JP4226154B2 - Method for hydrotreating crude oil and reformed crude oil - Google Patents

Method for hydrotreating crude oil and reformed crude oil Download PDF

Info

Publication number
JP4226154B2
JP4226154B2 JP20566099A JP20566099A JP4226154B2 JP 4226154 B2 JP4226154 B2 JP 4226154B2 JP 20566099 A JP20566099 A JP 20566099A JP 20566099 A JP20566099 A JP 20566099A JP 4226154 B2 JP4226154 B2 JP 4226154B2
Authority
JP
Japan
Prior art keywords
crude oil
oil
gas
fraction
naphtha fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20566099A
Other languages
Japanese (ja)
Other versions
JP2000136391A (en
Inventor
充 由田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP20566099A priority Critical patent/JP4226154B2/en
Publication of JP2000136391A publication Critical patent/JP2000136391A/en
Application granted granted Critical
Publication of JP4226154B2 publication Critical patent/JP4226154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原油の接触水素化処理方法および接触水素化処理された改質原油に関するものである。
【0002】
【従来の技術】
従来、石油精製工業においては原油を蒸留して各留分に分離したのち、分離した各留分をそれぞれ脱硫等の改質処理をする方法がとられていた。これに対して、効率的な原油処理を目指して、原油のまま一括脱硫する方法(Chemical Eng.Progress Vol.67(8) P.57(1971))やナフサ留分を除いた原油を一括脱硫する方法( 特開平3-294390号公報) 等が提案されている。これらの方法によれば、石油精製設備を簡素にしつつ、運転変動費も削減することは可能であるが、反面生成油中の各留分毎の品質を反応塔で制御することは不可能であった。原理的にも非常に難しいと考えられる。
【0003】
また、昨今の地球環境問題に端を発した石油製品の品質に対する規制強化は驚くべき早さで進展しており、上記の一括脱硫という方法では、将来の石油製品の品質に対する規制に対しては、品質の調整に限界があるばかりか、品質そのものも不十分であることが判ってきた。
そこで、上記欠点を解決するために、重質油を水素化分解しつつ高品質な灯軽油留分を得る方法(特開平6-98270 号公報)や原油またはナフサ留分を除いた原油を水素化処理するための触媒の組合せ等( 特開平7-268361号公報、特開平4-224890号公報、特開平4-224892号公報、特開平8-27469 号公報、特開平8-27468 号公報) によって、灯軽油留分の品質を向上する方法が提案されている。図1、図2、図3、図4、図5にその処理方法の概略のフロー図を示す。
【0004】
ところが、石油留分の品質の規制強化は、上記の如く予想以上に急激に進みつつあり、欧州を例にとると、軽油の硫黄分は現状500ppmであるが、西暦2000年には350ppm,西暦2005年には50ppmまで低減の必要があり、多環芳香族は現状規制はないが、西暦2000年には11重量%以下という規制案が欧州議会で最近可決された。これらの規制は近い将来日本にも波及することが予想される。
【0005】
これらの処理方法でも、上記の西暦2000年の規制までは、運転条件や触媒の組合せを工夫すれば達成の可能性はあるが、重質油の共存下で水素化処理を行なう限り、欧州2005年の硫黄分の規制をクリアーすることは極めて困難であると考えられる。
【0006】
【発明が解決しようとする課題】
本発明は、比較的劣質な原油、またはナフサ留分を除いた該原油を事前に蒸留により各留分に分割することなく水素化処理を行なう処理方法において、灯軽油留分の品質を大幅に向上させ、かつ灯軽油留分を目標に応じた品質に制御出来る水素化改質方法および改質原油を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、上記課題を解決するために、原油、またはナフサ留分およびそれより軽質な留分(以後、ナフサ留分という)を除いた該原油(抜頭原油という)を触媒存在下で順次、水素化脱金属処理、水素化分解処理、水素化脱硫処理の各工程で水素化処理し、次いで気液分離工程にて気液分離し、得られた気相流体を水素化改質することにより、該原油より得られる灯軽油留分の品質を大幅に向上させ、かつ灯軽油留分を目標に応じた品質に制御できることを見い出し、この知見に基づいて本発明を完成するに至った。
【0008】
すなわち、本発明の要旨は下記のとおりである。
(1) 原油からナフサ留分分離工程によりナフサ留分を分離した抜頭原油を触媒存在下で水素化処理する方法において、該原油を順次、水素化脱金属処理、水素化分解処理、水素化脱硫処理の各工程で水素化処理し、次いで気液分離工程にて気液分離し、得られた気相流体をさらにナフサ留分分離工程により分離されたナフサ留分と共に水素化改質する原油の処理方法。
【0009】
(2) 原油からナフサ留分分離工程によりナフサ留分を分離した抜頭原油を触媒存在下で水素化処理する方法において、該原油を順次、水素化脱金属処理、水素化分解処理、水素化脱硫処理の各工程で水素化処理し、次いで気液分離工程にて気液分離された気相流体を水素化改質すると共に、ナフサ留分分離工程により分離されたナフサ留分を水素化脱硫処理することを特徴とする原油の処理方法。
(3) 水素化分解処理に使用される触媒が、鉄含有アルミノシリケート10〜90重量%と無機酸化物90〜10重量%とからなる担体に、周期律表第6、8、9及び10族に属する金属の中から選ばれた少なくとも一種を担持した触媒である(1)または(2)記載の原油の処理方法。
【0010】
(4) 気液分離工程および気液分離後の気相流体の水素化改質工程を、水素化脱硫処理工程より0〜50 kg/cm 2 低い圧力範囲で、かつ0〜100℃低い温度範囲で実施する(1)〜(3)のいずれかに記載の原油の処理方法。
(5) (1)〜(4)のいずれかに記載の原油の処理方法における気液分離工程より得られた液相流体と水素化改質された気相流体とを混合して得られる改質抜頭原油。
【0011】
(6) (1)〜()のいずれかに記載の原油の処理方法により改質された抜頭原油に、ナフサ留分分離工程で分離されたナフサ留分水素化脱硫処理した後、混合して得られる改質混合原油
【0012】
(5)または(6)に記載の改質抜頭原油または改質混合原油を蒸留分離して得られた留出油の一部を、気相流体の水素化改質工程へリサイクルする(1)〜(4)のいずれかに記載の原油の処理方法。
【0013】
【発明の実施の形態】
上記(1)記載の形態の本発明の原油の処理方法の概略フローを図6に示す。図6に従って処理方法を説明すると、原油10はまず、水素化脱金属処理工程2で水素の存在下、後述するような処理条件で処理する。次いで、水素化分解処理工程3、水素化脱硫処理工程4の各工程で水素化処理する。それぞれの処理条件は後述する。これを、気液分離工程5にて気液分離し、気相流体11と液相流体12とに分離し、気相流体11を水素化改質工程6で水素の存在下、後述するような処理条件で水素化改質処理する。また、図6の水素化改質された気相流体13と液相流体12との混合流体14は上記(6)に記載の形態の本発明の改質原油となる。
【0014】
これらの工程はどのひとつが欠けていても、また、その順序が異なっていても本発明の目的を達成することはできない。しかし、これらの工程の前後または中間に各種の処理工程を付加することはできる。例えば、水素化脱金属処理工程2の次に予備的な水素化脱硫処理を行い、そのあとで水素化分解処理工程3、水素化脱硫処理工程4の各工程へと進めて行くこともできる。また、水素化のための水素は、通常水素化脱金属処理工程2の前に反応に必要な量より過剰に原油10と混合しておくことにより、分離することなく後工程の水素化分解処理工程3等に利用できる。それぞれの処理工程で必要な水素量が不足する場合にはその処理工程で水素を追加してやればよい。
【0015】
同様に、上記(2)記載の形態の本発明の原油からナフサ留分分離工程1によりナフサ留分を分離した抜頭原油16の処理方法の概略フローを図7に示す。また、図7の改質抜頭原油20は上記(6)に記載の形態の本発明の改質抜頭原油となる。ナフサ留分分離工程1により分離したナフサ留分(ナフサ15)と改質抜頭原油20を混合したものが上記(7)に記載の形態の本発明の改質混合原油である。なお、図7にナフサ留分分離工程1も含めて記載している。本発明において、ナフサ留分分離工程1により分離されたナフサ留分(ナフサ15)にはナフサ留分およびそれより軽質な留分を含むものである。
【0016】
さらに、上記(3)記載の形態の本発明の原油の処理方法の概略フローを図8に示す。また、図8の改質混合原油22は上記(6)に記載の形態の本発明の改質原油となる。図9の改質混合原油24は上記(8)に記載の形態の本発明の改質混合原油である。ナフサ留分分離工程1により分離したナフサ15に水素化脱硫処理7を施した脱硫ナフサ23と改質抜頭原油20を混合したものである。
【0017】
図10〜13は、上記(9)記載の形態の本発明の原油の処理方法の概略フロー図であり、それぞれ図6〜9に対応している。改質原油、改質抜頭原油、改質混合原油を蒸留工程8で分離し、分離した留出油の一部を水素化改質工程6にリサイクルしているものである。蒸留工程8では、5成分に分離しているがその数は特に限定されるものではない。生成油の必要に応じて選択すればよい。蒸留して得られる留出油を分離し、その一部をリサイクルできればよい。リサイクルする留分は灯油留分および軽油留分とすることが好適である。灯油留分は、リサイクルによりその煙点の向上が見込まれ、軽油留分のリサイクルはそのセタン価の向上や硫黄分のさらなる提言が図れる。
つぎに、原料油、各処理工程等につき説明する。
【0018】
〔1〕原料油10(原油)
▲1▼ 本発明の原油とは、厳密に石油からの原油という意味ではなく石油系以外の原油も含まれる。石油系原油以外にも、石炭液化油、タールサンド油、オイルサンド油、オイルシェール油、オリノコタール等、あるいはこれらから得られる合成原油であつても良い。また、石油系原油と上記原油の混合原油なども原料油として用いられる。
【0019】
▲2▼ 石油系原油であってアスファルテン分を1重量% 以上もしくはV,Niを10重量ppm 以上もしくは硫黄分を0.1重量% 以上含有するものが最も好適である。これらの値以下であれば水素化改質の経済的効果が小さい。
〔2〕 前処理
▲1▼ 原料原油は、予備蒸留塔の汚れ防止や反応塔で詰まり防止の観点から脱塩処理することが好ましい。
【0020】
▲2▼ 脱塩処理方法としては、当業者で一般的に行われている化学的脱塩、ペトレコ電気脱塩法、ハウ・ベイカー電気脱塩法等が挙げられる。
〔3〕 ナフサ留分分離工程1(予備蒸留塔)
▲1▼ 脱塩処理された原油は必要に応じてナフサ留分(ナフサ15)を除くことが有利な場合がある。例えば、本発明における生成油を、次の工程で常圧蒸留してナフサ留分を分離後、接触改質するような場合である。この場合にはナフサ留分中の硫黄分は0.5重量ppm程度まで脱硫することが好ましく、上記(1)の形態の本発明における接触水素化処理では、ナフサ留分をそこまでの脱硫することは困難であるため再度脱硫処理する必要がある。上記(1)の形態の本発明(図7に示す)のようにナフサ留分分離工程(予備蒸留塔)でナフサ留分(ナフサ15)を除き別途処理した方が好ましい。
【0021】
▲2▼ また、ナフサ留分をエチレン装置の原料とするような場合には、0.5重量ppm程度まで脱硫する必要はないので、上記〔1〕の形態の本発明の方法でもよい。
▲3▼ ナフサ留分(ナフサ15)を除く方法としては、一般的なプレフラッシュドラムまたはプレフラッシュカラムを使えば良い。運転温度は150〜300℃、圧力は2〜10kg/cm2の範囲で分離することが好ましい。
【0022】
▲4▼ 分離するナフサ留分の沸点は、初留点は原料の原油により決定され、終点は125〜174℃の範囲が好ましい。 終点が125℃未満の場合は後段の接触水素化処理において水素分圧が低下するため反応速度が低下する。終点が174℃を超えると、生成油中の灯油留分の硫黄分が増加して規格外となる場合がある。
〔4〕水素化脱金属工程2
▲1▼原油10または抜頭原油16は、加圧昇温され水素と共に第1段の水素化脱金属工程2にて一括水素化脱金属処理する。この工程は、一塔〜複数塔の反応塔からなる。
【0023】
▲2▼この水素化脱金属工程に使用される触媒としては、通常はアルミナ、シリカ、シリカーアルミナ又はセピオライト等の多孔性無機酸化物、酸性担体、天然鉱物等に周期律表第5、6、8、9 及び10族に属する金属の中から選ばれた少なくとも一種を、触媒全量に基づき、酸化物として3〜30重量%程度担持してなる平均細孔径100Å以上の触媒が用いられる。なお、商業的に入手可能な水素化脱金属触媒等その他の水素化脱金属触媒であってもよい。水素化脱金属触媒の必要量は、処理期間中の原料油中に含まれる累積金属量の10〜80容量%とするのが好適である。
【0024】
▲3▼水素化脱金属工程の処理条件としては、反応温度300〜450℃、水素分圧30〜200kg/cm2G 、水素/油比200〜2000Nm3/kl 、LHSV(液時空間速度)0.1 〜10h-1、さらに反応温度350〜410℃、水素分圧100〜180kg/cm2G 、水素/油比400〜800Nm3/kl、LHSV 0. 3〜5h-1が望ましい。
【0025】
反応温度、水素分圧、水素/油比は望ましい範囲を下回ると反応効率が低下し、範囲を上回ると経済性が低下するためである。また、LHSVは逆に望ましい範囲を上回ると反応効率が低下し、範囲を下回ると経済性が低下する。
〔5〕 水素化分解工程3
▲1▼ 水素化脱金属処理された油は、次に水素化分解工程3で水素化分解処理される。反応温度制御の必要がある場合には熱交換器等により流体温度を変更する。水素ガスクエンチや油クエンチにより反応温度制御が可能であれば、熱交換器等は設置しないでそのまま処理される。この工程は、一塔〜複数塔の反応塔からなる。
【0026】
▲2▼ この水素化分解工程に使用される触媒としては特に限定されるものではないが、特開平2―289419号公報に開示されている技術によって造られた鉄含有アルミノシリケート10〜90重量%と無機酸化物90〜10重量%からなる担体に周期律表第6、8、9 及び10族に属する金属のうち選ばれた少なくとも一種を担持したものも使用することが出来る。この水蒸気処理したスチーミングゼオライトを鉄塩水溶液で処理して得られる鉄含有アルミノシリケートを使用すると、343℃以上の留分から343℃以下の留分への分解率を高める点で非常に効果的である。
【0027】
また、特開昭60-49131号公報、特開昭61-24433号公報、特開平3-21484 号公報等に開示されている技術によって造られたものを使用することが出来る。すなわち、鉄含有アルミノシリケート20〜80重量%と無機酸化物80〜20重量%からなる担体に、周期律表第6、8、9 及び10族に属する金属のうち選ばれた少なくとも一種を担持したものであって、周期律表第6族に属する金属としてはタングステン、モリブデンが好ましく、周期律表第7〜10族の金属はそれぞれ一種用いてもよく、それぞれ複数種の金属を組合わせても良いが、特に水素化活性が高く、かつ劣化が少ない点からNi−Mo,Co−Mo,Ni−W,Ni−Co−Moの組合せが好適である。
〔6〕水素化脱硫工程4
▲1▼ 水素化脱金属処理され、次いで水素化分解処理された油は、反応温度制御の必要がある場合には熱交換器等により流体温度を変更する。水素ガスクエンチや油クエンチにより反応温度制御が可能であれば、熱交換器は設置しないでそのまま水素化脱硫処理される。この工程は、一塔〜複数塔の反応塔からなる。
【0028】
▲2▼ この水素化脱硫工程4に使用される触媒としては、通常の重質油用の水素化脱硫触媒でよい。即ち、アルミナ、シリカ、ゼオライトあるいはこれらも混合物の担体等に周期律表第5、6、8、9 及び10族に属する金属の中から選ばれた少なくとも一種を、触媒全量に基づき、酸化物として3〜30重量%程度担持したものでよい。平均細孔径80Å以上の触媒などであるが、特開平7-305077号公報、特開平5-98270 号公報に開示される様なアルミナーリン担体、アルミナーアルカリ土類金属担体化合物、アルミナーチタニア担体、アルミナージルコニア担体、アルミナーボリア担体等から選ばれる担体に周期律表第5、6、8、9 及び10族に属する金属の中から選ばれた少なくとも一種を担持してなる触媒であれば、灯軽油留分の改質効果が高いために好適である。
【0029】
▲3▼ この水素化脱硫工程4における処理条件としては、反応温度300〜450℃、水素分圧30〜200kg/cm2G 、水素/油比200〜2000Nm3/kl 、LHSV(液時空間速度)0.1 〜10 h-1、さらに反応温度300〜420℃、水素分圧100〜180kg/cm2G 、水素/油比400〜800Nm3/kl、LHSV 0. 2〜2h-1が望ましい。
【0030】
反応温度、水素分圧、水素/油比は望ましい範囲を下回ると反応効率が低下し、範囲を上回ると経済性が低下するためである。また、LHSVは逆に望ましい範囲を上回ると反応効率が低下し、範囲を下回ると経済性が低下する。
〔7〕気液分離工程5
▲1▼ 水素化脱金属処理、水素化分解処理、水素化脱硫処理された油は、熱交換器により所望の分離温度まで温度を制御したのち、気液分離工程5へ導入する。
【0031】
通常、気液分離工程5は重油直接脱硫装置と同様の構造の高圧高温気液分離槽を用いれば良いが、後段の水素化改質工程における反応効率を維持するためには、高圧高温気液分離槽で分離される気相流体に重質油が混入しないような措置、例えば気液分離槽の塔径を十分大きくとる、あるいは、気液分離槽内部に十分な量のミストセパレーターを配置する等を講ずる方が良い。高圧高温気液分離槽は一塔〜複数塔からなる。
【0032】
▲2▼気液分離工程は、水素化脱硫処理工程より、0〜50kg/cm2低い圧力範囲で、かつ0〜100℃低い温度範囲で実施することが望ましい。
気液分離工程における分離条件として、分離圧力を水素化脱硫工程出口の圧力に対し50kg/cm2G より低下させると、水素分圧の低下により後段の水素化改質での反応効率が低下するばかりか、後段の水素化改質工程に供される気相流体に重質油が混入しやすくなる。この場合の基準としては、気相流体中に混入する400℃以上の留分の割合を、気相流体全量に対して3重量%以下に維持することが好適である。また、分離圧力を水素化脱硫工程出口の圧力以上にするためには昇圧のための設備例えばコンプレッサーが必要となるため装置建設費が増大する。
【0033】
分離温度を水素化脱硫工程出口の温度に対し100℃より大きく低下させると、気液分離前の流体中の灯軽油留分のうち、気相流体として分離される灯軽油留分の割合が少なくなり、後段の水素化改質工程6に供する灯軽油留分が少なくなり効率的に灯軽油留分の水素化改質ができない。また、分離温度を水素化脱硫工程出口の温度より高くするには加熱のための設備例えば加熱炉が必要となるため装置建設費が増大する。
〔8〕水素化改質工程6
▲1▼ 水素化脱金属処理、水素化分解処理、水素化脱硫処理された油は、気液分離工程6へ導入され気液分離される。この気相流体を次いで水素化改質する。 水素化改質工程は一塔から複数塔の反応塔からなり、通常は気液分離工程からの気相流体は加熱や昇温の処理なしに水素化改質を行なわせる。気相流体の反応温度制御の必要がある場合には熱交換器等により流体温度を変更する。水素ガスやリサイクル油により反応温度制御が可能であれば、そのまま水素化改質処理される。この工程における反応塔型式は、通常の固定床を用いればよい。
【0034】
▲2▼ この水素化改質工程に使用される触媒としては、通常の中間留分用の水素化触媒でよい。即ち、アルミナ、 シリカ、ゼオライトあるいはこれらの混合物の担体等に周期律表第5、6、8、9 及び10族に属する金属の中から選ばれた少なくとも一種を、触媒全量に基づき、酸化物として3〜30重量%程度担持している平均細孔径80Å以上の触媒などであるが、特開平7-305077号公報、特開平5-98270 号公報に開示される様なアルミナーリン担体、アルミナーアルカリ土類金属担体化合物、アルミナーチタニア担体、アルミナージルコニア担体、アルミナーボリア担体等から選ばれる担体に周期律表第5、6、8、9 及び10族に属する金属の中から選ばれた少なくとも一種を担持してなる触媒であれば、灯軽油留分の水素化改質効果が高いために好適である。
【0035】
▲3▼ この水素化改質工程における処理条件としては、通常前記の気液分離工程に引き続き加熱や昇温の設備なしに反応行なわせるため、前記の気液分離工程での分離温度と分離圧力とほぼ同等である。即ち、反応温度300〜400℃、反応圧力100〜180kg/cm2G の範囲が望ましい。前段の水素化脱硫工程出口の温度と圧力を後段の水素化改質に有効に活用するためには、反応温度は水素化脱硫工程出口の温度に対し−100〜0℃とし、反応圧力は水素化脱硫工程出口の圧力に対し −50〜0kg/cm2の範囲が好適である。また、水素分圧は70〜150kg/cm2G 、水素/油比は500 〜2000Nm3/kl 、LHSV(液時空間速度)は 0.5〜10 h-1が望ましい。
【0036】
反応温度、水素分圧、水素/油比は望ましい範囲を下回ると反応効率が低下し、範囲を上回ると経済性が低下するためである。また、LHSVは逆に望ましい範囲を上回ると反応効率が低下し、範囲を下回ると経済性が低下する。
〔9〕不純物等の分離
水素化脱金属処理、水素化分解処理、水素化脱硫処理、気液分離、及び水素化改質処理された流体は、気液分離工程で分離された液相流体と共に、常法に従って分離工程に導入され、複数の分離槽で処理することによって気体部分と液体部分に分離される。このうち、気体部分は、硫化水素、アンモニア等を除去してから水素純度向上の処理等を行なった後に、新しい供給ガスと一緒になった後に、反応工程に再循環される。
〔10〕 ナフサ留分の再混合工程
前記〔3〕のナフサ留分分離工程で原油中のナフサ留分(ナフサ15)を除去した場合には、分離したナフサ留分を製品の需要により以下の▲1▼〜▲4▼の何れかの方法で処理することができる。
【0037】
▲1▼ ナフサ留分を回収してそのまま製品とする。(図7)
▲2▼ ナフサ留分を、前記〔9〕の不純物等の分離により得られた液体部分と混合し改質混合原油とする。
▲3▼ ナフサ留分を昇圧、加熱後、前記〔8〕の水素化改質工程6に導入する。(図8)
▲4▼ ナフサ留分を水素化脱硫処理7の後、前記〔9〕の不純物等の分離により得られた液体部分と混合し改質混合原油とする。(図9)
〔11〕改質原油等の製造
本発明の商業化の立地条件によっては前記〔9〕の不純物等の分離工程で得られた液体部分は、前記〔10〕のいずれかの方法でナフサ留分を混合した後に、改質原油として出荷した方が有利な場合がある。例えば、産油国の原油出荷設備近傍に立地して、原油出荷設備は整っているが、石油製品出荷設備が無いような場所に設備を設けるような場合はこれにあたる。このような場合には、生成油をそのままでも良いし、脱硫装置に付随する硫化水素を取り除く設備、例えば、硫化水素ストリッパー等に導入して、硫化水素を取り除いた改質原油、改質抜頭原油または改質混合原油を得ることもできる。生成油を改質原油等とすることにより、既存の原油出荷設備がそのまま使えるほか、大型原油タンカーを使い、大量かつ安価に各製品を輸送出来るという効果も挙げられる。
〔12〕 蒸留分離工程8
前記〔11〕の改質原油等の製造のほかに、 前記〔9〕の分離工程で得られた液体部分、または前記〔11〕の混合原油、改質原油、改質抜頭原油または改質混合原油を、蒸留分離工程に導入し常法に従って各製品に分留する。この時の分留条件としては、例えば、常圧蒸留においてはナフサ留分を20〜157℃、灯油留分を157〜239℃、軽油留分を239〜343℃、343℃以上を常圧残油とすることによりナフサ、灯油、軽油及び常圧残油に分留することが出来る。また常圧残油は引き続き減圧蒸留して減圧軽油と減圧残油等に分留しても良い。
〔13〕 留出油のリサイクル処理
上記〔12〕の蒸留分離工程で得られた留出油(望ましくは軽油留分の一部(5〜95容量% )を含む留分)を加圧、加熱して前記〔8〕に示す、水素化改質工程にリサイクルして処理することも出来る。
【0038】
この効果として、特に良質な軽油留分を得ることができ、今後の軽油の品質規制が強化されたような場合にも対応できる様な高品質な軽油を新たな反応塔を設けることなく製造することが出来る。リサイクル比率、リサイクル留分の性状を変化することによって軽油の品質を所望のものへ調整することが可能となる(図10〜図13)。
〔14〕 反応塔の型式
本発明における、水素化脱金属処理、水素化分解処理、水素化脱硫処理における反応装置の型式は特に制限がなく、例えば、固定床、移動床、流動床、沸騰床、スラリー床等を採用出来る。気相水素化改質処理においても反応装置の型式には特に制限はないが、気相反応であるため安価な固定床が好適である。また、ひとつの反応器で水素化脱金属処理、水素化分解処理、水素化脱硫処理のうち二つ以上の処理工程を行わせてもよい。
【0039】
【実施例】
原料油として、アラビアンヘビー脱塩原油及びナフサ留分およびそれより軽質な留分を除いたアラビアンヘビー脱塩原油(アラビアンヘビー抜頭原油という)を用いた。表1に原料油の性状を示す。
表2に反応に使用した各工程の触媒を示す。
【0040】
【表1】

Figure 0004226154
【0041】
【表2】
Figure 0004226154
【0042】
〔実施例1〕
▲1▼水素化脱金属、水素化分解、水素化脱硫処理
表2に示す触媒Aを28容量%,触媒Bを33容量%をこの順序で300mlの反応管に、また触媒Cを39容量%を同じく300mlの反応管に充填してこの順序で直列に連結して反応を行なった。
【0043】
原料油としては、表1に示すアラビアンヘビー脱塩原油を使用し、水素化脱金属工程入口での水素分圧135kg/cm2G 、水素/油比550 Nm3/kl 、反応温度は触媒Aが380℃、触媒Bが400℃、触媒Cが360℃にして、全触媒容量に対するLHSV0.408h-1で処理した。
▲2▼気液分離工程および水素化改質工程
反応開始後、1000時間〜3000時間において前記▲1▼の反応で得られた生成油Aを、回分型の蒸留装置によってナフサ、灯油、軽油、減圧軽油の各留分に分離し、SimSci社のプロセスシミュレータ( 製品名:PRO /IIVer.5)を用いた連続気液分離断熱計算によって、340℃、全圧135kg/cm2A における気相の組成計算結果に基づき高温高圧気液分離槽の気相流体の組成と同じ組成の水素化改質原料油(気相流体Aという)を調製した。気相流体Aの組成を表3−1に示す。
【0044】
【表3】
Figure 0004226154
【0045】
表2に示す触媒Dを30mlの反応管に充填し、表3−1に示す気相流体Aを原料油として水素分圧105kg/cm2、水素/ 油比700Nm3/kl、反応温度340℃、LHSV 3.0 毎時で通油し、水素化改質反応を実施した。
反応開始後、通油時間1500〜2000時間における水素化改質反応の生成油Bと、その時間に使用した気相流体Aに対応して分離された残油(液相流体)とを、気液分離工程で分離された気相流体Aと対応する液相流体との割合で混合して、生成油C(改質原油)を得た。
【0046】
得られた生成油Cを15段蒸留装置をもちいて、LPG( プロパン+ブタン) 、ナフサ留分(ペンタン〜157℃)、灯油留分(157〜239℃)、軽油留分(239〜343℃)および常圧残油(343℃以上の留分)に蒸留分離して各留分の品質を分析した。この時の各留分の得率、性状を表4に示す。
常圧残油は更に、減圧単蒸留して減圧軽油(343〜525℃)を分離した。減圧軽油の得率、性状も表4−1、表4−2、表4−3に示す。
【0047】
灯油留分、 軽油留分は硫黄分、芳香族分、多環芳香族の極めて少ない高品質なものが得られている。また、原料であるアラビアンヘビー原油が水素化分解されるため、密度が低下し、液の容積が約7%増加している。
〔実施例2〕
▲1▼水素化脱金属、水素化分解、水素化脱硫処理
実施例1の▲1▼に示す各触媒に、表1に示すアラビアンヘビー脱塩原油からナフサ留分およびそれより軽質な留分(ナフサ留分という)を除いた残りの留分(アラビアンヘビー抜頭原油)を供給し、LHSV 0. 35 毎時で通油した。この時の、アラビアンヘビー抜頭原油あたりのLHSVは実施例1と同じである。また、その他の条件も実施例1と同じである。
【0048】
▲2▼気液分離工程および水素化改質工程
実施例1の▲2▼と同様の方法で気液分離工程、水素化改質反応、水素化改質された気相流体と液相流体の混合および蒸留分離を実施した。この時の水素化改質原料油(気相流体)の組成を表3−2に示す。生成油の各留分の得率、性状を表4−1、表4−2、表4−3に示す。(得率は対アラビアンヘビー脱塩原油として表す。)
【0049】
【表4】
Figure 0004226154
【0050】
実施例1と同じく、灯油留分、 軽油留分の硫黄分、芳香族分、多環芳香族の極めて少ない高品質なものが得られている。
〔実施例3〕
▲1▼水素化脱金属、水素化分解、水素化脱硫処理
実施例2の▲1▼と全く同じ処理を行なった。
【0051】
▲2▼気液分離工程およびの水素化改質工程
実施例2の▲2▼と全く同じ処理を行なった。
▲3▼ ナフサ留分の混合
上記▲2▼より得られる生成油Cに、アラビアンヘビー原油からアラビアンヘビー抜頭原油を調製する際に分離したナフサ留分(性状を表1に示す)を加え、改質原油を得た。この改質原油を15段蒸留装置をもちいて実施例2の▲2▼と同様にしてLPG( プロパン+ブタン) 、ナフサ(ペンタン〜157℃)、灯油留分(157〜239℃)、軽油留分(239〜343℃)および残油(343℃以上の留分)に蒸留分離して各留分の品質を分析した。この時の各留分の得率、性状を表4−1、表4−2、表4−3に示す。
【0052】
実施例1,2と同じく、灯油留分、 軽油留分の硫黄分、芳香族分、多環芳香族の極めて少ない高品質なものが得られている。また、当初の原料であるアラビアンヘビー原油にくらべ、密度が低下し、液の容積が約7%増加している。
〔実施例4〕
▲1▼水素化脱金属、水素化分解、水素化脱硫処理
実施例3の▲1▼と全く同じ処理を行なった。
【0053】
▲2▼気液分離工程および水素化改質工程
実施例3の▲2▼と全く同じ処理を行なった。
▲3▼ナフサ留分の水素化脱硫
表1に示すアラビアンヘビー抜頭原油を調製する際に抜き出したナフサ留分を原料として、表2に示す触媒Cを30mlの反応管に充填して、水素分圧15kg/cm2G 、水素/油比100Nm3/kl、反応温度は320℃、LHSV7.5毎時で通油し、脱硫ナフサ留分を得た。
【0054】
▲4▼脱硫ナフサ留分の混合
上記▲3▼にて得られた脱硫ナフサ留分を、実施例3と同じく水素化改質後の生成油Cに再混合して改質混合原油を得た。この改質混合原油を15段蒸留装置をもちいて実施例2の▲2▼と同様にしてLPG( プロパン+ブタン) 、ナフサ(ペンタン〜157℃)、灯油留分(157〜239℃)、軽油留分(239〜343℃)および残油(343℃以上の留分)に蒸留分離して各留分の品質を分析した。この時の各留分の得率、性状を表4−1、表4−2、表4−3に示す。
【0055】
実施例3に比べナフサの硫黄分が低下して、ナフサ接触改質装置の原料として通油可能なレベルまで低下していることが判る。
〔実施例5〕
▲1▼水素化脱金属、水素化分解、水素化脱硫処理
実施例3の▲1▼と同じ処理を行なった。
【0056】
▲2▼気液分離工程および水素化改質工程
表5に示す水素化改質原料油(気相流体)に対し、表1に示すアラビアンヘビー抜頭原油を調製する際に抜き出したナフサ留分を40容量%加えて原料として実施例1に示す方法で水素化改質を行なった。
実施例3と同様の方法により生成油C(改質混合原油)を得た。この改質混合原油を15段蒸留装置をもちいて実施例2の▲2▼と同様にしてLPG( プロパン+ブタン) 、ナフサ(ペンタン〜157℃)、灯油留分(157〜239℃)、軽油留分(239 〜343℃)および残油(343℃以上の留分)に蒸留分離して各留分の品質を分析した。この時の各留分の得率、性状を表4−1、表4−2、表4−3に示す。
【0057】
実施例4と同様に比べナフサの硫黄分が低下して、ナフサ接触改質装置の原料として通油可能なレベルまで低下していることが判る。
〔実施例6〕
▲1▼水素化脱金属、水素化分解、水素化脱硫処理
実施例2の▲1▼と同じ処理を行なった。
【0058】
▲2▼軽油留分のリサイクル処理を加えた気液分離工程および水素化改質工程
表5に示す水素化改質原料油(気相流体)に対し、実施例3の表4に示す軽油留分の50重量%に相当するものを混合して水素化改質原料油とした。これを実施例3に示す方法で水素化改質を行なった。実施例3と同様にして得られた生成油Cを改質脱ナフサ原油とする。 この改質脱ナフサ原油を15段蒸留装置をもちいて実施例2の▲2▼と同様にしてLPG( プロパン+ブタン) 、ナフサ(ペンタン〜157℃)、灯油留分(157〜239℃)、軽油留分(239〜343℃)および残油(343℃以上の留分)に蒸留分離して各留分の品質を分析した。この時の各留分の得率、性状を表4−1、表4−2、表4−3に示す。
【0059】
実施例3よりも軽油留分の硫黄分、芳香族分、多環芳香族分は更に低下し、極めてクリーンで高品質な軽油留分が得られる。また、リサイクル比を変えることで軽油留分の品質調整が可能となる事が容易に予想される。
【0060】
【表5】
Figure 0004226154
【0061】
【表6】
Figure 0004226154
【0062】
【表7】
Figure 0004226154
【0063】
〔比較例1〕
▲1▼原油の水素化脱金属、水素化脱硫処理
表2に示す触媒Aを41.8容量%を300mlの反応管に、また触媒Cを58.2容量%を同じく300mlの反応管に充填してこの順序で直列に連結して反応を行なった。原料油、反応条件は実施例1と全く同一である。得られた生成油を15段蒸留装置をもちいて、LPG( プロパン+ブタン) 、ナフサ(ペンタン〜157℃)、灯油留分(157〜239℃)、軽油留分(239〜343℃)および常圧残油(343℃以上の留分)に蒸留分離して各留分の品質を分析した。この時の各留分の得率、性状を表4に示す。常圧残油は更に、減圧単蒸留して減圧軽油(343〜525℃)を分離した。減圧軽油の性状も表4−4、表4−5、表4−6に示す。
【0064】
実施例1に比べ、灯油留分、軽油留分の硫黄分、芳香族分、多環芳香族分が多く品質は劣る。また、体積増加も少ない。
〔比較例2〕
▲1▼抜頭原油の水素化脱金属、水素化脱硫処理
比較例1と同じ条件でアラビアンヘビー抜頭原油を通油し、生成油を分留した。この時のLHSVは抜頭原油あたり同等とするため0.35毎時とした。得られた生成油の得率、性状を表4−4、表4−5、表4−6に示す。
【0065】
実施例2に比べ、灯油留分、軽油留分の硫黄分、芳香族分、多環芳香族分が多く品質は劣る。また、体積増加も少ない。
〔比較例3〕
▲1▼抜頭原油の水素化脱金属、水素化分解、水素化脱硫処理
実施例2の▲1▼と全く同じ処理を行ない、得られた生成油を分留し、その得率、性状を表4−4、表4−5、表4−6に示す。
【0066】
実施例2に比べ、灯油留分、軽油留分の硫黄分、芳香族分、多環芳香族分が多く品質は劣る。
〔比較例4〕
実施例3〜6の生成油と硫黄分および密度がほぼ同等の、マーバン原油を実施例と同様の方法で分留した。各留分の得率、性状を表4−4、表4−5、表4−6に示す。
【0067】
実施例3〜6に比べ、全体の硫黄分、密度は同等であるが、灯油、軽油、減圧軽油の硫黄分は実施例3〜6に比べ高く、灯油、軽油の芳香族分も多い。
【0068】
【表8】
Figure 0004226154
【0069】
【表9】
Figure 0004226154
【0070】
【表10】
Figure 0004226154
【0071】
【発明の効果】
▲1▼ 原油またはナフサ留分を除いた原油を水素化脱金属、水素化分解および水素化脱硫処理後、気液分離して気相流体を水素化改質することにより得られる生成油中の灯軽油留分の品質が大幅に向上した。これにより、灯油留分はジェット燃料規制をクリアーすることが出来、軽油留分は西暦2005年の欧州の硫黄分規制をクリアー出来る軽油製造の可能性が十分にある。
▲2▼従来型の原油の精製処理方法の改善という用途以外に、産油国等に立地した重質・高硫黄原油からの軽質低硫黄原油への改質といった用途に適用出来る。
【0072】
この用途では以下の効果がある。
ア.原料原油を分解することにより生成する改質された原油の液収率が増加する。
イ.軽質・低硫黄原油から得られる灯油、軽油にくらべ、本発明の方法により得られる灯油、軽油は品質が極めて良い。
【0073】
ウ.通常の原油と同等の取扱いが可能で既存の原油出荷設備がそのまま使えるほか、大型原油タンカーを使い大量かつ安価に各製品を輸送出来る。
【図面の簡単な説明】
【図1】特開平7−268361号公報に開示の原油の処理フロー図
【図2】特開平4−224890号公報に開示の原油の処理フロー図
【図3】特開平4−224892号公報に開示の原油の処理フロー図
【図4】特開平8−27469号公報に開示の原油の処理フロー図
【図5】特開平8−27468号公報に開示の原油の処理フロー図
【図6】本発明(1)記載の原油の処理方法の概略フロー図
【図7】本発明(2)記載の原油の処理方法の概略フロー図
【図8】本発明(3)記載の原油の処理方法の概略フロー図
【図9】本発明(8)記載の改質混合原油の製造方法の概略フロー図
【図10】本発明(9)記載の原油の処理方法の概略フロー図
【図11】本発明(9)記載の原油の処理方法の概略フロー図
【図12】本発明(9)記載の原油の処理方法の概略フロー図
【図13】本発明(9)記載の原油の処理方法の概略フロー図
【符号の説明】
1 :ナフサ留分分離工程
2 :水素化脱金属処理工程
3 :水素化分解処理工程
4 :水素化脱硫処理工程
5 :気液分離工程
6 :水素化改質処理工程
7 :ナフサ留分水素化脱硫処理工程
8 :蒸留工程
9 :流動接触分解工程
10:原油
11:気相流体
12:液相流体
13:水素化改質された気相流体
14:改質原油
15:ナフサ留分分離工程で分離されたナフサ留分およびそれより軽質な留分
16:抜頭原油
17:気相流体
18:液相流体
19:水素化改質された気相流体
20:改質抜頭原油
21:水素化改質された気相流体(ナフサ留分を含む)
22:改質混合原油
23:脱硫ナフサ
24:改質混合原油
30:LPG、ガス
31:ナフサ
32:灯油
33:軽油
34:残油(重油)
35:水素化改質された気相流体
36:改質原油
40:LPG、ガス
41:ナフサ
42:灯油
43:軽油
44:残油(重油)
45:水素化改質された気相流体
46:改質抜頭原油
50:LPG、ガス
51:ナフサ
52:灯油
53:軽油
54:残油(重油)
55:水素化改質された気相流体
56:改質混合原油
60:LPG、ガス
61:ナフサ
62:灯油
63:軽油
64:残油(重油)
65:水素化改質された気相流体
66:改質抜頭原油
70:LPG、ガス
71:ナフサ
72:灯油
73:軽油
74:残油(重油)
75:気相流体
76:液相流体
77:水素化改質された気相流体
78:改質原油
79:水素化改質された気相流体
80:ガソリン
81:分解軽油
82:分解残油
83:ナフサ
84:灯油
85:軽油
86:改質灯油
87:改質軽油
88:残油
89:水素化改質された気相流体
90:水素化脱硫された液相流体
91:改質原油
92:軽質留分
93:中間留分
94:残油[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for catalytic hydrotreating crude oil and a reformed crude oil subjected to catalytic hydrotreatment.
[0002]
[Prior art]
Conventionally, in the petroleum refining industry, after crude oil is distilled and separated into fractions, each separated fraction is subjected to a reforming treatment such as desulfurization. On the other hand, with the aim of efficient crude oil processing, the crude desulphurization method (Chemical Eng. Progress Vol.67 (8) P.57 (1971)) and crude crumpled sulfa distillate are removed. And the like (Japanese Patent Laid-Open No. 3-294390) have been proposed. According to these methods, it is possible to simplify the oil refining equipment and reduce the operating variable cost, but on the other hand, it is impossible to control the quality of each fraction in the produced oil with the reaction tower. there were. It is considered very difficult in principle.
[0003]
In addition, the tightening of regulations on the quality of petroleum products originated from recent global environmental problems is progressing at a surprising speed. With the above-mentioned method of batch desulfurization, there are no restrictions on the regulations on the quality of future petroleum products. It has been found that not only the quality adjustment is limited, but the quality itself is insufficient.
Therefore, in order to solve the above drawbacks, a method for obtaining a high-quality kerosene oil fraction while hydrocracking heavy oil (Japanese Patent Laid-Open No. 6-98270), or crude oil from which crude oil or naphtha fraction has been removed is treated with hydrogen. Combinations of catalysts for the conversion treatment (JP-A-7-268361, JP-A-4-224890, JP-A-4-24892, JP-A-8-27469, JP-A-8-27468) Has proposed a method for improving the quality of kerosene oil fraction. 1, 2, 3, 4, and 5 show schematic flow charts of the processing method.
[0004]
However, tightening of regulations on the quality of petroleum fractions is proceeding more rapidly than expected as described above. In Europe, for example, the sulfur content of diesel oil is currently 500 ppm, but in 2000 AD, 350 ppm, AD In 2005, there is a need to reduce it to 50 ppm. Polycyclic aromatics are not currently regulated, but in 2000 AD, a regulation proposal of 11% by weight or less was recently passed by the European Parliament. These regulations are expected to spread to Japan in the near future.
[0005]
Even in these treatment methods, there is a possibility that it can be achieved by devising a combination of operating conditions and catalysts until the above-mentioned regulation in 2000 AD, but as long as hydrotreating is carried out in the presence of heavy oil, European 2005 It is considered extremely difficult to clear the annual sulfur content regulations.
[0006]
[Problems to be solved by the invention]
The present invention greatly improves the quality of kerosene oil fraction in a treatment method in which the relatively inferior crude oil or the crude oil excluding the naphtha fraction is hydrotreated without being previously divided into fractions by distillation. An object of the present invention is to provide a hydrocracking method and a reformed crude oil that can be improved and can control the kerosene fraction to a quality according to the target.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventor sequentially removes the crude oil or the naphtha fraction and the crude oil (hereinafter referred to as the naphtha fraction) excluding the lighter fraction (hereinafter referred to as the naphtha fraction) in the presence of the catalyst. Hydrotreating in each step of hydrodemetallation, hydrocracking, hydrodesulfurization, and then gas-liquid separation in a gas-liquid separation step, and hydrotreating the resulting gas phase fluid Thus, it has been found that the quality of the kerosene oil fraction obtained from the crude oil can be greatly improved and the kerosene oil fraction can be controlled to a quality according to the target, and the present invention has been completed based on this finding.
[0008]
That is, the gist of the present invention is as follows.
(1) Extraction of naphtha fraction separated from crude oil by naphtha fraction separation processIn the method of hydrotreating crude oil in the presence of a catalyst, the crude oil is hydrotreated in each of the hydrodemetallation, hydrocracking, and hydrodesulfurization processes, and then gas-liquid separation process. Liquid separation is performed, and the resulting gas phase fluid is furtherAlong with the naphtha fraction separated by the naphtha fraction separation processA method of treating crude oil that undergoes hydrogenation reforming.
[0009]
(2) Extracted crude oil obtained by separating naphtha fraction from crude oil by naphtha fraction separation processIn the method of hydrotreating in the presence of a catalyst, the crude oil is hydrotreated in each step of hydrodemetallation, hydrocracking, hydrodesulfurization, and then gas-liquid separation in a gas-liquid separation step. The gas phase fluid is hydroreformed and the naphtha fraction separated by the naphtha fraction separation process is hydrodesulfurized.ProcessIt is characterized byCrude oil processing method.
(3)A metal used in hydrocracking treatment is a metal belonging to Groups 6, 8, 9 and 10 of the periodic table on a carrier comprising 10 to 90% by weight of an iron-containing aluminosilicate and 90 to 10% by weight of an inorganic oxide. (1) or a catalyst supporting at least one selected from the group consisting of(2)InDescriptionNoharaOil processing method.
[0010]
(4)From the hydrodesulfurization treatment step, the gas-liquid separation step and the hydroreforming step of the gas phase fluid after the gas-liquid separation are performed from 0 to 50. kg / cm 2 Perform in the low pressure range and in the temperature range 0-100 ° C lowerThe method for processing crude oil according to any one of (1) to (3).
(5)(1)-(4) modified crude oil obtained by mixing the liquid phase fluid obtained from the gas-liquid separation step and the hydrogenated gas phase fluid in the crude oil processing method according to any one of (1) to (4) .
[0011]
(6) (1) to (4) In the crude oil processing methodNaphtha fractions separated in the naphtha fraction separation process into more refined extracted crude oilTheAfter hydrodesulfurization treatment,Modification obtained by mixingmixturecrude oil.
[0012]
(7)A part of the distillate obtained by distilling and separating the modified truncated crude oil or the reformed mixed crude oil according to (5) or (6) is recycled to the hydrotreating step of the gas phase fluid (1) The processing method of the crude oil in any one of-(4).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 6 shows a schematic flow of the crude oil processing method of the present invention in the form described in (1) above. The processing method will be described with reference to FIG. 6. First, the crude oil 10 is processed in the hydrodemetallation processing step 2 in the presence of hydrogen under the processing conditions as described later. Next, hydrogenation is performed in each of the hydrocracking process 3 and the hydrodesulfurization process 4. Each processing condition will be described later. This is separated into a gas-phase fluid 11 and a liquid-phase fluid 12 in a gas-liquid separation step 5, and the gas-phase fluid 11 is separated in the presence of hydrogen in the hydroreforming step 6 as described later. Hydrogenation reforming treatment is performed under the processing conditions. Further, the mixed fluid 14 of the hydrogen-reformed gas phase fluid 13 and the liquid phase fluid 12 in FIG. 6 is the modified crude oil of the present invention in the form described in (6) above.
[0014]
Even if any one of these steps is missing or the order is different, the object of the present invention cannot be achieved. However, various processing steps can be added before, after, or in the middle of these steps. For example, preliminary hydrodesulfurization treatment may be performed after the hydrodemetallation treatment step 2, and then the process may proceed to the hydrocracking treatment step 3 and hydrodesulfurization treatment step 4. Hydrogen for hydrogenation is usually mixed with crude oil 10 in excess of the amount necessary for the reaction before hydrodemetallation treatment step 2, so that it can be separated in a subsequent hydrocracking process without separation. It can be used for step 3 and the like. If the amount of hydrogen required in each processing step is insufficient, hydrogen may be added in that processing step.
[0015]
Similarly, FIG. 7 shows a schematic flow of a method for treating the extracted crude oil 16 in which the naphtha fraction is separated from the crude oil of the present invention described in (2) by the naphtha fraction separation step 1. Further, the modified truncated crude oil 20 of FIG. 7 is the modified truncated crude oil of the present invention in the form described in (6) above. A mixture of the naphtha fraction (naphtha 15) separated in the naphtha fraction separation step 1 and the modified truncated crude oil 20 is the modified mixed crude oil of the present invention in the form described in (7) above. FIG. 7 also includes the naphtha fraction separation step 1. In the present invention, the naphtha fraction (naphtha 15) separated by the naphtha fraction separation step 1 includes a naphtha fraction and a lighter fraction.
[0016]
Furthermore, FIG. 8 shows a schematic flow of the crude oil processing method of the present invention in the form described in (3) above. Further, the modified mixed crude oil 22 in FIG. 8 is the modified crude oil of the present invention having the form described in (6) above. The modified mixed crude oil 24 in FIG. 9 is the modified mixed crude oil of the present invention in the form described in (8) above. The naphtha 15 separated by the naphtha fraction separation step 1 is a mixture of the desulfurized naphtha 23 subjected to the hydrodesulfurization treatment 7 and the reformed crude oil 20.
[0017]
FIGS. 10-13 is a schematic flowchart of the crude oil processing method of the present invention in the form described in (9) above, and corresponds to FIGS. 6-9, respectively. The reformed crude oil, the reformed crude oil, and the reformed mixed crude oil are separated in the distillation step 8 and a part of the separated distillate is recycled to the hydrogenation reforming step 6. In the distillation step 8, it is separated into five components, but the number is not particularly limited. What is necessary is just to select according to the necessity of production | generation oil. It is sufficient that the distillate oil obtained by distillation can be separated and a part thereof can be recycled. The fraction to be recycled is preferably a kerosene fraction and a light oil fraction. The kerosene fraction is expected to improve its smoke point by recycling, and the diesel oil fraction can improve its cetane number and make further recommendations for the sulfur content.
Next, the raw material oil, each processing step, etc. will be described.
[0018]
[1] Raw material oil 10 (crude oil)
(1) The crude oil of the present invention does not strictly mean crude oil from petroleum, but also includes non-petroleum crude oil. In addition to petroleum-based crude oil, it may be coal liquefied oil, tar sand oil, oil sand oil, oil shale oil, orinocotal, or synthetic crude oil obtained from these. Also, mixed crude oils of petroleum-based crude oil and the above crude oil are used as raw material oil.
[0019]
(2) Petroleum crude oil containing at least 1% by weight of asphaltene or 10% by weight or more of V and Ni or 0.1% by weight or more of sulfur is most preferable. If it is below these values, the economic effect of hydrogenation reforming is small.
[2] Pretreatment
(1) The raw crude oil is preferably desalted from the standpoint of preventing the pre-distilling column from becoming dirty and preventing the reaction column from clogging.
[0020]
{Circle around (2)} Examples of the desalting treatment method include chemical desalting, petreco electrodesalting, How-Baker electrodesalting, etc. that are generally performed by those skilled in the art.
[3] Naphtha fraction separation process 1 (Preliminary distillation tower)
(1) It may be advantageous to remove the naphtha fraction (naphtha 15) from the desalted crude oil as necessary. For example, the product oil in the present invention is subjected to atmospheric reforming in the next step to separate the naphtha fraction and then to catalytic reforming. In this case, it is preferable that the sulfur content in the naphtha fraction is desulfurized to about 0.5 ppm by weight. In the catalytic hydrotreatment in the present invention of the form (1), the naphtha fraction is desulfurized up to that point. Since it is difficult, it is necessary to desulfurize again. It is preferable that the naphtha fraction (naphtha 15) is removed separately in the naphtha fraction separation step (preliminary distillation column) as in the present invention (shown in FIG. 7) in the form (1) above.
[0021]
{Circle around (2)} When the naphtha fraction is used as a raw material for an ethylene apparatus, it is not necessary to desulfurize to about 0.5 ppm by weight, so the method of the present invention of the above [1] may be used.
(3) As a method of removing the naphtha fraction (naphtha 15), a general preflash drum or preflash column may be used. It is preferable to separate the operating temperature at 150 to 300 ° C. and the pressure at 2 to 10 kg / cm 2.
[0022]
(4) Regarding the boiling point of the naphtha fraction to be separated, the initial boiling point is determined by the raw material crude oil, and the end point is preferably in the range of 125 to 174 ° C. When the end point is lower than 125 ° C., the hydrogen partial pressure is lowered in the subsequent catalytic hydrogenation treatment, and thus the reaction rate is lowered. If the end point exceeds 174 ° C., the sulfur content of the kerosene fraction in the product oil may increase and become out of specification.
[4] Hydrodemetallation process 2
{Circle around (1)} Crude oil 10 or withdrawn crude oil 16 is pressurized and heated and subjected to batch hydrodemetallation in the first stage hydrodemetallation step 2 together with hydrogen. This step consists of a single tower to a plurality of towers.
[0023]
(2) Catalysts used in this hydrodemetallation step are usually porous inorganic oxides such as alumina, silica, silica-alumina or sepiolite, acidic carriers, natural minerals, etc. , 8, 9 and a catalyst having an average pore diameter of 100 mm or more formed by supporting about 3 to 30% by weight of an oxide based on the total amount of the catalyst based on the total amount of the catalyst. In addition, other hydrodemetallation catalysts, such as a commercially available hydrodemetallation catalyst, may be used. The required amount of the hydrodemetallation catalyst is preferably 10 to 80% by volume of the cumulative amount of metal contained in the raw material oil during the treatment period.
[0024]
(3) The treatment conditions for the hydrodemetallation process include a reaction temperature of 300 to 450 ° C. and a hydrogen partial pressure of 30 to 200 kg / cm.2G, hydrogen / oil ratio 200-2000NmThree/ kl, LHSV (liquid hourly space velocity) 0.1-10h-1Furthermore, the reaction temperature is 350 to 410 ° C., the hydrogen partial pressure is 100 to 180 kg / cm2G, hydrogen / oil ratio 400-800Nm3 / kl, LHSV 0.3-5h-1Is desirable.
[0025]
This is because if the reaction temperature, hydrogen partial pressure, and hydrogen / oil ratio are less than the desired ranges, the reaction efficiency decreases, and if they exceed the ranges, the economic efficiency decreases. On the other hand, if LHSV exceeds the desired range, the reaction efficiency decreases, and if it falls below the range, the economic efficiency decreases.
[5] Hydrocracking process 3
(1) The hydrodemetallized oil is then hydrocracked in a hydrocracking step 3. When the reaction temperature needs to be controlled, the fluid temperature is changed by a heat exchanger or the like. If the reaction temperature can be controlled by hydrogen gas quenching or oil quenching, it is processed as it is without installing a heat exchanger or the like. This step consists of a single tower to a plurality of towers.
[0026]
(2) The catalyst used in this hydrocracking step is not particularly limited, but is 10 to 90% by weight of iron-containing aluminosilicate produced by the technique disclosed in JP-A-2-289419. In addition, a carrier comprising 90 to 10% by weight of an inorganic oxide and at least one selected from metals belonging to Groups 6, 8, 9 and 10 of the periodic table can be used. Using an iron-containing aluminosilicate obtained by treating this steamed steaming zeolite with an iron salt aqueous solution is very effective in increasing the decomposition rate from a fraction of 343 ° C or higher to a fraction of 343 ° C or lower. is there.
[0027]
Further, those produced by the techniques disclosed in JP-A-60-49131, JP-A-61-24433, JP-A-3-21484 and the like can be used. That is, at least one selected from metals belonging to Groups 6, 8, 9 and 10 of the Periodic Table is supported on a support composed of 20 to 80% by weight of an iron-containing aluminosilicate and 80 to 20% by weight of an inorganic oxide. As the metal belonging to Group 6 of the periodic table, tungsten and molybdenum are preferable, and metals of Groups 7 to 10 of the periodic table may be used singly, or a plurality of metals may be combined. Although it is good, the combination of Ni—Mo, Co—Mo, Ni—W, and Ni—Co—Mo is particularly preferable because of its high hydrogenation activity and little deterioration.
[6] Hydrodesulfurization process 4
(1) Oil that has been hydrodemetallized and then hydrocracked is subjected to fluid temperature change by a heat exchanger or the like when reaction temperature control is required. If the reaction temperature can be controlled by hydrogen gas quenching or oil quenching, the hydrodesulfurization treatment is performed as it is without installing a heat exchanger. This step consists of a single tower to a plurality of towers.
[0028]
(2) The catalyst used in the hydrodesulfurization step 4 may be a normal hydrodesulfurization catalyst for heavy oil. That is, at least one selected from the metals belonging to Groups 5, 6, 8, 9 and 10 of the periodic table on the support of alumina, silica, zeolite or a mixture thereof, etc. as an oxide based on the total amount of the catalyst. What carried about 3 to 30 weight% may be sufficient. A catalyst having an average pore size of 80 mm or more, such as an alumina-phosphorus carrier, an alumina-alkaline earth metal carrier compound, an alumina-titania as disclosed in JP-A-7-305077 and JP-A-5-98270 A catalyst comprising at least one selected from metals belonging to Groups 5, 6, 8, 9 and 10 of the periodic table on a support selected from a support, an alumina-zirconia support, an alumina-boria support, etc. For example, it is suitable because the reforming effect of kerosene oil fraction is high.
[0029]
(3) The treatment conditions in the hydrodesulfurization step 4 include a reaction temperature of 300 to 450 ° C. and a hydrogen partial pressure of 30 to 200 kg / cm.2G, hydrogen / oil ratio 200-2000NmThree/ kl, LHSV (liquid hourly space velocity) 0.1-10h-1Furthermore, the reaction temperature is 300 to 420 ° C., the hydrogen partial pressure is 100 to 180 kg / cm2G, hydrogen / oil ratio 400-800NmThree/ kl, LHSV 0.2-2h-1Is desirable.
[0030]
This is because if the reaction temperature, hydrogen partial pressure, and hydrogen / oil ratio are less than the desired ranges, the reaction efficiency decreases, and if they exceed the ranges, the economic efficiency decreases. On the other hand, if LHSV exceeds the desired range, the reaction efficiency decreases, and if it falls below the range, the economic efficiency decreases.
[7] Gas-liquid separation step 5
(1) The hydrodemetallized, hydrocracked, and hydrodesulfurized oil is introduced to the gas-liquid separation step 5 after the temperature is controlled to a desired separation temperature by a heat exchanger.
[0031]
Normally, the gas-liquid separation step 5 may use a high-pressure and high-temperature gas-liquid separation tank having the same structure as that of the heavy oil direct desulfurization apparatus. However, in order to maintain the reaction efficiency in the subsequent hydro-reforming step, Measures to prevent heavy oil from mixing into the gas phase fluid separated in the separation tank, for example, take a sufficiently large tower diameter of the gas-liquid separation tank, or arrange a sufficient amount of mist separator inside the gas-liquid separation tank It is better to take such a thing. The high-pressure and high-temperature gas-liquid separation tank is composed of one tower to a plurality of towers.
[0032]
(2) Gas-liquid separation process is 0-50kg / cm from hydrodesulfurization process.2It is desirable to carry out in a low pressure range and in a temperature range as low as 0 to 100 ° C.
As a separation condition in the gas-liquid separation process, the separation pressure is 50 kg / cm with respect to the pressure at the hydrodesulfurization process outlet.2If it is lower than G, not only will the reaction efficiency in the subsequent hydroreforming be reduced due to the decrease in the hydrogen partial pressure, but heavy oil will likely be mixed into the gas phase fluid used in the subsequent hydroreforming process. Become. As a reference in this case, it is preferable to maintain the proportion of a fraction of 400 ° C. or higher mixed in the gas phase fluid at 3% by weight or less with respect to the total amount of the gas phase fluid. Further, in order to make the separation pressure equal to or higher than the pressure at the hydrodesulfurization process outlet, equipment for increasing pressure, such as a compressor, is required, so that the construction cost of the apparatus increases.
[0033]
When the separation temperature is lowered by more than 100 ° C with respect to the temperature at the hydrodesulfurization process outlet, the ratio of the kerosene fraction separated as a gas phase fluid is small in the kerosene fraction in the fluid before the gas-liquid separation. As a result, the kerosene fraction used in the subsequent hydro-reforming step 6 is reduced, and the kerosene fraction cannot be efficiently hydro-reformed. Moreover, in order to make the separation temperature higher than the temperature at the hydrodesulfurization process outlet, heating equipment such as a heating furnace is required, so that the construction cost of the apparatus increases.
[8] Hydrogenation reforming process 6
(1) The hydrodemetallized, hydrocracked, and hydrodesulfurized oil is introduced into the gas-liquid separation step 6 for gas-liquid separation. This gas phase fluid is then hydroreformed. The hydroreforming step is composed of one to a plurality of reaction towers. Normally, the gas phase fluid from the gas-liquid separation step is subjected to hydroreforming without heating or heating. When it is necessary to control the reaction temperature of the gas phase fluid, the fluid temperature is changed by a heat exchanger or the like. If the reaction temperature can be controlled by hydrogen gas or recycled oil, the hydrogen reforming treatment is performed as it is. The reaction tower type in this step may be a normal fixed bed.
[0034]
{Circle around (2)} The catalyst used in this hydroreforming step may be a normal middle distillate hydrogenation catalyst. That is, as an oxide based on the total amount of the catalyst, at least one selected from metals belonging to Groups 5, 6, 8, 9 and 10 of the periodic table is used as a support of alumina, silica, zeolite or a mixture thereof. A catalyst having an average pore diameter of 80 mm or more supported in an amount of about 3 to 30% by weight, such as an alumina-phosphorus carrier and an alumina-type carrier as disclosed in JP-A-7-305077 and JP-A-5-98270. The support selected from alkaline earth metal support compounds, alumina-titania support, alumina-zirconia support, alumina-boria support, etc., was selected from metals belonging to Groups 5, 6, 8, 9 and 10 of the periodic table A catalyst supporting at least one kind is preferable because the hydrocracking effect of the kerosene oil fraction is high.
[0035]
(3) The treatment conditions in this hydroreforming step are usually the reaction temperature and separation pressure in the gas-liquid separation step in order to carry out the reaction without heating or heating equipment following the gas-liquid separation step. Is almost equivalent. That is, reaction temperature 300-400 ° C., reaction pressure 100-180 kg / cm2A range of G is desirable. In order to effectively utilize the temperature and pressure at the outlet of the hydrodesulfurization process in the former stage for the hydro reforming of the latter stage, the reaction temperature is set to −100 to 0 ° C. with respect to the temperature of the hydrodesulfurization process, and the reaction pressure is set to hydrogen. -50 to 0 kg / cm against the pressure at the hydrodesulfurization process outlet2The range of is preferable. The hydrogen partial pressure is 70 to 150 kg / cm.2G, hydrogen / oil ratio is 500-2000NmThree/ kl, LHSV (liquid hourly space velocity) is 0.5 to 10 h-1Is desirable.
[0036]
This is because if the reaction temperature, hydrogen partial pressure, and hydrogen / oil ratio are less than the desired ranges, the reaction efficiency decreases, and if they exceed the ranges, the economic efficiency decreases. On the other hand, if LHSV exceeds the desired range, the reaction efficiency decreases, and if it falls below the range, the economic efficiency decreases.
[9] Separation of impurities, etc.
The hydrodemetallurgy, hydrocracking, hydrodesulfurization, gas-liquid separation, and hydro-reformation fluids are separated into the separation process according to a conventional method together with the liquid phase fluid separated in the gas-liquid separation process. It is introduced and separated into a gas part and a liquid part by processing in a plurality of separation tanks. Among these, after removing hydrogen sulfide, ammonia, and the like, the gas portion is subjected to a treatment for improving the purity of the hydrogen, etc., and then recirculated to the reaction process after being combined with a new supply gas.
[10] Remixing process of naphtha fraction
When the naphtha fraction (naphtha 15) in the crude oil is removed in the [3] naphtha fraction separation step, the separated naphtha fraction is selected from the following (1) to (4) depending on the demand of the product. It can be processed by the method.
[0037]
(1) Collect the naphtha fraction and use it as it is. (Fig. 7)
(2) The naphtha fraction is mixed with the liquid portion obtained by the separation of impurities and the like in [9] to obtain a reformed mixed crude oil.
(3) The naphtha fraction is pressurized and heated, and then introduced into the hydrogenation reforming step 6 of [8] above. (Fig. 8)
(4) The naphtha fraction is mixed with the liquid portion obtained by the separation of impurities and the like in [9] after the hydrodesulfurization treatment 7 to obtain a reformed mixed crude oil. (Fig. 9)
[11] Manufacture of modified crude oil, etc.
Depending on the location conditions for commercialization of the present invention, the liquid part obtained in the separation step of impurities etc. in [9] above is mixed as a reformed crude oil after mixing the naphtha fraction by any method of [10]. It may be advantageous to ship. For example, it is located near the crude oil shipping facility in the oil-producing country and the crude oil shipping facility is in place, but this is the case when the facility is installed in a place where there is no petroleum product shipping facility. In such a case, the produced oil may be used as it is, or reformed crude oil or reformed crude oil from which hydrogen sulfide has been removed by introducing it into equipment for removing hydrogen sulfide associated with the desulfurization equipment, such as a hydrogen sulfide stripper. Alternatively, modified mixed crude oil can be obtained. By using the crude oil as reformed crude oil, the existing crude oil shipping equipment can be used as it is, and a large crude oil tanker can be used to transport each product in large quantities and at low cost.
[12] Distillation separation step 8
In addition to the production of the reformed crude oil etc. of [11] above, the liquid part obtained in the separation step of [9], or the mixed crude oil, reformed crude oil, reformed crude oil or reformed blend of [11] Crude oil is introduced into the distillation separation process and fractionated into each product according to a conventional method. As the distillation conditions at this time, for example, in atmospheric distillation, the naphtha fraction is 20 to 157 ° C., the kerosene fraction is 157 to 239 ° C., the light oil fraction is 239 to 343 ° C., 343 ° C. By using oil, it can be fractionated into naphtha, kerosene, light oil and atmospheric residue. Further, the atmospheric residue may be distilled under reduced pressure and fractionated into a vacuum gas oil and a vacuum residue.
[13] Distilled oil recycling process
The distillate obtained in the distillation separation step of the above [12] (desirably a fraction containing a part of the light oil fraction (5 to 95% by volume)) is pressurized and heated to show in the above [8]. It can also be recycled and processed in the hydrogenation reforming process.
[0038]
As an effect of this, it is possible to obtain a high-quality gas oil fraction without providing a new reaction tower, which can obtain a particularly high-quality gas oil fraction and can cope with cases where the quality regulations of future gas oil are strengthened. I can do it. It becomes possible to adjust the quality of the light oil to a desired one by changing the recycle ratio and the properties of the recycle fraction (FIGS. 10 to 13).
[14] Type of reaction tower
In the present invention, there is no particular limitation on the type of reactor in the hydrodemetallation treatment, hydrocracking treatment, hydrodesulfurization treatment, and for example, a fixed bed, moving bed, fluidized bed, boiling bed, slurry bed, etc. can be adopted. . In the gas phase hydrogenation reforming treatment, the type of the reaction apparatus is not particularly limited, but an inexpensive fixed bed is preferable because it is a gas phase reaction. Further, two or more treatment steps among hydrodemetallation treatment, hydrocracking treatment, and hydrodesulfurization treatment may be performed in one reactor.
[0039]
【Example】
Arabian heavy desalted crude oil and arabic heavy desalted crude oil (referred to as Arabian heavy extracted crude oil) excluding naphtha fractions and lighter fractions were used as feedstocks. Table 1 shows the properties of the feedstock.
Table 2 shows the catalyst of each step used in the reaction.
[0040]
[Table 1]
Figure 0004226154
[0041]
[Table 2]
Figure 0004226154
[0042]
[Example 1]
(1) Hydrodemetallation, hydrocracking, hydrodesulfurization treatment
28 vol% of catalyst A shown in Table 2 and 33 vol% of catalyst B are filled in this order in a 300 ml reaction tube, and 39 vol% of catalyst C is also filled in a 300 ml reaction tube in this order and connected in series in this order. The reaction was performed.
[0043]
As raw material oil, Arabian heavy desalted crude oil shown in Table 1 is used, and hydrogen partial pressure at the hydrodemetallation process inlet is 135kg / cm.2G, hydrogen / oil ratio 550 NmThree/ kl, the reaction temperature is 380 ° C. for catalyst A, 400 ° C. for catalyst B, and 360 ° C. for catalyst C.-1Was processed.
(2) Gas-liquid separation process and hydrogenation reforming process
After the start of the reaction, the product oil A obtained by the reaction (1) is separated into naphtha, kerosene, light oil and vacuum gas oil fractions by a batch type distillation apparatus in 1000 hours to 3000 hours, and SimSci By continuous gas-liquid separation adiabatic calculation using a process simulator (product name: PRO / II Ver.5) of 340 ° C, total pressure 135 kg / cm2Based on the gas-phase composition calculation result in A, a hydrogenated reforming feedstock (called gas-phase fluid A) having the same composition as the gas-phase fluid in the high-temperature and high-pressure gas-liquid separation tank was prepared. The composition of the gas phase fluid A is shown in Table 3-1.
[0044]
[Table 3]
Figure 0004226154
[0045]
A catalyst D shown in Table 2 is filled in a 30 ml reaction tube, and a hydrogen partial pressure of 105 kg / cm is obtained using gas phase fluid A shown in Table 3-1 as a feedstock2Then, hydrogen reforming reaction was carried out by passing the oil at a hydrogen / oil ratio of 700 Nm3 / kl, a reaction temperature of 340 ° C., and LHSV 3.0 per hour.
After the start of the reaction, the product oil B of the hydrogenation reforming reaction at an oil passing time of 1500 to 2000 hours and the residual oil (liquid phase fluid) separated corresponding to the gas phase fluid A used at that time are gasified. The product oil C (modified crude oil) was obtained by mixing at a ratio of the gas phase fluid A separated in the liquid separation step and the corresponding liquid phase fluid.
[0046]
Using the 15-stage distillation apparatus, LPG (propane + butane), a naphtha fraction (pentane to 157 ° C.), a kerosene fraction (157 to 239 ° C.), and a light oil fraction (239 to 343 ° C.) were obtained. ) And atmospheric residue (fractions at 343 ° C. or higher), and the quality of each fraction was analyzed. The yield and properties of each fraction at this time are shown in Table 4.
The atmospheric residue was further subjected to simple distillation under reduced pressure to separate reduced pressure light oil (343 to 525 ° C.). The yield and properties of vacuum gas oil are also shown in Table 4-1, Table 4-2, and Table 4-3.
[0047]
The kerosene and light oil fractions are of high quality with very little sulfur, aromatics and polycyclic aromatics. Moreover, since Arabian heavy crude oil which is a raw material is hydrocracked, the density is lowered and the volume of the liquid is increased by about 7%.
[Example 2]
(1) Hydrodemetallation, hydrocracking, hydrodesulfurization treatment
In each catalyst shown in (1) of Example 1, the remaining fraction obtained by removing a naphtha fraction and a lighter fraction (referred to as a naphtha fraction) from the Arabian heavy desalted crude oil shown in Table 1 (Arabian heavy extraction) Crude oil) was fed and passed through LHSV 0.35 hourly. At this time, the LHSV per Arabian heavy extracted crude oil is the same as in Example 1. Other conditions are the same as those in the first embodiment.
[0048]
(2) Gas-liquid separation process and hydrogenation reforming process
In the same manner as in (2) of Example 1, a gas-liquid separation step, a hydrogenation reforming reaction, mixing of the hydrogen reformed gas phase fluid and liquid phase fluid and distillation separation were performed. The composition of the hydrogenated reforming feedstock (gas phase fluid) at this time is shown in Table 3-2. The yield and properties of each fraction of the product oil are shown in Table 4-1, Table 4-2, and Table 4-3. (The yield is expressed as crude oil desalted against Arabian heavy.)
[0049]
[Table 4]
Figure 0004226154
[0050]
As in Example 1, a high quality product having very little sulfur content, aromatic content and polycyclic aromatic content of kerosene fraction and light oil fraction is obtained.
Example 3
(1) Hydrodemetallation, hydrocracking, hydrodesulfurization treatment
Exactly the same treatment as (1) of Example 2 was performed.
[0051]
(2) Gas-liquid separation process and hydrogenation reforming process
Exactly the same treatment as in (2) of Example 2 was performed.
(3) Mixing of naphtha fraction
A naphtha fraction (characteristics shown in Table 1) separated when preparing Arabian heavy-headed crude oil from Arabian heavy crude oil was added to product oil C obtained from (2) above to obtain a modified crude oil. Using this modified crude oil in the same manner as in Example 2 (2) using a 15-stage distillation apparatus, LPG (propane + butane), naphtha (pentane to 157 ° C.), kerosene fraction (157 to 239 ° C.), light oil fraction The fractions (239-343 ° C.) and the residual oil (fractions above 343 ° C.) were separated by distillation and analyzed for the quality of each fraction. The yield and properties of each fraction at this time are shown in Table 4-1, Table 4-2, and Table 4-3.
[0052]
As in Examples 1 and 2, a high quality product having very little sulfur content, aromatic content and polycyclic aromatic content of kerosene fraction and light oil fraction was obtained. In addition, compared with the Arabian heavy crude oil which is the original raw material, the density is reduced and the volume of the liquid is increased by about 7%.
Example 4
(1) Hydrodemetallation, hydrocracking, hydrodesulfurization treatment
Exactly the same treatment as (1) of Example 3 was performed.
[0053]
(2) Gas-liquid separation process and hydrogenation reforming process
Exactly the same treatment as (2) of Example 3 was performed.
(3) Hydrodesulfurization of naphtha fraction
Using a naphtha fraction extracted when preparing Arabian heavy crushing crude oil shown in Table 1 as a raw material, a catalyst C shown in Table 2 is charged into a 30 ml reaction tube, and a hydrogen partial pressure of 15 kg / cm @ 2 G, a hydrogen / oil ratio of 100 Nm @ 3. / kl, the reaction temperature was 320 ° C., and LHSV 7.5 was passed every hour to obtain a desulfurized naphtha fraction.
[0054]
(4) Mixing of desulfurized naphtha fraction
The desulfurized naphtha fraction obtained in (3) above was remixed with the product oil C after the hydrogenation reforming in the same manner as in Example 3 to obtain a reformed mixed crude oil. This modified mixed crude oil was subjected to LPG (propane + butane), naphtha (pentane to 157 ° C.), kerosene fraction (157 to 239 ° C.), light oil in the same manner as in Example 2 (2) using a 15-stage distillation apparatus. The quality of each fraction was analyzed by distillation separation into fractions (239-343 ° C.) and residual oil (fractions above 343 ° C.). The yield and properties of each fraction at this time are shown in Table 4-1, Table 4-2, and Table 4-3.
[0055]
It can be seen that the sulfur content of the naphtha is lower than that in Example 3, and is reduced to a level at which oil can be passed as a raw material of the naphtha catalytic reformer.
Example 5
(1) Hydrodemetallation, hydrocracking, hydrodesulfurization treatment
The same treatment as in (1) of Example 3 was performed.
[0056]
(2) Gas-liquid separation process and hydrogenation reforming process
The method shown in Example 1 as a raw material by adding 40% by volume of the naphtha fraction extracted when preparing the Arabian heavy topped crude oil shown in Table 1 to the hydrogenated reformed raw material oil (gas phase fluid) shown in Table 5 The hydrogenation reforming was performed.
Product oil C (modified mixed crude oil) was obtained in the same manner as in Example 3. This modified mixed crude oil was subjected to LPG (propane + butane), naphtha (pentane to 157 ° C.), kerosene fraction (157 to 239 ° C.), light oil in the same manner as in Example 2 (2) using a 15-stage distillation apparatus. The quality of each fraction was analyzed by distillation separation into fractions (239-343 ° C.) and residual oil (fractions above 343 ° C.). The yield and properties of each fraction at this time are shown in Table 4-1, Table 4-2, and Table 4-3.
[0057]
It can be seen that the sulfur content of the naphtha is reduced as compared with Example 4 to a level at which oil can be passed as a raw material of the naphtha catalytic reformer.
Example 6
(1) Hydrodemetallation, hydrocracking, hydrodesulfurization treatment
The same treatment as in (1) of Example 2 was performed.
[0058]
(2) Gas-liquid separation process and hydrogenation reforming process with recycling of diesel oil fraction
The hydrogenated reforming feedstock (gas phase fluid) shown in Table 5 was mixed with a fuel equivalent to 50% by weight of the diesel oil fraction shown in Table 4 of Example 3 to obtain a hydrogenated reformed feedstock. This was subjected to hydrogenation reforming by the method shown in Example 3. The product oil C obtained in the same manner as in Example 3 is used as a modified denaphtha crude oil. Using this modified denaphtha crude oil in the same manner as in (2) of Example 2 using a 15-stage distillation apparatus, LPG (propane + butane), naphtha (pentane to 157 ° C), kerosene fraction (157 to 239 ° C), The quality of each fraction was analyzed by distillation separation into a light oil fraction (239 to 343 ° C.) and a residual oil (a fraction at 343 ° C. or higher). The yield and properties of each fraction at this time are shown in Table 4-1, Table 4-2, and Table 4-3.
[0059]
Compared to Example 3, the sulfur content, aromatic content, and polycyclic aromatic content of the light oil fraction are further reduced, and an extremely clean and high quality light oil fraction can be obtained. In addition, it is easily expected that the quality of light oil fractions can be adjusted by changing the recycle ratio.
[0060]
[Table 5]
Figure 0004226154
[0061]
[Table 6]
Figure 0004226154
[0062]
[Table 7]
Figure 0004226154
[0063]
[Comparative Example 1]
(1) Hydrodemetallation and hydrodesulfurization of crude oil
The catalyst A shown in Table 2 was charged in 41.8% by volume in a 300 ml reaction tube, and 58.2% by volume of catalyst C in the same 300 ml reaction tube and connected in series in this order to carry out the reaction. . The feedstock and reaction conditions are exactly the same as in Example 1. Using the 15-stage distillation apparatus, the resulting product oil was subjected to LPG (propane + butane), naphtha (pentane to 157 ° C.), kerosene fraction (157 to 239 ° C.), light oil fraction (239 to 343 ° C.) and The pressure residue (fraction at 343 ° C. or higher) was separated by distillation and analyzed for the quality of each fraction. The yield and properties of each fraction at this time are shown in Table 4. The atmospheric residue was further subjected to simple distillation under reduced pressure to separate reduced pressure light oil (343 to 525 ° C.). Properties of vacuum gas oil are also shown in Table 4-4, Table 4-5, and Table 4-6.
[0064]
Compared with Example 1, there are many kerosene fractions, light oil fractions of sulfur, aromatics and polycyclic aromatics, and the quality is inferior. In addition, there is little increase in volume.
[Comparative Example 2]
(1) Hydrodemetallation and hydrodesulfurization treatment of withdrawn crude oil
Under the same conditions as in Comparative Example 1, Arabian heavy extracted crude oil was passed through to fractionate the product oil. The LHSV at this time was set to 0.35 per hour in order to make it equivalent to the extracted crude oil. The yield and properties of the resulting product oil are shown in Table 4-4, Table 4-5, and Table 4-6.
[0065]
Compared to Example 2, the kerosene fraction, light oil fraction has a sulfur content, aromatic content, and polycyclic aromatic content, and the quality is inferior. In addition, there is little increase in volume.
[Comparative Example 3]
(1) Hydrodemetallization, hydrocracking, hydrodesulfurization treatment of overhead crude oil
Exactly the same treatment as (1) in Example 2 was carried out, and the resulting product oil was fractionally distilled. The yields and properties thereof are shown in Tables 4-4, 4-5 and 4-6.
[0066]
Compared to Example 2, the kerosene fraction, light oil fraction has a sulfur content, aromatic content, and polycyclic aromatic content, and the quality is inferior.
[Comparative Example 4]
Murban crude oil having almost the same sulfur content and density as the product oils of Examples 3 to 6 was fractionated in the same manner as in Examples. The yield and properties of each fraction are shown in Table 4-4, Table 4-5, and Table 4-6.
[0067]
Compared with Examples 3-6, the sulfur content and density of the whole are the same, but the sulfur content of kerosene, light oil, and vacuum gas oil is higher than in Examples 3-6, and the aromatic content of kerosene and light oil is also large.
[0068]
[Table 8]
Figure 0004226154
[0069]
[Table 9]
Figure 0004226154
[0070]
[Table 10]
Figure 0004226154
[0071]
【The invention's effect】
(1) In the product oil obtained by hydrogassing the gas phase fluid after hydrodemetallation, hydrocracking and hydrodesulfurization treatment of the crude oil or the crude oil from which the naphtha fraction has been removed The quality of kerosene oil fraction was greatly improved. As a result, the kerosene fraction can satisfy the jet fuel regulations, and the diesel oil fraction has a sufficient possibility of producing diesel oil that can meet the European sulfur regulations of the year 2005.
(2) In addition to the use of improving conventional crude oil refining methods, it can be applied to applications such as reforming heavy / high sulfur crudes located in oil producing countries to light low sulfur crudes.
[0072]
This application has the following effects.
A. The liquid yield of the modified crude oil produced by cracking the raw crude oil is increased.
I. Compared to kerosene and light oil obtained from light and low-sulfur crude oil, the quality of kerosene and light oil obtained by the method of the present invention is extremely good.
[0073]
C. It can be handled in the same way as ordinary crude oil and can use the existing crude oil shipping equipment as it is, and can transport large quantities of each product at low cost using a large crude oil tanker.
[Brief description of the drawings]
FIG. 1 is a processing flow diagram of crude oil disclosed in Japanese Patent Laid-Open No. 7-268361.
FIG. 2 is a processing flow diagram of crude oil disclosed in Japanese Patent Laid-Open No. 4-224890.
FIG. 3 is a processing flow diagram of crude oil disclosed in Japanese Patent Laid-Open No. Hei 4-224892.
FIG. 4 is a processing flow diagram of crude oil disclosed in Japanese Patent Laid-Open No. 8-27469.
FIG. 5 is a processing flow diagram of crude oil disclosed in Japanese Patent Application Laid-Open No. 8-27468.
FIG. 6 is a schematic flow diagram of a crude oil processing method according to the present invention (1).
FIG. 7 is a schematic flow diagram of a crude oil processing method according to the present invention (2).
FIG. 8 is a schematic flow chart of a crude oil processing method according to the present invention (3).
FIG. 9 is a schematic flow diagram of a method for producing a modified mixed crude oil according to the present invention (8).
FIG. 10 is a schematic flowchart of a crude oil processing method according to the present invention (9).
FIG. 11 is a schematic flowchart of a crude oil processing method according to the present invention (9).
FIG. 12 is a schematic flowchart of a crude oil processing method according to the present invention (9).
FIG. 13 is a schematic flowchart of a crude oil processing method according to the present invention (9).
[Explanation of symbols]
1: Naphtha fraction separation process
2: Hydrodemetallation process
3: Hydrocracking process
4: Hydrodesulfurization process
5: Gas-liquid separation process
6: Hydrogenation reforming process
7: Naphtha fraction hydrodesulfurization process
8: Distillation process
9: Fluidized catalytic cracking process
10: Crude oil
11: Gas phase fluid
12: Liquid phase fluid
13: Gas phase fluid subjected to hydrogen reforming
14: Modified crude oil
15: A naphtha fraction separated by a naphtha fraction separation step and a lighter fraction.
16: Crude oil
17: Gas phase fluid
18: Liquid phase fluid
19: Gas phase fluid subjected to hydrogen reforming
20: Modified crude oil
21: Hydrogen-modified gas phase fluid (including naphtha fraction)
22: Reformed mixed crude oil
23: Desulfurized naphtha
24: Reformed mixed crude oil
30: LPG, gas
31: Naphtha
32: Kerosene
33: Light oil
34: Residual oil (heavy oil)
35: Hydrogenated gas phase fluid
36: Modified crude oil
40: LPG, gas
41: Naphtha
42: Kerosene
43: Light oil
44: Residual oil (heavy oil)
45: Hydrogen-modified gas phase fluid
46: Crude oil with improved reform
50: LPG, gas
51: Naphtha
52: Kerosene
53: Light oil
54: Residual oil (heavy oil)
55: Hydrogen-modified gas phase fluid
56: Reformed mixed crude oil
60: LPG, gas
61: Naphtha
62: Kerosene
63: Light oil
64: Residual oil (heavy oil)
65: Hydrogen-modified gas phase fluid
66: Modified crude oil
70: LPG, gas
71: Naphtha
72: Kerosene
73: Light oil
74: Residual oil (heavy oil)
75: Gas phase fluid
76: Liquid phase fluid
77: Hydrogen-modified gas phase fluid
78: reformed crude oil
79: Hydrogenated gas phase fluid
80: Gasoline
81: Decomposed light oil
82: Cracked residual oil
83: Naphtha
84: Kerosene
85: Light oil
86: Reformed kerosene
87: Modified diesel oil
88: Residual oil
89: Hydrogen-modified gas phase fluid
90: Hydrodesulfurized liquid phase fluid
91: reformed crude oil
92: Light fraction
93: Middle distillate
94: Residual oil

Claims (7)

原油からナフサ留分分離工程によりナフサ留分を分離した抜頭原油を触媒存在下で水素化処理する方法において、該原油を順次、水素化脱金属処理、水素化分解処理、水素化脱硫処理の各工程で水素化処理し、次いで気液分離工程にて気液分離し、得られた気相流体をさらにナフサ留分分離工程により分離されたナフサ留分と共に水素化改質することを特徴とする原油の処理方法。 In the method of hydrotreating the extracted crude oil from which the naphtha fraction has been separated from the crude oil by the naphtha fraction separation process in the presence of a catalyst, the crude oil is sequentially subjected to hydrodemetallation, hydrocracking, and hydrodesulfurization. hydrotreated in step, followed by gas-liquid separation by the gas-liquid separation step, characterized in that hydrogenated reformed naphtha fraction with separated by further naphtha fraction gas phase fluid obtained partial separation step Crude oil processing method. 原油からナフサ留分分離工程によりナフサ留分を分離した抜頭原油を触媒存在下で水素化処理する方法において、該原油を順次、水素化脱金属処理、水素化分解処理、水素化脱硫処理の各工程で水素化処理し、次いで気液分離工程にて気液分離された気相流体を水素化改質すると共に、ナフサ留分分離工程により分離されたナフサ留分を水素化脱硫処理することを特徴とする原油の処理方法。In the method of hydrotreating the extracted crude oil from which the naphtha fraction has been separated from the crude oil by the naphtha fraction separation process in the presence of a catalyst, the crude oil is sequentially subjected to hydrodemetallation, hydrocracking, and hydrodesulfurization. hydrotreated in step, then the gas phase fluid to gas-liquid separation by the gas-liquid separation step together with the hydrogenated reformed, that the naphtha fraction separated by the naphtha fraction separation step treating hydrodesulfurization A characteristic crude oil processing method. 水素化分解処理に使用される触媒が、鉄含有アルミノシリケート10〜90重量%と無機酸化物90〜10重量%とからなる担体に、周期律表第6、8、9及び10族に属する金属の中から選ばれた少なくとも一種を担持した触媒である請求項1または記載の原油の処理方法。 A metal used in hydrocracking treatment is a metal belonging to Groups 6, 8, 9 and 10 of the periodic table on a carrier comprising 10 to 90% by weight of an iron-containing aluminosilicate and 90 to 10% by weight of an inorganic oxide. The method for treating crude oil according to claim 1 or 2 , which is a catalyst supporting at least one selected from the group consisting of . 気液分離工程および気液分離後の気相流体の水素化改質工程を、水素化脱硫処理工程より0〜50 kg/cm 2 低い圧力範囲で、かつ0〜100℃低い温度範囲で実施する請求項1〜3のいずれかに記載の原油の処理方法。 The gas-liquid separation step and the hydroreforming step of the gas phase fluid after the gas-liquid separation are performed in a pressure range 0 to 50 kg / cm 2 lower than the hydrodesulfurization step and in a temperature range 0 to 100 ° C lower. The method for processing crude oil according to claim 1. 請求項1〜4のいずれかに記載の原油の処理方法における気液分離工程より得られた液相流体と水素化改質された気相流体とを混合して得られる改質抜頭原油 A reformed crude oil obtained by mixing a liquid phase fluid obtained from the gas-liquid separation step in the crude oil processing method according to any one of claims 1 to 4 with a hydrogenated gas phase fluid . 請求項1〜のいずれかに記載の原油の処理方法により改質された抜頭原油に、ナフサ留分分離工程で分離されたナフサ留分を水素化脱硫処理した後、混合して得られる改質混合原油 More modified topped crude oil crude oil processing method according to any one of claims 1-4, after the naphtha fraction separated by the naphtha fraction separation step was treated hydrodesulfurization, obtained by mixing Modified mixed crude oil . 請求項5または6に記載の改質抜頭原油または改質混合原油を蒸留分離して得られた留出油の一部を、気相流体の水素化改質工程へリサイクルする請求項1〜4のいずれかに記載の原油の処理方法。 A part of the distillate oil obtained by distilling and separating the modified truncated crude oil or the reformed mixed crude oil according to claim 5 or 6 is recycled to a hydroforming process of a gas phase fluid. The method for processing crude oil according to any one of the above.
JP20566099A 1998-08-25 1999-07-21 Method for hydrotreating crude oil and reformed crude oil Expired - Fee Related JP4226154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20566099A JP4226154B2 (en) 1998-08-25 1999-07-21 Method for hydrotreating crude oil and reformed crude oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-238735 1998-08-25
JP23873598 1998-08-25
JP20566099A JP4226154B2 (en) 1998-08-25 1999-07-21 Method for hydrotreating crude oil and reformed crude oil

Publications (2)

Publication Number Publication Date
JP2000136391A JP2000136391A (en) 2000-05-16
JP4226154B2 true JP4226154B2 (en) 2009-02-18

Family

ID=26515187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20566099A Expired - Fee Related JP4226154B2 (en) 1998-08-25 1999-07-21 Method for hydrotreating crude oil and reformed crude oil

Country Status (1)

Country Link
JP (1) JP4226154B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107304371A (en) * 2016-04-22 2017-10-31 中国石油化工股份有限公司 A kind of recapitalization generating oil hydrogenation processing method
CN107304372A (en) * 2016-04-22 2017-10-31 中国石油化工股份有限公司 A kind of reformed oil liquid-phase hydrogenatin handling process method
CN107304370A (en) * 2016-04-22 2017-10-31 中国石油化工股份有限公司 A kind of recapitalization generating oil hydrogenation process
CN107304369A (en) * 2016-04-22 2017-10-31 中国石油化工股份有限公司 A kind of recapitalization generating oil hydrogenation method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263117A (en) * 2003-03-04 2004-09-24 Idemitsu Kosan Co Ltd Catalytic hydrogenation method for crude oil
JP2009040844A (en) * 2007-08-07 2009-02-26 Idemitsu Kosan Co Ltd Method for producing reformed crude oil
CA2721002C (en) * 2008-04-10 2017-08-22 Shell Internationale Research Maatschappij B.V. Catalyst systems and methods for converting a crude feed with such catalyst systems
WO2009157929A1 (en) * 2008-06-26 2009-12-30 Uop Llc Multi-catalyst selection for chlorided reforming processes
SG11201404386WA (en) * 2012-01-27 2014-11-27 Saudi Arabian Oil Co Integrated hydrotreating and steam pyrolysis process including hydrogen redistribution for direct processing of a crude oil
KR101787210B1 (en) * 2012-06-14 2017-10-18 사우디 아라비안 오일 컴퍼니 Direct catalytic cracking of crude oil by a temperature gradient process
CN105018141A (en) * 2014-04-30 2015-11-04 何巨堂 High-aromatic-hydrocarbon hydro-upgrading method used in upgrading process after naphtha components are used
JP6766528B2 (en) * 2015-12-21 2020-10-14 三菱ケミカル株式会社 Hydrogenated coal tar pitch manufacturing equipment
CN116144398A (en) * 2021-11-19 2023-05-23 中国石油天然气股份有限公司 Method and system for producing low sulfur low olefin motor gasoline blending component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107304371A (en) * 2016-04-22 2017-10-31 中国石油化工股份有限公司 A kind of recapitalization generating oil hydrogenation processing method
CN107304372A (en) * 2016-04-22 2017-10-31 中国石油化工股份有限公司 A kind of reformed oil liquid-phase hydrogenatin handling process method
CN107304370A (en) * 2016-04-22 2017-10-31 中国石油化工股份有限公司 A kind of recapitalization generating oil hydrogenation process
CN107304369A (en) * 2016-04-22 2017-10-31 中国石油化工股份有限公司 A kind of recapitalization generating oil hydrogenation method
CN107304369B (en) * 2016-04-22 2019-11-15 中国石油化工股份有限公司 A kind of recapitalization generating oil hydrogenation method
CN107304372B (en) * 2016-04-22 2019-11-15 中国石油化工股份有限公司 A kind of reformed oil liquid-phase hydrogenatin processing method
CN107304371B (en) * 2016-04-22 2019-11-15 中国石油化工股份有限公司 A kind of recapitalization generating oil hydrogenation processing method

Also Published As

Publication number Publication date
JP2000136391A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
US6620311B2 (en) Process for converting petroleum fractions, comprising an ebullated bed hydroconversion step, a separation step, a hydrodesulphurization step and a cracking step
US5382349A (en) Method of treatment of heavy hydrocarbon oil
JP5651281B2 (en) Method and apparatus for conversion of heavy petroleum fraction in ebullated bed with production of middle distillate with very low sulfur content
US8784646B2 (en) Residue conversion process that includes a deasphalting stage and a hydroconversion stage with recycling of deasphalted oil
CN101469274B (en) Method for producing high-octane petrol
KR101829113B1 (en) Integration of residue hydrocracking and solvent deasphalting
US6342152B1 (en) Hydrogenation treatment process for crude oil and crude oil reformed thereby
US8778169B2 (en) Residue conversion process that includes a deasphalting stage and a hydroconversion stage
RU2663896C2 (en) Residue hydrocracking processing
EP1600491A1 (en) Catalytic hydrorefining process for crude oil
JP2003049175A (en) Crude oil desulfurization
WO2013033288A2 (en) Hydroprocessing of heavy hydrocarbon feeds
CN104114679B (en) Use the method for hydrogen cracking of inter-stage steam stripped
JP4226154B2 (en) Method for hydrotreating crude oil and reformed crude oil
KR20150082270A (en) Hydroprocessing light cycle oil in liquid-full reactors
CA2901390C (en) Process for partial upgrading of heavy and/or extra-heavy crude oils for its transportation
US4391700A (en) Process for converting heavy hydrocarbon oils, containing asphaltenes, to lighter fractions
US6869576B2 (en) Process for hydrotreating a hydrocarbon feedstock and apparatus for carrying out same
CN101434867A (en) Suspension bed residual oil hydrogenation-catalytic cracking combined technological process
CN113383057A (en) Two-step hydrocracking process for producing naphtha comprising a hydrogenation step carried out downstream of a second hydrocracking step
JP4564176B2 (en) Crude oil processing method
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
JP2009040844A (en) Method for producing reformed crude oil
JP2000198990A (en) Hydrogenation process for gas oil fraction
JPH05230473A (en) Treatment of heavy hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees