JP4232564B2 - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium Download PDF

Info

Publication number
JP4232564B2
JP4232564B2 JP2003271183A JP2003271183A JP4232564B2 JP 4232564 B2 JP4232564 B2 JP 4232564B2 JP 2003271183 A JP2003271183 A JP 2003271183A JP 2003271183 A JP2003271183 A JP 2003271183A JP 4232564 B2 JP4232564 B2 JP 4232564B2
Authority
JP
Japan
Prior art keywords
layer
cocr
network structure
recording layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003271183A
Other languages
Japanese (ja)
Other versions
JP2005032358A (en
Inventor
敏男 安藤
敏和 西原
和男 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003271183A priority Critical patent/JP4232564B2/en
Publication of JP2005032358A publication Critical patent/JP2005032358A/en
Application granted granted Critical
Publication of JP4232564B2 publication Critical patent/JP4232564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Description

本発明は、とくに、CoZr系非晶質軟磁性下地層と、CoCr系垂直記録層との間に網目構造層をごく薄く形成した垂直磁気記録媒体に関するものである。   The present invention particularly relates to a perpendicular magnetic recording medium in which a network structure layer is extremely thinly formed between a CoZr amorphous soft magnetic underlayer and a CoCr perpendicular recording layer.

一般的に、垂直磁気記録は、映像,音声,ディジタルデータなどの情報信号を垂直記録層上に略垂直に記録することで、現行の長手記録よりも情報信号を高密度に記録ができるので注目されている。   In general, in perpendicular magnetic recording, information signals such as video, audio, and digital data are recorded almost vertically on a perpendicular recording layer, so that information signals can be recorded at a higher density than current longitudinal recording. Has been.

上記した垂直磁気記録に適用される垂直磁気記録媒体は、例えば垂直記録層として成膜したCoCr系合金薄膜が、強い垂直磁気異方性を有し良好な磁気記録特性が得られることから最も精力的に検討されている。この際、CoCr系合金薄膜(CoCr系垂直記録層)は最密六方晶構造(hcp)からなる結晶構造をとり、磁化容易軸であるc軸が薄膜面に対して略垂直方向に配向することにより強い垂直磁気異方性が得られる。   The perpendicular magnetic recording medium applied to the perpendicular magnetic recording described above is most vigorous because, for example, a CoCr alloy thin film formed as a perpendicular recording layer has strong perpendicular magnetic anisotropy and good magnetic recording characteristics can be obtained. Has been considered. At this time, the CoCr-based alloy thin film (CoCr-based perpendicular recording layer) has a crystal structure composed of a close-packed hexagonal crystal structure (hcp), and the c-axis, which is the easy axis of magnetization, is oriented in a direction substantially perpendicular to the thin film surface. A stronger perpendicular magnetic anisotropy can be obtained.

一方、垂直磁気記録媒体への高密度化に伴って、高い信号出力、高いS/N(Signal/Noise)比を得るために高い保磁力(Hc)が要求されている。この際、高保磁力化(高Hc化)は、垂直磁気異方性を強くするとともに、垂直記録層の結晶粒子を微細化することにより実現できる。これは、垂直記録層の結晶粒子が微細化すると、粒子1個が単磁区構造に近づくためである。また、垂直記録層の結晶粒子が微細化する他の利点として、媒体ノイズが低減する。このため、垂直記録層の結晶粒子の微細化は、高いS/N比を得るための重要な課題となっている。   On the other hand, as the density of perpendicular magnetic recording media is increased, a high coercive force (Hc) is required to obtain a high signal output and a high S / N (Signal / Noise) ratio. At this time, high coercive force (high Hc) can be realized by increasing the perpendicular magnetic anisotropy and making the crystal grains of the perpendicular recording layer fine. This is because when the crystal grains in the perpendicular recording layer are refined, one grain approaches a single domain structure. Further, as another advantage that the crystal grains of the perpendicular recording layer become finer, medium noise is reduced. For this reason, miniaturization of crystal grains in the perpendicular recording layer is an important issue for obtaining a high S / N ratio.

また、垂直記録層に記録した情報信号が熱によって減少してしまう熱緩和現象は、高密度化を阻害する要因として問題になっている。従って、強い垂直磁気異方性と高保磁力化は、記録信号の熱安定性を高める意味でも重要な要素となっている。   Further, the thermal relaxation phenomenon in which the information signal recorded on the perpendicular recording layer is reduced by heat has been a problem as a factor that hinders high density. Therefore, strong perpendicular magnetic anisotropy and high coercive force are important elements in terms of increasing the thermal stability of the recording signal.

そこで、垂直磁気記録媒体の磁気記録特性を改善するために、CoCr系垂直記録層の下方に下地層を形成する検討がいくつか提案されているものの、本発明者らは、CoCr系垂直記録層の下方に形成する下地層として、磁気記録特性が良好なCoZr系非晶質軟磁性下地層を用いた垂直磁気記録媒体を先に提案した(例えば、特許文献1参照)。
特開平6−342512号公報(第3頁、図2)
Therefore, in order to improve the magnetic recording characteristics of the perpendicular magnetic recording medium, several studies have been proposed to form a base layer below the CoCr-based perpendicular recording layer, but the present inventors have proposed a CoCr-based perpendicular recording layer. A perpendicular magnetic recording medium using a CoZr-based amorphous soft magnetic underlayer with good magnetic recording characteristics as an underlayer formed below is proposed previously (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 6-342512 (page 3, FIG. 2)

上記の特許文献1に開示した垂直磁気記録媒体では、ガラス材などの非磁性材を用いた基板上にCoZr系非晶質軟磁性下地層と、CoCr系垂直記録層とをこの順に積層して成膜した際に、両層内のCo原子同士を直接結合させることで、両層に対して垂直配向性能が促進でき、強い垂直磁気異方性が得られると共に、更に、垂直磁気記録媒体を記録再生する時にCoZr系非晶質軟磁性下地層が磁気回路上のヨークの一部としても作用し、垂直磁気記録媒体の記録再生効率を高める効果も併せ持つものである。   In the perpendicular magnetic recording medium disclosed in Patent Document 1, a CoZr-based amorphous soft magnetic underlayer and a CoCr-based perpendicular recording layer are laminated in this order on a substrate using a non-magnetic material such as a glass material. By directly bonding Co atoms in both layers at the time of film formation, the perpendicular alignment performance can be promoted with respect to both layers, and strong perpendicular magnetic anisotropy can be obtained. When recording / reproducing, the CoZr-based amorphous soft magnetic underlayer also acts as a part of the yoke on the magnetic circuit, and has the effect of increasing the recording / reproducing efficiency of the perpendicular magnetic recording medium.

解決しようとする問題点は、基板上にCoZr系非晶質軟磁性下地層と、CoCr系垂直記録層とをこの順に少なくとも形成した時に、CoCr系垂直記録層の結晶粒子が大きく成長してしまうという現象が生じる場合があり、CoCr系垂直記録層の結晶粒子が大きく成長すると、保磁力(Hc)を向上させることができず、また、記録再生の際に媒体ノイズの原因になり、結果的にS/N比の低下を招くことになる。   The problem to be solved is that when a CoZr-based amorphous soft magnetic underlayer and a CoCr-based perpendicular recording layer are formed at least in this order on a substrate, crystal grains of the CoCr-based perpendicular recording layer grow greatly. If the CoCr-based perpendicular recording layer grows large in size, the coercive force (Hc) cannot be improved, and media noise may occur during recording and reproduction. Therefore, the S / N ratio is lowered.

そこで、垂直磁気記録媒体に対してより一層高密度化を図るために、CoZr系非晶質軟磁性下地層を形成してもCoCr系垂直記録層の結晶粒子を小さくすることができる垂直磁気記録媒体が望まれている。   Therefore, in order to further increase the density of the perpendicular magnetic recording medium, perpendicular magnetic recording can reduce the crystal grains of the CoCr perpendicular recording layer even if a CoZr amorphous soft magnetic underlayer is formed. A medium is desired.

本発明は上記課題に鑑みてなされたものであり、基板上に、CoZr系非晶質軟磁性下地層と、CoCr系垂直記録層とを順次積層した垂直磁気記録媒体において、
前記CoZr系非晶質軟磁性下地層と、前記CoCr系垂直記録層との間に網目構造層を形成し
前記網目構造層は、Cr,B,Nb,Mo,Ta,W,C及びこれらの合金材料のうちのいずれかの物質からなり、厚さが0.5〜2.3nmであることを特徴とする垂直磁気記録媒体である。
The present invention has been made in view of the above problems, and in a perpendicular magnetic recording medium in which a CoZr-based amorphous soft magnetic underlayer and a CoCr-based perpendicular recording layer are sequentially laminated on a substrate ,
Said CoZr based amorphous soft magnetic underlayer, and forming a network structure layer between the CoCr-based perpendicular recording layer,
The network structure layer is made of any one of Cr, B, Nb, Mo, Ta, W, C, and alloy materials thereof, and has a thickness of 0.5 to 2.3 nm. A perpendicular magnetic recording medium.

本発明に係る垂直磁気記録媒体によれば、基板上にCoZr系非晶質軟磁性下地層と、CoCr系垂直記録層とを順次積層し、CoZr系非晶質軟磁性下地層と、CoCr系垂直記録層との間に網目構造層を形成した際に、網目構造層は、Cr,B,Nb,Mo,Ta,W,C及びこれらの合金材料のうちのいずれかの物質からなり、厚さが0.5〜2.3nmであるため、この結果、CoZr系非晶質軟磁性下地層とCoCr系垂直記録層との間で磁気的結合を保ちつつ、網目構造層によりCoCr系垂直記録層の結晶粒子を小さくすることができるので、垂直配向度が高く且つ高い保磁力(Hc)を有するCoCr系垂直記録層が得られる。これに伴って、本発明に係る垂直磁気記録媒体を用いて情報信号を記録再生した時に、垂直磁気記録媒体の記録再生効率が高くなり、情報信号の再生出力も高くなる。また、媒体ノイズが小さく、高いS/N比が得られる。更に、CoCr系垂直記録層が保磁力(Hc)を有することによって、記録信号の熱安定性が高くなる。 According to the perpendicular magnetic recording medium of the present invention, a CoZr-based amorphous soft magnetic underlayer and a CoCr-based perpendicular recording layer are sequentially laminated on a substrate, a CoZr-based amorphous soft magnetic underlayer, and a CoCr-based When the network structure layer is formed between the perpendicular recording layer and the perpendicular recording layer , the network structure layer is made of any of Cr, B, Nb, Mo, Ta, W, C, and any of these alloy materials. since a saga 0.5~2.3Nm, this result, while maintaining the magnetic coupling between the CoZr based amorphous soft magnetic underlayer and the CoCr-based perpendicular recording layer, a CoCr-based perpendicular recording by network structure layer Since the crystal grains of the layer can be made small, a CoCr type perpendicular recording layer having a high degree of perpendicular orientation and a high coercive force (Hc) can be obtained. Accordingly, when the information signal is recorded and reproduced using the perpendicular magnetic recording medium according to the present invention, the recording and reproducing efficiency of the perpendicular magnetic recording medium is increased, and the reproduction output of the information signal is also increased. Further, the medium noise is small and a high S / N ratio can be obtained. Furthermore, since the CoCr-based perpendicular recording layer has a coercive force (Hc), the thermal stability of the recording signal is increased.

本発明に係る垂直磁気記録媒体では、とくに、CoZr系非晶質軟磁性下地層と、CoCr系垂直記録層との間にごく薄く形成した網目構造層によりCoCr系垂直記録層の結晶粒子を小さくすることができる。   In the perpendicular magnetic recording medium according to the present invention, in particular, the crystal grains of the CoCr-based perpendicular recording layer are made small by the network structure layer formed very thin between the CoZr-based amorphous soft magnetic underlayer and the CoCr-based perpendicular recording layer. can do.

図1は本発明に係る垂直磁気記録媒体を模式的に示した断面図、
図2は図1に示した網目構造層として種々の物質を挿入したときのHc変化率及びS/N上昇量を示した図、
図3は図1に示した網目構造層への挿入物質の融点とHc変化率との関係を示した図、
図4は図1に示した網目構造層への挿入物質の表面張力とHc変化率との関係を示した図、
図5はNbの堆積高さとHcとの関係を示した図、
図6はNbの堆積高さとS/Nとの関係を示した図である。
FIG. 1 is a sectional view schematically showing a perpendicular magnetic recording medium according to the present invention.
FIG. 2 is a diagram showing the Hc change rate and S / N increase when various substances are inserted as the network structure layer shown in FIG.
FIG. 3 is a diagram showing the relationship between the melting point of the substance inserted into the network structure layer shown in FIG.
FIG. 4 is a diagram showing the relationship between the surface tension of the substance inserted into the network structure layer shown in FIG.
FIG. 5 is a diagram showing the relationship between the deposition height of Nb and Hc,
FIG. 6 is a graph showing the relationship between the deposition height of Nb and S / N.

図1に示した如く、本発明に係る垂直磁気記録媒体10は、プラスチックフィルム,ガラス材などの非磁性材を用いた基板11上に、硬磁性ピンニング層12と、CoZr系非晶質軟磁性下地層13と、網目構造層14と、CoCr系垂直記録層15と、保護層16とがこの順で積層された状態で形成されている。この際、垂直磁気記録媒体10中の各層11〜16は、全てマグネトロンスパッタ法により成膜されている。   As shown in FIG. 1, a perpendicular magnetic recording medium 10 according to the present invention includes a hard magnetic pinning layer 12 and a CoZr amorphous soft magnetic material on a substrate 11 made of a nonmagnetic material such as a plastic film or a glass material. The underlayer 13, the network structure layer 14, the CoCr-based perpendicular recording layer 15, and the protective layer 16 are formed in this order. At this time, all the layers 11 to 16 in the perpendicular magnetic recording medium 10 are formed by a magnetron sputtering method.

より具体的に成膜順に説明すると、まず、基板11として例えば鏡面加工を施した円盤状のガラス基板を用いており、この基板11上に硬磁性ピンニング層12として、Co83Sm17(at%)を略150nmの厚さで成膜している。この硬磁性ピンニング層12は、CoZr系非晶質軟磁性下地層13の磁区をピンニングするものである。   More specifically, in order of film formation, first, for example, a disk-shaped glass substrate having a mirror finish is used as the substrate 11, and Co83Sm17 (at%) is abbreviated as a hard magnetic pinning layer 12 on the substrate 11. The film is formed with a thickness of 150 nm. The hard magnetic pinning layer 12 is for pinning the magnetic domains of the CoZr amorphous soft magnetic underlayer 13.

次に、硬磁性ピンニング層12上にCoZr系非晶質軟磁性下地層13として、Co88Zr7Nb5(at%)膜を略360nmの厚さで成膜している。   Next, a Co88Zr7Nb5 (at%) film having a thickness of approximately 360 nm is formed on the hard magnetic pinning layer 12 as a CoZr-based amorphous soft magnetic underlayer 13.

次に、CoZr系非晶質軟磁性下地層13上に本発明の要部となる網目構造層14をCr,B,Nb,Mo,Ta,W,C及びこれらの合金(混合物)のうちのいずれかの物質を用いて網目状にごく薄く成膜している。 Then, either a network structure layer 14 as a main part of the present invention on the CoZr based amorphous soft magnetic underlayer 13 Cr, B, Nb, Mo , Ta, W, C beauty of these alloys (mixture) These materials are used to form an extremely thin network.

ここで、一般的に、薄膜を形成する場合に、成膜対象物質が堆積する初期段階では島状構造をとり、成膜対象物質の堆積が進むと、隣り合う島状構造同士が結合しあって網目構造となる。更に成膜対象物質の堆積が進むと、網目の隙間が埋めつくされ、連続的な膜構造(または層構造)となる。一般的に薄膜(または薄膜層)と呼ばれるものは、この連続構造からなるものを指す。   Here, in general, when forming a thin film, an island-like structure is formed at the initial stage of deposition of a film formation target substance, and when the deposition target substance is deposited, adjacent island structures are joined together. And has a mesh structure. As the deposition target material further accumulates, the mesh gaps are filled, and a continuous film structure (or layer structure) is obtained. What is generally referred to as a thin film (or thin film layer) refers to one having this continuous structure.

そこで、本発明の要部となる網目構造層14を成膜する場合に、上記したCr,B,Nb,Mo,Ta,W,C及びこれらの合金(混合物)のうちのいずれかの物質を堆積させながら隣り合う島状構造同士が結合しあって網目構造となる段階で成膜を中止することで、網目構造層14は島状構造と連続的膜構造との中間状態の網目構造を取ることになる。 Therefore, when forming a network structure layer 14 as a main part of the present invention, Cr was above, B, Nb, Mo, Ta, W, one of the substances of the C beauty alloys (mixture) is deposited In this case, the network structure layer 14 takes a network structure in an intermediate state between the island structure and the continuous film structure by stopping the film formation when the adjacent island structures are combined to form a network structure. become.

この際、網目構造層14中で網目構造が形成される条件は、後述するように成膜対象物質の融点や表面張力に強く依存し、融点が1700°C〜3800°C、表面張力γ0が1.5N/m〜2.5N/mの物質を、平均堆積高さ0.5nm〜2.3nmの範囲でごく薄く形成することにより網目構造が実現できること、網目構造を形成する物質としては上記したようにCr,B,Nb,Mo,Ta,W,Cおよびこれらの合金(混合物)が有効であることを本発明者らの研究により判明した。   At this time, the conditions under which the network structure is formed in the network structure layer 14 strongly depend on the melting point and surface tension of the film forming target material as described later, and the melting point is 1700 ° C. to 3800 ° C. and the surface tension γ 0 is A network structure can be realized by forming a material of 1.5 N / m to 2.5 N / m very thin with an average deposition height in the range of 0.5 nm to 2.3 nm. As described above, the present inventors have found that Cr, B, Nb, Mo, Ta, W, C and their alloys (mixtures) are effective.

この後、網目構造層14上にCoCr系垂直記録層15として、Co77.4Cr20Ta1.3Nb1.3(at%)を略50nmの厚さで成膜し、更に、CoCr系垂直記録層15を保護するために、保護層16としてカ−ボン膜を略5nmの厚さで成膜している。   Thereafter, a Co77.4Cr20Ta1.3Nb1.3 (at%) film having a thickness of about 50 nm is formed on the network structure layer 14 as a CoCr-based perpendicular recording layer 15 to further protect the CoCr-based perpendicular recording layer 15. Therefore, a carbon film having a thickness of about 5 nm is formed as the protective layer 16.

上記のように、CoZr系非晶質軟磁性下地層13と、CoCr系垂直記録層15との間に網目構造層14を、CoZr系非晶質軟磁性下地層13中のCoと、CoCr系垂直記録層15中のCoとが結合できるようにごく薄い厚さに形成すると、CoZr系非晶質軟磁性部分が露出した微細な多数の網目の隙間が、CoCr系垂直記録層15が結晶成長する際の核となり、結晶粒子が大きく成長するのが抑制されるので、保磁力(Hc)が向上する。この時、網目の隙間を介してCoZr系非晶質軟磁性下地層13とCoCr系垂直記録層15とが直接結合し合うので、磁気的なスペーシングを増大させることがなく、また、CoCr系垂直記録層15の垂直配向度を損ねることもないので、本発明に係る垂直磁気記録媒体10を用いて情報信号を記録再生した時に、垂直磁気記録媒体10の記録再生効率が高くなり、情報信号の再生出力も高くなる。また、媒体ノイズが小さく、高いS/N比得られる。更に、CoCr系垂直記録層15が高い保磁力(Hc)を有することによって、記録信号の熱安定性が高くなる。   As described above, the network structure layer 14 is formed between the CoZr-based amorphous soft magnetic underlayer 13 and the CoCr-based perpendicular recording layer 15, and the Co in the CoZr-based amorphous soft magnetic underlayer 13 and the CoCr-based layer are formed. When formed in a very thin thickness so as to be able to bond with Co in the perpendicular recording layer 15, a large number of fine mesh gaps where the CoZr amorphous soft magnetic portion is exposed cause crystal growth of the CoCr perpendicular recording layer 15. As a result, the cohesive force (Hc) is improved. At this time, since the CoZr-based amorphous soft magnetic underlayer 13 and the CoCr-based perpendicular recording layer 15 are directly coupled to each other through the mesh gap, the magnetic spacing is not increased, and the CoCr-based recording is not caused. Since the perpendicular orientation of the perpendicular recording layer 15 is not impaired, when the information signal is recorded / reproduced by using the perpendicular magnetic recording medium 10 according to the present invention, the recording / reproduction efficiency of the perpendicular magnetic recording medium 10 becomes high, and the information signal Playback output also increases. Moreover, medium noise is small and a high S / N ratio can be obtained. Furthermore, since the CoCr type perpendicular recording layer 15 has a high coercive force (Hc), the thermal stability of the recording signal is increased.

ここで、CoCr系垂直記録層15の保磁力(Hc)の測定はカ−効果を用い、垂直配向度はc軸分散角として、X線回折による(002)面のロッキングカ−ブの半値幅Δθ50で評価した。   Here, the coercive force (Hc) of the CoCr-based perpendicular recording layer 15 is measured using the Kerr effect, the vertical orientation degree is defined as the c-axis dispersion angle, and the half width of the rocking curve on the (002) plane by X-ray diffraction. Evaluation was performed at Δθ50.

また、垂直磁気記録媒体10への記録再生は、ハードディスク装置に使用されるマージ型のGMRヘッドを用いて行った。更に、S/N比の評価は、600kfciの信号に対して行った。   Recording and reproduction on the perpendicular magnetic recording medium 10 was performed using a merge type GMR head used in a hard disk device. Further, the S / N ratio was evaluated for a signal of 600 kfci.

そして、網目構造層14に用いる成膜対象物質を種々変えて、各種の物質を網目構造層14としてごく薄く成膜した後に、上記の測定で得られた結果を図2に示した如くにまとめた。   Then, after variously changing the deposition target materials used for the network structure layer 14 and forming various materials as the network structure layer 14 very thinly, the results obtained by the above measurement are summarized as shown in FIG. It was.

この際、図2中において、Hc(0)は網目構造とすべき物質を挿入しない場合の保磁力であり、Hcは網目構造とすべき物質を挿入した場合の保磁力であり、Hc変化率はHcをHc(0)で規格化した値Hc/Hc(0)である。また、S/N上昇量も同様に、網目構造とすべき物質を挿入しない時のS/N比を0dBとした場合の、挿入した時のS/N比である。   In this case, in FIG. 2, Hc (0) is a coercive force when a substance to be a network structure is not inserted, and Hc is a coercive force when a substance to be a network structure is inserted, and the Hc change rate. Is a value Hc / Hc (0) obtained by normalizing Hc with Hc (0). Similarly, the S / N increase amount is also the S / N ratio at the time of insertion when the S / N ratio at the time when the substance to be a network structure is not inserted is 0 dB.

図2から明らかなように、Hc変化率Hc/Hc(0)が1.0以上となった物質は、Cr,W,Al50Ni50,C,Mo,Ta,B,Nb26B74(at%),Nb33B67(at%),Nb37B63(at%),Nb46B54(at%),Nb50B50(at%),Nbであり、Hc変化率Hc/Hc(0)が1.0以上となったこれらの物質が網目構造層14に適している。   As is clear from FIG. 2, the substances having Hc change rate Hc / Hc (0) of 1.0 or more are Cr, W, Al50Ni50, C, Mo, Ta, B, Nb26B74 (at%), Nb33B67 ( at%), Nb37B63 (at%), Nb46B54 (at%), Nb50B50 (at%), Nb, and these substances whose Hc change rate Hc / Hc (0) is 1.0 or more are network layers. 14 is suitable.

また、図3に示したように、網目構造層14への挿入物質の融点とHc変化率との関係からHc変化率Hc/Hc(0)が1.0以上の物質は、上記した略同様に、AlNi,Cr,B,Nb,Mo,Ta,W,Cであり、これらの物質の融点は1700°Cから3800°Cである。   In addition, as shown in FIG. 3, a substance having an Hc change rate Hc / Hc (0) of 1.0 or more is substantially the same as described above from the relationship between the melting point of the substance inserted into the network structure layer 14 and the Hc change rate. In addition, AlNi, Cr, B, Nb, Mo, Ta, W, and C, and these materials have melting points of 1700 ° C to 3800 ° C.

また、図4に示したように、網目構造層14への挿入物質の表面張力γ0とHc変化率との関係からHc変化率Hc/Hc(0)が1.0以上の物質は、Cr,Nb,Mo,Ta,Wであり、これらの物質の表面張力γ0は1.5から2.5の範囲である。   In addition, as shown in FIG. 4, from the relationship between the surface tension γ0 of the substance inserted into the network structure layer 14 and the Hc change rate, a substance having an Hc change rate Hc / Hc (0) of 1.0 or more is Cr, Nb, Mo, Ta, and W, and the surface tension γ0 of these materials is in the range of 1.5 to 2.5.

上記から網目構造層14への挿入物質のHc変化率が1.0以上となる条件は、挿入物質の融点と、挿入物質の表面張力γ0に強く依存していることがわかる。   From the above, it can be seen that the conditions under which the Hc change rate of the insertion material into the network structure layer 14 is 1.0 or more strongly depend on the melting point of the insertion material and the surface tension γ0 of the insertion material.

そして、網目構造層14への挿入物質のHc変化率が1.0以上の物質をごく薄く成膜した後に、CoCr系垂直記録層15に対してX線回折装置を用いてc軸分散角Δθ50{(002)}面のロッキングカ−ブの半値幅を測定したところ、いずれも4°以下と小さく、垂直配向度の高いものであった。   Then, after forming a very thin material having an Hc change rate of 1.0 or more of the insertion material into the network structure layer 14, the c-axis dispersion angle Δθ 50 is applied to the CoCr-based perpendicular recording layer 15 using an X-ray diffractometer. When the full width at half maximum of the rocking curve on the {(002)} plane was measured, all of them were as small as 4 ° or less, and the degree of vertical alignment was high.

また、CoCr系垂直記録層15の平均粒子径を、透過型電子顕微鏡(TEM)で調べたところ、網目構造層14を形成しない場合に約35nmであったのに対し、上記したように挿入物質のHc変化率が1.0以上の物質を網目構造層14としてごく薄く成膜した場合に約20nmと小さくなっていた。従って、網目構造層14によりCoCr系垂直記録層15の結晶粒子を小さくできることが判明した。これは、CoZr系非晶質軟磁性部分が露出した微細な多数の網目の隙間が、CoCr系垂直記録層15が結晶成長する際の核となり、結晶粒が大きく成長するのが抑制され、微粒子化したためである。   Further, when the average particle diameter of the CoCr-based perpendicular recording layer 15 was examined with a transmission electron microscope (TEM), it was about 35 nm when the network structure layer 14 was not formed. In the case where a material having a Hc change rate of 1.0 or more was formed very thin as the network structure layer 14, it was as small as about 20 nm. Therefore, it has been found that the crystal structure layer 14 can reduce the crystal grains of the CoCr-based perpendicular recording layer 15. This is because a large number of fine mesh gaps in which the CoZr-based amorphous soft magnetic portion is exposed serve as a nucleus when the CoCr-based perpendicular recording layer 15 grows crystals, so that large growth of crystal grains is suppressed. This is because

更に、CoZr系非晶質軟磁性下地層13と、CoCr系垂直記録層15との間に網目構造層14をごく薄く形成した垂直磁気記録媒体10に対して、ハードディスク装置に使用されるマージ型のGMRヘッドを用いて、600kfciの信号に対してS/N比の評価を行ったところ、上記条件の範囲においてはいずれもS/N上昇量は正の値をとり、S/N比が向上した。これはCoCr系垂直記録層15が微粒子化したために媒体ノイズNが低減し、且つ、網目の隙間を介してCoZr系非晶質軟磁性下地層13とCoCr系垂直記録層15とが直接結合しているので、磁気的なスペーシングを増大させることがなく、また、CoCr系垂直記録層15の垂直配向度を損なっていないので、記録再生効率が高く再生信号が大きいためである。 Further, a merge type used in a hard disk device is used for the perpendicular magnetic recording medium 10 in which the network structure layer 14 is formed very thin between the CoZr-based amorphous soft magnetic underlayer 13 and the CoCr-based perpendicular recording layer 15. When the S / N ratio was evaluated for a 600 kfci signal using the GMR head, the S / N increase amount was positive and the S / N ratio was improved within the range of the above conditions. did. This is because the medium noise N is reduced because the CoCr-based perpendicular recording layer 15 has been made fine, and the CoZr-based amorphous soft magnetic underlayer 13 and the CoCr-based perpendicular recording layer 15 are directly coupled via the mesh gap. since it is, without increasing the magnetic spacing, also because it does not impair the vertical orientation of the CoCr-based perpendicular recording layer 15, because there is a large high reproduced signal recording and reproducing efficiency.

次に、網目構造層14への挿入物質の平均堆積高さは、0.5nm〜2.3nmの範囲が特に有効であり、この範囲内で網目構造をとると磁気記録特性が良好に得られる。ここで、平均堆積高さとは、ある面積に対して堆積した量(体積)をその面積で割った値である。具体的な例として、図5,図6にはそれぞれ、Nbを例にとった場合の、Hcと、S/Nとの平均堆積高さ依存性を示している。この例では、網目構造層14中のNbの平均堆積高さが0.5nm〜2.3nmの範囲でHcとS/N比のどちらにも改善が見られ、有効に作用していることがわかる。尚、ここでの図示を省略するものの、網目構造層14にNb以外で上記したCr,B,Mo,Ta,W,C及びこれらの合金(混合物)のうちのいずれかの物質を挿入しても0.5nm〜2.3nmの範囲で特に有効であることが実験により得られた。 Next, the average deposition height of the intercalation material in the network structure layer 14 is particularly effective in the range of 0.5 nm to 2.3 nm. If the network structure is taken within this range, good magnetic recording characteristics can be obtained. . Here, the average deposition height is a value obtained by dividing the amount (volume) deposited for a certain area by the area. As a specific example, FIGS. 5 and 6 show the dependence of Hc and S / N on the average deposition height when Nb is taken as an example. In this example, when the average deposition height of Nb in the network structure layer 14 is in the range of 0.5 nm to 2.3 nm, both the Hc and S / N ratios are improved, and the Nb is acting effectively. Recognize. Incidentally, although not shown here, Cr in a mesh structure layer 14 and the outside Nb, B, Mo, Ta, W, be inserted to any substance of C beauty alloys (mixture) Experiments have shown that it is particularly effective in the range of 0.5 nm to 2.3 nm.

本発明に係る垂直磁気記録媒体を模式的に示した断面図である。1 is a cross-sectional view schematically showing a perpendicular magnetic recording medium according to the present invention. 図1に示した網目構造層として種々の物質を挿入したときのHc変化率及びS/N上昇量を示した図である。It is the figure which showed the Hc change rate and S / N raise amount when various substances are inserted as a network structure layer shown in FIG. 図1に示した網目構造層への挿入物質の融点とHc変化率との関係を示した図である。It is the figure which showed the relationship between melting | fusing point of the substance inserted in the network structure layer shown in FIG. 1, and Hc change rate. 図1に示した網目構造層への挿入物質の表面張力とHc変化率との関係を示した図である。It is the figure which showed the relationship between the surface tension of the insertion substance to the network structure layer shown in FIG. 1, and Hc change rate. Nbの堆積高さとHcとの関係を示した図である。It is the figure which showed the relationship between the deposition height of Nb, and Hc. Nbの堆積高さとS/Nとの関係を示した図である。It is the figure which showed the relationship between the deposition height of Nb, and S / N.

符号の説明Explanation of symbols

10…本発明に係る垂直磁気記録媒体、
11…基板、12…硬磁性ピンニング層、13…CoZr系非晶質軟磁性下地層、
14…網目構造層、15…CoCr系垂直記録層、16…保護層。
10: Perpendicular magnetic recording medium according to the present invention,
11 ... Substrate, 12 ... Hard magnetic pinning layer, 13 ... CoZr-based amorphous soft magnetic underlayer,
14 ... network structure layer, 15 ... CoCr type perpendicular recording layer, 16 ... protective layer.

Claims (1)

基板上に、CoZr系非晶質軟磁性下地層と、CoCr系垂直記録層とを順次積層した垂直磁気記録媒体において、
前記CoZr系非晶質軟磁性下地層と、前記CoCr系垂直記録層との間に網目構造層を形成し
前記網目構造層は、Cr,B,Nb,Mo,Ta,W,C及びこれらの合金材料のうちのいずれかの物質からなり、厚さが0.5〜2.3nmであることを特徴とする垂直磁気記録媒体。
In a perpendicular magnetic recording medium in which a CoZr-based amorphous soft magnetic underlayer and a CoCr-based perpendicular recording layer are sequentially laminated on a substrate ,
Said CoZr based amorphous soft magnetic underlayer, and forming a network structure layer between the CoCr-based perpendicular recording layer,
The network structure layer is made of any one of Cr, B, Nb, Mo, Ta, W, C, and alloy materials thereof, and has a thickness of 0.5 to 2.3 nm. Perpendicular magnetic recording medium.
JP2003271183A 2003-07-04 2003-07-04 Perpendicular magnetic recording medium Expired - Fee Related JP4232564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271183A JP4232564B2 (en) 2003-07-04 2003-07-04 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271183A JP4232564B2 (en) 2003-07-04 2003-07-04 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2005032358A JP2005032358A (en) 2005-02-03
JP4232564B2 true JP4232564B2 (en) 2009-03-04

Family

ID=34209138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271183A Expired - Fee Related JP4232564B2 (en) 2003-07-04 2003-07-04 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4232564B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580817B2 (en) 2005-05-27 2010-11-17 株式会社東芝 Perpendicular magnetic recording medium and perpendicular magnetic recording / reproducing apparatus

Also Published As

Publication number Publication date
JP2005032358A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP3652976B2 (en) Perpendicular magnetic recording medium and magnetic storage device using the same
US7556871B2 (en) Magnetic recording medium containing first and second recording layers, each layer containing a columnar structure
US7955723B2 (en) Magnetic recording medium substrate and perpendicular magnetic recording medium
JP5397926B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2005044464A (en) Perpendicular magnetic recording medium
JP2003077113A (en) Perpendicular magnetic recording medium and manufacturing method therefor
JP2009059402A (en) Vertical magnetic recording medium and magnetic recording/reproducing system using the same
TW200830298A (en) Perpendicular magnetic recording medium with multilayer recording structure including intergranular exchange enhancement layer
KR20070067600A (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
JP2008226416A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2000113441A (en) Vertical magnetic recording medium
JPH11102510A (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JP4232564B2 (en) Perpendicular magnetic recording medium
JP2003203330A (en) Magnetic recording medium
JP2005251264A (en) Vertical magnetic recording medium and its manufacturing method
JP2009026394A (en) Magnetic recording medium and magnetic recording and reproduction apparatus
JP3052915B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP2005209303A (en) Perpendicular magnetic recording medium
JP3136133B2 (en) Magnetic recording media
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JPWO2004019322A1 (en) Backed magnetic film
JP3045797B2 (en) Perpendicular magnetic recording media
JP2009064501A (en) Magnetic recording medium and magnetic recording and playback apparatus
US7947385B2 (en) Magnetic storage medium and information storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees