JP4232454B2 - Damping structure of bridge - Google Patents

Damping structure of bridge Download PDF

Info

Publication number
JP4232454B2
JP4232454B2 JP2002369590A JP2002369590A JP4232454B2 JP 4232454 B2 JP4232454 B2 JP 4232454B2 JP 2002369590 A JP2002369590 A JP 2002369590A JP 2002369590 A JP2002369590 A JP 2002369590A JP 4232454 B2 JP4232454 B2 JP 4232454B2
Authority
JP
Japan
Prior art keywords
bridge
connecting plate
pair
side connecting
intermediate connecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002369590A
Other languages
Japanese (ja)
Other versions
JP2004197502A (en
Inventor
了 大野
剛志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2002369590A priority Critical patent/JP4232454B2/en
Publication of JP2004197502A publication Critical patent/JP2004197502A/en
Application granted granted Critical
Publication of JP4232454B2 publication Critical patent/JP4232454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁、特に上部構造の制振構造に関する。
【0002】
【従来の技術】
橋梁の上部構造と下部構造との間に設置される支承は、上部構造の荷重を確実に下部構造に伝達する役割を果たすほか、温度変化、クリープ等による上部構造の伸縮や回転を円滑に吸収する役割も果たしている。
【0003】
かかる支承は、荷重の伝達機能と回転機能をもったピン支承などの固定支承と、これらに加えて水平移動機能を併せ持ったローラ支承、ゴム支承などの可動支承に大別される。
【0004】
一方、地震時における橋梁、特に上部構造の振動抑制についてさまざまな技術開発が行われてきた。
【0005】
地震時において上部構造の振動を抑制する方法としては、上部構造と下部構造との間に可動支承の一種である免震支承を設置することにより上部構造への入力地震動を低減するとともに、かかる免震化によって増大する上部構造と下部構造との相対変位を減衰装置で抑制する手法が一般的であるが、可動支承と減衰性能が高いアクティブダンパー等の減衰装置とを組み合わせることも研究開発されている。
【0006】
【特許文献1】
特開2000-352113号公報
【0007】
【非特許文献1】
株式会社大林組、技術インデックス、[online]、[平成14年12月10日検索]、インターネット<URL : http://techs.obayashi.co.jp/techs/srb/show_detail?data=1432&freeword=%83%5F%83%93%83%70%81%5B&id=0&start=10&count=5>
【0008】
【発明が解決しようとする課題】
しかしながら、上述したアクティブダンパーは、橋梁の振動をセンサーで検出しつつ、該センサーで検出された振動を分析することによって、橋梁の振動が抑制されるような制御力を該橋梁に作用させる、あるいは橋梁の剛性を可変に構成しておき、やはり橋梁の振動が抑制されるように剛性を変化させる、いわゆるアクティブ制振であるため、システム全体の規模が大きくなり、必ずしも経済性に優れるとは言い難いという問題を生じていた。
【0009】
また、そのような性質上、多数存在する既設の橋梁を耐震補強するにもやはり経済性の面で優れるとは言い難いという問題も生じていた。
【0010】
さらには、既設の橋梁を耐震補強する場合において、上部構造と下部構造との間の支承を交換しなければ、減衰装置を設置するためのクリアランスを確保できず、結果として、所要の減衰性能を備えた減衰装置の設置を断念せざるを得ない場合もあるという問題も生じていた。
【0011】
本発明は、上述した事情を考慮してなされたもので、経済性に優れなおかつ既設の耐震補強にも適用可能な橋梁の制振構造を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る橋梁の制振構造は請求項1に記載したように、材軸方向に長孔が形成されるとともに該材軸方向に沿った両面に摩擦材が設けられた中間連結板と、一方の面にステンレス板がそれぞれ取り付けられた一対の側方連結板と、前記中間連結板及び前記一対の側方連結板を該中間連結板が該一対の側方連結板の間に挟み込まれた状態で前記材軸方向に沿って相対移動自在にかつ前記ステンレス板が前記摩擦材上を前記材軸方向に沿って摺動自在に連結する連結機構とから構成するとともに、該連結機構を、前記一対の側方連結板のうち、一方の側方連結板に穿孔されたボルト孔に皿バネを介して挿入されたボルトを前記中間連結板に形成された前記長孔に挿通した上、他方の側方連結板に穿孔されたボルト孔に貫通させて先端にナットを螺合し締結できるように構成したブレーキダンパーを用いた橋梁の制振構造であって、前記ブレーキダンパーの一端である前記中間連結板の非連結端を橋梁の上部構造及び該上部構造を所定の可動支承を介して支持する下部構造の一方に鉛直軸線廻りに回動自在にピン接合するとともに、前記ブレーキダンパーの他端である前記一対の側方連結板の非連結端を前記上部構造及び下部構造の他方に鉛直軸線廻りに回動自在にピン接合した橋梁の制振構造において、
前記ブレーキダンパーの両端部が、それぞれ、鉛直軸線廻りに回動自在にピン接合される2つのブラケットを、それぞれ、前記上部構造及び前記下部構造に鉛直変位吸収手段を介して接合したものである。
【0015】
本発明に係る橋梁の制振構造においては、連結機構を、一対の側方連結板のうち、一方の側方連結板に穿孔されたボルト孔に皿バネを介して挿入されたボルトを中間連結板に形成された長孔に挿通した上、他方の側方連結板に穿孔されたボルト孔に貫通させて先端にナットを螺合し締結できるように構成してある。
【0016】
そのため、一対の側方連結板による中間連結板の挟着力、すなわち、皿バネによる押付け力をステンレス板と摩擦材との間の動的摩擦係数が所望の大きさになるように設定しておけば、橋梁に水平地震動が入力して上部構造と下部構造との間に相対水平変位が発生した場合、中間連結板の両面に設けられた摩擦材と一対の側方連結板のそれぞれに設けられたステンレス板とが摺動して、上述した動的摩擦係数に応じた摩擦力が発生し、これが熱に変換されることで、上部構造の振動が効果的に抑制される。なお、皿バネによる押付け力は、ボルト及びナットの締結トルクを適宜調整することで任意に設定することができる。
【0017】
また、中間連結板や側方連結板の非連結端は、橋梁の上部構造と下部構造のそれぞれに鉛直軸線廻りに回動自在にピン接合してあるため、水平地震動が橋梁に作用しても、これら中間連結板や側方連結板には軸力しか伝達されず、かくして、上述した摩擦材とステンレス板との摺動による上部構造の振動エネルギー吸収が確実に行われる。
【0018】
上部構造は、下部構造に対して水平面内、特に橋軸方向に沿って水平移動ができるよう、ローラ支承、ゴム支承、免震支承といった所定の可動支承で支持されていればよい。
【0019】
なお、例えばゴム支承が採用されている場合、上部構造は、下部構造に対して相対鉛直変位を生じることになるが、かかる場合において、鉛直変位吸収手段を介して前記ブレーキダンパーを前記上部構造及び前記下部構造に接合しておけば、上述した相対鉛直変位を鉛直変位吸収手段で吸収することが可能となり、中間連結板や一対の側方連結板には、やはり軸力しか伝達されず、摩擦材とステンレス板との摺動による上述したエネルギー吸収の実効化をより確実に図ることが可能となる。
【0020】
ブレーキダンパーは、その一端である中間連結板の非連結端を上部構造及び下部構造の一方にピン接合するとともに、その他端である一対の側方連結板の非連結端を上部構造及び下部構造の他方にピン接合した構成とする限り、その配置場所、配置方向、配置数等は任意である。
【0021】
例えば、下部構造は橋台でも橋脚でもよい。また、上部構造である橋桁と下部構造である橋台あるいは橋脚との間にブレーキダンパーを橋軸方向に沿って単体で配置してもよいし、複数並設するようにしてもかまわない。さらには、ブレーキダンパーを互いに非平行となるように複数設置してもよい。かかる構成によれば、上部構造の振動を橋軸方向に限らず、全方位的にエネルギー吸収することが可能となる。
【0022】
【発明の実施の形態】
以下、本発明に係る橋梁の制振構造の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0023】
図1は、本実施形態に係る橋梁の制振構造の配置状況を示した全体図である。同図でわかるように、本実施形態に係る橋梁の制振構造1は、橋梁の下部構造である橋台3及び橋脚4と該橋台及び橋脚の上に設置された可動支承6で支持される上部構造たる橋桁2との間にブレーキダンパー5をそれぞれ設置してなる。
【0024】
可動支承6は、橋台3あるいは橋脚4に対する橋桁2の相対水平移動を所定の範囲内で許容しつつ、橋桁2からの鉛直荷重を橋台3あるいは橋脚4に伝達するようになっており、免震支承、ローラ支承等を採用することができる。
【0025】
図2は、ブレーキダンパー5とその取付け状況を示したものである。同図でわかるように、ブレーキダンパー5は、その一端である橋台側端部にて鉛直軸線廻りに回動自在に橋台3にピン接合してあるとともに、その他端である橋桁側端部においても高さ調整用台座12を介して鉛直軸線廻りに回動自在に橋桁2にピン接合してある。なお、図2(b)は、橋台側におけるブレーキダンパー5の取付け状況を示しているが、橋脚においても、同図と対称に設置されている点を除き、橋台側と同様にブレーキダンパー5を設置してある。
【0026】
ブレーキダンパー5は図3に示すように、中間連結板21と、一対の側方連結板22,22と、中間連結板21及び一対の側方連結板22,22を連結する連結機構23とから構成してある。
【0027】
中間連結板21は、側方連結板22,22に連結される連結端と取付け用ブラケット25にピン接合される非連結端とを両端に有するロッド状平板であり、その材軸方向に長孔24を形成してあるとともに、該長孔の両脇には、それと平行にかつ長孔24とほぼ同等の長さにわたって摩擦材27,27を設けてある。なお、かかる摩擦材27,27は、中間連結板21の両面に設けてある。
【0028】
一方、側方連結板22,22は、中間連結板21に連結される連結端と取付け用ブラケット26にピン接合される非連結端とを両端に有するロッド状平板であり、一方の面に矩形状のステンレス板28をそれぞれ取り付けてある。
【0029】
ここで、取付け用ブラケット25は、高さ調整用台座12を介して橋桁2の下面に固定し、取付け用ブラケット26は、橋台3あるいは橋脚4の上面に固定してあるが、取付け用ブラケット25及び取付け用ブラケット26は、鉛直変位吸収手段としてのスプリングワッシャー29を介して高さ調整用台座12や橋台3あるいは橋脚4に取り付けてあり、該スプリングワッシャーによって橋桁2と橋台3あるいは橋脚4との間の相対鉛直変位を吸収できるようになっている。
【0030】
連結機構23は、中間連結板21と側方連結板22,22との連結箇所でそれらが回転してしまうことがないよう、それらの材軸に沿って2つ並設してあり、図4の分解図でよくわかるように、一対の側方連結板22,22のうち、一方の側方連結板22に穿孔されたボルト孔35に平ワッシャー33及び皿バネ34を介してボルト32を挿入するとともに、該ボルトを中間連結板21に形成された長孔24に挿通した上、他方の側方連結板22に穿孔されたボルト孔36及び平ワッシャー37に貫通させ、その先端にナット38を螺合して締結できるように構成してあり、かかる構成により、中間連結板21及び側方連結板22,22を、該中間連結板が該側方連結板の間に挟み込まれた状態で材軸方向に沿って相対移動自在にかつステンレス板28が摩擦材27上を材軸方向に沿って摺動自在になるようになっている。
【0031】
長孔24及び摩擦材27は、水平地震動によって生じる橋桁2と橋台3あるいは橋脚4との相対水平変位と同等又はそれ以上の長さを確保するものとし、水平地震動の規模は、設計上要求される設計地震動によって定める。
【0032】
本実施形態に係る橋梁の制振構造1においては、連結機構23を、一対の側方連結板22,22のうち、一方の側方連結板22に穿孔されたボルト孔35に皿バネ34を介して挿入されたボルト32を中間連結板21に形成された長孔24に挿通した上、他方の側方連結板22に穿孔されたボルト孔36に貫通させて先端にナット38を螺合し締結できるように構成してある。
【0033】
そのため、一対の側方連結板22,22による中間連結板21の挟着力、すなわち、皿バネ34による押付け力をステンレス板28と摩擦材27との間の動的摩擦係数が所望の大きさになるように設定しておけば、橋梁に水平地震動が入力して橋桁2と橋台3又は橋脚4との間に相対水平変位が発生した場合、中間連結板21の両面に設けられた摩擦材27と一対の側方連結板22,22のそれぞれに設けられたステンレス板28とが摺動し、上述した動的摩擦係数に応じた摩擦力が発生し、これが熱に変換されることで、橋桁2の振動が効果的に抑制される。なお、皿バネ34による押付け力は、ボルト32及びナット38の締結トルクを適宜調整することで任意に設定することができる。
【0034】
動的摩擦係数の大きさは、ブレーキダンパー5の設計耐力とそのストローク長、すなわち長孔24の長さとの兼ね合いで設定すればよい。すなわち、設計耐力を大きくするのであれば、皿バネ34の押付け力を大きくすることで動的摩擦係数を大きくすればよい。
【0035】
このようにすれば、わずかな相対水平変位でも大きなエネルギー吸収が可能となり、かかる場合には、ストローク長は短くてもかまわない。
【0036】
一方、このようにブレーキダンパー5の設計耐力を大きくすると、それに応じた反力が橋台3や橋脚4に作用してより大きな応力が生じることとなるため、断面を大きくする等、下部構造の規模を大きくせねばならない。
【0037】
したがって、下部構造である橋台3や橋脚4の規模を抑えるべく、設計耐力を小さくする一方、ストローク長を長くするのが望ましい。
【0038】
本実施形態に係るブレーキダンパー5は、中間連結板21及び側方連結板22,22の長さ、ひいてはストローク長を所望の長さに設定できるため、設計耐力を小さくしてストローク長でエネルギー吸収をかせぐ後者の方法を採用することが可能であり、その意味では、橋梁に最適な減衰装置であると言える。
【0039】
なお、設計耐力を低くした場合においては、地震時のみならず、橋台3や橋脚4のクリープ、温度変化等による変形にも追従することが可能となる。
【0040】
以上説明したように、本実施形態に係る橋梁の制振構造1によれば、皿バネ34による押付け力をステンレス板28と摩擦材27との間の動的摩擦係数が所望の大きさになるように設定しておくことで、地震発生時、中間連結板21の両面に設けられた摩擦材27と一対の側方連結板22,22のそれぞれに設けられたステンレス板28とが摺動して動的摩擦係数に応じた摩擦力が発生する。そのため、橋桁2の振動を効果的に抑制することができる。
【0041】
また、従来においては、橋梁の地震応答を十分に低減させることができなかったため、橋梁に使用される伸縮継手の伸縮量を大きく設定せざるを得なかったが、本実施形態に係る橋梁の制振構造1によれば、上述したように橋桁2の振動を効果的に抑制することができるため、伸縮継手の伸縮量を小さく設定することが可能となる。
【0042】
そのため、伸縮継手の伸縮量を大きく設定した場合の弊害、例えば維持管理が難しい、構造上の欠点となる、車両通過時に騒音が発生する、コストが高くなるといった弊害を未然に防止することができる。
【0043】
また、本実施形態に係る橋梁の制振構造1によれば、中間連結板21や側方連結板22,22の非連結端が橋桁2と橋台3あるいは橋脚4のそれぞれに鉛直軸線廻りに回動自在にピン接合してあるため、水平地震動が橋梁に作用しても、これら中間連結板21や側方連結板22,22には軸力しか伝達されず、かくして、上述した摩擦材27とステンレス板28との摺動による橋桁2の振動エネルギー吸収を確実に行うことができる。
【0044】
また、本実施形態に係る橋梁の制振構造1によれば、中間連結板21を一対の側方連結板22,22で挟み込むように連結してブレーキダンパー5を構成してあるため、ブレーキダンパー5の全体高さを抑えることが可能となる。
【0045】
そのため、橋桁2と橋台3あるいは橋脚4との間のクリアランスが小さい場合にも設置することが可能となり、新設される橋梁はもちろんのこと、既存の橋梁にも適用して耐震補強を行うことが可能となる。
【0046】
また、本実施形態に係る橋梁の制振構造1によれば、取付け用ブラケット25及び取付け用ブラケット26を鉛直変位吸収手段としてのスプリングワッシャー29を介して高さ調整用台座12や橋台3あるいは橋脚4に取り付けたので、該スプリングワッシャーにより、橋桁2と橋台3あるいは橋脚4との間の相対鉛直変位を吸収することができる。
【0047】
そのため、中間連結板21や一対の側方連結板22,22には、やはり軸力しか伝達されず、摩擦材27とステンレス板28との摺動による上述したエネルギー吸収の実効化をより確実に図ることが可能となる。
【0048】
本実施形態では、橋桁2の側に高さ調整用台座12を用いたが、可動支承6の高さが低い場合など、ブレーキダンパー5の設置高さを調整する必要がない場合にはこれを省略し、取付け用ブラケット25を直接、橋桁2に固定するようにしてもかまわない。
【0049】
また、本実施形態では、ブレーキダンパー5を橋軸方向と平行に単体で配置したが、これに代えて図5に示すように、互いに非平行となるように複数設置してもよい。例えば、互いに直交するように二つのブレーキダンパー5,5を設置することが考えられる。
【0050】
かかる構成によれば、橋軸方向に限らず、橋軸直交方向の橋桁2の振動についても振動エネルギーを吸収することができるため、結局、全方位的にエネルギー吸収することが可能となる。
【0051】
【発明の効果】
以上述べたように、本発明に係る橋梁の制振構造によれば、地震発生時、中間連結板の両面に設けられた摩擦材と一対の側方連結板のそれぞれに設けられたステンレス板とが摺動して動的摩擦係数に応じた摩擦力が発生する。そのため、上部構造の振動を効果的に抑制することが可能となる。
【0052】
また、中間連結板や側方連結板の非連結端が上部構造と下部構造のそれぞれに鉛直軸線廻りに回動自在にピン接合してあるため、水平地震動が橋梁に作用しても、これら中間連結板や側方連結板には軸力しか伝達されず、かくして、上述した摩擦材とステンレス板との摺動による橋桁の振動エネルギー吸収を確実に行うことができる。
【0053】
また、本発明に係る橋梁の制振構造によれば、中間連結板を一対の側方連結板で挟み込むように連結してブレーキダンパーを構成してあるため、ブレーキダンパーの全体高さを抑えることができる。そのため、上部構造と下部構造との間のクリアランスが小さい場合にも設置することが可能となり、新設される橋梁はもちろんのこと、既存の橋梁にも適用して耐震補強を行うことが可能となる。
【0054】
【図面の簡単な説明】
【図1】本実施形態に係る橋梁の制振構造の配置状況を示した全体図。
【図2】ブレーキダンパー5とその取付け状況を示した図であり、(a)は平面図、(b)はA−A線方向の矢視図。
【図3】ブレーキダンパーの詳細図であり、(a)は平面図、(b)はB−B線方向の矢視図。
【図4】連結機構23の分解図。
【図5】ブレーキダンパー5の配置に関する変形例を示した平面図。
【符号の説明】
1 橋梁の制振構造
2 橋桁(上部構造)
3 橋台(下部構造)
4 橋脚(下部構造)
5 ブレーキダンパー
6 可動支承
21 中間連結板
22 側方連結板
23 連結機構
24 長孔
27 摩擦材
28 ステンレス板
29 スプリングワッシャー(鉛直変位吸収手段)
32 ボルト
34 皿バネ
35,36 ボルト孔
38 ナット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bridge, and more particularly to a superstructure damping structure.
[0002]
[Prior art]
The support installed between the superstructure and the substructure of the bridge plays a role of reliably transmitting the load of the superstructure to the substructure, and smoothly absorbs the expansion and contraction and rotation of the superstructure due to temperature change, creep, etc. It also plays a role.
[0003]
Such bearings are roughly classified into fixed bearings such as pin bearings having a load transmission function and a rotation function, and movable bearings such as roller bearings and rubber bearings having a horizontal movement function in addition to these.
[0004]
On the other hand, various technologies have been developed for vibration suppression of bridges, especially superstructures, during earthquakes.
[0005]
As a method of suppressing the vibration of the superstructure during an earthquake, the seismic isolation bearing, which is a kind of movable bearing, is installed between the superstructure and the substructure to reduce the input ground motion to the superstructure and A method to suppress relative displacement between the superstructure and the substructure, which are increased by seismicization, is generally used by a damping device, but the combination of a movable bearing and a damping device such as an active damper with high damping performance is also being researched and developed Yes.
[0006]
[Patent Document 1]
JP 2000-352113 A [0007]
[Non-Patent Document 1]
Obayashi Corporation, Technical Index, [online], [Search on December 10, 2002], Internet <URL: http://techs.obayashi.co.jp/techs/srb/show_detail?data=1432&freeword=%83 % 5F% 83% 93% 83% 70% 81% 5B & id = 0 & start = 10 & count = 5>
[0008]
[Problems to be solved by the invention]
However, the active damper described above applies a control force to the bridge to suppress the vibration of the bridge by analyzing the vibration detected by the sensor while detecting the vibration of the bridge with the sensor, or This is so-called active vibration control, in which the rigidity of the bridge is made variable and the rigidity is changed so that vibration of the bridge is also suppressed, so the overall system scale becomes large and it is not necessarily excellent in economic efficiency. It was difficult.
[0009]
In addition, due to such properties, there has also been a problem that it is difficult to say that it is excellent in terms of economy even if a large number of existing bridges are seismically reinforced.
[0010]
Furthermore, in the case of seismic reinforcement of existing bridges, if the support between the upper structure and the lower structure is not exchanged, the clearance for installing the attenuation device cannot be secured, resulting in the required attenuation performance. There has also been a problem that it may be necessary to give up the installation of the attenuation device provided.
[0011]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a bridge damping structure that is excellent in economy and can be applied to existing seismic reinforcement.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the bridge damping structure according to the present invention has a long hole formed in the material axis direction and a friction material provided on both surfaces along the material axis direction as described in claim 1. The intermediate connection plate, a pair of side connection plates each having a stainless plate attached to one surface thereof, and the intermediate connection plate and the pair of side connection plates. A stainless steel plate that is slidably connected on the friction material along the material axis direction and is relatively movable along the material axis direction while being sandwiched between the plates, The coupling mechanism is inserted into the elongated hole formed in the intermediate coupling plate by inserting a bolt inserted through a disc spring into a bolt hole drilled in one of the pair of side coupling plates. In addition, the bolt hole drilled in the other side connecting plate A bridge damping structure using a brake damper configured to be screwed and fastened with a nut at the tip, wherein the unconnected end of the intermediate connecting plate, which is one end of the brake damper, is the upper structure of the bridge And a lower structure that supports the upper structure via a predetermined movable support, and is pin-coupled so as to be rotatable about a vertical axis, and the pair of side connection plates that are the other ends of the brake damper are not connected. In the vibration damping structure of a bridge in which an end is pin-joined to the other of the upper structure and the lower structure so as to be rotatable around a vertical axis ,
Two brackets each having both ends of the brake damper pin-joined so as to be rotatable about a vertical axis are joined to the upper structure and the lower structure via vertical displacement absorbing means , respectively.
[0015]
In the bridge vibration damping structure according to the present invention, the coupling mechanism is an intermediate coupling of a bolt inserted through a disc spring into a bolt hole drilled in one of the side coupling plates. It is configured to be inserted into a long hole formed in the plate and penetrated into a bolt hole drilled in the other side connecting plate so as to be screwed and fastened to the tip.
[0016]
Therefore, the clamping force of the intermediate connecting plate by the pair of side connecting plates, that is, the pressing force by the disc spring, should be set so that the dynamic friction coefficient between the stainless steel plate and the friction material becomes a desired magnitude. For example, when horizontal seismic motion is input to the bridge and a relative horizontal displacement occurs between the upper structure and the lower structure, the friction material provided on both sides of the intermediate connecting plate and the pair of side connecting plates are provided. The stainless steel plate slides to generate a frictional force corresponding to the above-described dynamic friction coefficient, which is converted into heat, thereby effectively suppressing the vibration of the superstructure. The pressing force by the disc spring can be arbitrarily set by appropriately adjusting the fastening torque of the bolt and nut.
[0017]
In addition, the unconnected ends of the intermediate connecting plate and the side connecting plate are pin-connected to the upper structure and the lower structure of the bridge so as to be rotatable about the vertical axis, so that even if horizontal earthquake motion acts on the bridge Only the axial force is transmitted to the intermediate connecting plate and the side connecting plate, and thus the vibration energy of the upper structure is surely absorbed by the sliding of the friction material and the stainless steel plate.
[0018]
The upper structure may be supported by a predetermined movable bearing such as a roller bearing, a rubber bearing, or a seismic isolation bearing so that the upper structure can be moved horizontally in the horizontal plane, particularly along the bridge axis direction.
[0019]
For example, when a rubber bearing is employed, the upper structure causes a relative vertical displacement with respect to the lower structure. In such a case, the brake damper is connected to the upper structure and the vertical structure through a vertical displacement absorbing means. If it is joined to the lower structure, the above-described relative vertical displacement can be absorbed by the vertical displacement absorbing means, and only axial force is transmitted to the intermediate connecting plate and the pair of side connecting plates, and friction The above-described energy absorption can be more effectively achieved by sliding between the material and the stainless steel plate.
[0020]
In the brake damper, the unconnected end of the intermediate connecting plate, which is one end thereof, is pin-joined to one of the upper structure and the lower structure, and the unconnected ends of a pair of side connecting plates, which are the other ends, are connected to the upper structure and the lower structure. As long as it is configured to be pin-bonded to the other, the arrangement location, arrangement direction, number of arrangements, etc. are arbitrary.
[0021]
For example, the substructure may be an abutment or a pier. In addition, a brake damper may be arranged alone along the bridge axis direction between the bridge girder as the upper structure and the abutment or pier as the lower structure, or a plurality of brake dampers may be arranged side by side. Furthermore, a plurality of brake dampers may be installed so as to be non-parallel to each other. According to such a configuration, the vibration of the superstructure can be absorbed not only in the bridge axis direction but in all directions.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a bridge damping structure according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0023]
FIG. 1 is an overall view showing an arrangement state of a bridge damping structure according to the present embodiment. As can be seen from the figure, the bridge damping structure 1 according to the present embodiment includes an abutment 3 and a pier 4 which are lower structures of the bridge, and an upper portion supported by a movable support 6 installed on the abutment and the pier. Brake dampers 5 are installed between the bridge girder 2 and the structure.
[0024]
The movable support 6 transmits the vertical load from the bridge girder 2 to the abutment 3 or the pier 4 while allowing the relative horizontal movement of the bridge girder 2 with respect to the abutment 3 or the pier 4 within a predetermined range. Bearings, roller bearings, etc. can be adopted.
[0025]
FIG. 2 shows the brake damper 5 and its mounting state. As can be seen from the figure, the brake damper 5 is pin-joined to the abutment 3 so as to be rotatable around the vertical axis at the abutment side end portion at one end thereof, and also at the other end of the bridge girder side end portion. It is pin-joined to the bridge girder 2 via a height adjustment base 12 so as to be rotatable about a vertical axis. Fig. 2 (b) shows the state of installation of the brake damper 5 on the abutment side, but the brake damper 5 is also installed on the pier in the same way as on the abutment side, except that it is installed symmetrically. It is installed.
[0026]
As shown in FIG. 3, the brake damper 5 includes an intermediate connecting plate 21, a pair of side connecting plates 22 and 22, and a connecting mechanism 23 that connects the intermediate connecting plate 21 and the pair of side connecting plates 22 and 22. It is configured.
[0027]
The intermediate connecting plate 21 is a rod-shaped flat plate having both ends of a connecting end connected to the side connecting plates 22 and 22 and a non-connecting end that is pin-joined to the mounting bracket 25. 24, and friction materials 27 and 27 are provided on both sides of the long hole in parallel with the long hole and over the same length as the long hole 24. The friction materials 27 and 27 are provided on both surfaces of the intermediate connecting plate 21.
[0028]
On the other hand, the side connecting plates 22 and 22 are rod-shaped flat plates having a connecting end connected to the intermediate connecting plate 21 and a non-connecting end pin-connected to the mounting bracket 26 at both ends. Shaped stainless steel plates 28 are respectively attached.
[0029]
Here, the mounting bracket 25 is fixed to the lower surface of the bridge girder 2 via the height adjustment pedestal 12, and the mounting bracket 26 is fixed to the upper surface of the abutment 3 or the pier 4. The mounting bracket 26 is attached to the height adjusting pedestal 12, the abutment 3 or the pier 4 via a spring washer 29 as a vertical displacement absorbing means, and the bridge girder 2 and the abutment 3 or the pier 4 are attached by the spring washer. The relative vertical displacement between them can be absorbed.
[0030]
Two connection mechanisms 23 are arranged along the material axes so that they do not rotate at the connection points between the intermediate connection plate 21 and the side connection plates 22 and 22, as shown in FIG. As can be clearly understood from the exploded view of FIG. 2, the bolt 32 is inserted into the bolt hole 35 drilled in one of the pair of side connecting plates 22 and 22 through the flat washer 33 and the disc spring 34. At the same time, the bolt is inserted into the long hole 24 formed in the intermediate connecting plate 21, and then penetrated into the bolt hole 36 and the flat washer 37 drilled in the other side connecting plate 22, and a nut 38 is provided at the tip thereof. The intermediate connecting plate 21 and the side connecting plates 22 and 22 can be fastened by screwing together, and the intermediate connecting plate 21 and the side connecting plates 22 and 22 are sandwiched between the side connecting plates. Along the stainless steel Scan plate 28 is adapted to be slidable along the upper friction member 27 in Zaijiku direction.
[0031]
The long hole 24 and the friction material 27 ensure a length equal to or greater than the relative horizontal displacement between the bridge girder 2 and the abutment 3 or the pier 4 caused by the horizontal ground motion, and the scale of the horizontal ground motion is required in design. Determined by design seismic motion.
[0032]
In the bridge damping structure 1 according to the present embodiment, the connecting mechanism 23 is provided with a disc spring 34 in a bolt hole 35 drilled in one of the pair of side connecting plates 22, 22. The bolt 32 inserted through the hole is inserted into a long hole 24 formed in the intermediate connecting plate 21, and is passed through a bolt hole 36 drilled in the other side connecting plate 22, and a nut 38 is screwed into the tip. It is configured so that it can be fastened.
[0033]
Therefore, the dynamic friction coefficient between the stainless steel plate 28 and the friction material 27 is set to a desired magnitude by the clamping force of the intermediate connecting plate 21 by the pair of side connecting plates 22, 22, that is, the pressing force by the disc spring 34. If the horizontal ground motion is input to the bridge and a relative horizontal displacement occurs between the bridge girder 2 and the abutment 3 or the pier 4, the friction material 27 provided on both surfaces of the intermediate connecting plate 21 is set. And the stainless steel plate 28 provided on each of the pair of side connection plates 22 and 22 generate a frictional force corresponding to the above-described dynamic friction coefficient, which is converted into heat, thereby the bridge girder. 2 vibration is effectively suppressed. The pressing force by the disc spring 34 can be arbitrarily set by appropriately adjusting the fastening torque of the bolt 32 and the nut 38.
[0034]
The magnitude of the dynamic friction coefficient may be set in consideration of the design strength of the brake damper 5 and its stroke length, that is, the length of the long hole 24. That is, if the design yield strength is increased, the dynamic friction coefficient may be increased by increasing the pressing force of the disc spring 34.
[0035]
In this way, a large amount of energy can be absorbed even with a slight relative horizontal displacement. In such a case, the stroke length may be short.
[0036]
On the other hand, when the design strength of the brake damper 5 is increased in this way, the reaction force corresponding to the brake damper 5 acts on the abutment 3 and the pier 4 to generate a larger stress. Must be increased.
[0037]
Therefore, in order to reduce the scale of the abutment 3 and the pier 4 which are substructures, it is desirable to reduce the design strength while increasing the stroke length.
[0038]
The brake damper 5 according to the present embodiment can set the length of the intermediate connecting plate 21 and the side connecting plates 22 and 22 and thus the stroke length to a desired length. It is possible to adopt the latter method that earns power, and in that sense, it can be said to be an optimum damping device for a bridge.
[0039]
When the design proof strength is lowered, it is possible to follow not only the earthquake but also the deformation of the abutment 3 and the pier 4 due to creep, temperature change, and the like.
[0040]
As described above, according to the bridge damping structure 1 according to the present embodiment, the dynamic friction coefficient between the stainless steel plate 28 and the friction material 27 becomes a desired magnitude due to the pressing force of the disc spring 34. With this setting, when an earthquake occurs, the friction material 27 provided on both surfaces of the intermediate connection plate 21 and the stainless plate 28 provided on each of the pair of side connection plates 22 and 22 slide. Thus, a friction force corresponding to the dynamic friction coefficient is generated. Therefore, the vibration of the bridge girder 2 can be effectively suppressed.
[0041]
Also, in the past, the earthquake response of the bridge could not be sufficiently reduced, so the expansion amount of the expansion joint used for the bridge had to be set large, but the bridge control according to the present embodiment was limited. According to the vibration structure 1, since the vibration of the bridge girder 2 can be effectively suppressed as described above, the expansion / contraction amount of the expansion joint can be set small.
[0042]
Therefore, it is possible to prevent the adverse effects of setting the expansion / contraction amount of the expansion joint to a large value, for example, the difficulty of maintenance and management, the structural defects, the noise generated when passing the vehicle, and the high cost. .
[0043]
Further, according to the bridge damping structure 1 according to the present embodiment, the unconnected ends of the intermediate connecting plate 21 and the side connecting plates 22, 22 rotate around the vertical axis around the bridge girder 2 and the abutment 3 or the pier 4 respectively. Since the pins are movably connected, even if horizontal seismic motion acts on the bridge, only the axial force is transmitted to the intermediate connecting plate 21 and the side connecting plates 22, 22. The vibration energy of the bridge girder 2 can be reliably absorbed by sliding with the stainless steel plate 28.
[0044]
Moreover, according to the bridge damping structure 1 according to the present embodiment, the brake damper 5 is configured by connecting the intermediate connecting plate 21 so as to be sandwiched between the pair of side connecting plates 22, 22. 5 can be suppressed.
[0045]
Therefore, it can be installed even when the clearance between the bridge girder 2 and the abutment 3 or the pier 4 is small, and it can be applied to existing bridges as well as newly built bridges for seismic reinforcement. It becomes possible.
[0046]
Further, according to the bridge damping structure 1 according to the present embodiment, the mounting bracket 25 and the mounting bracket 26 are mounted on the height adjusting base 12, the abutment 3, or the pier via the spring washer 29 as a vertical displacement absorbing means. 4, the relative vertical displacement between the bridge girder 2 and the abutment 3 or the pier 4 can be absorbed by the spring washer.
[0047]
For this reason, only the axial force is transmitted to the intermediate connecting plate 21 and the pair of side connecting plates 22, 22, and the above-described energy absorption by sliding between the friction material 27 and the stainless steel plate 28 is more reliably realized. It becomes possible to plan.
[0048]
In the present embodiment, the height adjustment base 12 is used on the bridge girder 2 side. However, when the height of the brake support 5 need not be adjusted, such as when the height of the movable support 6 is low, this is used. It may be omitted and the mounting bracket 25 may be directly fixed to the bridge girder 2.
[0049]
In the present embodiment, the brake dampers 5 are arranged as a single unit parallel to the bridge axis direction, but instead, as shown in FIG. 5, a plurality of brake dampers 5 may be installed so as to be non-parallel to each other. For example, it is conceivable to install two brake dampers 5 and 5 so as to be orthogonal to each other.
[0050]
According to such a configuration, vibration energy can be absorbed not only in the bridge axis direction but also in the vibration of the bridge girder 2 in the direction orthogonal to the bridge axis, so that energy can be absorbed in all directions after all.
[0051]
【The invention's effect】
As described above, according to the bridge damping structure according to the present invention, when an earthquake occurs, the friction material provided on both surfaces of the intermediate connection plate and the stainless plate provided on each of the pair of side connection plates, Slides to generate a frictional force according to the dynamic friction coefficient. For this reason, it is possible to effectively suppress the vibration of the superstructure.
[0052]
In addition, since the unconnected ends of the intermediate connecting plate and the side connecting plate are pin-joined to the upper structure and the lower structure so as to be rotatable around the vertical axis, even if horizontal earthquake motion acts on the bridge, Only the axial force is transmitted to the connecting plate and the side connecting plate, and thus the vibration energy of the bridge girder can be reliably absorbed by the sliding between the friction material and the stainless steel plate.
[0053]
Further, according to the bridge vibration damping structure of the present invention, the brake damper is configured by connecting the intermediate connecting plate so as to be sandwiched between the pair of side connecting plates, thereby suppressing the overall height of the brake damper. Can do. Therefore, it can be installed even when the clearance between the superstructure and the substructure is small, and it can be applied to existing bridges as well as newly built bridges, and seismic reinforcement can be performed. .
[0054]
[Brief description of the drawings]
FIG. 1 is an overall view showing an arrangement state of a bridge damping structure according to the present embodiment.
FIGS. 2A and 2B are diagrams showing a brake damper 5 and its mounting state, where FIG. 2A is a plan view, and FIG. 2B is an arrow view in the direction of the line AA.
FIGS. 3A and 3B are detailed views of the brake damper, where FIG. 3A is a plan view and FIG. 3B is an arrow view in the BB line direction.
4 is an exploded view of the coupling mechanism 23. FIG.
FIG. 5 is a plan view showing a modified example related to the arrangement of the brake damper 5;
[Explanation of symbols]
1 Damping structure of bridge 2 Bridge girder (superstructure)
3 Abutment (lower structure)
4 Pier (lower structure)
5 Brake damper 6 Movable support 21 Intermediate connecting plate 22 Side connecting plate 23 Connecting mechanism 24 Long hole 27 Friction material 28 Stainless steel plate 29 Spring washer (vertical displacement absorbing means)
32 bolt 34 disc spring 35, 36 bolt hole 38 nut

Claims (1)

材軸方向に長孔が形成されるとともに該材軸方向に沿った両面に摩擦材が設けられた中間連結板と、一方の面にステンレス板がそれぞれ取り付けられた一対の側方連結板と、前記中間連結板及び前記一対の側方連結板を該中間連結板が該一対の側方連結板の間に挟み込まれた状態で前記材軸方向に沿って相対移動自在にかつ前記ステンレス板が前記摩擦材上を前記材軸方向に沿って摺動自在に連結する連結機構とから構成するとともに、該連結機構を、前記一対の側方連結板のうち、一方の側方連結板に穿孔されたボルト孔に皿バネを介して挿入されたボルトを前記中間連結板に形成された前記長孔に挿通した上、他方の側方連結板に穿孔されたボルト孔に貫通させて先端にナットを螺合し締結できるように構成したブレーキダンパーを用いた橋梁の制振構造であって、前記ブレーキダンパーの一端である前記中間連結板の非連結端を橋梁の上部構造及び該上部構造を所定の可動支承を介して支持する下部構造の一方に鉛直軸線廻りに回動自在にピン接合するとともに、前記ブレーキダンパーの他端である前記一対の側方連結板の非連結端を前記上部構造及び下部構造の他方に鉛直軸線廻りに回動自在にピン接合した橋梁の制振構造において、
前記ブレーキダンパーの両端部が、それぞれ、鉛直軸線廻りに回動自在にピン接合される2つのブラケットを、それぞれ、前記上部構造及び前記下部構造に鉛直変位吸収手段を介して接合したことを特徴とする橋梁の制振構造。
An intermediate connecting plate in which a long hole is formed in the material axis direction and a friction material is provided on both surfaces along the material axis direction, and a pair of side connecting plates each having a stainless plate attached to one surface, The intermediate connecting plate and the pair of side connecting plates are relatively movable along the material axis direction with the intermediate connecting plate being sandwiched between the pair of side connecting plates, and the stainless steel plate is the friction material. And a bolt hole formed in one of the pair of side connecting plates. The bolt hole has a connecting mechanism that slidably connects the upper side along the material axis direction. A bolt inserted through a disc spring is inserted into the elongated hole formed in the intermediate connecting plate, and is passed through a bolt hole drilled in the other side connecting plate, and a nut is screwed into the tip. Using a brake damper configured to be fastened A bridge damping structure having a vertical axis on one of the upper structure of the bridge and the lower structure that supports the upper structure via a predetermined movable support with the unconnected end of the intermediate connecting plate being one end of the brake damper The joint of the pair of side connecting plates, which is the other end of the brake damper, is joined to the other of the upper structure and the lower structure so as to be rotatable about a vertical axis. In the vibration control structure of the bridge
The two ends of the brake damper are respectively connected to the upper structure and the lower structure via vertical displacement absorbing means, and the two brackets are connected to each other so as to be rotatable about a vertical axis. Damping structure for bridges.
JP2002369590A 2002-12-20 2002-12-20 Damping structure of bridge Expired - Fee Related JP4232454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369590A JP4232454B2 (en) 2002-12-20 2002-12-20 Damping structure of bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369590A JP4232454B2 (en) 2002-12-20 2002-12-20 Damping structure of bridge

Publications (2)

Publication Number Publication Date
JP2004197502A JP2004197502A (en) 2004-07-15
JP4232454B2 true JP4232454B2 (en) 2009-03-04

Family

ID=32765766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369590A Expired - Fee Related JP4232454B2 (en) 2002-12-20 2002-12-20 Damping structure of bridge

Country Status (1)

Country Link
JP (1) JP4232454B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6335489B2 (en) * 2013-11-26 2018-05-30 東日本旅客鉄道株式会社 Movement limiter and construction method of movement limiter
JP6476055B2 (en) * 2014-04-30 2019-02-27 首都高速道路株式会社 Seismic structure for bridges
JP6476054B2 (en) * 2014-04-30 2019-02-27 首都高速道路株式会社 Seismic structure for bridges
JP6338472B2 (en) * 2014-07-03 2018-06-06 株式会社大林組 Movement restriction release mechanism and vibration control device and slide support using the same
JP6426923B2 (en) * 2014-07-03 2018-11-21 株式会社大林組 Friction damper
JP6395288B2 (en) * 2014-07-03 2018-09-26 株式会社大林組 Hysteresis damper and its design method
JP6173553B1 (en) * 2016-12-07 2017-08-02 株式会社ハナミズキ・ブリッジ・プランニング Seismic control device for bridge
CN109750594B (en) * 2019-02-01 2023-11-10 东南大学 Large-span bridge composite multi-directional wind-resistant and earthquake-resistant damper and working method thereof
CN111794071A (en) * 2020-07-06 2020-10-20 上海崇明水利工程有限公司 Water conservancy bridge structure

Also Published As

Publication number Publication date
JP2004197502A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
Monir et al. A modified friction damper for diagonal bracing of structures
KR100853564B1 (en) A device for damping movements of structural elements and a bracing system
KR101181987B1 (en) Displacement-Amplifying damping system and Construction method using that
KR20090019917A (en) Friction damper for damping movement of structures
JP4545920B2 (en) Seismic isolation system for bridges
KR101448386B1 (en) Vibration control device of scissors toggle type having hinge friction damper
JP4232454B2 (en) Damping structure of bridge
JP2009068668A (en) Friction damper
JP2006241934A (en) Damper device
JP2005299078A (en) Vibration proofing apparatus for bridge
JP2002235454A (en) Vibration damper device
JP4844925B2 (en) Damping damper
JP5325127B2 (en) Damping device and partition wall using the same
KR101402479B1 (en) Aseismic Damper
JP4191687B2 (en) Damping damper connector, damping damper, and building damping structure
JP2007263158A (en) Vibration damping device
JPH11193649A (en) Vibration control wall panel
KR20130093964A (en) Complex friction damper
JP4909395B2 (en) Building seismic control structure
JP5480721B2 (en) Damping device and partition wall using the same
JP6208782B2 (en) Dynamic vibration absorber and floor
JP4595261B2 (en) Damper of vibration isolator
JP3300305B2 (en) Articulated bridge fall prevention device
JP2012052374A (en) Beam end vibration control structure
KR101389771B1 (en) High Density Damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4232454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees