JP4229436B2 - Installation mechanism of heat exchange piping in a heat exchange system using building foundation piles - Google Patents

Installation mechanism of heat exchange piping in a heat exchange system using building foundation piles Download PDF

Info

Publication number
JP4229436B2
JP4229436B2 JP2003128189A JP2003128189A JP4229436B2 JP 4229436 B2 JP4229436 B2 JP 4229436B2 JP 2003128189 A JP2003128189 A JP 2003128189A JP 2003128189 A JP2003128189 A JP 2003128189A JP 4229436 B2 JP4229436 B2 JP 4229436B2
Authority
JP
Japan
Prior art keywords
heat exchange
pipes
outer periphery
pile
foundation pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003128189A
Other languages
Japanese (ja)
Other versions
JP2004332330A (en
Inventor
賢太郎 関根
睦己 横井
敦 立原
仁 深尾
龍三 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2003128189A priority Critical patent/JP4229436B2/en
Publication of JP2004332330A publication Critical patent/JP2004332330A/en
Application granted granted Critical
Publication of JP4229436B2 publication Critical patent/JP4229436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建物の基礎杭を利用して地中と熱交換するシステムにおける熱交換用配管の設置機構に関するものである。
【0002】
【従来の技術】
外気温度に比べて年間を通して略一定な地中の温度を空調用の熱源として利用することが従来から行われている。即ち、地中の温度は、その深さにもよるが、10m以上の深さでは、年間を通じて略15℃程度に維持されており、このように比較的深い地中の温度を空調用の熱源として利用することを目的とするシステムの一つとして、建物の基礎杭の内部に水等の熱媒体を流す熱交換用配管を設置して熱交換を行うようにしたシステムが提案されている。
【0003】
例えば特開昭60−8659号公報に記載のものでは、下部先端が塞がれた工場生産コンクリート杭の同心状の穴にU字形の熱交換用配管を挿入して、この熱交換用配管に熱媒体を循環させるようにすると共に、コンクリート杭の同心状の穴と熱交換用配管を熱伝達の良い材料で埋めた構成としている。
【0004】
この従来の文献では、工場生産コンクリート杭の穴に挿入した熱交換用配管を支持するための具体的な支持機構や、コンクリート杭の穴を埋める熱伝達の良い材料の具体例については全く開示されていない。
【0005】
そこで、場所打ちの基礎杭内に熱交換用配管を設置しようとした場合に通常考えられる方法としては、例えば図3に示したように現場打の基礎杭を構築するための鉄筋かごaのフープ筋bに内接するように主筋cと主筋cの間に熱交換用配管dを配置して、それをフープ筋に取り付ける方法や、このような主となる鉄筋かごの内側の同心状に配管固定用の小径の鉄筋かごを配置して、この小径の鉄筋かごに熱交換用配管を取り付ける方法等が挙げられる。尚、図3において符号eは掘削孔を示すものである。
【0006】
【発明が解決しようとする課題】
しかしながら、基礎杭の内部に熱交換用配管を設置する場合には、断面欠損による強度の低下を考慮して、コンクリートの強度を上げたり、杭径を大きくする等の対策が必要となり、コスト増の要因となると共に、地中と熱交換用配管間に基礎杭を構成するコンクリートが厚く介在するため熱交換効率が悪い。また、前者の方法では、主筋cと配管dとの間隔が狭くなるため
、この部分にコンクリートが十分に流れ込まず、充填不良を起こすことが懸念され、また後者の方法では、二重の鉄筋かごを用いることになるため、材料、人工手間共に、コスト増の要因となる。
そこで本発明は、このような課題を解決することを目的とするものである。
【0007】
【課題を解決するための手段】
上述した課題を解決するために、請求項1の発明では、建物の基礎杭を利用して熱交換用配管を設置し、地中との熱交換を行うようにしたシステムにおいて、場所打ちの基礎杭を構築するための鉄筋かごの外周側に熱交換用配管を支持した状態においてコンクリートを打設して基礎杭を構築し、熱交換用配管を基礎杭の設計杭径と掘削孔との空隙に配置する構成とし、熱交換用配管は、下部が連なった一対のパイプから成るU字状であり、鉄筋かごの外周に設置される偏心防止用のスペーサーに取り付けることにより、鉄筋かごの外周に軸方向に沿って設置する構成とした建物の基礎杭を利用した熱交換システムにおける熱交換用配管の設置機構を提案する。
【0008】
また請求項2の発明では、建物の基礎杭を利用して熱交換用配管を設置し、地中との熱交換を行うようにしたシステムにおいて、場所打ちの基礎杭を構築するための鉄筋かごの外周側に熱交換用配管を支持した状態においてコンクリートを打設して基礎杭を構築し、熱交換用配管を基礎杭の設計杭径と掘削孔との空隙に配置する構成とし、熱交換用配管は、下部が連なった一対のパイプから成るU字状であり、鉄筋かごの外周に設置される偏心防止用のスペーサーにより鉄筋かごの外周側に設けた支持材に取り付けることにより、鉄筋かごの外周に軸方向に沿って設置する構成とした建物の基礎杭を利用した熱交換システムにおける熱交換用配管の設置機構を提案する。
【0009】
本発明によれば、基礎杭は、熱交換用配管を鉄筋かごの外周側に取り付けて支持した状態でコンクリートを打設して、その本体を構築することにより、熱交換用配管を基礎杭の設計杭径と掘削孔との空隙に配置する。従って熱交換用配管は、杭内部に設置するよりも土に近くなるため熱交換を効率よく行うことができ、また杭本体の内部に支持機構により設けた場合のように、コンクリートの断面欠損や充填不良を起こすこともなく、支持機構によるコスト増もない。
【0010】
特に、熱交換用配管は、鉄筋かごの外周に設置される偏心防止用のスペーサーを利用し、これに取り付けて支持するようにしており、新たに専用の支持材等を設置する必要がないので、この点においてもコスト増を防ぐことができる。
【0011】
更に、熱交換用配管は、下部が連なった一対のパイプから成るU字状であり、鉄筋かごの外周に設置される偏心防止用のスペーサーに取り付けることにより、鉄筋かごの外周に軸方向に沿って設置する構成としているので、この熱交換用配管の設置作業を容易に行うことができる。
【0012】
また設置する熱交換用配管の数を増加する場合には、スぺーサーの数は増やさず、スぺーサーにより、鉄筋かごの外周側に設けた鉄筋等の支持材を取り付け、この支持材に取り付けるようにすれば、簡単に熱交換用配管の数を増やすことができる。
【0013】
【発明の実施の形態】
次に本発明の実施の形態を図1〜図3を参照して説明する。
図1は本発明の設置機構の第1の実施の形態を概略的に示す縦断面図、図2はその横断面図であり、符号1は掘削孔、2は基礎杭(コンクリート杭)を場所打ちで構築するための鉄筋かごであり、掘削孔1に建て込んだ状態を示している。尚、場所打ちの基礎杭を構築するための工法としては、アースドリル工法、リバースサーキュレーション工法、オールケーシング工法等の適宜の工法を適用することができる。
【0014】
鉄筋かご2は、従来のものと同様に多数の長さ方向の主筋3の回りに多数のフープ筋4を配筋した構成であり、この鉄筋かご2の上部側の外周には、鉄筋かご2、従って構築される基礎杭の偏心防止用のスペーサー5を設けている。この実施の形態では、スペーサー5は山形板状で、鉄筋かご2の外周に等間隔で4個設置している。
【0015】
符号6は下部が連なった一対のパイプから成るU字状の熱交換用配管であり、この熱交換用配管6は、一対のパイプにより上記スペーサー5を挟んだ形で取り付けて支持している。一対のパイプはスペーサー5に樹脂製のバンド・針金等により取り付けたり、クランプ等を用いて取り付けることができる。こうして鉄筋かご2の外周には、軸方向に沿って、4本のU字状の熱交換用配管6が設置される。
【0016】
以上のように熱交換用配管6を支持した鉄筋かご2を掘削孔1内に建て込んだ後、コンクリートを打設して基礎杭の本体を構築する。
【0017】
このため熱交換用配管6と土(掘削孔)との間にはコンクリートが充填されてしまうが、充填されてしまう厚さは、実際の杭径と掘削孔との余掘分だけなので、杭内部に熱交換用配管6を設置する場合よりもコンクリート厚は小さく、土により近いため、熱交換を効率よく行うことができ、また杭本体の内部に設ける場合のように、コンクリートの断面欠損や充填不良を起こすこともなく、内部に支持機構を設けないため、それによるコスト増もない。
【0018】
特に熱交換用配管6は鉄筋かご2の外周に設置される偏心防止用のスペーサー5を利用し、これに取り付けて支持するようにすれば、新たに専用の支持材等を設置する必要がないので、この点においてもコスト増を防ぐことができる。
【0019】
また設置する熱交換用配管6の数を増加する場合には、第2の実施の形態に対応する図3に示すように、スぺーサー5の数は増やさず、スぺーサー5の周囲に鉄筋等の支持材8を取り付け、この支持材8に樹脂製のバンド、針金等、又はクランプ等を用いて熱交換用配管6を取り付けるようにすれば、簡単に熱交換用配管6の数を増やすことができる。
【0020】
尚、図3においては、熱交換用配管6は支持材8の外側にのみ取り付けており、スペーサー5自体には取り付けていないが、場合によってはスペーサー5自体にも取り付けるようにすることもできる。
【0021】
こうして、内部に水等の熱媒体を流す熱交換用配管7を設けて熱交換を行えるようにした建物の基礎杭を、充填不良を起こさずに、容易に、しかも低コストで構築することができる。
【0022】
【発明の効果】
本発明は以上のとおり、建物の基礎杭内に熱交換用配管を設置して地中との熱交換を行うようにしたシステムにおいて、場所打ちの基礎杭を構築するための鉄筋かごの外周側に熱交換用配管を支持した状態においてコンクリートを打設して基礎杭を構築し、熱交換用配管を基礎杭の設計杭径と掘削孔との空隙に配置する構成としているので、熱交換用配管は土に近いため、熱交換を効率よく行うことができ、また杭本体の内部に支持機構により設けた場合のように、コンクリートの断面欠損や充填不良を起こすこともなく、内部に支持機構を設けないので、それによるコスト増もない。
【0023】
特に、熱交換用配管は、鉄筋かごの外周に設置される偏心防止用のスペーサーを利用し、これに取り付けて支持するようにすれば、新たに専用の支持材等を設置する必要がないので、この点においてもコスト増を防ぐことができる。
【0024】
また設置する熱交換用配管の数を増加する場合には、スぺーサーの数は増やさず、スぺーサーにより、鉄筋かごの外周側に設けた鉄筋等の支持材を取り付け、この支持材に取り付けるようにすれば、簡単に熱交換用配管の数を増やすことができる
【図面の簡単な説明】
【図1】 本発明の設置機構の第1の実施の形態を概略的に示す縦断面図である。
【図2】 図1の横断面図である。
【図3】 本発明の設置機構の第2の実施の形態を概略的に示す横断面図である。
【図4】 従来技術を用いた場合の鉄筋かごへの熱交換用配管の支持形態の例を示す横断面図である。
【符号の説明】
1 掘削孔
2 鉄筋かご
3 主筋
4 フープ筋
5 スペーサー
6 熱交換用配管
7 空隙
8 支持材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchange piping installation mechanism in a system for exchanging heat with the ground using a foundation pile of a building.
[0002]
[Prior art]
Conventionally, the underground temperature, which is substantially constant throughout the year compared to the outside air temperature, has been used as a heat source for air conditioning. That is, the underground temperature depends on the depth, but at a depth of 10 m or more, it is maintained at about 15 ° C. throughout the year. Thus, the relatively deep underground temperature is used as a heat source for air conditioning. As one of the systems intended to be used as a system, a system has been proposed in which a heat exchange pipe for flowing a heat medium such as water is installed inside a foundation pile of a building to perform heat exchange.
[0003]
For example, in the one described in JP-A-60-8659, a U-shaped heat exchanging pipe is inserted into a concentric hole of a factory-produced concrete pile whose lower end is closed, and this heat exchanging pipe is inserted into the pipe. The heat medium is circulated, and the concentric holes of the concrete pile and the heat exchange pipe are filled with a material having good heat transfer.
[0004]
This conventional document completely discloses a specific support mechanism for supporting a heat exchange pipe inserted into a hole of a factory-produced concrete pile and a specific example of a material having good heat transfer for filling a hole of a concrete pile. Not.
[0005]
Therefore, as a method usually considered when installing a heat exchange pipe in a cast-in-place foundation pile, for example, as shown in FIG. 3, a hoop of a rebar cage a for constructing a cast-in-place foundation pile. A heat exchanging pipe d is arranged between the main bar c and the main bar c so as to be inscribed in the bar b, and the pipe is fixed concentrically inside the main reinforcing bar cage. For example, there is a method of arranging a small-diameter rebar cage and attaching a heat exchange pipe to the small-diameter rebar cage. In FIG. 3, the symbol e indicates an excavation hole.
[0006]
[Problems to be solved by the invention]
However, when heat exchange pipes are installed inside the foundation pile, it is necessary to take measures such as increasing the strength of the concrete or increasing the pile diameter in consideration of the decrease in strength due to cross-sectional defects. The heat exchange efficiency is poor because the concrete constituting the foundation pile is thickly interposed between the underground and the heat exchange pipe. In the former method, the distance between the main bar c and the pipe d is narrow, so there is a concern that the concrete does not sufficiently flow into this portion, resulting in poor filling. In the latter method, the double reinforcing bar cage is used. Therefore, both the material and the artificial hand cause cost increase.
Accordingly, the present invention aims to solve such problems.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, in the invention of claim 1, in a system in which a heat exchanging pipe is installed using a foundation pile of a building and heat exchange with the ground is performed, a cast-in-place foundation The foundation pile is constructed by placing concrete in the state where the heat exchange pipe is supported on the outer peripheral side of the reinforcing steel cage for constructing the pile, and the heat exchange pipe is formed with a gap between the design pile diameter of the foundation pile and the drilling hole. The heat exchanging pipe is a U-shape consisting of a pair of pipes connected at the bottom, and attached to a spacer for preventing eccentricity installed on the outer periphery of the reinforcing bar cage. We propose a heat exchange piping installation mechanism in a heat exchange system using foundation piles of a building that is installed along the axial direction .
[0008]
Further, in the invention of claim 2, in a system in which heat exchanging pipes are installed using the foundation piles of the building and heat exchange with the underground is performed, a reinforcing steel cage for constructing a cast-in-place foundation pile the outer peripheral side heat exchanger pipe by Da設concrete in the support state to construct a foundation pile in, the construction of arranging the heat exchange pipes in the gap design pile diameter of the foundation pile and the borehole, heat The replacement pipe has a U-shape consisting of a pair of pipes connected at the bottom, and is attached to a support material provided on the outer periphery of the rebar cage by a spacer for preventing eccentricity installed on the outer periphery of the rebar cage. We propose an installation mechanism for heat exchange pipes in a heat exchange system that uses foundation piles in a building that is installed along the axial direction on the outer circumference of the car.
[0009]
According to the present invention, the foundation pile is constructed by placing concrete in a state where the heat exchange pipe is attached to and supported by the outer peripheral side of the reinforcing steel cage, and constructing the main body thereof, so that the heat exchange pipe is connected to the foundation pile. Arranged in the gap between the design pile diameter and the excavation hole. Therefore, the heat exchanging pipe is closer to the soil than it is installed inside the pile, so heat exchange can be performed efficiently. There is no filling failure, and there is no cost increase due to the support mechanism.
[0010]
In particular, the heat exchange pipe utilizes a spacer for eccentricity prevention installed on the outer periphery of the reinforcing bar cage, and so as to support attached thereto, there is no need to newly install a special support member such as Therefore, an increase in cost can be prevented also in this respect.
[0011]
Furthermore, the heat exchanging pipe has a U-shape consisting of a pair of pipes connected at the bottom, and is attached to a spacer for preventing eccentricity installed on the outer periphery of the rebar cage so that the outer circumference of the rebar cage is aligned along the axial direction. Therefore, the heat exchanging pipe can be easily installed.
[0012]
If the number of heat exchange pipes to be installed is increased, the number of spacers will not be increased, but a support material such as a reinforcing bar provided on the outer periphery of the reinforcing steel cage will be attached to the support material with the spacer. If attached, the number of heat exchange pipes can be easily increased.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a longitudinal sectional view schematically showing a first embodiment of the installation mechanism of the present invention, FIG. 2 is a transverse sectional view thereof, reference numeral 1 is an excavation hole, and 2 is a foundation pile (concrete pile). This is a rebar cage for construction by hammering and shows a state where it is built in the excavation hole 1. In addition, as a construction method for constructing a cast-in-place foundation pile, an appropriate construction method such as an earth drill method, a reverse circulation method, or an all casing method can be applied.
[0014]
The rebar cage 2 has a configuration in which a large number of hoop bars 4 are arranged around a number of main bars 3 in the length direction in the same manner as the conventional one. Therefore, the spacer 5 for preventing the eccentricity of the foundation pile to be constructed is provided. In this embodiment, the spacers 5 are in the form of a chevron plate, and four spacers 5 are installed on the outer periphery of the reinforcing bar 2 at equal intervals.
[0015]
Reference numeral 6 is a U-shaped heat exchanging pipe composed of a pair of pipes connected at the bottom. The heat exchanging pipe 6 is attached and supported with the spacer 5 sandwiched between the pair of pipes. The pair of pipes can be attached to the spacer 5 with a resin band, a wire, or the like, or can be attached using a clamp or the like. Thus, four U-shaped heat exchange pipes 6 are installed along the axial direction on the outer periphery of the reinforcing bar 2.
[0016]
After the reinforcing bar 2 supporting the heat exchange pipe 6 is built in the excavation hole 1 as described above, concrete is placed to construct the foundation pile main body.
[0017]
For this reason, the concrete is filled between the heat exchanging pipe 6 and the soil (excavation hole), but since the thickness to be filled is only the actual pile diameter and the excess excavation hole, The concrete thickness is smaller than the case where the heat exchange pipe 6 is installed inside, and it is closer to the soil, so that heat exchange can be performed efficiently. There is no filling failure and no support mechanism is provided inside, so there is no cost increase.
[0018]
In particular, if the heat exchanging pipe 6 uses the spacer 5 for preventing eccentricity installed on the outer periphery of the reinforcing bar 2 and is attached to and supported by the spacer 5, it is not necessary to newly install a dedicated support material or the like. Therefore, an increase in cost can be prevented also in this respect.
[0019]
When the number of heat exchange pipes 6 to be installed is increased, as shown in FIG. 3 corresponding to the second embodiment, the number of the spacers 5 is not increased, but around the spacers 5. If the support material 8 such as a reinforcing bar is attached and the heat exchange pipe 6 is attached to the support material 8 using a resin band, a wire, or a clamp, the number of the heat exchange pipes 6 can be easily reduced. Can be increased.
[0020]
In FIG. 3, the heat exchanging pipe 6 is attached only to the outside of the support member 8 and is not attached to the spacer 5 itself, but it may be attached to the spacer 5 itself in some cases.
[0021]
In this way, it is possible to easily and inexpensively construct a foundation pile of a building in which a heat exchange pipe 7 for flowing a heat medium such as water is provided to perform heat exchange without causing defective filling. it can.
[0022]
【The invention's effect】
As described above, according to the present invention, in the system in which heat exchange pipes are installed in the foundation pile of the building to perform heat exchange with the underground, the outer peripheral side of the reinforcing bar cage for constructing the cast-in-place foundation pile The foundation pile is constructed by placing concrete in a state where the heat exchange pipe is supported, and the heat exchange pipe is arranged in the gap between the design pile diameter of the foundation pile and the excavation hole. Since the piping is close to soil, heat can be exchanged efficiently, and there is no cross-section defect or poor filling of the concrete as in the case where it is provided inside the pile body by a support mechanism. There is no increase in cost.
[0023]
In particular, if the heat exchange pipe uses a spacer for preventing eccentricity installed on the outer periphery of the reinforcing steel cage and is attached to and supported by this spacer, there is no need to newly install a dedicated support material or the like. Also in this respect, an increase in cost can be prevented.
[0024]
If the number of heat exchange pipes to be installed is increased, the number of spacers will not be increased, but a support material such as a reinforcing bar provided on the outer periphery of the reinforcing steel cage will be attached to the support material with the spacer. If installed, the number of heat exchange pipes can be increased easily [Brief description of the drawings]
FIG. 1 is a longitudinal sectional view schematically showing a first embodiment of an installation mechanism of the present invention.
FIG. 2 is a cross-sectional view of FIG.
FIG. 3 is a cross-sectional view schematically showing a second embodiment of the installation mechanism of the present invention.
FIG. 4 is a cross-sectional view showing an example of a support form of a heat exchange pipe to a reinforcing steel cage when a conventional technique is used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Excavation hole 2 Reinforcing bar cage 3 Main reinforcement 4 Hoop reinforcement 5 Spacer 6 Heat exchange piping 7 Air gap 8 Support material

Claims (2)

建物の基礎杭を利用して熱交換用配管を設置し、地中との熱交換を行うようにしたシステムにおいて、場所打ちの基礎杭を構築するための鉄筋かごの外周側に熱交換用配管を支持した状態においてコンクリートを打設して基礎杭を構築し、熱交換用配管を基礎杭の設計杭径と掘削孔との空隙に配置する構成とし、熱交換用配管は、下部が連なった一対のパイプから成るU字状であり、鉄筋かごの外周に設置される偏心防止用のスペーサーに取り付けることにより、鉄筋かごの外周に軸方向に沿って設置する構成としたことを特徴とする建物の基礎杭を利用した熱交換システムにおける熱交換用配管の設置機構 In a system in which heat exchange pipes are installed using the foundation piles of the building and heat exchange with the ground is carried out, heat exchange pipes are installed on the outer periphery of the reinforcing steel cage to construct a cast-in-place foundation pile. The foundation pile is constructed by placing concrete in the state of supporting the heat exchange pipe, and the heat exchange pipe is arranged in the gap between the design pile diameter of the foundation pile and the excavation hole. It is a U-shape consisting of a pair of pipes, and is configured to be installed along the axial direction on the outer periphery of the reinforcing bar cage by being attached to a spacer for preventing eccentricity installed on the outer periphery of the reinforcing bar cage. Installation mechanism of heat exchange piping in a heat exchange system using building foundation piles . 建物の基礎杭を利用して熱交換用配管を設置し、地中との熱交換を行うようにしたシステムにおいて、場所打ちの基礎杭を構築するための鉄筋かごの外周側に熱交換用配管を支持した状態においてコンクリートを打設して基礎杭を構築し、熱交換用配管を基礎杭の設計杭径と掘削孔との空隙に配置する構成とし、熱交換用配管は、下部が連なった一対のパイプから成るU字状であり、鉄筋かごの外周に設置される偏心防止用のスペーサーにより鉄筋かごの外周側に設けた支持材に取り付けることにより、鉄筋かごの外周に軸方向に沿って設置する構成としたことを特徴とする建物の基礎杭を利用した熱交換システムにおける熱交換用配管の設置機構。 In a system in which heat exchange pipes are installed using the foundation piles of the building and heat exchange with the ground is carried out, heat exchange pipes are installed on the outer periphery of the reinforcing steel cage to construct a cast-in-place foundation pile. The foundation pile is constructed by placing concrete in the state of supporting the heat exchange pipe, and the heat exchange pipe is arranged in the gap between the design pile diameter of the foundation pile and the excavation hole. It is a U-shape consisting of a pair of pipes, and is attached to the support material provided on the outer periphery side of the reinforcing bar cage by a spacer for preventing eccentricity that is installed on the outer periphery of the reinforcing bar cage. An installation mechanism for heat exchange piping in a heat exchange system using building foundation piles.
JP2003128189A 2003-05-06 2003-05-06 Installation mechanism of heat exchange piping in a heat exchange system using building foundation piles Expired - Fee Related JP4229436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128189A JP4229436B2 (en) 2003-05-06 2003-05-06 Installation mechanism of heat exchange piping in a heat exchange system using building foundation piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128189A JP4229436B2 (en) 2003-05-06 2003-05-06 Installation mechanism of heat exchange piping in a heat exchange system using building foundation piles

Publications (2)

Publication Number Publication Date
JP2004332330A JP2004332330A (en) 2004-11-25
JP4229436B2 true JP4229436B2 (en) 2009-02-25

Family

ID=33504436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128189A Expired - Fee Related JP4229436B2 (en) 2003-05-06 2003-05-06 Installation mechanism of heat exchange piping in a heat exchange system using building foundation piles

Country Status (1)

Country Link
JP (1) JP4229436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154521A (en) * 2011-01-24 2012-08-16 Okumura Corp Geothermal heat exchange apparatus, and installation method thereof
KR101220448B1 (en) * 2010-10-20 2013-01-10 삼성물산 주식회사 Heat Exchanging File Structure And Construction Method Thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008964B2 (en) * 2006-12-21 2012-08-22 芝浦メカトロニクス株式会社 ACF tape bonding apparatus, ACF tape bonding apparatus, and ACF tape bonding method
JP5164507B2 (en) * 2007-10-02 2013-03-21 日本コンクリート工業株式会社 Ground heat exchange unit installation method and ground heat exchange unit
JP5089320B2 (en) * 2007-10-03 2012-12-05 ダイダン株式会社 Tube insertion spacer
KR101087477B1 (en) 2009-05-28 2011-11-25 코오롱건설주식회사 A geothermal cooling and heating system using a base slab of building
KR101274230B1 (en) * 2011-03-31 2013-06-14 삼성물산 주식회사 Geothermal pipe for geothermal heat exchanger and method for manufacturing the same
JP5834873B2 (en) * 2011-12-14 2015-12-24 Jfeエンジニアリング株式会社 Piping for heat exchange, steel bar and underground heat utilization system
JP5961842B2 (en) * 2011-12-25 2016-08-02 ジャパンパイル株式会社 Installation method of cast-in-place pile rebar for geothermal heat use and heat exchange pipe using geothermal heat
JP6089472B2 (en) * 2012-07-17 2017-03-08 株式会社大林組 Holding member and underground heat exchanger
US20170016201A1 (en) * 2014-02-28 2017-01-19 The Chugoku Electric Power Co., Inc. Heat exchange structure of power generation facility
JP6522319B2 (en) * 2014-11-10 2019-05-29 三谷セキサン株式会社 Buried structure of concrete pile with pipe for heat exchange
PL3321424T3 (en) * 2016-11-11 2022-01-31 Bauer Spezialtiefbau Gmbh Foundation element and procedure to produce of a foundation element
JP7039856B2 (en) * 2017-04-21 2022-03-23 株式会社大林組 Construction method of reinforcing bar cage for piles, piles and geothermal heat exchange piping
KR102239180B1 (en) * 2018-12-17 2021-04-12 주식회사 포스코 Geothermal exchanging pile
JP7305917B2 (en) * 2019-01-23 2023-07-11 株式会社竹中工務店 Geothermal heat exchange piping installation mechanism to cast-in-place pile reinforcing bar cage, and method for attaching geothermal heat exchange piping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220448B1 (en) * 2010-10-20 2013-01-10 삼성물산 주식회사 Heat Exchanging File Structure And Construction Method Thereof
JP2012154521A (en) * 2011-01-24 2012-08-16 Okumura Corp Geothermal heat exchange apparatus, and installation method thereof

Also Published As

Publication number Publication date
JP2004332330A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4229436B2 (en) Installation mechanism of heat exchange piping in a heat exchange system using building foundation piles
JP2006010133A (en) Installation mechanism of heat exchange pipe in heat exchange system using foundation pile as structure
JP4594956B2 (en) Underground heat exchanger buried structure
JP3981379B2 (en) Steel pier structure and its construction method
WO2017024916A1 (en) Heat transfer pipe embedded in a prefabricated pipe pile and embedding method
JP2008096063A (en) Foundation pile serving also as underground heat exchanger, installing method for underground heat exchanger, and underground heat exchanger
US20060179730A1 (en) Wall structural member and method for constructing a wall structure
JP5961842B2 (en) Installation method of cast-in-place pile rebar for geothermal heat use and heat exchange pipe using geothermal heat
JP4163042B2 (en) Installation mechanism of heat exchange piping in heat exchange system using building foundation piles
JP2001115458A (en) Deep well construction method using earth retaining wall
JP7039856B2 (en) Construction method of reinforcing bar cage for piles, piles and geothermal heat exchange piping
JP5895306B2 (en) Ready-made concrete piles and geothermal heat utilization system for geothermal heat utilization
KR20100127402A (en) Composite shell pile having waterstop and waterproof method for secant pile wall using the same
JP4602167B2 (en) Pile head structure
CN210380191U (en) Lightweight power communication combination prefabricated cable channel
KR100806867B1 (en) Steel pipe roof assembly and the construction method for Tunnel using thereof
JP7149376B2 (en) Geothermal heat utilization system
KR101275468B1 (en) The structure assembly for building a tunnel and building method thereof
KR20130004800A (en) Steel pipe installing structure for resistance in vertical stress of none-excavation underground structure and construction method at the same
JP5164507B2 (en) Ground heat exchange unit installation method and ground heat exchange unit
KR101046522B1 (en) Installation method of underground heat exchanger using underground continuous wall
KR101220448B1 (en) Heat Exchanging File Structure And Construction Method Thereof
JP4320429B2 (en) Tunnel segment
KR102268914B1 (en) Heat exchanging file of retaining wall and retaining wall
CN115324066B (en) Internal support-free frost heaving-resistant deep foundation pit retaining structure rich in water and construction method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

R150 Certificate of patent or registration of utility model

Ref document number: 4229436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees