JP4228269B2 - Flame retardant heat conductive electrical insulation adhesive - Google Patents

Flame retardant heat conductive electrical insulation adhesive Download PDF

Info

Publication number
JP4228269B2
JP4228269B2 JP2002186003A JP2002186003A JP4228269B2 JP 4228269 B2 JP4228269 B2 JP 4228269B2 JP 2002186003 A JP2002186003 A JP 2002186003A JP 2002186003 A JP2002186003 A JP 2002186003A JP 4228269 B2 JP4228269 B2 JP 4228269B2
Authority
JP
Japan
Prior art keywords
meth
flame
particles
acrylate
photopolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002186003A
Other languages
Japanese (ja)
Other versions
JP2004027039A (en
Inventor
弘介 田辺
剛 岩崎
哲生 芦高
公浩 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2002186003A priority Critical patent/JP4228269B2/en
Publication of JP2004027039A publication Critical patent/JP2004027039A/en
Application granted granted Critical
Publication of JP4228269B2 publication Critical patent/JP4228269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は熱伝導性粘着体に関し、詳しくは、電子部品等の発熱体とヒートシンク等の放熱部品との伝熱と接着固定等に有用な難燃性熱伝導電気絶縁粘着体に関する。
【0002】
【従来技術】
近年、エレクトロニクス技術の格段なる進歩により電気、電子機器の高集積化・高性能化が進むに伴い、半導体やCPU等の電子部品やプラズマディスプレイ等の家電製品の熱放散の必要性が高まっている。そのため電子部品や家電製品には、ヒートシンク等の放熱部品を接合部材による接着、又は機械的に固定して熱放散を行っている。この接合部材には、高い熱伝導性と電気絶縁性の他、安全性の面から万一の発火に対して着火・延焼の危険性が無いように高い難燃性が要求される。
【0003】
特開2001-139733号公報には、流動性を有するゴムに、平均粒径の異なるの熱伝導性粒子を添加することで、大きな粒子の隙間に、小さな粒子が充填できるため機械的強度を低下することなく、熱伝導性粒子の充填率を向上できるとある。また、熱伝導性粒子に難燃性を有するものを使用することで難燃性も付与できるとある。難燃性を有する熱伝導性粒子としては炭化珪素を挙げているが、難燃性を付与するためには充填率を上げる必要があり、高価になるという問題点があった。また、小さい粒子に難燃性を有する粒子を、大きい粒子に熱伝導性を有する粒子を使用することも記載されていない。また、CPUの発熱(65℃)でその形状に沿って変形するように、ベース樹脂に流動性を有するゴム(シリコーンゴムやEPDMゴム)を使用している。しかし、元来これらの樹脂は自着性であり充分な接着性を発揮することができない。この熱伝導性シートを用いてCPUにヒートシンクを垂直方向に接合したり、ノートパソコンのように持ち運ぶと、熱によりゴムが可塑化されてヒートシンクが自重で脱落する問題があった。また、流動性を有するゴムにシリコーンゴムを用いた熱伝導性シートで、パソコンのCPUとヒートシンクを接合すると、熱によりシリコーンゴム中のシリコーン系低分子量物が揮発し、HDDのディスク上に析出しディスクを破壊する危険性があった。このように熱伝導性と難燃性と接着性を高次元でバランスさせることについては解決されていない。
【0004】
特開2001-2839号公報には、炭化水素系ポリマーと、平均粒径が相違する2種以上の水和金属化合物を含有する難燃性組成物が提案されている。しかし、炭化水素系ポリマーは固体又は高粘度液体であるため粒子充填率を上げるためには、炭化水素系ポリマーと前記粒子を2本ロール等で混錬しなければ均一に充填することができなかった。このため混錬時に大きな粒子が破壊され、大きい粒子の隙間に小さい粒子が充填されずに充分な熱伝導性が発揮できない。また、得られたシートも硬くなり接着力が不足する問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の欠点を解消すべく、熱伝導率と難燃性と接着性に優れる難燃性熱伝導電気絶縁粘着体を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは鋭意検討の結果、(メタ)アルキルアクリレートを主とするアクリル系単量体と、平均粒径が20〜200μmの特定の粒子と、平均粒径が10μm以下の水和金属化合物の粒子とを含有する組成物を重合することにより、熱伝導率と難燃性、電気絶縁性、接着性に優れる難燃性熱伝導電気絶縁粘着体が得られることを見出した。
【0007】
すなわち、i) 炭素数が1〜14個のアルキル基を有する(メタ)アルキルアクリレート系単量体と、ii) 金属酸化物、水和金属化合物及び金属窒化物からなる群から選ばれた平均粒径が20〜200μmの粒子と、iii) 平均粒径10μm以下の水和金属化合物の粒子と、iv) 光重合開始剤とを含有する組成物の光重合物であることを特徴とする難燃性熱伝導電気絶縁粘着体である。
炭化水素系ポリマーが固体又は高粘度液体であるのに対し、前記(メタ)アルキルアクリレート系単量体は低粘度な液体であり、前記ii) の粒子の隙間に、前記iii) の粒子が抵抗無く効率的に充填されるため、接着性を低下することなく添加量を増量することができる。また、光重合により重合体とすることで、前記ii) の粒子の隙間に、前記iii) の粒子が充填された状態が固定化され、経時的にも安定な分散状態を維持できる。
【0008】
【発明の実施の形態】
本発明に使用される組成物は、炭素数が1〜14個のアルキル基を有する(メタ)アルキルアクリレートからなる。
【0009】
前記炭素数が1〜14個のアルキル基を有する(メタ)アルキルアクリレートとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸イソアミル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、アクリル酸イソオクチル、アクリル酸イソノニル、アクリル酸イソデシル、アクリル酸ラウリル、エタクリル酸メチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸イソデシル、メタクリル酸ラウリル等が挙げられるが、これに限定されるものではない。これらは単量体混合物中70〜100質量%、好ましくは90〜99質量%の割合で用いられる。(メタ)アルキルアクリレートの量が70質量%未満であると、初期接着力などが低下する。
【0010】
(分子内に極性基を有する共重合性単量体)
前記の(メタ)アルキルアクリレート単量体とともに、分子内に極性基を有する共重合性単量体を使用することができる。この共重合性単量体は、上記アクリル共重合体の凝集力や接着力を向上するために用いられる。特に限定されるものではないが、例としてアクリル酸、イタコン酸、(無水)マレイン酸、(無水)フマル酸、カプロラクタン変性の(メタ)アクリレート、アクリル酸ダイマー等のカルボキシル基含有単量体、(メタ)アクリルアミド、置換アクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、(メタ)アクリロイルモルフォリン、(メタ)アクリルアミド等の窒素含有単量体、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基含有単量体などが挙げられるがこれに限定されるものではない。これら共重合性単量体は、単量体混合物中30〜0.5質量%、好ましくは10〜1質量%の割合で用いられる。30質量%を越えると、初期接着性が低下する。
【0011】
(光重合開始剤)
本発明に使用される光重合開始剤としては、ベンゾインメチルエーテル、ベンゾインエチルエーテルなどのベンゾインエーテル類、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノンなどの置換アセトフェノン類、2-メチル-2-ヒドロキシプロピオフェノンなどの置換-α-ケトール類、ベンジルケタール類、アシルフォスフィンオキサイド類、ベンゾイン類、ベンゾフェノン類など公知のものが挙げられる。また、分子内に開裂点が2つ以上ある光重合開始剤、例えば、ビスアシルフォスフィンオキサイド類、ビスマレイミド誘導体を用いると、光重合物の分子量を大きくしやすいので好ましい。
【0012】
これらの光重合開始剤の使用量は種類にもよるが、単量体100質量部に対して、0.01〜3質量部、好ましくは0.1〜1質量部の割合で用いる。0.01質量部より少ないと、光重合物中に未反応の単量体が残存する。また、3質量部より多いと、光重合物の分子量が低下して感圧接着剤の凝集力不足を招く。
なお、生成する光重合物の分子量は、ゲルパーミエッションクロマトグラフのポリスチレン換算での重量平均分子量が40万以上、好ましくは80万以上である。
【0013】
(金属酸化物、水和金属化合物及び金属窒化物からなる群から選ばれる平均粒径20〜200μmの粒子)
本発明の難燃性熱伝導電気絶縁粘着体に含有される、金属酸化物、水和金属化合物及び金属窒化物からなる群から選ばれた平均粒径20〜200μmの粒子としては、特に限定されない。例えば金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛等が挙げられる。水和金属化合物としては水酸化アルミニウム、水酸化マグネシウム等が挙げられる。金属窒化物としては窒化硼素、窒化アルミニウム等が挙げられる。前記粒子の平均粒径が20μm未満であると、粒子同士の接点の減少により熱伝導性が低下する。平均粒径が200μmを越えると接着性、塗工性が低下する。
【0014】
前記粒子の前記アクリル系単量体への分散性を向上するためカップリング処理、ステアリン酸処理等の表面処理を適宜行っても良い。含有する粒子の形状は、球状、針状、フレーク状が挙げられる。化合物種類及び平均粒径、形状は単独で使用しても2種以上組み合わせて使用してもよい。
本発明の難燃性熱伝導電気絶縁粘着体に含有される、金属酸化物、水和金属化合物及び金属窒化物からなる群から選ばれた平均粒径20〜200μmの粒子の添加量は、前記(メタ)アルキルアクリレート単量体100質量部に対して、50〜400質量部含有することが好ましい。50質量部未満では熱伝導性が低下し、400質量部を越えると接着性が低下する。
【0015】
(平均粒径10μm以下の水和金属化合物の粒子)
本発明の難燃性熱伝導電気絶縁粘着体に含有される平均粒径10μm以下の水和金属化合物の粒子としては、特に限定されないが、例えば水酸化アルミニウム、水酸化マグネシウム等が挙げられる。前記粒子の添加量は、前記した(メタ)アルキルアクリレート単量体100質量部に対して、100質量部以上であることが好ましい。100質量部未満では難燃性が低下する。前記粒子の平均粒径が10μmを越えると、前記平均粒径20〜200μmの粒子の隙間に充填できなくなり、結果的に前記平均粒径20〜200μmの粒子が高充填できなくなる。
【0016】
前記粒子の前記(メタ)アクリレート単量体への分散性を向上するためカップリング処理、ステアリン酸処理等の表面処理を適宜行っても良い。含有する粒子の形状は、球状、針状、フレーク状が挙げられる。化合物種類及び平均粒径、形状は単独で使用しても2種以上組み合わせて使用してもよい。
【0017】
前記した金属酸化物、水和金属化合物及び金属窒化物からなる群から選ばれた平均粒径20〜200μmの粒子(大きな粒子)の充填率を上げることで熱伝導性は向上する。その際、大きな粒子間に隙間ができる。その隙間に、難燃性を付与できる10μm以下の水和金属化合物の粒子(小さな粒子)を充填することで、接着性を低下することなく高い熱伝導性と難燃性が両立できる。炭化水素系ポリマー等の固体又は高粘度液体に比べ、前記(メタ)アクリレート単量体は低粘度な液体であるため、より緻密に充填できる。また前記した大きな粒子の種類や組み合わせをかえることで、難燃性と熱伝導性を自由にコントロールできる。
【0018】
(分散剤)
本発明の難燃性熱伝導電気絶縁粘着体には、組成物の保存安定性、塗工適性を向上するために、分散剤を含有することが好ましい。分散剤とは、いわゆる界面活性剤であり、その分子内に分散質である難燃性を有する粒子及び非難燃性かつ熱伝導電気絶縁性を有する粒子と親和性が高い極性基と、主な分散媒である(メタ)アルキルアクリレート単量体と親和性の高い疎水基を有する化合物である。例えば、高級アルコールスルホン酸エステルナトリウム、アルキルベンゼンスルホン酸ナトリウム、ジアルキルスルホコハク酸エステルナトリウム、アルキル(アリル)エーテルリン酸エステル、アルキル(アリル)エーテル硫酸エステル、リン酸エステルなどのイオン性分散剤や、アルキルフェニルエーテル、アルキルエーテル、ポリオキシエチレンポリオキシプロピレンブロック共重合体などのノニオン性分散剤が挙げられる。添加量は特に限定されないが、前記難燃性を有する粒子と非難燃性の熱伝導電気絶縁性を有する粒子の総量に対し0.02〜5.0質量%が好ましい。0.02質量%未満では塗工性が低下し、5.0質量%を越えると耐熱性が低下する。
【0019】
(難燃性熱伝導電気絶縁粘着体の製法)
本発明に使用する組成物は、必要に応じ塗工適性の調整を行うことができる。例えば、まず前記したアクリル系単量体と光重合開始剤とを一緒に混合し、通常はこのプレミックスを部分的に重合することによって、塗布可能なシロップ状にできる。あるいは、上記プレミックスに対して、増粘剤やヒユ―ムドシリカのようなチキソトロ―プ剤を混合することにより、塗布可能なシロップ状にすることもできる。粒子が壊れない範囲で、最も分散性が向上するように粘度を調整することが望ましい。
【0020】
次に、前記アクリル系単量体又は前記シロップ状物に、難燃性を有する粒子、非難燃性かつ熱伝導電気絶縁性を有する粒子、分散剤、光重合開始剤とを混合し、光重合用の組成物を調製する。この組成物には、粘着シートの凝集性や剪断強度を増加させるため、架橋剤を添加することができる。さらに必要により顔料、充填剤、酸化防止剤、紫外線吸収剤、粘着付与樹脂、などの公知の各種添加剤を、紫外線などの照射による光重合を妨げない範囲内で添加してもよい。
【0021】
(架橋剤)
架橋剤としては、前記アクリル系単量体と共重合可能な多官能(メタ)アクリレートや、分子内にカルボキシル基や水酸基などの極性基を有する共重合性単量体がある場合は、これと反応する官能基を有する架橋剤を用いることができる。本発明では光重合法を用いて粘着体を作成するので、共重合可能な多官能(メタ)アクリレートとの共重合による架橋は、熟成工程が不要となるので好ましい。
【0022】
共重合可能な多官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,2-エチレングリコ―ルジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレ―トなどの多官能(メタ)アクリレートがある。また、極性基と反応する官能基を有する架橋剤には、トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネート、ジフエニルメタントリイソシアネートなどの多官能イソシアネート系架橋剤、ポリエチレングリコ―ルジグリシジルエーテル、ジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテルなどのエポキシ系架橋剤、メラミン樹脂系架橋剤、アミノ樹脂系架橋剤、過酸化物系架橋剤、カルボジイミド系架橋剤などが挙げられる。
【0023】
(粘着付与樹脂)
本発明の難燃性熱伝導電気絶縁粘着体で使用する粘着剤層に用いられる上記アクリル共重合体には、必要に応じ粘着付与樹脂を添加しても良い。粘着付与樹脂としては、テルペン系樹脂、テルペンフェノール樹脂、ロジン系樹脂、石油系樹脂、クマロン−インデン樹脂、フェノール系樹脂等が挙げられるが、本発明では光重合法を用いて粘着体を作成するので、粘着付与樹脂中の二重結合による重合阻害を防止するために、二重結合が少なく阻害を起こしにくい粘着付与樹脂を用いる。例えば、高度に不均化したロジンエステルや、高度に水素添加をして二重結合を少なくしたロジンエステルやクマロン−インデン樹脂、テルペンフェノール樹脂、分子骨格に二重結合部位をもたないアクリル系樹脂、飽和脂肪族樹脂等が挙げられる。
【0024】
本発明においては、上記の組成物に紫外線や放射線などを照射して、光重合物とする。例えば紫外線の照射は、窒素ガスなどの不活性ガスで置換した酸素のない雰囲気中で行うか、ポリエチレンテレフタレートなどの紫外線透過性フィルムによる被覆で空気を遮断した状態で行う。紫外線は、波長範囲が180〜460nmの電磁放射線であるが、これより長波長または短波長の電磁放射線を用いてもよい。紫外線源には、水銀アーク、炭素アーク、低圧水銀ランプ、中・高圧水銀ランプ、メタルハライドランプ、蛍光ケミカルランプ、ブラックライトランプなどの通常の照射装置が用いられる。紫外線の強度は、被照射体までの距離や電圧の調整により適宜設定できるが、通常は、被照射体面で0.1〜100mW/cm2 、好ましくは0.3〜20mW/cm2光を用いるのが望ましい。紫外線の照射は塗工面の片側又は両側から照射するが、組成物に熱伝導性粒子が配合されているので、生産性などの面から両側から照射することが好ましい。また、放射線としては、活性エネルギー線で、α線、β線、γ線、中性子線、加速電子線のような電離性放射線が用いられ、照射量は1〜10Mrad程度が好ましい。なお、紫外線と放射線を併用してもよい。
【0025】
(塗工法・厚さ)
本発明は、このように形成される光重合物を、常態で感圧接着性を有し、かつ熱伝導性や難燃性などが良好なアクリル系の難燃性熱伝導電気絶縁粘着体としたものである。本発明の粘着シートは、剥離ライナ上に前記の組成物を塗布し、紫外線や放射線を照射して、光重合物からなる難燃性熱伝導電気絶縁粘着体を形成することにより製造できる。
【0026】
具体的には、組成物をロールコーターやダイコーター等で離型処理したポリエチレンテレフタレート製のフィルム(セパレーター)等に塗布する方法で行う。難燃性熱伝導電気絶縁粘着体の厚さは、0.1mm〜5mm、好ましくは0.5mm〜2mmである。なお、本発明の組成物は、支持体を有する粘着シート状に加工することもできる。
【0027】
本発明に使用する難燃性熱伝導電気絶縁粘着体の90°ピール接着力は、0.5N/25mm以上であることが好ましい。0.5N/25mm未満であると、例えば、CPU等の電子部品とヒートシンク等との接合界面に、せん断方向や割裂方向に負荷が掛かるような装着をした場合、経時で剥がれが発生する。このような場合、CPU等の発熱体からシートシンクへの熱伝導が阻害される。
【0028】
(熱伝導率・難燃性)
本発明の難燃性熱伝導電気絶縁粘着体の熱伝導率は、熱の放散性を十分発現させるために、1W/m・K以上、好ましくは1.5W/m・Kである。難燃性は、着火・延焼の危険性を排除する面からUL94VTM-0 を満足する事が好ましい。
【0029】
(用途)
本発明の難燃性熱伝導電気絶縁粘着体は、半導体やCPU等の電子部品やプラズマディスプレイパネル等の発熱体と、アルミ製ヒートシンク等の放熱部品との接着固定をする用途に使用することができる。
【0030】
【実施例】
以下に実施例について具体的に説明するが、本願発明はこれらの実施例に限定されるものではない。
【0031】
(実施例1)
[難燃性熱伝導電気絶縁粘着体の調製]
2-エチルヘキシルアクリレート95質量部、アクリル酸5質量部に対して、光重合開始剤イルガキュア2020[チバスペシャリティケミカル社製]0.3質量部、平均粒径20〜200μmの金属酸化物粒子として平均粒径39μmの球状アルミナ[昭和電工(株)製、AS-10]を250質量部、平均粒径10μm以下の水和金属化合物の粒子として、平均粒径8μmの水酸化アルミニウム[昭和電工(株)製、ハイジライトH-32]を150質量部、リン酸エステル系分散剤[楠本化成社製、PW-36]3.0質量部、架橋剤トリメチロールプロパントリアクリレート0.1質量部、酸化防止剤イルガノックス1010[チバスペシャリティケミカル社製]1.0質量部を添加し均一になるまで充分攪拌し組成物を調整した。この組成物は、部分重合などのシロップ化を行わなくても良好な塗工適性を有していた。この組成物を脱泡処理後、シリコーン離型処理した厚さ75μmのポリエステルフィルムに硬化後の厚さが1mmになるようにアプリケーターで塗工し、シリコーン離型処理した厚さ38μmのポリエステルフィルムで被覆したのち、20Wの蛍光ケミカルランプで塗工面の両側から、それぞれ被照射面での照射強度が1.0mW/cm2の紫外線を5分間照射し、粘着シート状態で重合させ、難燃性熱伝導電気絶縁粘着シートを得た。
【0032】
(比較例1)
[難燃性粘着体の調整]
ブチルゴム100質量部、石油系粘着付与樹脂10質量部、プロセスオイル5質量部、及び平均粒径26μmの水酸化アルミニウム[昭和電工(株)製、ハイジライトH-21]を300質量部、平均粒径8μmの水酸化アルミニウム[昭和電工(株)製、ハイジライトH-32]を100質量部を金属ローラーで混錬した。次にベント式押し出し機で1mm厚のシート状に成形し、難燃性粘着シートを得た。
【0033】
実施例、比較例の粘着体は離型処理したポリエステルフィルムを剥離し熱伝導率、難燃性、接着力、体積固有抵抗、実装試験を実施し結果を表1に記した。
【0034】
〔熱伝導率〕
実施例、比較例の粘着体を5cm×15cmの大きさに切断し、厚みが約2cmになるまで積層し試験片とした。23℃±2℃の雰囲気温度で、迅速熱伝導率計QTM500(京都電子工業社製)を使用して、熱伝導率を測定した。
【0035】
〔難燃性〕
UL規格(UL94「機器の部品用プラスチック材料の燃焼試験方法」)に準じ、燃焼性試験を行い判断した。「VTM-0」、「VTM-1」は以下の燃焼程度を示す基準である。
【0036】
フィルム状の試料を円筒型に保持し、1組5枚の試料に対して各試料につき3秒間の接炎を2回行い、その場合の燃焼時間の合計、燃焼距離、熱による貫通の有無により下記の如く、クラス分類する。VTM-0 は、VTM-1 よりも燃焼しにくいことを意味する。
【0037】
燃焼クラス判定基準 VTM-1 VTM-0
各試料の残炎燃焼時間−−−−−−−−−− ≦30秒 ≦10秒
5枚の試料の燃焼時間合計 −−−−−−−− ≦250秒 ≦50秒
第2回接炎後の残炎時間+無炎燃焼時間 −− ≦60秒 ≦30秒
滴下物による綿への着火の有無−−−−−− なし なし
クランプまでの残炎又は無炎燃焼の有無−− なし なし
【0038】
〔接着力〕
厚さ50μmのアルミ箔で一方の粘着面を裏打ちした25mm×100mmの粘着体サンプルを、アルミ板に2kgローラー1往復加圧貼付し、室温で1時間放置後、90°方向に剥離速度300mm/minで引き剥がし接着力を測定した。
【0039】
〔体積固有抵抗値〕
超絶縁/微少電流計 TR8601(タケダ理研(株)製)で測定した。測定温度は30℃、測定電圧は500V・60秒とした。
【0040】
〔実装試験〕
実施例、比較例の粘着体25mm×25mmを、CPUと重さ100gのアルミニウムヒートシンクとの間に挟み、一定の圧力をかけてCPUに押しつけて、アルミニウムヒートシンクの荷重が熱伝導粘着シートのせん断方向にかかるように垂直方向に設置し、CPUに7.0Vの電圧を印加した。24時間後、アルミニウムヒートシンクの装着状態を確認した。
【0041】
評価基準
○:剥がれ無し、△:50%剥がれ、×:アルミヒートシンクが脱落
【0042】
【表1】

Figure 0004228269
【0043】
実施例1の難燃性熱伝導電気絶縁粘着シートは、粒径の大きい酸化アルミニウム粒子が高い熱伝導率を発揮し、粒径の小さい水酸化アルミニウム粒子が、前記酸化アルミニウム粒子の隙間に分散、充填されるため、接着力、電気絶縁性を維持したまま、UL規格で高い難燃性(VTM-0)を示した。また接着力が高いため、実装試験においても剥がれが生じなかった。
【0044】
一方、比較例1の難燃性粘着シートは、粒径の大きい水酸化アルミニウム粒子と粒径の小さい水酸化アルミニウム粒子を含有している。しかし、高粘度のゴム状ポリマーに混練しているため、分散性が十分でなく最適の充填がなされていない。また、混練の過程で、粒径の大きい水酸化アルミニウムが潰され、結果的に小さい粒子の水酸化アルミニウムが増えて意図した熱伝導性が発揮できない。また得られた難燃性粘着体は、水酸化アルミニウムを高充填しているためブチルゴム本来の粘着性を発揮できない。このため難燃性と熱伝導性を示しはするものの、実施例1に比較して接着性、熱伝導性のいずれもが劣っている。接着性は実装試験においてアルミヒートシンクが落下したように、十分なものではない。
【0045】
以上のように、実施例1の難燃性熱伝導電気絶縁粘着体(粒子総量:400部)は、比較例1の難燃性粘着体(粒子総量:400部)と同じ量の粒子を含有しているにもかかわらず、比較例1よりも高い熱伝導率、難燃性及び高い接着力を同時に有する。
【0046】
【発明の効果】
本発明の難燃性熱伝導電気絶縁粘着体は、特に難燃性と熱伝導性に優れ、且つ電気絶縁性と充分な接着性を併せ持つため、電子部品やプラズマディスプレイ等の家電製品の発熱体と、ヒートシンク等の放熱体との接合用の熱伝導性粘着体として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat conductive adhesive, and more particularly to a flame retardant heat conductive electrically insulating pressure sensitive adhesive useful for heat transfer and adhesive fixing between a heat generating member such as an electronic component and a heat radiating component such as a heat sink.
[0002]
[Prior art]
In recent years, the need for heat dissipation of electronic parts such as semiconductors and CPUs, and home appliances such as plasma displays has increased as electrical and electronic devices have become highly integrated and high performance due to remarkable progress in electronics technology. . Therefore, heat dissipation is performed by bonding heat-radiating parts such as a heat sink or bonding mechanically to electronic parts and household electrical appliances or mechanically. In addition to high thermal conductivity and electrical insulation, this joining member is required to have high flame resistance so that there is no risk of ignition and fire spread in the unlikely event of ignition.
[0003]
In JP-A-2001-139733, by adding thermally conductive particles having different average particle diameters to rubber having fluidity, the mechanical strength is reduced because small particles can be filled in the gaps between large particles. The filling rate of the heat conductive particles can be improved without doing so. Further, it is said that flame retardancy can be imparted by using a thermally conductive particle having flame retardancy. Although silicon carbide is mentioned as the thermally conductive particles having flame retardancy, there is a problem in that it is necessary to increase the filling rate in order to impart flame retardancy, resulting in an increase in cost. In addition, there is no description of using flame retardant particles for small particles and particles having thermal conductivity for large particles. In addition, a fluid rubber (silicone rubber or EPDM rubber) is used for the base resin so as to deform along the shape due to the heat generated by the CPU (65 ° C.). However, these resins are inherently self-adhesive and cannot exhibit sufficient adhesion. When this heat conductive sheet is used to join the heat sink to the CPU in the vertical direction or to carry it like a notebook computer, the heat causes the rubber to be plasticized, causing the heat sink to fall off due to its own weight. In addition, when a PC CPU and a heat sink are joined with a heat-conductive sheet that uses silicone rubber as a fluid rubber, the silicone-based low molecular weight material in the silicone rubber volatilizes and deposits on the HDD disk. There was a risk of destroying the disc. Thus, it is not solved about balancing heat conductivity, a flame retardance, and adhesiveness in a high dimension.
[0004]
JP-A-2001-2839 proposes a flame retardant composition containing a hydrocarbon polymer and two or more hydrated metal compounds having different average particle diameters. However, since the hydrocarbon-based polymer is a solid or high-viscosity liquid, in order to increase the particle filling rate, the hydrocarbon-based polymer and the particles cannot be uniformly filled unless they are kneaded with two rolls or the like. It was. For this reason, large particles are destroyed at the time of kneading, and sufficient heat conductivity cannot be exhibited without filling small particles in the gaps between the large particles. Moreover, the obtained sheet | seat also became hard and there existed a problem which adhesive force was insufficient.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a flame retardant thermally conductive electrically insulating pressure-sensitive adhesive having excellent thermal conductivity, flame retardancy, and adhesiveness, in order to eliminate the above-described drawbacks of the prior art.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have determined that an acrylic monomer mainly composed of (meth) alkyl acrylate, specific particles having an average particle size of 20 to 200 μm, and a hydrated metal compound having an average particle size of 10 μm or less. It has been found that a flame retardant thermally conductive electrically insulating pressure-sensitive adhesive having excellent thermal conductivity and flame retardancy, electrical insulation and adhesiveness can be obtained by polymerizing a composition containing these particles.
[0007]
That is, i) an average particle selected from the group consisting of a (meth) alkyl acrylate monomer having an alkyl group having 1 to 14 carbon atoms, and ii) a metal oxide, a hydrated metal compound, and a metal nitride A flame retardant characterized in that it is a photopolymer of a composition comprising particles having a diameter of 20 to 200 μm, iii) particles of a hydrated metal compound having an average particle size of 10 μm or less, and iv) a photopolymerization initiator. Heat conductive electrically insulating adhesive.
Whereas the hydrocarbon polymer is a solid or a high-viscosity liquid, the (meth) alkyl acrylate monomer is a low-viscosity liquid, and the particles of iii) are resistant to the gaps of the particles of ii). Therefore, it is possible to increase the addition amount without deteriorating the adhesiveness. Further, by forming a polymer by photopolymerization, a state in which the particles of iii) are filled in the gaps of the particles of ii) is fixed, and a stable dispersion state can be maintained over time.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The composition used in the present invention comprises (meth) alkyl acrylate having an alkyl group having 1 to 14 carbon atoms.
[0009]
Examples of the (meth) alkyl acrylate having an alkyl group having 1 to 14 carbon atoms include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, isoamyl acrylate, hexyl acrylate, acrylic 2-ethylhexyl acid, octyl acrylate, isooctyl acrylate, isononyl acrylate, isodecyl acrylate, lauryl acrylate, methyl ethacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, lauryl methacrylate However, it is not limited to this. These are used in a proportion of 70 to 100% by mass, preferably 90 to 99% by mass, in the monomer mixture. When the amount of (meth) alkyl acrylate is less than 70% by mass, initial adhesive strength and the like are lowered.
[0010]
(Copolymerizable monomer having a polar group in the molecule)
Along with the (meth) alkyl acrylate monomer, a copolymerizable monomer having a polar group in the molecule can be used. This copolymerizable monomer is used to improve the cohesive strength and adhesive strength of the acrylic copolymer. Although not particularly limited, examples include carboxyl group-containing monomers such as acrylic acid, itaconic acid, (anhydrous) maleic acid, (anhydrous) fumaric acid, caprolactan-modified (meth) acrylate, and acrylic acid dimer, Nitrogen-containing monomers such as (meth) acrylamide, substituted acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, (meth) acryloylmorpholine, (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( Examples include, but are not limited to, hydroxyl group-containing monomers such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate. These copolymerizable monomers are used in a proportion of 30 to 0.5% by mass, preferably 10 to 1% by mass in the monomer mixture. When it exceeds 30% by mass, the initial adhesiveness is lowered.
[0011]
(Photopolymerization initiator)
Examples of the photopolymerization initiator used in the present invention include benzoin ethers such as benzoin methyl ether and benzoin ethyl ether, substituted acetophenones such as 2,2-diethoxyacetophenone and 2,2-dimethoxy-2-phenylacetophenone, Examples include substituted α-ketols such as 2-methyl-2-hydroxypropiophenone, benzyl ketals, acylphosphine oxides, benzoins, and benzophenones. In addition, it is preferable to use a photopolymerization initiator having two or more cleavage points in the molecule, such as bisacylphosphine oxides or bismaleimide derivatives, because the molecular weight of the photopolymerized product is easily increased.
[0012]
The amount of these photopolymerization initiators used varies depending on the type, but is 0.01 to 3 parts by mass, preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the monomer. When the amount is less than 0.01 parts by mass, unreacted monomers remain in the photopolymerization product. On the other hand, when the amount is more than 3 parts by mass, the molecular weight of the photopolymer is lowered, resulting in insufficient cohesive strength of the pressure-sensitive adhesive.
The molecular weight of the photopolymerization product is such that the weight average molecular weight in terms of polystyrene of the gel permeation chromatograph is 400,000 or more, preferably 800,000 or more.
[0013]
(Particles having an average particle size of 20 to 200 μm selected from the group consisting of metal oxides, hydrated metal compounds and metal nitrides)
The particles having an average particle diameter of 20 to 200 μm selected from the group consisting of metal oxides, hydrated metal compounds, and metal nitrides, contained in the flame-retardant heat conductive electrically insulating adhesive of the present invention are not particularly limited. . For example, examples of the metal oxide include aluminum oxide, magnesium oxide, and zinc oxide. Examples of the hydrated metal compound include aluminum hydroxide and magnesium hydroxide. Examples of the metal nitride include boron nitride and aluminum nitride. When the average particle size of the particles is less than 20 μm, the thermal conductivity decreases due to the decrease in the contact between the particles. If the average particle size exceeds 200 μm, the adhesion and coating properties will be reduced.
[0014]
In order to improve the dispersibility of the particles in the acrylic monomer, a surface treatment such as a coupling treatment or a stearic acid treatment may be appropriately performed. Examples of the shape of the contained particles include a spherical shape, a needle shape, and a flake shape. The compound type, average particle diameter, and shape may be used alone or in combination of two or more.
The addition amount of particles having an average particle size of 20 to 200 μm selected from the group consisting of metal oxides, hydrated metal compounds and metal nitrides contained in the flame-retardant heat conductive electrically insulating adhesive of the present invention is It is preferable to contain 50 to 400 parts by mass with respect to 100 parts by mass of the (meth) alkyl acrylate monomer. If it is less than 50 parts by mass, the thermal conductivity is lowered, and if it exceeds 400 parts by mass, the adhesiveness is lowered.
[0015]
(Particles of hydrated metal compounds with an average particle size of 10 μm or less)
Although it does not specifically limit as a particle | grain of a hydrated metal compound with an average particle diameter of 10 micrometers or less contained in the flame-retardant heat conductive electrical insulation adhesive of this invention, For example, aluminum hydroxide, magnesium hydroxide, etc. are mentioned. The addition amount of the particles is preferably 100 parts by mass or more with respect to 100 parts by mass of the (meth) alkyl acrylate monomer. If it is less than 100 parts by mass, the flame retardancy is lowered. When the average particle size of the particles exceeds 10 μm, it becomes impossible to fill the gaps between the particles having the average particle size of 20 to 200 μm, and as a result, the particles having the average particle size of 20 to 200 μm cannot be filled at a high level.
[0016]
In order to improve the dispersibility of the particles in the (meth) acrylate monomer, a surface treatment such as a coupling treatment or a stearic acid treatment may be appropriately performed. Examples of the shape of the contained particles include a spherical shape, a needle shape, and a flake shape. The compound type, average particle diameter, and shape may be used alone or in combination of two or more.
[0017]
The thermal conductivity is improved by increasing the filling rate of particles (large particles) having an average particle size of 20 to 200 μm selected from the group consisting of the metal oxide, hydrated metal compound and metal nitride. At that time, a gap is formed between large particles. By filling the gaps with particles (small particles) of a hydrated metal compound of 10 μm or less that can impart flame retardancy, both high thermal conductivity and flame retardancy can be achieved without lowering adhesion. Compared to a solid or high-viscosity liquid such as a hydrocarbon-based polymer, the (meth) acrylate monomer is a low-viscosity liquid, and therefore can be filled more densely. Moreover, flame retardance and thermal conductivity can be freely controlled by changing the kind and combination of the large particles described above.
[0018]
(Dispersant)
In order to improve the storage stability and coating suitability of the composition, the flame-retardant heat-conductive electrically insulating pressure-sensitive adhesive of the present invention preferably contains a dispersant. The dispersant is a so-called surfactant, a polar group having a high affinity with the flame retardant particles which are dispersoids in the molecule and the particles having non-flame retardant and heat conduction electrical insulation, It is a compound having a hydrophobic group having a high affinity with the (meth) alkyl acrylate monomer as a dispersion medium. Examples include ionic dispersants such as sodium higher alcohol sulfonate, sodium alkylbenzene sulfonate, sodium dialkylsulfosuccinate, alkyl (allyl) ether phosphate, alkyl (allyl) ether sulfate, phosphate ester, alkylphenyl Nonionic dispersants such as ethers, alkyl ethers, and polyoxyethylene polyoxypropylene block copolymers are exemplified. The addition amount is not particularly limited, but is preferably 0.02 to 5.0% by mass with respect to the total amount of the flame retardant particles and the non-flame retardant thermally conductive and electrically insulating particles. If it is less than 0.02% by mass, the coatability is lowered, and if it exceeds 5.0% by mass, the heat resistance is lowered.
[0019]
(Production method of flame-retardant heat conductive electrical insulation adhesive)
The composition used in the present invention can be adjusted in coating suitability as necessary. For example, first, the acrylic monomer and photopolymerization initiator described above are mixed together, and this premix is usually partially polymerized to form a coatable syrup. Alternatively, the premix can be made into a syrup form that can be applied by mixing a thickener or a thixotropic agent such as fumed silica. It is desirable to adjust the viscosity so that the dispersibility is improved as long as the particles are not broken.
[0020]
Next, the acrylic monomer or the syrup-like material is mixed with flame retardant particles, non-flame retardant and thermally conductive electrical insulating particles, a dispersant, a photopolymerization initiator, and photopolymerization is performed. A composition for is prepared. In order to increase the cohesiveness and shear strength of the pressure-sensitive adhesive sheet, a crosslinking agent can be added to the composition. Furthermore, if necessary, various known additives such as pigments, fillers, antioxidants, ultraviolet absorbers, and tackifying resins may be added within a range that does not interfere with photopolymerization by irradiation with ultraviolet rays or the like.
[0021]
(Crosslinking agent)
As the crosslinking agent, when there is a polyfunctional (meth) acrylate copolymerizable with the acrylic monomer or a copolymerizable monomer having a polar group such as a carboxyl group or a hydroxyl group in the molecule, A crosslinking agent having a reactive functional group can be used. In the present invention, since the pressure-sensitive adhesive is prepared using a photopolymerization method, crosslinking by copolymerization with a copolymerizable polyfunctional (meth) acrylate is preferable because an aging step is unnecessary.
[0022]
Examples of polyfunctional (meth) acrylates that can be copolymerized include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, 1,2-ethylene glycol di (meth) acrylate, and 1,6-hexanediol diester. There are polyfunctional (meth) acrylates such as (meth) acrylate. The crosslinking agent having a functional group that reacts with a polar group includes polyfunctional isocyanate-based crosslinking agents such as tolylene diisocyanate, trimethylolpropane tolylene diisocyanate, diphenylmethane triisocyanate, polyethylene glycol diglycidyl ether, diglycidyl. Examples thereof include epoxy crosslinking agents such as ether and trimethylolpropane triglycidyl ether, melamine resin crosslinking agents, amino resin crosslinking agents, peroxide crosslinking agents, and carbodiimide crosslinking agents.
[0023]
(Tackifying resin)
If necessary, a tackifier resin may be added to the acrylic copolymer used in the pressure-sensitive adhesive layer used in the flame-retardant heat conductive electrically insulating pressure-sensitive adhesive of the present invention. Examples of tackifying resins include terpene resins, terpene phenol resins, rosin resins, petroleum resins, coumarone-indene resins, phenol resins, etc. In the present invention, an adhesive is prepared using a photopolymerization method. Therefore, in order to prevent polymerization inhibition due to double bonds in the tackifying resin, a tackifying resin with few double bonds and hardly causing inhibition is used. For example, highly disproportionated rosin esters, highly hydrogenated rosin esters with reduced double bonds, coumarone-indene resins, terpene phenol resins, acrylics that do not have double bond sites in the molecular skeleton Examples thereof include resins and saturated aliphatic resins.
[0024]
In the present invention, the above composition is irradiated with ultraviolet rays or radiation to form a photopolymer. For example, ultraviolet irradiation is performed in an oxygen-free atmosphere substituted with an inert gas such as nitrogen gas, or in a state where air is blocked by coating with an ultraviolet transmissive film such as polyethylene terephthalate. Ultraviolet rays are electromagnetic radiation having a wavelength range of 180 to 460 nm, but electromagnetic radiation having a longer wavelength or shorter wavelength may be used. As an ultraviolet ray source, a normal irradiation device such as a mercury arc, a carbon arc, a low pressure mercury lamp, a medium / high pressure mercury lamp, a metal halide lamp, a fluorescent chemical lamp, or a black light lamp is used. Intensity of ultraviolet rays, can be suitably set by adjusting the distance and the voltage to the object to be irradiated, normally, 0.1~100mW / cm 2 at the irradiated body surface, preferably desirable to use 0.3~20mW / cm 2 light. Irradiation with ultraviolet rays is performed from one side or both sides of the coated surface, but since heat conductive particles are blended in the composition, it is preferable to irradiate from both sides in terms of productivity. As the radiation, active energy rays are used, and ionizing radiations such as α rays, β rays, γ rays, neutron rays, and accelerated electron rays are used, and the irradiation amount is preferably about 1 to 10 Mrad. Note that ultraviolet rays and radiation may be used in combination.
[0025]
(Coating method / thickness)
The present invention provides an acrylic flame-retardant thermally conductive electrically insulating pressure-sensitive adhesive having a pressure-sensitive adhesive property in a normal state and good thermal conductivity and flame retardancy. It is a thing. The pressure-sensitive adhesive sheet of the present invention can be produced by applying the above composition on a release liner and irradiating with ultraviolet rays or radiation to form a flame-retardant heat conductive electrically insulating pressure-sensitive adhesive made of a photopolymer.
[0026]
Specifically, it is carried out by a method in which the composition is applied to a polyethylene terephthalate film (separator) or the like that has been subjected to mold release treatment with a roll coater or a die coater. The thickness of the flame retardant heat conductive electrically insulating adhesive is 0.1 mm to 5 mm, preferably 0.5 mm to 2 mm. In addition, the composition of this invention can also be processed into the adhesive sheet shape which has a support body.
[0027]
The 90 ° peel adhesive strength of the flame-retardant heat conductive electrically insulating pressure-sensitive adhesive used in the present invention is preferably 0.5 N / 25 mm or more. If it is less than 0.5 N / 25 mm, for example, when a load is applied to the joining interface between an electronic component such as a CPU and a heat sink or the like in which a load is applied in the shearing direction or splitting direction, peeling occurs over time. In such a case, heat conduction from a heating element such as a CPU to the sheet sink is hindered.
[0028]
(Thermal conductivity and flame retardancy)
The heat conductivity of the flame-retardant heat conductive electrically insulating adhesive of the present invention is 1 W / m · K or more, preferably 1.5 W / m · K, in order to sufficiently exhibit heat dissipation. The flame retardancy preferably satisfies UL94VTM-0 from the viewpoint of eliminating the risk of ignition and fire spread.
[0029]
(Use)
The flame-retardant heat-conductive electrical insulating adhesive body of the present invention can be used for bonding and fixing electronic parts such as semiconductors and CPUs and heat-generating parts such as plasma display panels and heat-radiating parts such as aluminum heat sinks. it can.
[0030]
【Example】
Examples will be specifically described below, but the present invention is not limited to these Examples.
[0031]
(Example 1)
[Preparation of flame-retardant heat-conductive electrical insulating adhesive]
With respect to 95 parts by mass of 2-ethylhexyl acrylate and 5 parts by mass of acrylic acid, photopolymerization initiator Irgacure 2020 (manufactured by Ciba Specialty Chemicals) 0.3 parts by mass, average particle size of 39 μm as metal oxide particles having an average particle size of 20 to 200 μm Spherical alumina [made by Showa Denko Co., Ltd., AS-10] as a hydrated metal compound particle having an average particle size of 10 μm or less as 250 parts by mass, aluminum hydroxide having an average particle size of 8 μm [manufactured by Showa Denko Co., Ltd., 150 parts by weight of Heidilite H-32], 3.0 parts by weight of a phosphoric acid ester dispersant (manufactured by Enomoto Kasei Co., Ltd., PW-36), 0.1 parts by weight of a cross-linking agent trimethylolpropane triacrylate, and an antioxidant Irganox 1010 [Ciba [Specialty Chemical Co., Ltd.] 1.0 part by mass was added and stirred thoroughly until uniform to prepare a composition. This composition had good coating suitability even without syrup formation such as partial polymerization. After defoaming this composition, it was applied to a 75 μm thick polyester film that had been subjected to silicone release treatment with an applicator so that the thickness after curing was 1 mm, and a 38 μm thick polyester film that had been subjected to silicone release treatment. After coating, from both sides of the coated surface with a fluorescent chemical lamp 20W, each irradiation intensity at the irradiated surface is irradiated 1.0 mW / cm 2 UV for 5 minutes, and polymerized at the pressure-sensitive adhesive sheet state, flame-retardant thermal conductivity An electrically insulating adhesive sheet was obtained.
[0032]
(Comparative Example 1)
[Adjustment of flame-retardant adhesive]
100 parts by weight of butyl rubber, 10 parts by weight of a petroleum-based tackifying resin, 5 parts by weight of process oil, and 300 parts by weight of average particle size of 26 μm aluminum hydroxide [Showa Denko Co., Ltd., Heidilite H-21] 100 parts by mass of aluminum hydroxide having a diameter of 8 μm (manufactured by Showa Denko KK, Hijilite H-32) was kneaded with a metal roller. Next, it was molded into a 1 mm thick sheet by a vent type extruder to obtain a flame retardant adhesive sheet.
[0033]
For the pressure-sensitive adhesives of Examples and Comparative Examples, the release-treated polyester film was peeled off, and thermal conductivity, flame retardancy, adhesive strength, volume resistivity, and mounting test were performed. The results are shown in Table 1.
[0034]
〔Thermal conductivity〕
The pressure-sensitive adhesive bodies of Examples and Comparative Examples were cut into a size of 5 cm × 15 cm and laminated until the thickness became about 2 cm to obtain a test piece. The thermal conductivity was measured using a rapid thermal conductivity meter QTM500 (manufactured by Kyoto Electronics Industry Co., Ltd.) at an ambient temperature of 23 ° C. ± 2 ° C.
[0035]
〔Flame retardance〕
In accordance with UL standard (UL94 "flammability test method for plastic materials for equipment parts"), a flammability test was performed and judged. “VTM-0” and “VTM-1” are standards indicating the following degree of combustion.
[0036]
A film-like sample is held in a cylindrical shape, and a set of five samples is subjected to flame contact twice for 3 seconds for each sample, depending on the total burning time, burning distance, and whether there is penetration due to heat. Classify as follows. VTM-0 means less combustible than VTM-1.
[0037]
Combustion class criteria VTM-1 VTM-0
Afterflame burning time of each sample ---------- ≤30 seconds ≤10 seconds
Total burning time of 5 samples --------- ≤250 seconds ≤50 seconds Afterflame time after second flame + flameless burning time --- ≤60 seconds ≤30 seconds Presence / absence of ignition ------ None None Residual flame until clamp or flameless combustion--None None
[Adhesive strength]
Adhesive sample of 25mm x 100mm with one adhesive surface lined with 50μm thick aluminum foil was applied to aluminum plate with 2kg roller 1 reciprocating pressure and left at room temperature for 1 hour, then peel rate 300mm / 90 ° direction It peeled off by min and measured the adhesive force.
[0039]
[Volume resistivity]
It was measured with a super insulation / micro ammeter TR8601 (manufactured by Takeda Riken Co., Ltd.). The measurement temperature was 30 ° C., and the measurement voltage was 500 V · 60 seconds.
[0040]
[Mounting test]
Example, Comparative Example Adhesive 25mm x 25mm is sandwiched between the CPU and an aluminum heat sink weighing 100g, pressed against the CPU with a certain pressure, the load of the aluminum heat sink is the shear direction of the heat conductive adhesive sheet In the vertical direction, 7.0V was applied to the CPU. After 24 hours, the mounting state of the aluminum heat sink was confirmed.
[0041]
Evaluation criteria ○: No peeling, △: 50% peeling, ×: Aluminum heat sink is dropped [0042]
[Table 1]
Figure 0004228269
[0043]
In the flame-retardant heat conductive electrically insulating adhesive sheet of Example 1, the aluminum oxide particles having a large particle size exhibit high thermal conductivity, and the aluminum hydroxide particles having a small particle size are dispersed in the gaps between the aluminum oxide particles. Because it was filled, it exhibited high flame resistance (VTM-0) according to UL standards while maintaining adhesive strength and electrical insulation. Moreover, since the adhesive strength was high, peeling did not occur in the mounting test.
[0044]
On the other hand, the flame-retardant pressure-sensitive adhesive sheet of Comparative Example 1 contains aluminum hydroxide particles having a large particle size and aluminum hydroxide particles having a small particle size. However, since it is kneaded with a rubber-like polymer having a high viscosity, the dispersibility is not sufficient and optimal filling is not performed. Further, in the process of kneading, aluminum hydroxide having a large particle size is crushed, and as a result, small particles of aluminum hydroxide increase, and the intended thermal conductivity cannot be exhibited. Moreover, since the obtained flame-retardant pressure-sensitive adhesive body is highly filled with aluminum hydroxide, it cannot exhibit the inherent adhesiveness of butyl rubber. For this reason, although both flame retardancy and thermal conductivity are shown, both adhesiveness and thermal conductivity are inferior to those of Example 1. Adhesiveness is not sufficient as an aluminum heat sink has dropped in a mounting test.
[0045]
As described above, the flame-retardant heat conductive electrically insulating adhesive body of Example 1 (total amount of particles: 400 parts) contains the same amount of particles as the flame-retardant adhesive body of Comparative Example 1 (total amount of particles: 400 parts). Nevertheless, it has a higher thermal conductivity, flame retardancy and higher adhesive strength than Comparative Example 1 at the same time.
[0046]
【The invention's effect】
The flame-retardant heat-conductive electrical insulating pressure-sensitive adhesive body of the present invention is particularly excellent in flame retardancy and thermal conductivity, and has both electrical insulation and sufficient adhesion, so that it is a heating element for home appliances such as electronic parts and plasma displays. And a heat conductive adhesive for joining with a heat sink such as a heat sink.

Claims (5)

アクリル共重合体と、平均粒径が20〜200μmの金属酸化物の粒子と、平均粒径10μm以下の水和金属化合物の粒子とを含有し、An acrylic copolymer, metal oxide particles having an average particle size of 20 to 200 μm, and hydrated metal compound particles having an average particle size of 10 μm or less,
前記アクリル共重合体が、炭素数1〜14個のアルキル基を有する(メタ)アルキルアクリレート系単量体に、前記金属酸化物の粒子、前記水和金属化合物の粒子、分散剤及び光重合開始剤を含有する光重合用の組成物を調整した後に、光重合して得られるアクリル共重合体であり、The acrylic copolymer is a (meth) alkyl acrylate monomer having an alkyl group having 1 to 14 carbon atoms, the metal oxide particles, the hydrated metal compound particles, a dispersant, and photopolymerization initiation. After preparing a composition for photopolymerization containing an agent, an acrylic copolymer obtained by photopolymerization,
前記(メタ)アルキルアクリレート系単量体100質量部に対して、前記金属酸化物の粒子を50〜400質量部含有し、前記水和金属化合物の粒子を100質量部以上含有すことを特徴とする難燃性熱伝導電気絶縁粘着体。50 to 400 parts by mass of the metal oxide particles and 100 parts by mass or more of the hydrated metal compound particles with respect to 100 parts by mass of the (meth) alkyl acrylate monomer. Fire retardant heat conductive electrical insulation adhesive.
前記光重合用の組成物が、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,2−エチレングリコ―ルジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレ―トから選ばれる多官能(メタ)アクリレートを含有する請求項1記載の難燃性熱伝導電気絶縁粘着体。The composition for photopolymerization is trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, 1,2-ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate. The flame-retardant thermally conductive electrically insulating pressure-sensitive adhesive according to claim 1, comprising a polyfunctional (meth) acrylate selected from the group consisting of 前記光重合用の組成物が、分子内に極性基を有する共重合性単量体を含有する、請求項1〜2のいずれかに記載の難燃性熱伝導電気絶縁粘着体。The flame-retardant heat conductive electrically insulating pressure-sensitive adhesive according to claim 1, wherein the photopolymerization composition contains a copolymerizable monomer having a polar group in the molecule. 前記光重合用の組成物中の分散剤の含有量が、前記金属酸化物の粒子及び前記水和金属化合物の粒子の総量に対して0.02〜5.0質量%である請求項1〜3のいずれかに記載の難燃性熱伝導電気絶縁粘着体。 The content of the dispersant in the composition for photopolymerization is 0.02 to 5.0 mass% with respect to the total amount of the metal oxide particles and the hydrated metal compound particles . 4. The flame-retardant heat-conducting electrically insulating pressure-sensitive adhesive according to any one of 3 above. 前記光重合開始剤が、分子内に開裂点が2つ以上ある光重合開始剤である請求項1〜4のいずれかに記載の難燃性熱伝導電気絶縁粘着体 The flame-retardant thermally conductive electrically insulating pressure-sensitive adhesive according to any one of claims 1 to 4, wherein the photopolymerization initiator is a photopolymerization initiator having two or more cleavage points in the molecule .
JP2002186003A 2002-06-26 2002-06-26 Flame retardant heat conductive electrical insulation adhesive Expired - Lifetime JP4228269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186003A JP4228269B2 (en) 2002-06-26 2002-06-26 Flame retardant heat conductive electrical insulation adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186003A JP4228269B2 (en) 2002-06-26 2002-06-26 Flame retardant heat conductive electrical insulation adhesive

Publications (2)

Publication Number Publication Date
JP2004027039A JP2004027039A (en) 2004-01-29
JP4228269B2 true JP4228269B2 (en) 2009-02-25

Family

ID=31181482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186003A Expired - Lifetime JP4228269B2 (en) 2002-06-26 2002-06-26 Flame retardant heat conductive electrical insulation adhesive

Country Status (1)

Country Link
JP (1) JP4228269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120102016A (en) 2011-03-07 2012-09-17 막셀 슬리온테크 가부시키가이샤 Adhesive composition, and adhesive tape

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498814B2 (en) * 2004-04-30 2010-07-07 大日本印刷株式会社 Flat cable covering material and flat cable
JP5101862B2 (en) * 2006-10-31 2012-12-19 スリーエム イノベイティブ プロパティズ カンパニー Sheet-forming monomer composition, thermally conductive sheet and process for producing the same
KR20080057663A (en) * 2006-12-20 2008-06-25 주식회사 엘지화학 Thermally conductive pressure-sensitive adhesives
JP4956608B2 (en) * 2009-12-24 2012-06-20 積水化学工業株式会社 Resin composition and laminated structure
JP5812754B2 (en) * 2011-02-11 2015-11-17 日東電工株式会社 Flame retardant thermal conductive adhesive sheet
JP5912337B2 (en) * 2011-04-09 2016-04-27 日東電工株式会社 Flame retardant thermal conductive adhesive sheet
JP2013159760A (en) * 2012-02-08 2013-08-19 Daio Paper Corp Thermally-conductive adhesive sheet
KR20140126692A (en) * 2012-02-14 2014-10-31 닛토덴코 가부시키가이샤 Thermoconductive adhesive sheet
JP2013213178A (en) * 2012-03-05 2013-10-17 Nitto Denko Corp Adhesive raw material and thermally conductive adhesive sheet
JP2014062220A (en) * 2012-03-05 2014-04-10 Nitto Denko Corp Heat-conductive adhesive sheet and electronic/electric apparatus
JP6029932B2 (en) * 2012-10-30 2016-11-24 日東電工株式会社 Thermally conductive adhesive sheet and method for producing the same
JP6302234B2 (en) * 2013-01-29 2018-03-28 日東電工株式会社 Thermally conductive adhesive sheet
JP6302235B2 (en) * 2013-01-29 2018-03-28 日東電工株式会社 Thermally conductive adhesive sheet
CN103965795B (en) * 2013-01-29 2018-06-22 日东电工株式会社 Thermal conductivity bonding sheet
CN103965798A (en) * 2013-01-29 2014-08-06 日东电工株式会社 Thermally conductive adhesive sheet
JP6016949B2 (en) * 2013-01-31 2016-10-26 株式会社寺岡製作所 Flame-retardant pressure-sensitive adhesive composition, flame-retardant heat-conductive pressure-sensitive adhesive composition, and pressure-sensitive adhesive sheet
JP2014167092A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Flame retardant adhesive composition
CN103965813A (en) * 2013-01-31 2014-08-06 日东电工株式会社 Flame-retardant adhesive composition
CN104004463B (en) * 2013-02-20 2018-09-07 日东电工株式会社 Adhesive tape
CN104004459B (en) * 2013-02-20 2018-10-09 日东电工株式会社 Adhesive tape
JP6342657B2 (en) * 2013-02-20 2018-06-13 日東電工株式会社 Adhesive tape
JP6212950B2 (en) * 2013-05-22 2017-10-18 デクセリアルズ株式会社 Photocurable acrylic heat conductive composition, acrylic heat conductive sheet and method for producing the same
JP6378533B2 (en) 2013-06-01 2018-08-22 日東電工株式会社 Thermally conductive adhesive sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269438A (en) * 1998-03-25 1999-10-05 Dainippon Ink & Chem Inc Heat-conductive flame-retardant pressure-sensitive adhesive and pressure-sensitive adhesive tape
JP2000281997A (en) * 1999-03-30 2000-10-10 Dainippon Ink & Chem Inc Thermally conductive, flame-retardant pressure- sensitive adhesive and pressure-sensitive adhesive tape
JP2001002839A (en) * 1999-06-21 2001-01-09 Nitto Denko Corp Flame-retarded composition and adhesive member
JP3474839B2 (en) * 1999-09-01 2003-12-08 北川工業株式会社 Thermal conductive sheet and manufacturing method thereof
JP2001279196A (en) * 2000-03-30 2001-10-10 Sliontec Corp Substrate-free, thermally conductive pressure-sensitive adhesive tape or sheet and method for manufacturing the same
JP2001283642A (en) * 2000-03-31 2001-10-12 Dainippon Printing Co Ltd Transparent conductive substrate and cover material for carrier tape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120102016A (en) 2011-03-07 2012-09-17 막셀 슬리온테크 가부시키가이샤 Adhesive composition, and adhesive tape

Also Published As

Publication number Publication date
JP2004027039A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP4228269B2 (en) Flame retardant heat conductive electrical insulation adhesive
KR101074309B1 (en) Thermally conductive pressure-sensitive adhesive composition and thermally conductive pressure-sensitive adhesive sheet-like molded body
EP1615970B1 (en) Acrylic-based thermally conductive composition and thermally conductive sheet
JP4385573B2 (en) Composition for heat-conducting electrical insulation pressure-sensitive adhesive and pressure-sensitive adhesive sheet using the same
EP0903386B1 (en) Pressure-sensitive adhesive having excellent heat resistance and heat conductivity, adhesive sheets, and method of securing electronic component to heat-radiating member therewith
JPH11269438A (en) Heat-conductive flame-retardant pressure-sensitive adhesive and pressure-sensitive adhesive tape
US20050192392A1 (en) Adhesives having advanced flame-retardant property
JP5173166B2 (en) Adhesive film peeling method
WO2005121267A1 (en) Adhesive sheet comprising hollow parts and method for preparing the same
TW201718741A (en) Thermally conductive pressure sensitive adhesive
JP2002294192A (en) Thermally conductive flame-retardant pressure- sensitive adhesive and sheet by forming the same
TW201319194A (en) Thermally-conductive pressure-sensitive adhesive composition, thermally-conductive pressure-sensitive adhesive sheet-shaped body, method for producing the same, and electronic component
JP2004002527A (en) Flame-retardant heat-conductive electrical insulating adhesive material
KR20070059568A (en) Adhesive having a property of delaying temperature rising
JP2006213845A (en) Heat-conductive pressure-sensitive adhesive sheet-like foamed shaped article and method for producing the same
JP2015231012A (en) Thermally conductive sheet, article and electronic member
JP3810515B2 (en) Peelable thermally conductive pressure sensitive adhesive and its adhesive sheets
JP2011246590A (en) Heat-conductive pressure-sensitive adhesive composition, heat-conductive pressure-sensitive adhesive sheet and electronic element
JP2004010859A (en) Composition for heat-conductive electrically insulating pressure-sensitive adhesive, and pressure-sensitive adhesive sheet using the same
JPH11292998A (en) Heat-conductive sheet
JP2003321658A (en) Flame retardant, heat conductive and electric-insulating adhesive sheet
WO2005059053A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive sheet-form molded foam, and process for producing the same
JP2003152147A (en) Heat conductive composite, heat conductive pressure sensitive adhesive sheet as well as jointing structure of heat generating body and heat dissipation body
JP2014005336A (en) Heat-conductive pressure-sensitive adhesive composition and heat-conductive pressure-sensitive adhesive sheet-like molding, their manufacturing method, and electronic equipment
US20050155751A1 (en) Heat-dissipating member and joined structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050606

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4228269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term