 5 O 9 Cl: The white light emitting phosphor or the multicolor light emitting phosphor as described in ( 4 ) above, which contains at least one phosphor of Eu and ZnS: Ag, Al.
( 6 ) A light emitting device comprising: an LED chip [light emitting diode chip] that emits near ultraviolet rays having a light emission peak in a wavelength region of 360 to 410 nm; and a phosphor that emits light upon receiving radiation from the LED chip. The phosphor is a red light emitting phosphor for ultraviolet excitation according to any one of (1) to (3) , or a white light emitting phosphor and multicolor light emission according to any one of (4) and (5). emitting device characterized Rukoto a phosphor.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The phosphor of the present invention is manufactured as follows. At least one of Si and Ge as an impurity-added element having a matrix composition of the general formula (La 1-x , Eu x ) 2 O 2 S (where 0.02 ≦ x ≦ 0.50) First, a rare earth material (La 2 O 3 , Eu 2 O 3 ) to which a predetermined amount of a target impurity is added is prepared so that the concentration of is 10 to 2000 ppm with respect to the base weight.
As a method for adding impurities, a predetermined amount of impurities are directly added in solid and powder form to La 2 O 3 and Eu 2 O 3 weighed in a predetermined amount, and mixed with an aqueous solution or alcohol once containing impurities. There is a method in which a liquid is prepared, and a predetermined amount is added to the rare earth material, paste mixing, drying, and sieving are performed to obtain a rare earth main material containing a predetermined amount of target impurities.
As impurities, the following can be used. In the case of Si, silicon compounds such as silicates such as sodium silicate and potassium silicate, organic silicates such as ethyl silicate, or compounds containing silicon such as silicon. In the case of Ge, germanium-containing compounds such as germanium oxide (GeO 2 ), germanium sulfide (GeS 2 ), and germanate or germanium such as Na 2 GeO 4 and Na 2 Ge 2 O 5 are used .
[0016]
Next, with respect to the main raw material containing a predetermined amount of the target impurity thus obtained, the amount of S, which is a secondary raw material, can be expressed by a general formula, and the excess amount from the theoretical value in consideration of the loss during the firing process. Furthermore, Na 2 CO 3 , LiPO 4 and the like are added and mixed as a firing atmosphere holding agent and a crystal growth agent. The raw material mixture obtained as described above is packed in a firing container such as an alumina crucible with a lid and fired at 1000 to 1300 ° C. for 2 to 6 hours.
The fired product after firing is immersed in water, washed with water to dissolve and remove unnecessary substances such as alkali polysulfide generated during firing, washed with a light aqueous mineral acid solution, and then washed with water. If necessary, after applying a dispersion treatment with a ball mill, etc., after applying a classification treatment such as removing a large unnecessary particle by a wet classification method such as a water sieve, the phosphor of the present invention is obtained by drying and sieving. It is done. Further, an inorganic or organic surface treatment may be applied to improve durability according to need.
[0017]
Note that although the main elements der Ru not neat amount of the present invention exhibits the effect of improving bright degree 10~2000Ppm, does not appear significant effect at 10ppm or less, also ineffective or reversed in 2000ppm or higher Lowers brightness. The relationship between the amount added and the amount actually incorporated and contained in the phosphor crystal is shown in Example 1 (Si addition), Example 2 (Ge addition), Reference Example 3 (Ga addition) and Reference Example 4 in Table 1. (Ti addition), as shown in the addition amount and content of Reference Example 5 (Ta addition), the degree of incorporation differs depending on the element, so it is necessary to add more in advance than the target content setting amount if necessary There is.
[0018]
Figure 1 is the invention phosphors Si added: while indicating powder reflection spectra of (La 2 O 2 S Eu + Si and the display), the untreated phosphor not added: the (La 2 O 2 S Eu and display) On the other hand, it has the characteristic that the powder reflectance becomes high at wavelengths of 450 nm, 545 nm, and 624 nm, which are the entire visible region. Although it is affected by the kind of element to be added and the amount of addition, as shown in Table 1, at each wavelength point, the values are 84%, 94%, 97% or more, and the reflectance is high and the body color is whiter It means that When the phosphor of the present invention (La, Eu) 2 O 2 S having such a high reflectance is used as a red component and mixed with blue, green, and yellow light emitting phosphors, a white light emitting phosphor is obtained. The red phosphor body color is yellow, the powder reflectance is low in the blue and green wavelength regions (450 nm, 545 nm), and some of the light such as blue light, green light or yellow light is in the crystal of the red phosphor The conventional problem of absorption and loss can be reduced and improved. Therefore, the brightness of the white light-emitting phosphor or multicolor light-emitting fluorescence is totally increased and improved. As the blue-emitting phosphor which is a component of the white light emitting phosphor or multicolor light emitting phosphor used herein, BaMgAl 10 O 17: Eu or (Sr, Ca, Ba, Mg ) 10 (PO 4) 6 Cl 2 : Eu, Ca 2 B 5 O 9 Cl: Eu and at least one of ZnS: Ag, Al, green light emitting phosphors include ZnS: Cu, Al, ZnS: Au, Al, ZnS: Au, Cu , Al, BaMgAl 10 O 17 : Eu, Mn and BaMgAl 10 O 17 : Mn can be used.
[0019]
In addition, in order to use the red light emitting phosphor of the present invention with improved powder reflectance more effectively, it is desirable that the combined phosphor has a high reflectance as well, and the green light emitting phosphor has a yellow body color. ZnS: Cu, Al, ZnS: Au, Al, which has a relatively low reflectance, is more suitable than BaMgAl 10 O 17 : Eu, Mn, which has a white body color and a higher reflectance than ZnS: Au, Cu, Al. .
On the other hand, the light emitting device of the present invention using the phosphor of the present invention receives an LED chip (light emitting diode chip) that emits near ultraviolet light having a wavelength having a peak in the range of 360 to 410 nm and radiated light from the LED chip. A red light emitting element, a white light emitting element, and a multicolor emitting LED element composed of a phosphor that emits light. The LED light emitting element has a schematic structure as shown in FIG. 2, and is specifically manufactured as follows. First, as the light emission for excitation, which is one of the constituent elements, a light-emitting element that emits light in the near ultraviolet to short wavelength visible light wavelength range is used. As the light emitting element that is the light source for excitation, the wavelength λ of the light emission peak is 300 to 500 nm because it is relatively easily available, has high luminous efficiency, and can emit phosphor with higher luminance. Preferably, a light emitting diode (LED) or a semiconductor laser (LD) made of a nitride compound semiconductor such as (Ga 1-x In x ) N (where x is 0 ≦ x ≦ 0.5) is 360 to 480 nm. Can be used.
[0020]
The light-emitting element of the present invention has a positional relationship such that the phosphor can receive and absorb light from the excitation light source, and is configured to face the excitation light source.
As shown in FIG. 2, the semiconductor light emitting element chip 3 is electrically bonded on the stem 1, while the other electrode of the semiconductor light emitting element chip 3 and one of the leads 2 are connected to the lead wire 5. Are electrically connected.
A dome-shaped transparent resin-coated lid 5 is fixed to the stem 1. A phosphor layer 6 is formed on the inner surface of the transparent resin-coated lid 5 by applying a binder in which the phosphor is dispersed. The transparent resin-coated lid 5 is made of a material transparent to light such as resin such as epoxy resin, acrylic resin, silicon resin, polystyrene, or glass, and serves as a hermetic sealing cap for the semiconductor light emitting element chip 3. In addition, it is fixedly fixed to the stem 1. When the lead wire 2 is energized, the semiconductor light emitting element chip 3 emits light, and this emitted light is irradiated to the surface of the phosphor layer 6 formed on the inner wall surface of the transparent resin-coated lid body 5 through the space layer. The body layer 6 is excited by absorbing light emitted from the semiconductor light-emitting element chip 3 and emits light specific to the phosphor shown as a component of the present invention at a light emission wavelength different from that of the semiconductor light-emitting element chip 3.
[0021]
In the phosphor layer which is one component of the light emitting device of the present invention having such a configuration, the white light emitting phosphor or the multicolor light emitting phosphor mixed with the red phosphor of the present invention or a plurality of phosphors having different emission colors. By using the body, a light-emitting element having high luminance and no problem in color reproducibility and color rendering can be obtained. By realizing such a light emitting element, high brightness, color reproducibility and color rendering can be used not only for white light sources but also for multi-color light sources for lighting, backlights for liquid crystal displays and portable information terminals, indicator light sources and displays. It is possible to provide a product that is not problematic in terms of sex.
[0022]
【Example】
EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to the embodiments illustrated in the following examples.
[Example 1]
As a phosphor starting material, 46.8 g of La 2 O 3 powder and 3.23 g of Eu 2 O 3 were mixed, then potassium silicate (SiO 2 content 20%) was diluted to adjust the Si concentration to 5 mg / ml. 2.3 ml of the potassium silicate solution is added, and water is added and mixed until the whole mixture becomes paste liquid. After drying, pulverizing and mixing, 20 g of Na 2 CO 3 and 15 g of S were added and mixed to prepare a preparation.
Next, the obtained mixture was filled in an alumina crucible, covered, and fired at a maximum temperature of 1200 ° C. for 3 hours. The obtained fired product was sufficiently washed with pure water to remove impurities such as alkali polysulfide. Next, dilute hydrochloric acid is added to the phosphor slurry, and after washing with a slurry having a pH of 1.5 or less, washing with water is performed. Thereafter, normal dispersion treatment, drying, and sieving are performed, thereby adding Si in Example 1. An amount of 220 ppm of phosphor was obtained.
[0023]
The phosphor thus obtained was confirmed by X-ray diffraction analysis and ICP analysis to be the phosphor of the present invention containing (La 1-x , Eu x ) 2 O 2 S containing 220 ppm of Si. As for the luminance, the near-ultraviolet ray of 382 nm obtained by spectrally separating the Xe lamp light was irradiated, and the light emission from the phosphor was measured with a luminance meter. As shown in Table 1, the conventional comparative phosphor 1 It was confirmed that the improvement was 14%. Furthermore, as for the powder reflectance that is a feature of the phosphor of the present invention, as a result of measurement using SHIMAZU UV-3100PC, as shown in Table 1, the powder reflectance at each of the wavelengths of 450 nm, 545 nm, and 624 nm is The value is higher than that of the untreated comparative phosphor. Specifically, the difference was clearly confirmed in the powder reflection spectrum of FIG.
[0024]
[Table 1]
Figure 0004233929
In Table 1, LOS: Eu is (La 1-x, Eu x ) the 2 O 2 S, LOS: Eu + Si represents impure Si (La 1-x, Eu x) the 2 O 2 S, respectively.
[0025]
[Example 2 and Reference Examples 1 to 3 ]
Instead of adding 2.3 ml of the potassium silicate solution whose Si concentration was adjusted to 5 mg / ml in Example 1, each solution was prepared by dissolving Ge 2 O 3 in nitric acid and adjusting the Ge concentration to 5 mg / ml. Example 1 except that 4 ml was added, 21.3 ml of a solution prepared by dissolving Ga in nitric acid to adjust the Ga concentration to 1 mg / ml, and 14.6 ml of a sulfuric acid aqueous solution having a Ti concentration of 1 mg / ml were added. The phosphor of the present invention was obtained in the same manner as in Example 2, containing 20 ppm of Ge, Reference Example 1 containing 20 ppm of Ga, Reference Example 2 containing 250 ppm of Ti, and Reference Example 3 containing 510 ppm of Ta . The evaluation performed in the same manner as in Example 1, Ge, Ga, Ti, although slight level difference as shown in Table 1 also Ta added is, that the effect is as Si I was able to confirm.
[0026]
[Comparative Example 1]
As a starting material, 46.8 g of La 2 O 3 powder and 3.23 g of Eu 2 O 3 were mixed, and then 20 g of Na 2 CO 3 and 15 g of S were added and mixed to prepare a formulation. The steps after filling and baking of the preparation are the same as in Example 1, and a (La 1-x , Eu x ) 2 O 3 S phosphor having no specific impurities is produced to produce the phosphor of Comparative Example 1. Got.
[0027]
[Comparative Example 2]
The phosphor of the example is a Y 2 O 2 S: Eu phosphor not attached with an existing pigment prepared for level comparison with a typical red phosphor generally used in a color television or the like. It was confirmed that the Y 2 O 2 S: Eu phosphor had a luminance level about half that of the phosphor of the present invention.
[0028]
[Table 2]
Figure 0004233929
In Table 2, BAM: Eu is BaMgAl 10 O 17: Eu, BAM : Mn, Eu is BaMgAl 10 O 17: Eu, CCB : Eu is Ca 2 B 5 O 9 Cl: shows Eu, respectively.
[0029]
[Examples 3 to 6, Reference Examples 4 to 6 ]
For each of Examples 1, 2 containing a predetermined element according to (La 1-x, Eu x ) 2 O 2 S red phosphor, ZnS: Cu, Al green-emitting phosphor and BaMgAl 10 O 17: Eu blue-emitting phosphor and the chromaticity values x = 0.31 was mixed an appropriate amount such that y = 0.33, example 3, and to obtain a phosphor of white light emission of reference examples 4-6 .
Although evaluated in the same manner as in Example 1, also the same phosphor of Example 1, 2 in the white light emitting phosphor, improvement has been reflected, the luminance is conventional as shown in Table 2 It was confirmed that the phosphor of Comparative Example 3 was improved by 2 to 8%.
[0030]
[Example 5 ]
Containing Si as described in Example 1 (La 1-x, Eu x) 2 O 2 S red phosphor and BaMgAl 10 O 17: Eu, Mn green phosphor and BaMgAl 10 O 17: Eu and a blue phosphor Appropriate amounts were mixed so that the chromaticity values were x = 0.31 and y = 0.33 to obtain a white light-emitting phosphor of Example 5 . Even if the phosphors of the combination were changed, as shown in Table 2, it was confirmed that there was an effect of improving the luminance as in Example 3 .
[0031]
[Example 6 ]
Containing Si as described in Example 1 (La 1-x, Eu x) 2 O 2 S red phosphor and BaMgAl 10 O 17: Eu, Mn green phosphor and Ca 2 B 5 O 9 Cl: Eu blue phosphor The body was mixed with appropriate amounts so that the chromaticity values were x = 0.31 and y = 0.33 to obtain a white light-emitting phosphor of Example 6 . As described above, it was confirmed that even when the phosphors in the combination were changed, the same effect was obtained as shown in Table 2.
[0032]
[Comparative Example 3]
Comparative Example according to 1 (La 1-x, Eu x) 2 O 2 S red phosphor and ZnS: Cu, Al green phosphor and BaMgAl 10 O 17: Eu blue phosphor and the chromaticity values are x = 0 An appropriate amount was mixed so that .31, y = 0.33, and a white light emitting phosphor of Comparative Example 3 was produced.
[0033]
[Comparative Example 4]
Comparative Example according to 2 (Y 1-x, Eu x) 2 O 2 S red phosphor and ZnS: Cu, Al green phosphor and BaMgAl 10 O 17: Eu blue phosphor and the chromaticity values are x = 0 An appropriate amount was mixed so that .31, y = 0.33, and a white light emitting phosphor of Comparative Example 4 was produced.
[0034]
[Example 7 ]
The present invention phosphor used for the light-emitting device of the present invention contains Si as described in Example 1 (La 1-x, Eu x) 2 O 2 S red phosphor 10g and an epoxy resin (Nitto Denko Corporation Manufactured by NT8014) and 1 g of an acid anhydride curing agent were mixed to prepare a phosphor coating solution. Separately, a wafer portion of a light emitting diode element that exhibits near-ultraviolet light emission with a main peak wavelength of 400 nm as an excitation light source is held horizontally, and the phosphor coating solution prepared earlier is dropped from a thin nozzle onto the light emitting portion. After making a dome-shaped phosphor coating film, and then rotating it halfway as it is, the phosphor coating surface is reversed horizontally and surface tension is used to naturally dry the phosphor at room temperature in the dome-shaped coating film. Then, it was further dried at about 150 ° C. for 3 hours to produce a light emitting device having the surface coated with the phosphor of the present invention.
When the electrode of the light-emitting element thus obtained was energized, the light-emitting element exhibiting red light emission in which the light emission chromaticity point represented by the CIE color system was x = 0.65 and y = 0.34 was gotten. The luminance of the obtained light emitting element was 15% brighter than that of Comparative Example 5 below.
[0035]
Example 8 containing Si as described in Example 3 (La 1-x, Eu x) and 2 O 2 S red phosphor, ZnS: Cu, Al green-emitting phosphor and BaMgAl 10 O 17: Eu blue A phosphor coating solution was prepared by mixing 10 g of a white light-emitting phosphor composed of a mixture with a light-emitting phosphor, 1 g of an epoxy resin (manufactured by Nitto Denko Corporation, NT8014) and 1 g of an acid anhydride curing agent. Thereafter, a white light emitting element was produced in the same manner as in Example 7 .
When the electrode of the light-emitting element thus obtained was energized, the light-emitting element exhibiting white light emission with emission chromaticity points represented by the CIE color system of x = 0.34 and y = 0.38 was gotten. The luminance of the obtained light-emitting element was 10% brighter than that of Comparative Example 6 below.
[0036]
[Comparative Example 5]
Comparative Example 1 containing no Si according (La 1-x, Eu x ) 2 O 2 S red phosphor 10g and an epoxy resin (manufactured by Nitto Denko Corporation, NT8014) were mixed 1g and an acid anhydride curing agent 1g A phosphor coating solution was prepared. Thereafter, a red light emitting element of Comparative Example 5 was produced in the same manner as in Example 7 .
[0037]
[Comparative Example 6]
Comparative Example 3 containing no Si according (La 1-x, Eu x ) 2 O 2 S red phosphor white light emitting phosphor 10g and epoxy resin used (manufactured by Nitto Denko Corporation, NT8014) 1g acid anhydride A phosphor coating solution was prepared by mixing 1 g of a system curing agent. Thereafter, in the same manner as in Example 7 , a white light emitting element of Comparative Example 6 was produced.
[0038]
In the above-described embodiments, (La, Eu) 2 O 2 S is basically used as the composition of the red light-emitting phosphor. However, the specification for improving the luminance by adding the specific impurity of the present invention is based on the above composition. For example, a phosphor (La, Eu, Sm) 2 O 2 S in which a part of Eu is modified with Sm, and a small amount of rare earth elements Tb, Pr, etc. aiming at a sensitization effect for improving luminance are modified. The same applies to the added phosphor.
[0039]
【The invention's effect】
In the present invention, a high-intensity red phosphor and a white light-emitting phosphor or a multicolor light-emitting phosphor can be obtained by using the above-described configuration. You can get something not. By realizing such a light emitting element, it is not limited to a white light source for illumination, backlights for liquid crystal displays, personal digital assistants, etc. You can provide something that doesn't matter.
[0040]
[Brief description of the drawings]
[1] of the present invention containing a Si (La 1-x, Eu x) prior containing no 2 O 2 S phosphor and Si (La 1-x, Eu x) of the reflection spectrum of the 2 O 2 S It is a graph which illustrates a comparison.
FIG. 2 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention.
[Explanation of symbols]
1 Stem 2 Lead Wire 3 Semiconductor Light Emitting Element Chip (LED Chip)
4 Gold wire 5 Transparent resin cover 6 Phosphor layer

Claims (6)

一般式(La1−x,EuSで表される蛍光体(但し、0.02≦x≦0.50)において、該蛍光体重量に対し10ppm〜2000ppmのSi及び/又はeを含有することを特徴とする紫外線励起用赤色発光蛍光体。In the phosphor represented by the general formula (La 1-x , Eu x ) 2 O 2 S (where 0.02 ≦ x ≦ 0.50), 10 ppm to 2000 ppm of Si and / or ultraviolet excitation for red-emitting phosphor to feature in that it contains a G e. 前記紫外線の波長が360〜410nmの近紫外であることを特徴とする請求項1に記載の紫外線励起用赤色発光蛍光体。  The red light-emitting phosphor for ultraviolet excitation according to claim 1, wherein the wavelength of the ultraviolet light is near-ultraviolet of 360 to 410 nm. 前記紫外線励起用赤色発光蛍光体において、波長450nm、545nm、及び624nmにおける粉末反射率がそれぞれ84%以上、94%以上及び97%以上であることを特徴とする請求項1に記載の紫外線励起用赤色発光蛍光体。2. The ultraviolet excitation according to claim 1, wherein in the red phosphor for ultraviolet excitation, powder reflectances at wavelengths of 450 nm, 545 nm, and 624 nm are 84% or more , 94% or more , and 97% or more, respectively. Red light emitting phosphor. 請求項1〜3のいずれか一項に記載の紫外線励起用赤色発光蛍光体と、緑色発光蛍光体及びまたは青色発光成分蛍光体との混合蛍光体からなることを特徴とする白色発光蛍光体又は多色発光蛍光体。White light-emitting phosphor, wherein the ultraviolet excitation red-emitting phosphor according the Rukoto such a phosphor mixture of a green-emitting phosphor and / or blue-emitting component phosphor in any one of claims 1 to 3 Body or multicolor phosphor. 前記緑色発光蛍光体として、ZnS:Cu,Al、ZnS:Au,Al、ZnS:Au,Cu,Al、BaMgAl1017:Eu,Mn及びBaMgAl1017:Mnの中の少なくとも一つの蛍光体を含有し、青色発光蛍光体として、BaMgAl1017:Eu又は(Sr,Ca,Ba,Mg)10(POCl:Eu、CaCl:Eu及びZnS:Ag,Alの中の少なくとも一つの蛍光体を含有することを特徴とする請求項に記載の白色発光蛍光体又は多色発光蛍光体。 And said green-emitting phosphor, ZnS: Cu, Al, ZnS : Au, Al, ZnS: Au, Cu, Al, BaMgAl 10 O 17: Eu, Mn and BaMgAl 10 O 17: at least one fluorescent in Mn containing body, as the blue phosphor, BaMgAl 10 O 17: Eu or (Sr, Ca, Ba, Mg ) 10 (PO 4) 6 Cl 2: Eu, Ca 2 B 5 O 9 Cl: Eu and ZnS The white light-emitting phosphor or the multicolor light-emitting phosphor according to claim 4 , wherein the phosphor contains at least one phosphor of Ag and Al. 360〜410nmの波長領域に発光ピークを有する近紫外線を放出するLEDチップ〔発光ダイオードチップ〕と、前記LEDチップからの放射光を受けて発光する蛍光体とを備える発光素子であって、前記蛍光体が請求項1〜3のいずれか一項に記載の紫外線励起用赤色発光蛍光体、又は請求項4、5のいずれかに記載の白色発光蛍光体又は多色発光蛍光体からなることを特徴とする発光素子。A light emitting device comprising an LED chip (light emitting diode chip) that emits near-ultraviolet light having an emission peak in a wavelength region of 360 to 410 nm, and a phosphor that emits light upon receiving light emitted from the LED chip , ultraviolet excitation for red-emitting phosphor according to any one of the body according to claim 1 to 3, or a Rukoto a white light emitting phosphor or multicolor light emitting phosphor according to any one of claims 4 and 5 A light emitting device characterized.
JP2003168473A 2003-05-09 2003-05-09 Phosphor and light emitting device using the same Expired - Fee Related JP4233929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168473A JP4233929B2 (en) 2003-05-09 2003-05-09 Phosphor and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168473A JP4233929B2 (en) 2003-05-09 2003-05-09 Phosphor and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2004331934A JP2004331934A (en) 2004-11-25
JP4233929B2 true JP4233929B2 (en) 2009-03-04

Family

ID=33509037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168473A Expired - Fee Related JP4233929B2 (en) 2003-05-09 2003-05-09 Phosphor and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4233929B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497973B2 (en) * 2005-02-02 2009-03-03 Lumination Llc Red line emitting phosphor materials for use in LED applications
KR100892800B1 (en) 2005-03-14 2009-04-10 가부시끼가이샤 도시바 White Light-Emitting Lamp, Backlight Using Same, Display and Illuminating Device
JPWO2006118104A1 (en) 2005-04-26 2008-12-18 株式会社東芝 White LED, backlight using the same, and liquid crystal display device
JP2006332202A (en) * 2005-05-24 2006-12-07 Mitsubishi Chemicals Corp Light emitting device, manufacturing method thereof, and lighting apparatus using it, backlight for image display apparatus, and image display apparatus
JP5398141B2 (en) * 2005-09-29 2014-01-29 株式会社東芝 White light emitting LED lamp, backlight using the same, and liquid crystal display device
US7936418B2 (en) 2005-09-29 2011-05-03 Kabushiki Kaisha Toshiba White light-emitting device and manufacturing method thereof, and backlight and liquid crystal display device using the same
JP4965840B2 (en) * 2005-09-29 2012-07-04 株式会社東芝 Manufacturing method of white light emitting LED lamp, manufacturing method of backlight using the same, and manufacturing method of liquid crystal display device
JP4911578B2 (en) 2006-06-06 2012-04-04 シャープ株式会社 Oxynitride phosphor and light emitting device
JP2013072905A (en) * 2011-09-26 2013-04-22 Toshiba Corp Backlight for liquid crystal display

Also Published As

Publication number Publication date
JP2004331934A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP5503871B2 (en) Charge compensated nitride phosphors for use in lighting applications
US7329371B2 (en) Red phosphor for LED based lighting
JP5503870B2 (en) Phosphors used in LEDs and blends thereof
KR101226193B1 (en) Temperature-stable oxynitride phosphor and light source comprising a corresponding phosphor material
JP4223879B2 (en) Sm-activated red light emitting phosphor and light emitting device using the same
US7713441B2 (en) Fluorescent material, fluorescent device using the same, and image display device and lighting equipment
TWI420710B (en) White light and its use of white light-emitting diode lighting device
JP4779384B2 (en) Ce-activated rare earth aluminate-based phosphor and light emitting device using the same
US7439668B2 (en) Oxynitride phosphors for use in lighting applications having improved color quality
JP4322774B2 (en) Phosphor and light emitting device using the same
US20060049414A1 (en) Novel oxynitride phosphors
WO2007062137A1 (en) White lamps with enhanced color contrast
US20070040502A1 (en) High CRI LED lamps utilizing single phosphor
US20070114561A1 (en) High efficiency phosphor for use in LEDs
JP4233929B2 (en) Phosphor and light emitting device using the same
JP4619509B2 (en) Light emitting device
JP4433793B2 (en) Phosphor and light emitting device using the same
JP5402008B2 (en) Phosphor production method, phosphor, and light emitting device using the same
JP4904694B2 (en) Oxide phosphor, and light emitting element, image display device, and illumination device using the same
JP2005054159A (en) Red light-emitting fluorescent material and light-emitting element given by using the same
JP2004111344A (en) Light emitting element
KR100748832B1 (en) Zinc silicate green phosphor and method for preparing thereof
JP4191216B2 (en) Red phosphor and white light emitting device using the same
JP4732888B2 (en) Red light emitting phosphor and light emitting module using the same
JP2004269834A (en) Red color light-emitting fluorescent material and light-emitting element by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees