JP4227242B2 - Water leakage detection system for impermeable structures - Google Patents

Water leakage detection system for impermeable structures Download PDF

Info

Publication number
JP4227242B2
JP4227242B2 JP11128999A JP11128999A JP4227242B2 JP 4227242 B2 JP4227242 B2 JP 4227242B2 JP 11128999 A JP11128999 A JP 11128999A JP 11128999 A JP11128999 A JP 11128999A JP 4227242 B2 JP4227242 B2 JP 4227242B2
Authority
JP
Japan
Prior art keywords
water
layer
impermeable
impervious
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11128999A
Other languages
Japanese (ja)
Other versions
JP2000304643A (en
Inventor
海老原正明
押方利郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP11128999A priority Critical patent/JP4227242B2/en
Publication of JP2000304643A publication Critical patent/JP2000304643A/en
Application granted granted Critical
Publication of JP4227242B2 publication Critical patent/JP4227242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遮水構造物の漏水検知システムに関するものである。
【0002】
【従来の技術】
従来、遮水構造物の遮水層の近傍に漏水検知用の電極を配置し、電極の電位から破損の有無や破損位置を電気的漏水検知装置で検知している(特公平6−63901号公報参照)。
【0003】
【発明が解決しようとする課題】
本発明は、遮水構造物の漏水検知において、管理が容易なシステムを提供することにある。
【0004】
【課題を解決するための手段】
本発明は、水構造物の漏水検知システムにおいて、遮水構造物に上部遮水層を配置し、粘性土、岩、又はコンクリートからなる導電性を有する基盤を下部遮水層とし、上部遮水層と下部遮水層間に透水層を形成し、透水層内への浸水を検知する浸水検知手段を備え、上部遮水層を電気的絶縁性物質とし、上部遮水層及び下部遮水層に漏水検知用電極を配置することを特徴とする、遮水構造物の漏水検知システム、又は、水構造物の漏水検知システムにおいて、遮水構造物に上部遮水層を配置し、粘性土、岩、又はコンクリートからなる導電性を有する基盤を下部遮水層とし、上部遮水層と下部遮水層間に透水層を形成し、透水層内に水を注入し、透水層内の水位を検知する水位検知手段を備え、上部遮水層を電気的絶縁性物質とし、上部遮水層及び下部遮水層に漏水検知用電極を配置することを特徴とする、遮水構造物の漏水検知システム、又は、水構造物の漏水検知システムにおいて、遮水構造物に上部遮水層を配置し、粘性土、岩、又はコンクリートからなる導電性を有する基盤を下部遮水層とし、上部遮水層と下部遮水層間に透水層を形成し、透水層内に水を注入し、遮水層の内部の水位を検知する水位検知手段を備え、上部遮水層を電気的絶縁性物質とし、上部遮水層及び下部遮水層に漏水検知用電極を配置することを特徴とする、遮水構造物の漏水検知システム、又は、水構造物の漏水検知システムにおいて、遮水構造物に上部遮水層を配置し、粘性土、岩、又はコンクリートからなる導電性を有する基盤を下部遮水層とし、上部遮水層と下部遮水層間に透水層を形成し、透水層に連通する水位調整用ピットを形成し、透水層内又は水位調整用ピット内への浸水を検知する浸水検知手段を備え、上部遮水層を電気的絶縁性物質とし、上部遮水層及び下部遮水層に漏水検知用電極を配置することを特徴とする、遮水構造物の漏水検知システム、又は、前記遮水構造物の漏水検知システムにおいて、透水層内の水を排水する排水手段を備えていることを特徴とする、遮水構造物の漏水検知システム、又は、前記遮水構造物の漏水検知システムにおいて、透水層内に水を注入する注水手段を備えていることを特徴とする、遮水構造物の漏水検知システムにある。
【0005】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。
【0006】
<イ>遮水構造物の漏水検知システム
遮水構造物は、廃棄物を埋立処分する最終処分場などの遮水を行う構造物であり、漏水検知システムは、構造物内部の浸出水(汚水)が外部に漏れることを防いでいる遮水層の破損や位置を検知し、破損が発生した場合の浸出水の漏水を防止するためのものである。
【0007】
漏水検知システムの構造の一例の概念図を図1に示す。遮水層を上部遮水層21と下部遮水層22の2重に敷設して、この間に透水層24を設け、上部遮水層21と下部遮水層22の間に水を注入する構造とする。遮水層21、22間と水位調整用ピット31とは、水42が流れるように連通している。
【0008】
遮水層21、22は、1×103Ωm以上の電気絶縁性を有する材料として、遮水層21、22の破損を検知するための電気的漏水検知装置を設置する。
【0009】
なお、遮水層21、22は基盤4の上に形成され、上部遮水層21の上に保護土23が配置され、その上に廃棄物41が投棄される。
【0010】
電気的漏水検知装置は、遮水層21、22の近傍に漏水検知用電極12を多数配置し、これら電極12に発生する電圧を電気的漏水検知装置本体11で測定し、遮水層21、22近傍の電圧の分布状態などから漏水位置を検出する。電気的漏水検知装置本体11と漏水検知用電極12は電気ケーブル13等の導電体で接続されている。
【0011】
この状態で遮水層21、22に穴などの破損がなければ、内部に注入した水はわずかな蒸発やわずかに遮水層21、22を浸透する水量以外の出入りがないため、水面はほぼ一定に保たれる。
【0012】
しかし、上部遮水層21又は下部遮水層22が破損して穴が開くと、地下水や浸出水との水頭差により穴から水が流入或いは流出し、遮水層21、22間に注入した水42の水位が変動する。この変動を捕らえることで遮水層21、22の破損発生を検知する。
【0013】
破損発生検知後、電気的漏水検知装置を動作させて、上部遮水層21又は下部遮水層22のいずれに穴が開いたのかを調査する。即ち、上部遮水層21の両側に電流電圧を印加し、上部遮水層21近傍の各漏水検知用電極12の電圧を測定し、電圧分布の異常を調べる。同様に、下部遮水層22の両側に電流電圧を印加し、下部遮水層22近傍の各漏水検知用電極12の電圧を測定し、電圧分布の異常を調べる。
【0014】
上部遮水層21又は下部遮水層22の一方にしか穴がない場合には、2重の遮水層21、22間に注入する水の水位を、処分場内部の浸出水の水面よりも高く保つことにより、浸出水の外部への漏水を防止する。
【0015】
上部遮水層21又は下部遮水層22の両方に穴が開いた場合は、浸出水が外部に漏水する可能性があるため、遮水層21、22を修復する必要がある。このため、電気的漏水検知装置により破損位置を特定し、遮水層21、22に穴が開いた部分を修復する。
【0016】
修復後は電気的漏水検知装置又は2重の遮水層間に注入する水の水位管理で修復が確実に完了したことを確認する。
【0017】
ここでは、上下に設ける遮水層が両方とも1×103Ωm以上の電気絶縁性を示す材料を用いた場合について説明したが、外側の一方の遮水層に粘性土や岩、コンクリート等の比較的に電気を通しやすい材料を用いた場合も同様の効果が期待できる(以下の実施の形態2参照)。
【0018】
また、上部遮水層21と下部遮水層22の破損発生を検知する方法として、上下遮水層21、22間に予め水を注入して、この水位変動を捕らえることで検知する方法について説明したが、この方法に限らず、上部遮水層21と下部遮水層22間には水を入れず、遮水層21、22が破損することによつて破損部から上下遮水層21、22間に侵入してきた水を捕らえることで検知することもできる(以下の実施の形態1参照)。
【0019】
更に、上下遮水層21、22の両方が破損した場合には、遮水層21、22を修復する必要があると説明したが、破損が小さく、上下遮水層21、22間の透水層24の水位を浸出水の水位以上に保持することで、浸出水が外部に漏水する恐れがない場合には、必ずしも破損部を修復する必要はない。
【0020】
以下に、本発明の実施例を説明する。
【0021】
<イ>実施例1
実施例1を図2に示す。遮水層21、22を形成する遮水シートに破損がない場合には遮水シート間の透水層24や水位検知手段である水位調整用ピット31内に地下水や浸出水が入らない構造とする。また電気的漏水検知装置本体11と漏水検知用電極12とを埋設電気ケーブル13等の導電体によつて接続し、電気的に遮水層21、22である遮水シート破損の位置を速やかに検知できるようにする。
【0022】
このような構造の埋立地において、遮水シートに破損がない場合は、遮水シート間の透水層24には水を注入せず、透水層24内や、水位調整用ピット31内に地下水や浸出水が入つてこないかどうかを監視する。監視は、透水層24内や水位調整用ピット31内に設置した浸水検知手段である水分センサS33で行う。
【0023】
このような状態で、遮水シートが破損すると地下水や浸出水等が透水層24に侵入し、水分センサ33によつて直ちに検知できる。
【0024】
万―水分センサS33によつて地下水や浸出水を検知した場合には、遮水シートが破損したと判断し、注水バルプ32を開いて外部の水(地下水等に漏水しても安全な水)を浸出水の水位以上の水位まで水位調整用ピット31内に注入する。
【0025】
ただし、この時廃棄物41の埋立高さを越えないように管理する。水位検知手段である水位監視用ピット35を上部遮水層21内部に配置し、この中に水位計等を配置して浸出水の水位を計測する。
【0026】
また、水位調整用ピット31内の水を外部に放流する場合は、水質が充分きれいであることを確認して、ポンプP34などの排水手段で行う。浸出水の混入等により汚れている場合は、水処理施設に排水手段で送り浄化した後放流する。
【0027】
次に、電気的漏水検知装置によって、破損個所を捕らえ、上下遮水シートの片方であるか両方であるかを判断し、両方である場合には直ちに遮水シートの破損個所を修復する。どちらか一方である場合は、修復の準備を進めつつ、上下遮水シート間に水を注入した状態で様子を見る。破損が小さく、二重遮水シート間に注入する水量がわずかで、維持管理上問題ない場合はこの状態で維持する。もしも、破損が大きく、二重遮水シート間に注入する水の量が多く、維持管理上合理的でないと判断される場合には、破損個所を修復する。
【0028】
ここで、維持管理上問題ないと判断される状態とは、例えば、二重遮水シート間に注入する水が浸出水中に混入しても浸出水の水処理に負担とならない場合、二重遮水シート間に注入する水が地下水に混入する場合にあつても、地下水全体の水量にほとんど影響がなく地下水の上昇等の悪影響がでない場合等が上げられる。
【0029】
修復を実施した場合は、いずれの場合も、電気的漏水検知装置並びに二重遮水シート間に地下水や浸出水が侵入しないことを監視して遮水シートの健全性を確認する方法で修復が完全に完了していることを確認する。
【0030】
なお、この実施例では遮水層21、22として遮水シートを用いた場合を例に説明したが、遮水シートに限らずアスフアルト遮水層等の電気抵抗が1×103Ωm以上の遮水層であれば同様の効果が期待できる。
【0031】
また、上下遮水シートの両方が破損した場合であっても、破損が小さく、上下遮水シート間の水位を浸出水の水位以上に保持することで、浸出水が外部に漏水する恐れがない場合には、必ずしも破損部を修復する必要はなく、上下遮水シート間の水位を浸出水の水位以上に保持することで、遮水性能を維持することが可能である。
【0032】
<ロ>実施例2
実施例2は、図3に示す通り、上部遮水層21に遮水シートを用い、下部遮水層22に粘性土25(例えば透水係数1×10-4cm/s以下、厚さlcm以上)を用い、この間に透水層24を挟む構造として、遮水シート及び粘性土25に破損がない場合には遮水層21、22間の透水層24や水位調整用ピット31内に地下水や浸出水がほとんど入らない構造とする。また電気的漏水検知装置本体11と漏水検知用電極12とは埋設電気ケーブル13等によつて接続し、電気的に遮水層21、22の破損位置を速やかに検知できるようにする。
【0033】
このような構造の埋立地において、水位調整用ピット31内の水位を埋立地内の浸出水水位よりも高く設定しておく。この状態で遮水層21、22間に注入した水の水位を検視する。
【0034】
水位調整用ピット31内への水の注入は、注水バルブ32を開いて外部の水(地下水等に漏水しても安全な水)を注入する方法で行う。また、この水位面が廃棄物41の埋立高さを越えないように管理する。浸出水の水位は浸出水の水位監視用ピット35を用いて、この中に水位計等を配置することで行う。また、水位調整用ピット31内の水を外部に放流する場合は、水質が充分きれいであることを確認して行う。浸出水の混入等により汚れている場合は、水処理施設に送り浄化した後放流する。
【0035】
遮水シート及び粘性土に破損がない場合は、遮水シート及び粘性土を浸透するわずかな水と、蒸発による減少以外の水の出入りがなく、遮水層21、22間に注入した水の水位変動はわずかである。
【0036】
しかし、遮水シート或いは粘性土に破損が発生すると、破損部を通って水の出入りが発生するため、水位が大きく変動する。この変化を捕らえて遮水層21、22の破損を検知する。又は、遮水層21、22間に注入する水位を一定に保つために、水位調整用ピット31内に注入或いは排出する水量の増加から遮水層21、22の破損を検知する。
【0037】
破損を検知した後、電気的漏水検知装置により、遮水シートに破損があるかどうかを調べ、破損がない場合には粘性土24のみが破損したものと考え、水位調整用ピット31内の水位を引続き浸出水の水位以上になるように保持する。
【0038】
遮水シートに破損がある場合には、粘性土24と両方に破損がある可能性があるため、直ちに破損部を修復する。
【0039】
なお、この実施例2では上部遮水層21として遮水シートを用いた場合を例に説明したが、遮水シートに限らずアスファルト遮水層等の電気抵抗が1×103Ωm以上の遮水層であれば同様の効果が期待できる。
【0040】
また、上部遮水層21の遮水シートと下部遮水層22の粘性土の両方が破損した場合であつても、破損が小さく、上部遮水層21と下部遮水層22間の水位を浸出水の水位以上に保持することで、浸出水が外部に漏水する恐れがない場合には、必ずしも破損部を修復する必要はなく、上部遮水層21と下部遮水層22間の水位を浸出水の水位以上に保持することで、遮水性能を維持することが可能である。
【0041】
【発明の効果】
本発明は、次のような効果を得ることができる。
<イ>遮水層間の水位管理により遮水構造物の漏水を簡単に検知できる。
<ロ>遮水層間に侵入する水の有無を確認して、遮水構造物の漏水を簡単に検知できる。
<ハ>遮水層間に注入した水の水位変動を確認して、遮水構造物の漏水を簡単に検知できる。
<ニ>透水層から遮水層を透して侵入する水の有無を確認して、遮水構造物の漏水を簡単に検知できる。
<ホ>遮水層間に注入した水の水位変動を確認する場合、遮水層に破損がなくても、水の蒸発や遮水層を浸透する水によりわずかに水位が変動するが、これはわずかな量であるため、水の追加や排出の必要がほとんどなく、管理が容易にできる。
<ヘ>水位などで遮水構造物の漏水を検知した後、電気的漏水検知装置により漏水位置を検出するので、電気的な検査を絶えず行う必要がなくなり、無駄なエネルギーの使用を省くことができる。
【図面の簡単な説明】
【図1】漏水検知システムの概略図
【図2】漏水検知システムの実施例1の説明図
【図3】漏水検知システムの実施例2の説明図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water leakage detection system for a water shielding structure.
[0002]
[Prior art]
Conventionally, an electrode for water leakage detection has been arranged in the vicinity of the water shielding layer of the water shielding structure, and the presence / absence of breakage and the position of breakage are detected from the potential of the electrode by an electric water leakage detection device (Japanese Patent Publication No. 6-63901). See the official gazette).
[0003]
[Problems to be solved by the invention]
It is an object of the present invention to provide a system that can be easily managed in detecting leakage of a water shielding structure.
[0004]
[Means for Solving the Problems]
The present invention provides a leak detection system impervious structure, the upper water barrier layer disposed on the water-impervious structure, cohesive soil, rock, or a foundation having a conductivity comprising concrete and a lower water shield layer, an upper barrier the permeable layer is formed between the aqueous layer and the lower water barrier layer, comprising a flooding detecting means for detecting the flooding of the permeable layer, and an upper water-impervious layer and the electrically insulating material, the upper water-impervious layer and a lower water barrier characterized by disposing the leaked water detecting electrode layer, leak detection system of water-impervious structure, or, in the leak detection system of impervious structure, placing the upper water-impervious layer in water-impervious structure, viscosity soil, rock, or a foundation having a conductivity comprising concrete and a lower water blocking layer, a water-permeable layer is formed between the upper water-impervious layer and a lower water barrier layer, water is poured into water permeable layer, in aquifer comprising a water level detecting means for detecting the water level, the upper water-impervious layer and the electrically insulating material, upper And wherein placing the leak detection electrode into an aqueous layer and a lower water barrier layer, leak detection system of water-impervious structure, or, in the leak detection system of impervious structure, the upper water-impervious to water-impervious structure the layers were arranged, cohesive soil, rock, or a foundation having a conductivity comprising concrete and a lower water blocking layer, a water-permeable layer is formed between the upper water-impervious layer and a lower water barrier layer, injecting water into permeability layer And a water level detecting means for detecting the water level inside the water shielding layer, wherein the upper water shielding layer is made of an electrically insulating substance, and electrodes for water leakage detection are arranged on the upper water shielding layer and the lower water shielding layer. and have leak detection system of water-impervious structure, or, in the leak detection system of impervious structure, the upper water barrier layer disposed on the water-impervious structure, cohesive soil, rock, or the conductivity comprising concrete the foundation and the lower water barrier layer, permeable layer between the upper water-impervious layer and a lower water shield layer Formed, to form a water level adjusting pits in communication with the permeable layer, comprises a flooding detecting means for detecting the flooding of the permeable layer or the water level adjusting pit, and the upper water-impervious layer and the electrically insulating material, upper In the water leakage detection system for a water shielding structure, or in the water leakage detection system for the water shielding structure, water in the water permeable layer is disposed in the water shielding layer and the lower water shielding layer. A water leakage detection system for a water shielding structure or a water leakage detection system for the water shielding structure, characterized in that the water injection means for injecting water into the permeable layer is provided. It is in the water leak detection system of the water shielding structure characterized by this.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0006]
<I> Leakage detection system for impermeable structures The impermeable structure is a structure that performs impermeable operations such as final disposal sites where landfills are disposed of, and the leak detection system uses leachate (sewage) inside the structure. ) Detects the breakage and position of the water shielding layer that prevents leakage to the outside, and prevents leakage of leachate when breakage occurs.
[0007]
The conceptual diagram of an example of the structure of a water leak detection system is shown in FIG. A structure in which a water-impervious layer is laid in two layers, an upper water-impervious layer 21 and a lower water-impervious layer 22, a water-permeable layer 24 is provided therebetween, and water is injected between the upper water-impervious layer 21 and the lower water-impervious layer 22. And The water shielding layers 21 and 22 communicate with the water level adjusting pit 31 so that the water 42 flows.
[0008]
The water shielding layers 21 and 22 are made of a material having an electrical insulation property of 1 × 10 3 Ωm or more, and an electrical water leakage detection device for detecting breakage of the water shielding layers 21 and 22 is installed.
[0009]
In addition, the water shielding layers 21 and 22 are formed on the base 4, the protective soil 23 is disposed on the upper water shielding layer 21, and the waste 41 is dumped thereon.
[0010]
The electrical water leakage detection device has a large number of water leakage detection electrodes 12 arranged in the vicinity of the water shielding layers 21 and 22, and the voltage generated in these electrodes 12 is measured by the electrical water leakage detection device body 11, The position of water leakage is detected from the voltage distribution near 22. The electrical water leakage detection device main body 11 and the water leakage detection electrode 12 are connected by a conductor such as an electric cable 13.
[0011]
If there is no damage such as a hole in the water shielding layers 21 and 22 in this state, the water injected into the inside does not evaporate or enter or exit except the amount of water penetrating the water shielding layers 21 and 22. Kept constant.
[0012]
However, when the upper impermeable layer 21 or the lower impermeable layer 22 is broken and a hole is opened, water flows in or out from the hole due to a head difference with groundwater or leachate, and is injected between the impermeable layers 21 and 22. The water level of the water 42 varies. The occurrence of breakage of the water shielding layers 21 and 22 is detected by capturing this fluctuation.
[0013]
After the occurrence of damage is detected, the electric water leakage detection device is operated to investigate whether the upper water shielding layer 21 or the lower water shielding layer 22 has a hole. That is, a current voltage is applied to both sides of the upper water shielding layer 21, the voltage of each water leakage detection electrode 12 in the vicinity of the upper water shielding layer 21 is measured, and the abnormality of the voltage distribution is examined. Similarly, a current voltage is applied to both sides of the lower impermeable layer 22, the voltage of each leakage detection electrode 12 in the vicinity of the lower impermeable layer 22 is measured, and the abnormality of the voltage distribution is examined.
[0014]
When there is a hole in only one of the upper water shielding layer 21 or the lower water shielding layer 22, the water level injected between the double water shielding layers 21 and 22 is higher than the surface of the leachate in the disposal site. Keeping it high prevents leakage of leachate to the outside.
[0015]
When holes are formed in both the upper water shielding layer 21 and the lower water shielding layer 22, the leached water may leak to the outside. Therefore, it is necessary to repair the water shielding layers 21 and 22. For this reason, the breakage position is specified by the electric water leakage detection device, and the portions where the holes are formed in the water shielding layers 21 and 22 are repaired.
[0016]
After the repair, confirm that the repair has been completed with electrical leakage detector or water level control of the water injected between the two water shielding layers.
[0017]
Here, the case where both the upper and lower impermeable layers are made of a material having an electrical insulation of 1 × 10 3 Ωm or more has been described. However, one of the outer impermeable layers is made of clay, rock, concrete, etc. The same effect can be expected when a material that is relatively easy to conduct electricity is used (see Embodiment 2 below).
[0018]
In addition, as a method for detecting the occurrence of breakage in the upper water shielding layer 21 and the lower water shielding layer 22, a method for detecting the water level fluctuation by injecting water in advance between the upper and lower water shielding layers 21 and 22 will be described. However, not limited to this method, water is not put between the upper water-impervious layer 21 and the lower water-impervious layer 22, and the water-impervious layers 21, 22 are damaged, so that the upper and lower water-impervious layer 21, It is also possible to detect the water that has entered between 22 (see Embodiment 1 below).
[0019]
Furthermore, when both the upper and lower impermeable layers 21 and 22 are damaged, it has been described that the impermeable layers 21 and 22 need to be repaired. However, the damage is small, and the permeable layer between the upper and lower impermeable layers 21 and 22 By maintaining the water level of 24 above the water level of the leachate, it is not always necessary to repair the damaged part when there is no risk of the leachate leaking outside.
[0020]
Examples of the present invention will be described below.
[0021]
<A> Example 1
Example 1 is shown in FIG. When there is no breakage in the water shielding sheets forming the water shielding layers 21 and 22, the structure is such that groundwater or leachate does not enter the water level adjusting pit 31 that is the water level detecting means or the water permeable layer 24 between the water shielding sheets. . Further, the electrical water leakage detection device main body 11 and the water leakage detection electrode 12 are connected by a conductor such as an embedded electric cable 13 so that the position of the water shielding sheet, which is the water shielding layers 21 and 22, can be quickly detected. Make it detectable.
[0022]
In the landfill of such a structure, when there is no breakage in the water-impervious sheet, water is not injected into the water-permeable layer 24 between the water-impervious sheets, and groundwater or water level adjusting pits 31 are not injected into the water-permeable layer 24. Monitor for seepage of leachate. The monitoring is performed by a moisture sensor S33, which is a water immersion detection means installed in the water permeable layer 24 or the water level adjusting pit 31.
[0023]
In such a state, if the water shielding sheet breaks, groundwater, leachate, etc. enter the water permeable layer 24 and can be immediately detected by the moisture sensor 33.
[0024]
If groundwater or leachate is detected by the water-moisture sensor S33, it is determined that the water shielding sheet has been damaged, and the water injection valve 32 is opened to open the external water (water that is safe even if leaked into groundwater, etc.). Is injected into the water level adjusting pit 31 to a level equal to or higher than the level of the leachate.
[0025]
However, at this time, the waste 41 is managed so as not to exceed the landfill height. A water level monitoring pit 35 serving as a water level detecting means is disposed inside the upper impermeable layer 21, and a water level meter or the like is disposed therein to measure the level of leachate.
[0026]
Further, when the water in the water level adjusting pit 31 is discharged to the outside, it is confirmed by a drainage means such as a pump P34 after confirming that the water quality is sufficiently clean. If it is contaminated by leachate, etc., it is sent to a water treatment facility by drainage means and purified before being discharged.
[0027]
Next, the damaged part is caught by the electric water leakage detection device, and it is determined whether it is one or both of the upper and lower impermeable sheets, and if it is both, the damaged part of the impermeable sheet is immediately repaired. In either case, look at the situation with water injected between the upper and lower impermeable sheets while proceeding with preparations for restoration. If the damage is small and the amount of water injected between the double water-impervious sheets is small and there is no problem in maintenance, maintain this state. If the damage is large and the amount of water injected between the double water-impervious sheets is large and judged to be unreasonable for maintenance, repair the damaged part.
[0028]
Here, the state judged not to be a problem in terms of maintenance is, for example, when the water injected between the double water-impervious sheets does not become a burden on the leachate water treatment even if it is mixed in the leachate. Even when the water injected between the water sheets is mixed into the groundwater, there is almost no influence on the total amount of the groundwater and there is no adverse effect such as a rise in the groundwater.
[0029]
In cases where repairs are made, in either case, repairs can be carried out by checking the soundness of the water shielding sheet by monitoring the leakage of groundwater or leachate between the electrical leakage detector and the double water shielding sheet. Make sure it is completely completed.
[0030]
In this embodiment, the case where a water shielding sheet is used as the water shielding layers 21 and 22 is described as an example. However, the electrical resistance of the asphalt water shielding layer or the like is not limited to the water shielding sheet, and the shielding resistance is 1 × 10 3 Ωm or more. If it is a water layer, the same effect can be expected.
[0031]
In addition, even if both the upper and lower impermeable sheets are damaged, the damage is small, and holding the water level between the upper and lower impermeable sheets above the leachate level prevents the leachate from leaking outside. In such a case, it is not always necessary to repair the damaged portion, and it is possible to maintain the water shielding performance by maintaining the water level between the upper and lower water shielding sheets above the level of the leachate.
[0032]
<B> Example 2
In Example 2, as shown in FIG. 3, a water-impervious sheet is used for the upper water-impervious layer 21 and a viscous soil 25 (for example, a water permeability of 1 × 10 −4 cm / s or less and a thickness of 1 cm or more is used for the lower impermeable layer 22 ), And the water-permeable layer 24 is sandwiched between the water-impervious sheet and the viscous soil 25. If there is no breakage, groundwater and leaching are introduced into the water-permeable layer 24 between the water-impervious layers 21 and 22 and the water level adjusting pit 31. A structure that hardly contains water. Further, the electrical water leakage detection device main body 11 and the water leakage detection electrode 12 are connected by an embedded electric cable 13 or the like so that the breakage position of the water shielding layers 21 and 22 can be detected quickly.
[0033]
In the landfill having such a structure, the water level in the water level adjusting pit 31 is set higher than the leachate water level in the landfill. In this state, the water level injected between the water shielding layers 21 and 22 is examined.
[0034]
Water injection into the water level adjusting pit 31 is performed by opening the water injection valve 32 and injecting external water (water that is safe even if leaking into groundwater or the like). Further, the water level is managed so as not to exceed the landfill height of the waste 41. The level of leachate is determined by using a pit 35 for monitoring the leachate level and placing a water level meter or the like in the pit 35 . Further, when the water in the water level adjusting pit 31 is discharged to the outside, the water quality is confirmed to be sufficiently clean. If it is contaminated by leachate, etc., it is sent to a water treatment facility for purification and then discharged.
[0035]
When there is no breakage in the water-impervious sheet and the viscous soil, there is little water that permeates the water-impervious sheet and the viscous soil, and there is no entry / exit of water other than the decrease due to evaporation, and the water injected between the water-impervious layers 21 and 22 Water level fluctuation is slight.
[0036]
However, when a breakage occurs in the water-impervious sheet or the viscous soil, water enters and exits through the damaged portion, so that the water level fluctuates greatly. This change is caught and the breakage of the water shielding layers 21 and 22 is detected. Or, in order to keep the water level injected between the water-impervious layers 21 and 22 constant, the breakage of the water-impervious layers 21 and 22 is detected from the increase in the amount of water injected or discharged into the water level adjusting pit 31.
[0037]
After detecting the breakage, an electrical water leakage detection device is used to check whether the water-impervious sheet is broken. If there is no breakage, it is considered that only the viscous soil 24 is broken, and the water level in the water level adjusting pit 31 is Continue to keep the water level above the level of leachate.
[0038]
When there is a breakage in the water-impervious sheet, there is a possibility that the cohesive soil 24 and both are damaged, so that the damaged portion is immediately repaired.
[0039]
Note that a case has been described using a water shield sheet as the upper water-impervious layer 21 in the second embodiment as an example, the electrical resistance of the asphalt water barrier layer such as not limited to a water shield sheet shielding at least 1 × 10 3 Ωm If it is a water layer, the same effect can be expected.
[0040]
Further, even when both the water shielding sheet of the upper water shielding layer 21 and the viscous soil of the lower water shielding layer 22 are broken, the breakage is small, and the water level between the upper water shielding layer 21 and the lower water shielding layer 22 is reduced. If the leachate is kept at a level higher than the leachate, there is no need to repair the damaged portion, and the water level between the upper impermeable layer 21 and the lower impermeable layer 22 is not necessarily restored. It is possible to maintain the water shielding performance by maintaining the water level above the leachate level.
[0041]
【The invention's effect】
The present invention can obtain the following effects.
<I> Water leakage from the impermeable structure can be easily detected by managing the water level between the impermeable layers.
<B> It is possible to easily detect the water leakage of the water shielding structure by checking the presence or absence of water entering the water shielding layer.
<C> It is possible to easily detect the water leakage of the water shielding structure by checking the fluctuation of the water level injected between the water shielding layers.
<D> It is possible to easily detect water leakage from the water-impervious structure by confirming the presence or absence of water penetrating from the water-permeable layer through the water-impervious layer.
<E> When confirming the fluctuation of the water level injected between the impermeable layers, even if the impermeable layer is not damaged, the water level slightly varies depending on the evaporation of the water and the water penetrating the impermeable layer. Since the amount is small, there is almost no need to add or discharge water, and management is easy.
<F> After detecting the leakage of the impermeable structure at the water level, etc., the leakage position is detected by the electrical leakage detection device, which eliminates the need for continuous electrical inspection and saves useless energy. it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a water leakage detection system. FIG. 2 is an explanatory diagram of Example 1 of a water leakage detection system. FIG. 3 is an explanatory diagram of Example 2 of a water leakage detection system.

Claims (6)

水構造物の漏水検知システムにおいて、
遮水構造物に上部遮水層を配置し、
粘性土、岩、又はコンクリートからなる導電性を有する基盤を下部遮水層とし、
上部遮水層と下部遮水層間に透水層を形成し、
透水層内への浸水を検知する浸水検知手段を備え、
上部遮水層を電気的絶縁性物質とし
上部遮水層及び下部遮水層に漏水検知用電極を配置することを特徴とする、
遮水構造物の漏水検知システム。
In leak detection system of impervious structure,
Place the upper impermeable layer on the impermeable structure,
A conductive base made of cohesive soil, rock, or concrete is used as the lower impermeable layer,
The permeable layer is formed between the upper water-impervious layer and a lower water barrier layer,
Provided with inundation detection means to detect infiltration into the permeable layer,
The upper water shielding layer is an electrically insulating material ,
It is characterized by disposing water leakage detection electrodes on the upper and lower impermeable layers ,
Water leakage detection system for impermeable structures.
水構造物の漏水検知システムにおいて、
遮水構造物に上部遮水層を配置し、
粘性土、岩、又はコンクリートからなる導電性を有する基盤を下部遮水層とし、
上部遮水層と下部遮水層間に透水層を形成し、
透水層内に水を注入し、
透水層内の水位を検知する水位検知手段を備え、
上部遮水層を電気的絶縁性物質とし
上部遮水層及び下部遮水層に漏水検知用電極を配置することを特徴とする、
遮水構造物の漏水検知システム。
In leak detection system of impervious structure,
Place the upper impermeable layer on the impermeable structure,
A conductive base made of cohesive soil, rock, or concrete is used as the lower impermeable layer,
The permeable layer is formed between the upper water-impervious layer and a lower water barrier layer,
Inject water into the permeable layer,
Provided with a water level detection means for detecting the water level in the permeable layer,
The upper water shielding layer is an electrically insulating material ,
It is characterized by disposing water leakage detection electrodes on the upper and lower impermeable layers ,
Water leakage detection system for impermeable structures.
水構造物の漏水検知システムにおいて、
遮水構造物に上部遮水層を配置し、
粘性土、岩、又はコンクリートからなる導電性を有する基盤を下部遮水層とし、
上部遮水層と下部遮水層間に透水層を形成し、
透水層内に水を注入し、
遮水層の内部の水位を検知する水位検知手段を備え、
上部遮水層を電気的絶縁性物質とし
上部遮水層及び下部遮水層に漏水検知用電極を配置することを特徴とする、
遮水構造物の漏水検知システム。
In leak detection system of impervious structure,
Place the upper impermeable layer on the impermeable structure,
A conductive base made of cohesive soil, rock, or concrete is used as the lower impermeable layer,
The permeable layer is formed between the upper water-impervious layer and a lower water barrier layer,
Inject water into the permeable layer,
Equipped with water level detection means to detect the water level inside the impermeable layer,
The upper water shielding layer is an electrically insulating material ,
It is characterized by disposing water leakage detection electrodes on the upper and lower impermeable layers ,
Water leakage detection system for impermeable structures.
水構造物の漏水検知システムにおいて、
遮水構造物に上部遮水層を配置し、
粘性土、岩、又はコンクリートからなる導電性を有する基盤を下部遮水層とし、
上部遮水層と下部遮水層間に透水層を形成し、
透水層に連通する水位調整用ピットを形成し、
透水層内又は水位調整用ピット内への浸水を検知する浸水検知手段を備え、
上部遮水層を電気的絶縁性物質とし
上部遮水層及び下部遮水層に漏水検知用電極を配置することを特徴とする、
遮水構造物の漏水検知システム。
In leak detection system of impervious structure,
Place the upper impermeable layer on the impermeable structure,
A conductive base made of cohesive soil, rock, or concrete is used as the lower impermeable layer,
The permeable layer is formed between the upper water-impervious layer and a lower water barrier layer,
Form a water level adjustment pit communicating with the permeable layer,
Provided with inundation detection means for detecting infiltration into the permeable layer or the water level adjusting pit,
The upper water shielding layer is an electrically insulating material ,
It is characterized by disposing water leakage detection electrodes on the upper and lower impermeable layers ,
Water leakage detection system for impermeable structures.
請求項1〜4のいずれかに記載の遮水構造物の漏水検知システムにおいて、透水層内の水を排水する排水手段を備えていることを特徴とする、遮水構造物の漏水検知システム。The water leakage detection system for a water shielding structure according to any one of claims 1 to 4, further comprising drainage means for draining water in the water permeable layer. 請求項1〜4のいずれかに記載の遮水構造物の漏水検知システムにおいて、透水層内に水を注入する注水手段を備えていることを特徴とする、遮水構造物の漏水検知システム。The water leakage detection system for a water shielding structure according to any one of claims 1 to 4, further comprising water injection means for injecting water into the water permeable layer.
JP11128999A 1999-04-19 1999-04-19 Water leakage detection system for impermeable structures Expired - Fee Related JP4227242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11128999A JP4227242B2 (en) 1999-04-19 1999-04-19 Water leakage detection system for impermeable structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11128999A JP4227242B2 (en) 1999-04-19 1999-04-19 Water leakage detection system for impermeable structures

Publications (2)

Publication Number Publication Date
JP2000304643A JP2000304643A (en) 2000-11-02
JP4227242B2 true JP4227242B2 (en) 2009-02-18

Family

ID=14557458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11128999A Expired - Fee Related JP4227242B2 (en) 1999-04-19 1999-04-19 Water leakage detection system for impermeable structures

Country Status (1)

Country Link
JP (1) JP4227242B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038074B2 (en) * 2007-09-14 2012-10-03 株式会社奥村組 Damage detection system and damage detection method for water shielding sheet
JP5331261B1 (en) * 2013-06-05 2013-10-30 株式会社フジコーポレーション Leachate management system
CN114136557B (en) * 2021-11-16 2024-02-20 中建三局集团有限公司 Sliding seal structure testing device of hinged sliding drum type continuous tunneling shield machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3386168B2 (en) * 1993-02-19 2003-03-17 大成建設株式会社 Waste landfill method and waste landfill site
JP3150517B2 (en) * 1994-01-27 2001-03-26 株式会社間組 Method and apparatus for detecting leak position in final disposal site of waste
JPH1099810A (en) * 1996-09-30 1998-04-21 Fuji Denki Techno Eng Kk Sheet damage detection device in water barrier construction equipment of waste final disposal plant
JP3516196B2 (en) * 1996-12-27 2004-04-05 清水建設株式会社 Contaminated water leakage prevention method and contaminated water leakage prevention structure for waste disposal facility

Also Published As

Publication number Publication date
JP2000304643A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP4227242B2 (en) Water leakage detection system for impermeable structures
JP3551999B2 (en) Method for detecting water leakage position of water-impervious sheet and water-impervious sheet used in the method
JP3452908B2 (en) Water leak detection system and water leak detection method
JP6484139B2 (en) Pollution diffusion prevention system and pollution diffusion prevention method
CN114733890A (en) Underground water restoration and monitoring channel structure for landfill area
CN210395452U (en) Seepage-proofing structure for leakage monitoring system
JP2002055017A (en) System and method for water leak detection
JP3675671B2 (en) Water leakage detection system for water shielding sheet
JP3446156B2 (en) How to check the leak location of the impermeable sheet
JP3150562B2 (en) Water-blocking structure, method of detecting water leakage and method of repairing water leakage part
JP3899257B2 (en) Water leakage detection method and water leakage detection system
JP3308216B2 (en) Water impermeable structure, method of detecting water leakage and method of repairing water leakage part
JP2000144681A (en) Repairing method for water barrier sheet
JPH0933382A (en) Method for detecting leakage position
KR20020081165A (en) Damage sheet and leak detection system of order sheet or order layer of landfill and accompanying repair method
JP5347323B2 (en) Impermeable layer damage detection system and impermeable layer damage detection method
JP3076518B2 (en) Water-blocking structure, method of detecting water-blocking, water-blocking sheet and method of repairing water-blocking part
JP3976211B2 (en) A device that detects water leakage from a water shielding material using a low-resistance membrane
JP3386168B2 (en) Waste landfill method and waste landfill site
KR200272864Y1 (en) Landfill structure with a system of detecting leaked leachate and withdrawing the same
JP2005262021A (en) System for detection and repair of water leakage in sealing work
JP3941895B2 (en) Device for detecting leakage of water shielding material
JP4009030B2 (en) Water leak detection system at waste disposal site
JP4514946B2 (en) Repair method of impermeable layer
JP3895575B2 (en) Water leakage detection method and water leakage detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees