JP4230649B2 - Working / Preliminary Nonlinear Compensator and Working / Preliminary Nonlinear Compensation Method for Digital Broadcasting Modulated Signal Transmission System - Google Patents

Working / Preliminary Nonlinear Compensator and Working / Preliminary Nonlinear Compensation Method for Digital Broadcasting Modulated Signal Transmission System Download PDF

Info

Publication number
JP4230649B2
JP4230649B2 JP2000280830A JP2000280830A JP4230649B2 JP 4230649 B2 JP4230649 B2 JP 4230649B2 JP 2000280830 A JP2000280830 A JP 2000280830A JP 2000280830 A JP2000280830 A JP 2000280830A JP 4230649 B2 JP4230649 B2 JP 4230649B2
Authority
JP
Japan
Prior art keywords
compensation
digital broadcast
modulation signal
amplitude
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000280830A
Other languages
Japanese (ja)
Other versions
JP2002094390A (en
Inventor
博人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000280830A priority Critical patent/JP4230649B2/en
Publication of JP2002094390A publication Critical patent/JP2002094390A/en
Application granted granted Critical
Publication of JP4230649B2 publication Critical patent/JP4230649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、現用・予備の二重化構造を有し、変調がかけられたデジタル放送変調信号を取り扱うデジタル放送変調信号送出システムに係り、特にこのシステムで用いられる増幅器の非線形特性を補償する現用・予備非線形補償装置及び現用・予備非線形補償方法に関する。
【0002】
【従来の技術】
従来より、放送送出設備にあっては、機器の故障対策及び保守のために、現用・予備の二重化構成とすることが一般的となっている。
【0003】
ここで、アナログ放送送出システムでは、現用・予備の切替時に、ショックが目立たないようにするのに、フレーム同期を行なった上で、フレーム位置で切り替えるものとし、接点の切替時に発生するノイズ対策等を講じるだけで十分である。
【0004】
ところで、デジタル放送送出システムでは、取り扱う信号が例えばOFDM(Orthogonal Frequency Division Multiplex :直交周波数分割多重)方式により変調されているため、低レベルから高レベルまでの線形性やわずかな乱れもない位相回転が要求されることになる。このため、デジタル放送送出システムでは、現用・予備の切り替えにおいて、アナログ放送のように単純にフレーム同期を行なってフレーム位置で切り替えることはできない。
【0005】
図5は、上記対策を講じた場合の現用・予備の二重化構成のデジタル放送送出システムを示すブロック図である。
【0006】
図5において、現用系は変調器11と、補償器12と、周波数変換器13とにより構成され、予備系は変調器21と、補償器22と、周波数変換器23とにより構成される。
【0007】
まず、現用系において、デジタル放送信号は、変調器11によりIF(中間周波数)信号に変換され、補償器12により処理が施され、周波数変換器13によりRF(無線周波数)信号に変換された後、切替スイッチ31に供給される。また、予備系において、現用系と同じように、デジタル放送信号は、変調器21によりIF信号に変換され、補償器22により処理が施され、周波数変換器23によりRF信号に変換された後、切替スイッチ31に供給される。
【0008】
切替スイッチ31は、現用・予備切替トリガ信号に応じて、現用系のRF信号及び予備系のRF信号のいずれか一方を選択的に導出する。この切替スイッチ31の出力信号は、増幅器32で電力増幅された後、放送波として図示しないアンテナにより送信される。
【0009】
ところで、上記補償器12、22は、増幅器32の動作温度、経年変化等により生じる非線形特性を補償するアダプティブ補償器のため、増幅器32の出力信号をフィードバックさせ最適な補償データを算出し、それぞれ変換器11、21の出力信号に付加する。なお、補償器12が動作中の時は、補償器22の補償データ誤算出防止のため、切替スイッチ33により予備系のフィードバック回路をオフしてアダプティブ動作をオフする必要がある。
【0010】
しかし、現用系から予備系へに切り替わる際に、補償器22は記憶していた補償値を使用するため、切替直後の最適補償が不可能となり、その結果、増幅器32の出力に特性劣化が生じることになる。つまり、補償器22では、切替後フィードバック回路がオンとなると、アダプティブに動作し始め補償データの最適値を算出するが、この算出処理に数十秒の時間が必要となる。
【0011】
【発明が解決しようとする課題】
以上述べたように、従来考えられているデジタル放送送出システムの現用・予備の二重化構成における増幅器の非線形特性の補償対策にあっては、現用・予備切替時に、アダプティブに動作し始めてから補償データの最適値を算出するまでに待ち時間を要することになり、この待ち時間に特性劣化が生じるという不具合を有している。
【0012】
そこで、この発明の目的は、デジタル放送変調信号の現用・予備切替時に、特性劣化を起こすことなく、増幅器の非線形特性の補償を継続して行なうことが可能なデジタル放送変調信号送出システムの現用・予備非線形補償装置及び現用・予備非線形補償方法を提供することにある。
【0013】
【課題を解決するための手段】
この発明に係るデジタル放送変調信号送出システムの現用・予備非線形補償装置は、現用系と予備系とで互いに独立して変調されたデジタル放送変調信号を現用・予備切替信号に応じて選択的に導出した後、電力増幅して放送波として放送するデジタル放送変調信号送出システムに用いられ、現用系及び予備系のうち選択的に導出されたデジタル放送変調信号を電力増幅して送出する増幅器の非線形特性を補償する現用・予備非線形補償装置であって、現用系及び予備系それぞれに設けられ、両系のうち動作中の系について、増幅器の出力信号から増幅器の非線形特性を求め、それらの逆特性から補償データを求め、この補償データで入力デジタル放送変調信号に対し補償処理を施す現用系補償部及び予備系補償部と、現用・予備切替信号が入力される前に、現用系補償部と予備系補償部との間で、求めた補償データの授受を行なう補償データ通信手段とを備えるようにしたものである。
【0014】
具体的には、上記現用系補償部及び予備系補償部は、それぞれ増幅器の出力信号から増幅器の入力振幅対出力振幅特性及び入力振幅対出力位相特性を求める特性演算手段と、この特性演算手段で求められた入力振幅対出力振幅特性及び入力振幅対出力位相特性それぞれの逆特性から振幅特性の補償データ及び位相特性の補償データを求める補償データ演算手段と、この補償データ演算手段で求められた振幅特性の補償データ及び位相特性の補償データを入力されるデジタル放送変調信号に付加する補償手段とを備えることを特徴とする。
【0015】
この構成によれば、動作中の現用系補償部で求められる補償データが待機中の予備系補償部にリアルタイムに通知されることになり、この待機期間中に予備系補償部では、通知された補償データを入力されるデジタル放送変調信号に付加しているので、現用系から予備系に切り替わった際に、予備系のデジタル放送変調信号に切替前に求めた増幅器の持つ非線形特性と逆の特性を持たせて増幅器に入力することができ、その増幅器の出力の非線形特性による歪み成分を補償することができる。
【0016】
このため、現用系から予備系への切替時に、予備系補償部において、フィードバック処理を行なって、最適な補償データを算出する必要がなく、その分待ち時間をなくすことができるので、増幅器の出力信号に対し特性劣化の発生を防ぐことができ、これにより増幅器の非線形特性の補償を継続して行なうことができる。さらに、切替前と切替後の信号が綺麗につながり、情報に乱れのないデジタル放送変調信号を送出することができる。
【0017】
また、上記構成において、さらに、現用系補償部及び予備系補償部のそれぞれの前段に、入力されるデジタル放送変調信号の振幅値を所定値に調整する現用系振幅調整部及び予備系振幅調整部を備え、また、両系統間でデジタル放送変調信号の位相を合わせる位相調整部を備えることを特徴とする。
【0018】
このようにすることで、現用系補償部及び予備系補償部に入力される前に、デジタル放送変調信号の振幅が両系統間で所定振幅値に合わせられ、またデジタル放送変調信号の位相が両系統間で合わせられるので、万一、両系統間でデジタル放送変調信号の振幅変動及び位相変動が生じた場合にも、この変動に対処することができ、これにより増幅器の非線形特性の補償に支障を与えずに済む。
【0019】
【発明の実施の形態】
以下、この発明の実施形態について図面を参照して詳細に説明する。
【0020】
図1は、この発明に係るデジタル放送変調信号送出システムの構成を示すブロック図である。
【0021】
図1において、現用系は変調器101と、ALC(Auto Level Controller)102と、補償器103と、周波数変換器104とにより構成され、予備系は変調器111と、ALC112と、補償器113と、周波数変換器114とにより構成される。
【0022】
まず、現用系において、デジタル放送信号は、変調器101によりIF(中間周波数)信号に変換され、ALC102で変調器101の出力信号の振幅が予め決められた設定振幅値に調整される。そして、ALC102の出力信号は、補償器103により処理が施され、周波数変換器104によりRF(無線周波数)信号に変換された後、切替スイッチ121に供給される。また、予備系において、現用系と同じように、デジタル放送信号は、変調器111によりIF信号に変換され、ALC112で変調器111の出力信号の振幅が予め決められた設定振幅値に調整される。そして、ALC112の出力信号は、補償器113により処理が施され、周波数変換器114によりRF信号に変換された後、切替スイッチ121に供給される。
【0023】
切替スイッチ121は、現用・予備切替トリガ信号に応じて、現用系のRF信号及び予備系のRF信号のいずれか一方を選択的に導出する。この切替スイッチ121の出力信号は、増幅器122で電力増幅された後、放送波として図示しないアンテナにより送信される。
【0024】
また、増幅器122の出力信号は、切替スイッチ123に供給される。この切替スイッチ123は、現用・予備切替トリガ信号に応じて、増幅器122の出力信号を補償器103または補償器113に選択的に導出する。
【0025】
図2は、上記補償器103、113の構成を示すブロック図である。なお、図2では、補償器103を代表して説明する。
【0026】
図2において、補償器103は、特性検出部1031と、補償データ演算部1032と、加算部1033と、補償データ通信部1034とを備えている。
【0027】
補償器103に入力された増幅器122の出力信号は、特性検出部1031に供給される。特性検出部1031は、増幅器122の出力信号から増幅器122の非線形特性を検出する。この増幅器122の非線形特性としては、図3に示すような入力振幅対出力振幅特性(図3ではA曲線の特性)と、図4に示すような入力振幅対出力位相特性(図4ではΦ曲線の特性)との2つがある。この増幅器122の非線形特性は、外部環境条件及び経年変化により変化するため、アダプティブに補償し特性改善を行なうことが望ましいとされている。
【0028】
そこで、特性検出部1031では、増幅器122の出力信号から入力振幅対出力振幅特性及び入力振幅対出力位相特性を求め、この求めた入力振幅対出力振幅特性信号及び入力振幅対出力位相特性信号を補償データ演算部1032に出力する。補償データ演算部1032は、入力振幅対出力振幅特性の逆特性(図3ではA-1曲線の特性)を求め、同様に入力振幅対出力位相特性の逆特性(図4ではΦ-1曲線の特性)を求め、振幅位相補償成分を示す補償データとして加算部1033及び補償データ1034にそれぞれ出力する。
【0029】
加算部1033は、ALC102の出力信号と補償データとを入力し、ALC102の出力信号に補償データを付加する。このようにすることで、増幅器122を線形増幅器の特性に近づける。
【0030】
また、補償データ通信部1034は、補償データ演算部1032で求められた補償データを予備系側の補償器113に送信する。また、現用系が待機中の場合、補償器113からの補償データを受信し、加算部1033に出力する。
【0031】
次に、図2の補償器103について、増幅器122の非線形特性の補償を行なう動作を説明する。
【0032】
今、搬送波周波数をω0、r(t)とφ(t)をそれぞれ変調された信号の包絡線振幅と位相角とすると、増幅器122の入力信号は
x(t)=r(t)cos[ω0t+φ(t)]
と表される。ここで、入力振幅対出力振幅特性をA(r)、入力振幅対出力位相特性をΦ(r)とすると、増幅器122の出力信号は
y(t)=A[r(t)]cos[ω0t+φ(t)+Φ(r(t))]
と表される。
【0033】
そこで、補償器103では、
A[A-1(r(t))]=B[r(t)](Bは線形特性)
となるような振幅特性の補償データA-1(r(t))を補償データ演算部1032で算出する。
【0034】
同様に、補償データ演算部1032は、
−Φ[r(t)]+Φ-1[A-1(r(t))]=0
となるような位相特性の補償データΦ-1[A-1(r(t))]を算出する。
【0035】
これら求めた補償データを加算部1033により変調器102の出力信号に付加すると、補償器103の出力は、
y(t)=A-1[r(t)]cos[ωIFt+φ(t)−Φ(r(t))]
ωIF:変換器出力のIF信号中心周波数
と表される。
【0036】
周波数変換器104ではIF信号を搬送波周波数に変換し、利得が0dBとすると増幅器122の入力信号は、
y(t)=A-1[r(t)]cos[ω0t+φ(t)−Φ(r(t))]
と表される。この信号を増幅器122で増幅するとその出力は、
y(t)=A[A-1(r(t))]cos[ω0t+φ(t)−Φ(r(t))]+Φ-1[A-1(r(t))] =B[r(t)]cos[ω0t+φ(t)]
となり、システムとして線形増幅となる。
【0037】
また、待機中の補償器113に伝送する補償データは、振幅特性の補償データA-1(r)と位相特性の補償データΦ-1(r)とを示し、補償器113の入力信号を等しくすると、現用系から予備系への切替時に切替前の特性を維持することができるようになる。
【0038】
また、上記構成において、現用・予備切替時には、変調器101、111の出力にALC102,112を介在させ、2つの補償器103、113の入力振幅を同一にすることが必要不可欠となる。ここで、アダプティブ非線形補償の利得を0dB、2つの周波数変換器101、111の利得を同じとすると、2つの補償器103、113の補償データは同じである。ここで、ALC102、112の追加、各機器の利得の調整を行なう時は、動作中の補償器のデータを待機中の補償器に伝送し、待機中の補償器がそのデータを使用することで、系統切替時に特性劣化を起こすことなく増幅器122の非線形特性の補償を実施できる。
【0039】
以上述べたように上記実施形態によれば、動作中の補償器103で求められる補償データが待機中の補償器113にリアルタイムに通知されることになり、この待機期間中に補償器113では、通知された補償データをALC112の出力信号に付加しているので、切替スイッチ121により現用系から予備系に切り替わった際に、予備系のデジタル放送変調信号に切替前に求めた増幅器122の持つ非線形特性と逆の特性を持たせて増幅器122に入力することができ、その増幅器122の出力の非線形特性による歪み成分を補償することができる。
【0040】
このため、現用系から予備系への切替時に、補償器113において、フィードバック処理を行なって、最適な補償データを算出する必要がなく、その分待ち時間をなくすことができるので、増幅器122の出力信号に対し特性劣化の発生を防ぐことができ、これにより増幅器122の非線形特性の補償を継続して行なうことができる。さらに、切替前と切替後の信号が綺麗につながり、情報に乱れのないデジタル放送変調信号を送出することができる。
【0041】
また、上記実施形態では、補償器103、113それぞれの前段に、変調器101、111の出力信号の振幅値を決められた設定振幅値に調整するALC102、112を設けるようにしている。このため、補償器103、113に入力される前に、デジタル放送変調信号の振幅が両系統間で所定の設定振幅値に合わせられることにより、万一、両系統間でデジタル放送変調信号の振幅変動が生じた場合にも、この変動に対処することができ、これにより増幅器122の非線形特性の補償に支障を与えずに済む。
【0042】
なお、この発明は上記実施形態に限定されるものではない。
【0043】
例えば、上記実施形態では、補償器103、113それぞれの前段に、ALC102、112を設けて両系統間で補償器103、113の入力信号の振幅値を所定の設定振幅値に合わせる例について説明したが、補償器103、113の前段に、位相調整器を設けるようにしてもよい。この場合、位相調整器は、両系統間で補償器103、113の入力信号の位相差を検出し、この位相差に基づいて両入力信号の位相合わせを行なう。
【0044】
このようにすることで、万一、両系統間でデジタル放送変調信号の位相変動が生じた場合にもこの位相変動に対処することができ、同様に増幅器122の非線形特性の補償に支障を与えずに済む。
【0045】
この他、補償器の構成、補償データの種類やシステム内の各構成回路などについても、この発明の要旨を逸脱しない範囲で種々変形して実施できる。
【0046】
【発明の効果】
以上詳述したようにこの発明によれば、デジタル放送変調信号の現用・予備切替時に、特性劣化を起こすことなく、増幅器の非線形特性の補償を継続して行なうことが可能なデジタル放送変調信号送出システムの現用・予備非線形補償装置及び現用・予備非線形補償方法を提供することができる。
【図面の簡単な説明】
【図1】この発明に係るデジタル放送変調信号送出システムの構成を示すブロック図。
【図2】図1に示した補償器の具体的構成を示すブロック図。
【図3】図1に示した増幅器の入力振幅対出力振幅特性を示す図。
【図4】図1に示した増幅器の入力振幅対出力位相特性を示す図。
【図5】従来考えられていた現用・予備の二重化構成のデジタル放送送出システムを示すブロック図。
【符号の説明】
101、111…変調器、
102、112…ALC(Auto Level Controller)、
103、113…補償器、
104、114…周波数変換器、
121、123…切替スイッチ、
122…増幅器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a digital broadcast modulation signal transmission system that has a duplex structure of active and standby and handles a modulated digital broadcast modulation signal, and in particular, an active and standby that compensates for nonlinear characteristics of an amplifier used in this system. The present invention relates to a nonlinear compensator and a working / preliminary nonlinear compensation method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in broadcast transmission facilities, it is common to have a working / spare duplex configuration for countermeasures and maintenance of equipment failures.
[0003]
Here, in the analog broadcast transmission system, in order to prevent shock from becoming noticeable when switching between active and standby, the frame is synchronized and then switched at the frame position, measures against noise generated when switching contacts, etc. It is enough to take
[0004]
By the way, in the digital broadcast transmission system, since the signal to be handled is modulated by, for example, an OFDM (Orthogonal Frequency Division Multiplex) system, phase rotation without a linearity from a low level to a high level and a slight disturbance is generated. Will be required. For this reason, in the digital broadcast transmission system, when switching between active and standby, it is not possible to simply perform frame synchronization and switch at the frame position as in analog broadcasting.
[0005]
FIG. 5 is a block diagram showing a digital broadcast transmission system having a duplex configuration of working and backup when the above measures are taken.
[0006]
In FIG. 5, the working system includes a modulator 11, a compensator 12, and a frequency converter 13, and the backup system includes a modulator 21, a compensator 22, and a frequency converter 23.
[0007]
First, in an active system, a digital broadcast signal is converted into an IF (intermediate frequency) signal by a modulator 11, processed by a compensator 12, and converted into an RF (radio frequency) signal by a frequency converter 13. , And supplied to the changeover switch 31. In the standby system, as in the active system, the digital broadcast signal is converted into an IF signal by the modulator 21, processed by the compensator 22, and converted to an RF signal by the frequency converter 23. The changeover switch 31 is supplied.
[0008]
The changeover switch 31 selectively derives one of the working RF signal and the standby RF signal in accordance with the working / standby switching trigger signal. The output signal of the changeover switch 31 is amplified by the amplifier 32 and then transmitted as a broadcast wave by an antenna (not shown).
[0009]
By the way, the compensators 12 and 22 are adaptive compensators that compensate for non-linear characteristics caused by the operating temperature, aging, etc. of the amplifier 32, so that the output signal of the amplifier 32 is fed back to calculate optimum compensation data, and conversion is performed respectively. Is added to the output signals of the devices 11 and 21. When the compensator 12 is in operation, it is necessary to turn off the adaptive operation by turning off the standby feedback circuit by the changeover switch 33 in order to prevent the compensation data from being erroneously calculated by the compensator 22.
[0010]
However, since the compensator 22 uses the stored compensation value when switching from the active system to the standby system, optimal compensation immediately after switching becomes impossible, and as a result, characteristic degradation occurs in the output of the amplifier 32. It will be. That is, in the compensator 22, when the post-switching feedback circuit is turned on, it starts to operate adaptively and calculates the optimum value of the compensation data, but this calculation process requires several tens of seconds.
[0011]
[Problems to be solved by the invention]
As described above, in the countermeasures for compensating the nonlinear characteristics of the amplifier in the currently used / spare duplex configuration of the digital broadcasting transmission system that has been considered in the past, the compensation data can be transferred after the adaptive operation starts at the time of active / spare switching. A waiting time is required until the optimum value is calculated, and there is a problem that characteristic deterioration occurs in this waiting time.
[0012]
Accordingly, an object of the present invention is to provide a digital broadcast modulation signal transmission system capable of continuously compensating for nonlinear characteristics of an amplifier without causing characteristic deterioration at the time of active / preliminary switching of a digital broadcast modulation signal. It is an object of the present invention to provide a preliminary nonlinear compensation device and a working / preliminary nonlinear compensation method.
[0013]
[Means for Solving the Problems]
The working / standby non-linear compensator for a digital broadcast modulated signal transmission system according to the present invention selectively derives a digital broadcast modulated signal modulated independently by the working system and the standby system according to the working / standby switching signal. After that, the non-linear characteristics of the amplifier that is used in a digital broadcast modulation signal transmission system that amplifies the power and broadcasts it as a broadcast wave, and that amplifies and transmits the digital broadcast modulation signal that is selectively derived from the active system and the standby system Is used for both the working system and the standby system, and for the active system of both systems, the nonlinear characteristic of the amplifier is obtained from the output signal of the amplifier, and the inverse characteristics thereof are obtained. An active system compensation unit and a standby system compensation unit for obtaining compensation data and performing compensation processing on the input digital broadcast modulation signal with the compensation data, and an active / preliminary switching signal Before being force between the working system compensation unit and a standby system compensator is obtained by so and a compensation data communication means for transmitting and receiving compensation data determined.
[0014]
Specifically, the active system compensation unit and the standby system compensation unit respectively include a characteristic calculation unit that obtains an input amplitude-to-output amplitude characteristic and an input amplitude-to-output phase characteristic of the amplifier from the output signal of the amplifier, and the characteristic calculation unit. Compensation data computing means for obtaining compensation data for amplitude characteristics and compensation data for phase characteristics from the inverse characteristics of the obtained input amplitude vs. output amplitude characteristics and input amplitude vs. output phase characteristics, and the amplitude obtained by this compensation data computing means Compensating means for adding characteristic compensation data and phase characteristic compensation data to the input digital broadcast modulation signal.
[0015]
According to this configuration, the compensation data calculated by the active system compensation unit in operation is notified to the standby standby system compensation unit in real time, and the standby system compensation unit is notified during this standby period. Compensation data is added to the input digital broadcast modulation signal, so when switching from the active system to the standby system, the characteristics that are opposite to the nonlinear characteristics of the amplifier obtained before switching to the standby digital broadcast modulation signal Can be input to the amplifier, and distortion components due to nonlinear characteristics of the output of the amplifier can be compensated.
[0016]
For this reason, when switching from the active system to the standby system, it is not necessary to calculate the optimum compensation data by performing feedback processing in the standby system compensation unit, and the waiting time can be eliminated accordingly, so that the output of the amplifier It is possible to prevent the deterioration of the characteristics of the signal, and thus it is possible to continuously compensate for the nonlinear characteristics of the amplifier. Furthermore, the digital broadcast modulation signal can be sent out with a clean connection between the signal before and after the switching, and the information is not disturbed.
[0017]
Further, in the above configuration, the active system amplitude adjusting unit and the standby system amplitude adjusting unit that adjust the amplitude value of the input digital broadcast modulation signal to a predetermined value before each of the active system compensating unit and the standby system compensating unit. And a phase adjustment unit for adjusting the phase of the digital broadcast modulation signal between both systems.
[0018]
In this way, the amplitude of the digital broadcast modulation signal is adjusted to a predetermined amplitude value between both systems before being input to the active system compensation unit and the standby system compensation unit, and the phase of the digital broadcast modulation signal is adjusted to both. Since they can be matched between systems, even if the amplitude fluctuation and phase fluctuation of the digital broadcast modulation signal occur between the two systems, this fluctuation can be dealt with, which hinders the compensation of the nonlinear characteristics of the amplifier. It is not necessary to give.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0020]
FIG. 1 is a block diagram showing the configuration of a digital broadcast modulation signal transmission system according to the present invention.
[0021]
In FIG. 1, the working system includes a modulator 101, an ALC (Auto Level Controller) 102, a compensator 103, and a frequency converter 104, and the backup system includes a modulator 111, an ALC 112, and a compensator 113. And the frequency converter 114.
[0022]
First, in the working system, the digital broadcast signal is converted into an IF (intermediate frequency) signal by the modulator 101, and the amplitude of the output signal of the modulator 101 is adjusted to a predetermined set amplitude value by the ALC102. The output signal of the ALC 102 is processed by the compensator 103, converted into an RF (radio frequency) signal by the frequency converter 104, and then supplied to the changeover switch 121. In the standby system, as in the active system, the digital broadcast signal is converted into an IF signal by the modulator 111, and the amplitude of the output signal of the modulator 111 is adjusted to a predetermined set amplitude value by the ALC 112. . The output signal of the ALC 112 is processed by the compensator 113, converted into an RF signal by the frequency converter 114, and then supplied to the changeover switch 121.
[0023]
The change-over switch 121 selectively derives either the working RF signal or the standby RF signal in accordance with the working / standby switching trigger signal. The output signal of the changeover switch 121 is amplified by the amplifier 122 and then transmitted as a broadcast wave from an antenna (not shown).
[0024]
The output signal of the amplifier 122 is supplied to the changeover switch 123. The changeover switch 123 selectively derives the output signal of the amplifier 122 to the compensator 103 or the compensator 113 in accordance with the working / standby changeover trigger signal.
[0025]
FIG. 2 is a block diagram showing the configuration of the compensators 103 and 113. In FIG. 2, the compensator 103 will be described as a representative.
[0026]
In FIG. 2, the compensator 103 includes a characteristic detection unit 1031, a compensation data calculation unit 1032, an addition unit 1033, and a compensation data communication unit 1034.
[0027]
The output signal of the amplifier 122 input to the compensator 103 is supplied to the characteristic detection unit 1031. The characteristic detector 1031 detects the nonlinear characteristic of the amplifier 122 from the output signal of the amplifier 122. The nonlinear characteristics of the amplifier 122 include an input amplitude vs. output amplitude characteristic (A curve characteristic in FIG. 3) and an input amplitude vs. output phase characteristic (Φ curve in FIG. 4) as shown in FIG. There are two characteristics. Since the nonlinear characteristic of the amplifier 122 changes depending on external environmental conditions and aging, it is desirable to adaptively compensate and improve the characteristic.
[0028]
Therefore, the characteristic detection unit 1031 obtains the input amplitude vs. output amplitude characteristic and the input amplitude vs. output phase characteristic from the output signal of the amplifier 122, and compensates for the obtained input amplitude vs. output amplitude characteristic signal and input magnitude vs. output phase characteristic signal. The data is output to the data calculation unit 1032. The compensation data calculation unit 1032 obtains an inverse characteristic of the input amplitude vs. output amplitude characteristic (characteristic of the A- 1 curve in FIG. 3), and similarly an inverse characteristic of the input amplitude vs. output phase characteristic (of the Φ -1 curve in FIG. 4). Characteristic) and output to the adder 1033 and the compensation data 1034 as compensation data indicating the amplitude and phase compensation components.
[0029]
The adder 1033 receives the output signal of the ALC 102 and the compensation data, and adds the compensation data to the output signal of the ALC 102. In this way, the amplifier 122 is brought close to the characteristics of a linear amplifier.
[0030]
Also, the compensation data communication unit 1034 transmits the compensation data obtained by the compensation data calculation unit 1032 to the compensator 113 on the standby side. When the active system is on standby, the compensation data from the compensator 113 is received and output to the adder 1033.
[0031]
Next, the operation for compensating the nonlinear characteristic of the amplifier 122 in the compensator 103 of FIG. 2 will be described.
[0032]
Now, assuming that the carrier frequency is ω 0 , r (t) and φ (t) are the envelope amplitude and phase angle of the modulated signal, the input signal of the amplifier 122 is x (t) = r (t) cos [ ω 0 t + φ (t)]
It is expressed. Here, when the input amplitude vs. output amplitude characteristic is A (r) and the input amplitude vs. output phase characteristic is Φ (r), the output signal of the amplifier 122 is y (t) = A [r (t)] cos [ω 0 t + φ (t) + Φ (r (t))]
It is expressed.
[0033]
Therefore, in the compensator 103,
A [A −1 (r (t))] = B [r (t)] (B is a linear characteristic)
Compensation data A −1 (r (t)) having amplitude characteristics such that
[0034]
Similarly, the compensation data calculation unit 1032
−Φ [r (t)] + Φ −1 [A −1 (r (t))] = 0
The phase characteristic compensation data Φ −1 [A −1 (r (t))] is calculated.
[0035]
When the obtained compensation data is added to the output signal of the modulator 102 by the adder 1033, the output of the compensator 103 is
y (t) = A −1 [r (t)] cos [ω IF t + φ (t) −Φ (r (t))]
ω IF : Expressed as the IF signal center frequency of the converter output.
[0036]
The frequency converter 104 converts the IF signal into a carrier frequency, and when the gain is 0 dB, the input signal of the amplifier 122 is
y (t) = A −1 [r (t)] cos [ω 0 t + φ (t) −Φ (r (t))]
It is expressed. When this signal is amplified by the amplifier 122, its output is
y (t) = A [A −1 (r (t))] cos [ω 0 t + φ (t) −Φ (r (t))] + Φ −1 [A −1 (r (t))] = B [R (t)] cos [ω 0 t + φ (t)]
Thus, the system becomes linear amplification.
[0037]
The compensation data transmitted to the waiting compensator 113 indicates the amplitude characteristic compensation data A −1 (r) and the phase characteristic compensation data Φ −1 (r), and the input signals of the compensator 113 are equal. Then, the characteristics before switching can be maintained when switching from the active system to the standby system.
[0038]
In the above configuration, at the time of active / preliminary switching, it is indispensable that the ALCs 102 and 112 are interposed in the outputs of the modulators 101 and 111 so that the input amplitudes of the two compensators 103 and 113 are the same. Here, assuming that the gain of adaptive nonlinear compensation is 0 dB and the gains of the two frequency converters 101 and 111 are the same, the compensation data of the two compensators 103 and 113 are the same. Here, when the ALCs 102 and 112 are added and the gain of each device is adjusted, the data of the compensator in operation is transmitted to the compensator in standby, and the data is used by the compensator in standby. In addition, the nonlinear characteristic of the amplifier 122 can be compensated without causing characteristic deterioration when the system is switched.
[0039]
As described above, according to the above-described embodiment, the compensation data obtained by the operating compensator 103 is notified to the waiting compensator 113 in real time, and during this waiting period, the compensator 113 Since the notified compensation data is added to the output signal of the ALC 112, when switching from the active system to the standby system by the changeover switch 121, the nonlinearity of the amplifier 122 obtained before switching to the standby digital broadcast modulation signal A characteristic opposite to the characteristic can be input to the amplifier 122, and a distortion component due to the nonlinear characteristic of the output of the amplifier 122 can be compensated.
[0040]
Therefore, at the time of switching from the active system to the standby system, it is not necessary to perform feedback processing in the compensator 113 to calculate optimum compensation data, and the waiting time can be eliminated accordingly, so that the output of the amplifier 122 It is possible to prevent the deterioration of the characteristics of the signal, so that the nonlinear characteristics of the amplifier 122 can be continuously compensated. Furthermore, the digital broadcast modulation signal can be sent out with a clean connection between the signal before and after the switching, and the information is not disturbed.
[0041]
In the above embodiment, the ALCs 102 and 112 for adjusting the amplitude values of the output signals of the modulators 101 and 111 to the set amplitude values are provided in the previous stage of the compensators 103 and 113, respectively. For this reason, before being input to the compensators 103 and 113, the amplitude of the digital broadcast modulation signal is adjusted to a predetermined set amplitude value between the two systems, so that the amplitude of the digital broadcast modulation signal between the two systems is unlikely. When fluctuations occur, the fluctuations can be dealt with, so that the compensation of the nonlinear characteristic of the amplifier 122 can be prevented.
[0042]
The present invention is not limited to the above embodiment.
[0043]
For example, in the above-described embodiment, an example has been described in which ALCs 102 and 112 are provided in front of the compensators 103 and 113 so that the amplitude values of the input signals of the compensators 103 and 113 are matched to a predetermined set amplitude value between both systems. However, a phase adjuster may be provided before the compensators 103 and 113. In this case, the phase adjuster detects the phase difference between the input signals of the compensators 103 and 113 between the two systems, and performs phase matching between the two input signals based on this phase difference.
[0044]
By doing so, in the unlikely event that a phase variation of a digital broadcast modulation signal occurs between both systems, this phase variation can be dealt with, and similarly, the non-linear characteristic compensation of the amplifier 122 is hindered. You do n’t have to.
[0045]
In addition, the configuration of the compensator, the type of compensation data, each component circuit in the system, and the like can be variously modified without departing from the scope of the present invention.
[0046]
【The invention's effect】
As described above in detail, according to the present invention, at the time of active / preliminary switching of a digital broadcast modulation signal, digital broadcast modulation signal transmission capable of continuously compensating for nonlinear characteristics of the amplifier without causing characteristic deterioration It is possible to provide a working / preliminary nonlinear compensation apparatus and a working / preliminary nonlinear compensation method for a system.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a digital broadcast modulation signal transmission system according to the present invention.
FIG. 2 is a block diagram showing a specific configuration of the compensator shown in FIG. 1;
FIG. 3 is a graph showing input amplitude versus output amplitude characteristics of the amplifier shown in FIG. 1;
4 is a graph showing input amplitude versus output phase characteristics of the amplifier shown in FIG.
FIG. 5 is a block diagram showing a conventional digital broadcasting transmission system having a duplex configuration of active and standby, which has been conventionally considered.
[Explanation of symbols]
101, 111 ... modulator,
102, 112 ... ALC (Auto Level Controller),
103, 113 ... compensator,
104, 114 ... frequency converter,
121, 123 ... changeover switch,
122... Amplifier.

Claims (5)

現用系と予備系とで互いに独立して変調されたデジタル放送変調信号を現用・予備切替信号に応じて選択的に導出した後、電力増幅して放送波として放送するデジタル放送変調信号送出システムに用いられ、前記現用系及び予備系のうち選択的に導出されたデジタル放送変調信号を電力増幅して送出する増幅器の非線形特性を補償する現用・予備非線形補償装置であって、
前記現用系及び前記予備系それぞれに設けられ、両系のうちの動作中の系について、前記増幅器の出力信号から前記増幅器の非線形特性を求め、それらの逆特性から補償データを求め、この補償データで入力デジタル放送変調信号に対し補償処理を施す現用系補償部及び予備系補償部と、
前記現用・予備切替信号が入力される前に、前記現用系補償部と予備系補償部との間で、求めた補償データの授受を行なう補償データ通信手段とを具備することを特徴とするデジタル放送変調信号送出システムの現用・予備非線形補償装置。
A digital broadcast modulation signal transmission system for selectively deriving a digital broadcast modulation signal modulated independently between the active system and the standby system according to the current / preliminary switching signal and then amplifying the power to broadcast as a broadcast wave A working / preliminary non-linear compensation device that compensates for non-linear characteristics of an amplifier that is used and amplifies and transmits a digital broadcast modulation signal selectively derived from the working system and the standby system,
Provided in each of the working system and the standby system, for the active system of both systems, the nonlinear characteristic of the amplifier is obtained from the output signal of the amplifier, the compensation data is obtained from the inverse characteristic thereof, the compensation data An active system compensation unit and a standby system compensation unit that perform compensation processing on the input digital broadcast modulation signal,
Compensation data communication means for exchanging the obtained compensation data between the working system compensation unit and the standby system compensation unit before the working / standby switching signal is input. Active / preliminary nonlinear compensation device for broadcast modulation signal transmission system.
前記現用系補償部及び前記予備系補償部は、それぞれ前記増幅器の出力信号から前記増幅器の入力振幅対出力振幅特性及び入力振幅対出力位相特性を求める特性演算手段と、この特性演算手段で求められた入力振幅対出力振幅特性及び入力振幅対出力位相特性それぞれの逆特性から振幅特性の補償データ及び位相特性の補償データを求める補償データ演算手段と、この補償データ演算手段で求められた振幅特性の補償データ及び位相特性の補償データを入力されるデジタル放送変調信号に付加する補償手段とを備えることを特徴とする請求項1記載のデジタル放送変調信号送出システムの現用・予備非線形補償装置。The active system compensation unit and the standby system compensation unit are respectively obtained by characteristic calculation means for obtaining the input amplitude-to-output amplitude characteristic and input amplitude-to-output phase characteristic of the amplifier from the output signal of the amplifier, and the characteristic calculation means. Compensation data calculation means for obtaining compensation data of the amplitude characteristics and compensation data of the phase characteristics from the inverse characteristics of the input amplitude vs. output amplitude characteristics and the input amplitude vs. output phase characteristics, and the amplitude characteristics obtained by the compensation data calculation means 2. A working / preliminary nonlinear compensation apparatus for a digital broadcast modulation signal transmission system according to claim 1, further comprising compensation means for adding compensation data and phase characteristic compensation data to the input digital broadcast modulation signal. さらに、前記現用系補償部及び前記予備系補償部のそれぞれの前段に、入力されるデジタル放送変調信号の振幅値を所定値に調整する現用系振幅調整部及び予備系振幅調整部を備えることを特徴とする請求項1記載のデジタル放送変調信号送出システムの現用・予備非線形補償装置。Furthermore, an active system amplitude adjusting unit and a standby system amplitude adjusting unit for adjusting the amplitude value of the input digital broadcast modulation signal to a predetermined value are provided in the previous stage of the active system compensating unit and the standby system compensating unit, respectively. The working / preliminary non-linear compensation device for a digital broadcast modulation signal transmission system according to claim 1, wherein: さらに、前記現用系補償部及び前記予備系補償部のそれぞれの前段に、両系統間でデジタル放送変調信号の位相を合わせる位相調整部を備えることを特徴とする請求項1記載のデジタル放送変調信号送出システムの現用・予備非線形補償装置。2. The digital broadcast modulation signal according to claim 1, further comprising a phase adjustment unit that adjusts the phase of the digital broadcast modulation signal between both systems before each of the working system compensation unit and the standby system compensation unit. Active / preliminary non-linear compensator for transmission system. 現用系と予備系とで互いに独立して変調されたデジタル放送変調信号を現用・予備切替信号に応じて選択的に導出した後、電力増幅して放送波として放送するデジタル放送変調信号送出システムに用いられ、前記現用系及び予備系のうち選択的に導出されたデジタル放送変調信号を電力増幅して送出する増幅器の非線形特性を補償する現用・予備非線形補償方法において、
前記現用系及び前記予備系のうちの動作中の系について、前記増幅器の出力信号から前記増幅器の入力振幅対出力振幅特性及び入力振幅対出力位相特性を求め、それらの逆特性から補償データを求め、この補償データで前記増幅器の入力信号に対し補償処理を施すとともに、待機中の系に求めた補償データを通知し
待機中の系について、前記動作中の系から通知された補償データで前記増幅器に切替導出されるべきデジタル放送変調信号に対し補償処理を施すことを特徴とするデジタル放送変調信号送出システムの現用・予備非線形補償方法。
A digital broadcast modulation signal transmission system for selectively deriving a digital broadcast modulation signal modulated independently between the active system and the standby system according to the current / preliminary switching signal and then amplifying the power to broadcast as a broadcast wave In the working / preliminary non-linear compensation method for compensating the non-linear characteristic of the amplifier that is used and power-amplifies and sends out the digital broadcast modulation signal selectively derived from the working system and the standby system,
For the active system and the standby system, the input amplitude vs. output amplitude characteristic and the input amplitude vs. output phase characteristic of the amplifier are obtained from the output signal of the amplifier, and compensation data is obtained from their inverse characteristics. The compensation data is subjected to compensation processing with respect to the input signal of the amplifier, the compensation data obtained is notified to the waiting system, and the waiting system is compensated with the compensation data notified from the operating system. An active / preliminary non-linear compensation method for a digital broadcast modulation signal transmission system, wherein compensation processing is performed on the digital broadcast modulation signal to be switched to
JP2000280830A 2000-09-14 2000-09-14 Working / Preliminary Nonlinear Compensator and Working / Preliminary Nonlinear Compensation Method for Digital Broadcasting Modulated Signal Transmission System Expired - Fee Related JP4230649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000280830A JP4230649B2 (en) 2000-09-14 2000-09-14 Working / Preliminary Nonlinear Compensator and Working / Preliminary Nonlinear Compensation Method for Digital Broadcasting Modulated Signal Transmission System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000280830A JP4230649B2 (en) 2000-09-14 2000-09-14 Working / Preliminary Nonlinear Compensator and Working / Preliminary Nonlinear Compensation Method for Digital Broadcasting Modulated Signal Transmission System

Publications (2)

Publication Number Publication Date
JP2002094390A JP2002094390A (en) 2002-03-29
JP4230649B2 true JP4230649B2 (en) 2009-02-25

Family

ID=18765588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000280830A Expired - Fee Related JP4230649B2 (en) 2000-09-14 2000-09-14 Working / Preliminary Nonlinear Compensator and Working / Preliminary Nonlinear Compensation Method for Digital Broadcasting Modulated Signal Transmission System

Country Status (1)

Country Link
JP (1) JP4230649B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205649A (en) * 2007-02-16 2008-09-04 Toshiba Corp Transmission signal sending device
JP2013013026A (en) * 2011-06-30 2013-01-17 Toshiba Corp Transmission device and distortion compensation method therefor
JP2013197598A (en) * 2012-03-15 2013-09-30 Toshiba Corp Transmission system and method for controlling the same

Also Published As

Publication number Publication date
JP2002094390A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
CA2640162C (en) Supply voltage control for a power amplifier
US5621354A (en) Apparatus and method for performing error corrected amplification in a radio frequency system
US8224266B2 (en) Power amplifier predistortion methods and apparatus using envelope and phase detector
US7415250B2 (en) Distortion compensating amplifier
US6751266B1 (en) RF transmitter employing linear and non-linear pre-correctors
US7583940B2 (en) Transmission circuit and communication apparatus employing the same
US5745006A (en) Method of compensating for distortion in an amplifier
WO2000070750A1 (en) Broadcast transmission system with single correction filter for correcting linear and non-linear distortion
JP5345268B2 (en) Apparatus and method for generating an amplified signal using multiple amplitudes across a spectrum
JP3985649B2 (en) Transmission method and transmission apparatus
US8515367B2 (en) Transmission circuit and transmission method
JP4230649B2 (en) Working / Preliminary Nonlinear Compensator and Working / Preliminary Nonlinear Compensation Method for Digital Broadcasting Modulated Signal Transmission System
JP4101601B2 (en) Distortion compensation device for power amplifier
US7209715B2 (en) Power amplifying method, power amplifier, and communication apparatus
JP2001060883A (en) Transmitter and data transmission device
JP2006279633A (en) Distortion compensator and its distortion compensation method
JP4312626B2 (en) Feed-forward distortion compensation amplifier
JP2004320185A (en) Predistortion compensation power amplifier
JP2005012419A (en) Amplification device
JP4439868B2 (en) amplifier
EP1400010B1 (en) Rf transmitter employing linear and non-linear pre-correctors
JP2943838B2 (en) Feedforward amplifier
CA2203551C (en) Apparatus and method for performing error corrected amplification in a radio frequency system
JP2000092145A (en) Digital system distortion compensation device and distortion compensation method therefor
JPH0715247A (en) Power amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees