JP4225821B2 - Method for quantifying fibers and / or water-absorbing polymers - Google Patents

Method for quantifying fibers and / or water-absorbing polymers Download PDF

Info

Publication number
JP4225821B2
JP4225821B2 JP2003112200A JP2003112200A JP4225821B2 JP 4225821 B2 JP4225821 B2 JP 4225821B2 JP 2003112200 A JP2003112200 A JP 2003112200A JP 2003112200 A JP2003112200 A JP 2003112200A JP 4225821 B2 JP4225821 B2 JP 4225821B2
Authority
JP
Japan
Prior art keywords
water
absorbing polymer
polymer
weight
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003112200A
Other languages
Japanese (ja)
Other versions
JP2004317319A (en
Inventor
大介 保村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003112200A priority Critical patent/JP4225821B2/en
Priority to DE60325672T priority patent/DE60325672D1/en
Priority to EP03012919A priority patent/EP1371348B2/en
Priority to TW092115530A priority patent/TWI270371B/en
Priority to US10/456,833 priority patent/US7297307B2/en
Priority to CNB031413307A priority patent/CN100508928C/en
Publication of JP2004317319A publication Critical patent/JP2004317319A/en
Priority to US11/764,054 priority patent/US20070244453A1/en
Application granted granted Critical
Publication of JP4225821B2 publication Critical patent/JP4225821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セルロース系の繊維とポリアクリル酸系の吸水性ポリマーの混合物中の繊維及び/又は吸水性ポリマーの含有量を高精度に定量することのできる繊維及び/又は吸水性ポリマーの定量方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、パルプ繊維等のセルロース系の繊維とポリアクリル酸系の吸水性ポリマーの混合物からなる吸収体が、身体から排出される液を吸収保持させるための吸収性物品、例えば使い捨ておむつ、生理用ナプキン、パンティーライナー等の吸収体として広く用いられている。また、同様の構成を有する吸収体が、その他の用途にも用いられるようになっている。
このような製品の開発や評価においては、吸収体中の繊維や吸水性ポリマーの含有量を正確に定量できることが有利であるが、従来の定量方法においては、精度が低かったり、操作が複雑である等の問題があった。
例えば、吸水性ポリマー、パルプ繊維及び両者の混合物である吸収体を粉砕し、これを所定のメッシュで吸水性ポリマーとパルプ繊維を篩分けする方法が考えられる。しかし、この方法においては、吸水性ポリマーの粒径やパルプ繊維の繊維長を予め知っておかないと適当な篩を選択することが困難であるし、所望の篩を選択しても、測定値のぶれを小さくするための対策(条件設定等)に手間がかかる、測定回数を増やす必要がある等の問題があった。
【0003】
〔先行技術文献〕 該当文献なし
【0004】
従って、本発明の目的は、セルロース系の繊維とポリアクリル酸系の吸水性ポリマーの混合物中の繊維及び/又は吸水性ポリマーの含有量を高精度に定量することのできる繊維及び/又は吸水性ポリマーの定量方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、セルロース系の繊維及びポリアクリル酸系の吸水性ポリマーを含むサンプル中の該吸水性ポリマーを低分子化させ、その低分子化により生じた低分子成分を分離除去した後の残存物の重量を定量して、前記サンプル中の繊維及び/又は吸水性ポリマーの含有量を求める繊維及び/又は吸水性ポリマーの定量方法を提供することにより、前記目的を達成したものである。
【0006】
【発明の実施の形態】
以下、本発明をその好ましい実施形態に基づいて説明する。
本発明において定量するセルロース系の繊維としては、パルプ繊維、化学修飾パルプ等が挙げられ、特にパルプ繊維の定量に適している。
【0007】
本発明において定量する吸水性ポリマーとしては、使い捨ておむつ、生理用ナプキン、パンティーライナー等の吸収性物品の吸収体に従来用いられている各種のポリアクリル酸系の吸水性ポリマーが挙げられ、具体例としては、アクリル酸又はアクリル酸アルカリ金属塩の重合体、アクリル酸−ビニルアルコール共重合体、ポリアクリル酸ナトリウム架橋体、でんぷん−アクリル酸グラフト共重合体、ポリアクリル酸塩グラフト重合体等が挙げられる。
【0008】
本発明においては、吸水性ポリマーを低分子化させ、吸水性ポリマーをより重合度の低い低分子成分にすることにより、サンプル中に共存する繊維との分離を容易にする。
ここで、低分子化とは、ゲル強度が十分に低下する程度の低分子化をいい、完全にモノマーにまで分解する場合に限られない。従って、低分子化により生じる低分子成分には、吸水性ポリマーのモノマーの他、ダイマー、トリマーや、ゲル強度が吸水性ポリマーに比べて十分に低下したオリゴマー等が含まれていても良い。
但し、吸水性ポリマーの低分子化は、繊維成分との分離を容易にする観点から、水分散性になる程度まで行うことが好ましく、特に水溶性となる程度まで行うことがより好ましい。
【0009】
吸水性ポリマーを低分子化させる方法としては、低分子化の速度や操作の簡便性等の観点から、紫外線を照射することが好ましい。紫外線の照射は、紫外線ランプを用いても良いし、日光に晒しても良い。紫外線の照射時間は、サンプル量、紫外線の強さ、他の低分子化処理を併用するか否か等に応じて適宜に決定できるが、例えば数時間〜1週間程度である。
【0010】
紫外線を照射する場合、繊維及び吸水性ポリマーを含むサンプルを水又は水溶液中に浸漬してポリマーを膨潤させた後、そのサンプルを水又は水溶液中から取り出した状態で照射することが、紫外線を効率良くサンプルに当てることができる点で好ましい。
【0011】
紫外線の照射は、酸化剤、特にアスコルビン酸の存在下に行うことが、低分子化の促進の観点から好ましい。具体例としては、例えば、サンプルを浸漬させる前記水溶液として、アスコルビン酸を0.1重量%以上含有する水溶液を用いる。
【0012】
また、紫外線の照射は、リボフラビンの存在下に行うことが、リボフラビンにより着色されたポリマーの色の消失を目安にして、ポリマーの低分子物質の分離除去の進行の程度を確認することができ、また、光励起反応を促進して低分子化が速められるので好ましい。具体例としては、例えば、サンプルを浸漬させる前記水溶液として、リボフラビンを0.001〜0.02重量%含有する水溶液を用いる。
【0013】
吸水性ポリマーを解重合させる他の好ましい方法としては、該ポリマー鎖を切断して低分子化させる物質を含む水溶液中に繊維及び吸水性ポリマーを含むサンプルを所定時間浸漬する方法が挙げられる。
ポリマー鎖を切断して低分子化させ得る物質としては、一般的な酸化剤が挙げられるが、特にアコルビン酸及びリボフラビンを含む水溶液を用いることが好ましい。
【0014】
更に、紫外線を照射(酸化剤は併用してもしなくても良い)して低分子化を生じさせる場合、紫外線の照射時に加熱を同時に行うことで低分子化を促進させることができる。
【0015】
吸水性ポリマーの低分子化により生じた成分を分離除去する方法としては、繊維及び吸水性ポリマーからなるサンプルをメッシュ袋に入れた状態で、該ポリマーに低分子化を起こさせ、その低分子化により生じた水分散性又は水溶性の低分子成分をメッシュ袋の目を通して外部に水等で洗い出す方法が好ましい。
メッシュ袋としては、多孔性の合成樹脂製シートからなるもの等、各種の材質のものを用いることができるが、吸水性ポリマーの低分子化処理に対して耐性のある各種材質からなるものが好ましい。メッシュ袋の形状としては、内部に繊維及び吸水性ポリマーを収容可能な各種形状のものを用いることができる。メッシュ袋の目の細かさは、セルロース系の繊維を透過させず且つ吸水性ポリマーの低分子化により生じた成分を容易に透過させる程度の大きさであることが好ましく、適宜選択できる。低分子化により吸水性ポリマーを水溶化させた場合には、非常に細かい目であってもメッシュ袋を透過し、セルロース系繊維は透過しない。また、メッシュ袋を使用するのに代えて、グラスフィルター等の多孔性材料からなる濾材を用いることもできる。
【0016】
本発明では、サンプル中の吸水性ポリマーの好ましくは全量を、低分子成分として繊維から分離し、該低分子成分を除去した後の残存物の重量を定量し、その定量した重量を用いて、前記サンプル中の繊維及び/又は吸水性ポリマーの含有量を算出する。例えば、残存物の重量を、サンプル中に含まれていた繊維の含有量とし、吸水性ポリマーを低分子化する前のサンプルの重量から、前記残存物の重量を差し引いた重量を、サンプル中の吸水性ポリマーの含有量とする。尚、残存物の重量と該吸水性ポリマーを低分子化させる前のサンプル重量は、何れも90〜105℃で、8時間以上乾燥処理を行い、その後、室温(25〜40℃程度)にて平衡化した後に測定することが、定量精度向上の観点から好ましい。
【0017】
【実施例】
以下、本発明を実施例により更に詳細に説明する。
<実施例1>
(1)サンプルの調整
パルプ繊維として、NB416(ウエハウザー社製)、ポリアクリル酸系の吸水性ポリマーとして、ポリアクリル酸ナトリウムを主成分とする吸水性ポリマー(台湾プラスティック社製「BC283FA」)を用いて、以下のサンプルを調製した。
・パルプ繊維単独のサンプル:6g,10g,18gの3水準のサンプル。
・吸水性ポリマー単独のサンプル:5g,10g,15gの3水準のサンプル。
・パルプ繊維と吸水性ポリマーの混合サンプル:繊維重量/ポリマー重量=6g/5g,10g/10g,18g/15gの3水準のサンプル。これらのサンプルは、各水準について3サンプル(N=3)調製した。
パルプ繊維及び吸水性ポリマーは、それぞれ、90℃で18時間以上乾燥処理を施し、次いで、室温(25℃程度)にて平衡化した後、秤量した。以下、これらのサンプル中の正確なパルプ繊維又は吸水性ポリマーの重量を仕込み量ともいう。
【0018】
(2)ポリマーの低分子化処理
各サンプルを、予め正確に秤量してあるメッシュ袋に充填し、該メッシュ袋ごと、4重量%のアスコルビン酸及び0.02重量%のリボフラビンを含有する水溶液中に浸漬させ、該水溶液をサンプルに充分に含ませた。次いで、メッシュ袋を水溶液中から取り出し、サンプルに、日光による低分子化処理を8時間×3日間施し、低分子化により低分子化して可溶化した成分を、メッシュ袋から水洗により分離除去した。リボフラビンにより着色されたポリマーの色が消失していない場合又は水洗時のぬるぬる感が消失していない場合には、メッシュ袋を再度前記水溶液中に浸漬させ、日光による低分子化処理を繰り返した。すべてのサンプルについて前記ポリマーの色が完全に消失し且つ水洗時のぬるぬる感が消失した時点で処理を終了した。
【0019】
(3)低分子化処理後の重量の測定
メッシュ袋を充分に水洗した後、遠心分離器を用いて800回転/分の速度で10分遠心して脱水した。次いで、90℃で18時間以上の乾燥を行い、室温(25℃)にて平衡化した後、残存物を収容した状態のメッシュ袋の重量を秤量した(以下、この重量を処理後重量ともいう)。
【0020】
(4)繊維及び吸水性ポリマーの実測値の算出
パルプ繊維単独のサンプルについては、処理後重量からメッシュ袋単体の重量を差し引いた値をパルプ繊維重量の実測値とした。表1に、パルプ単独サンプルについてのメッシュ袋単体(風袋と表示)の重量、パルプ繊維の仕込み量、処理後重量、パルプ繊維の実測値、及び仕込み量(既知量)に対する実測値の割合(%)としての誤差等を示した。また、図1に、パルプ繊維の実測値と仕込み量との相関関係を示すグラフを示し、また、該グラフ中に回帰分析による解析結果(傾き定数及び相関係数)を併せて示した。
【0021】
吸水性ポリマー単独のサンプルについては、吸水性ポリマーの仕込み量とメッシュ袋単体の重量との合計値から処理後重量を差し引いた値を吸水性ポリマーの重量の実測値とした。表2に、メッシュ袋単体(風袋と表示)の重量、吸水性ポリマーの仕込み量、処理後重量、吸水性ポリマーの実測値、及び仕込み量(既知量)に対する実測値の割合(%)としての誤差等を示した。また、図2に、吸水性ポリマーの実測値と仕込み量との相関関係を示すグラフを示し、また、該グラフ中に回帰分析による解析結果(傾き定数及び相関係数)を併せて示した。
【0022】
パルプ繊維と吸水性ポリマーの混合サンプルについては、処理後重量からメッシュ袋単体の重量を差し引いた値をパルプ繊維重量の実測値とし、パルプ繊維の仕込み量と吸水性ポリマーの仕込み量の合計値から前記処理後重量を差し引いた値を吸水性ポリマーの重量の実測値とした。表3に、各混合サンプルについてのメッシュ袋単体(風袋と表示)の重量、パルプ繊維及び吸水性ポリマーの仕込み量、処理後重量、パルプ繊維及び吸水性ポリマーの実測値並びに仕込み量(既知量)に対する実測値の割合(%)としての誤差等を示した。また、図3に、パルプ繊維の共存下で測定した吸水性ポリマーの実測値と仕込み量との相関関係を示すグラフを示し、また、該グラフ中に回帰分析による解析結果(傾き定数及び相関係数)を併せて示した。
【0023】
【表1】

Figure 0004225821
【0024】
【表2】
Figure 0004225821
【0025】
【表3】
Figure 0004225821
【0026】
表1〜3及び図1〜図3に示す結果から、パルプ繊維単独、吸水性ポリマー単独、パルプ繊維及び吸水性ポリマーの混合の何れの条件でも、傾き定数、相関係数ともにほぼ1.0であり、また、実測値と仕込み量との誤差については、平均値がパルプ繊維については99.32%(0.68%の乖離)、吸水性ポリマーについては100.8%(0.8%の乖離)であり、誤差の最大値もポリマーの4.2%の乖離にとどまっている(表3)。
これらから、本発明の方法によれば、パルプ繊維及び吸水性ポリマーを高精度且つ簡便に定量できることが判る。
【0027】
<実施例2>
実施例1において、実施例1で用いた吸水性ポリマーに代えて、以下の代表的な4品種の吸水性ポリマー(何れもポリアクリル酸系)をそれぞれ用いた以外は、実施例1と同様にして、吸水性ポリマー単独のサンプル及びパルプ繊維と吸水性ポリマーの混合サンプルを調整した。
吸水性ポリマー1:花王株式会社製「EQ−R」
吸水性ポリマー2:日本触媒社製「CAW4」
吸水性ポリマー3:日本触媒社製「CAW16」
吸水性ポリマー4:三洋化成社製「IM5800」
【0028】
そして、吸水性ポリマー単独のサンプル及びパルプ繊維と吸水性ポリマーの混合サンプルのそれぞれについて、実施例1と同様にして、ポリマーの仕込み量とその実測値について回帰分析を行った。その結果(傾き定数及び相関係数)を表4に示した。
【0029】
【表4】
Figure 0004225821
【0030】
表4に示すように、ポリマーの種類(特性)によらずに、傾き定数及び相関係数共に1.0に近い値である。このことから、ポリマーの種類毎に検量線を作成する必要がないことが判る。また、絶対誤差も1%未満であり高精度に定量できることが判る。
【0031】
本発明は、セルロース系の繊維及びポリアクリル酸系の吸水性ポリマーからなるサンプル中の各成分の定量に特に好ましく用いられる。
尚、サンプル中に水溶性の第3成分が含まれる場合には、水等で第3成分のみを洗い流し、残った繊維及びポリマーを、本発明におけるサンプルとすることもできる。
【0032】
【発明の効果】
本発明の繊維及び/又は吸水性ポリマーの定量方法によれば、セルロース系の繊維とポリアクリル酸系の吸水性ポリマーの混合物中の繊維及び/又は吸水性ポリマーの含有量を高精度に定量することができる。
【図面の簡単な説明】
【図1】図1は、パルプ繊維単独サンプルについてのパルプ繊維重量の実測値と実際のパルプ繊維の仕込み量との相関関係を示すグラフである。
【図2】図2は、吸水性ポリマー単独サンプルについてのポリマー重量の実測値と実際の吸水性ポリマーの仕込み量との相関関係を示すグラフである。
【図3】図3は、パルプ繊維の共存下で測定した吸水性ポリマーの実測値と該ポリマーの仕込み量との相関関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for quantifying a fiber and / or a water-absorbing polymer capable of quantifying the fiber and / or water-absorbing polymer content in a mixture of a cellulosic fiber and a polyacrylic acid-based water-absorbing polymer with high accuracy. About.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, an absorbent article made of a mixture of cellulose fibers such as pulp fibers and a polyacrylic acid water-absorbing polymer absorbs and holds liquid discharged from the body, such as disposable diapers and sanitary napkins. It is widely used as an absorber for panty liners. Moreover, the absorber which has the same structure is used also for another use.
In the development and evaluation of such products, it is advantageous to be able to accurately quantify the content of fibers and water-absorbing polymers in the absorbent body. However, conventional quantification methods have low accuracy and complicated operation. There were some problems.
For example, a method of pulverizing an absorbent body that is a water-absorbing polymer, pulp fibers, and a mixture of both, and sieving the water-absorbing polymer and pulp fibers with a predetermined mesh is conceivable. However, in this method, it is difficult to select an appropriate sieve unless the particle diameter of the water-absorbing polymer and the fiber length of the pulp fiber are known in advance. There are problems such as that it takes time to take countermeasures (condition setting, etc.) to reduce the fluctuation, and it is necessary to increase the number of measurements.
[0003]
[Prior art documents] No corresponding documents [0004]
Accordingly, an object of the present invention is to provide a fiber and / or a water-absorbent which can accurately determine the content of the fiber and / or the water-absorbent polymer in a mixture of a cellulosic fiber and a polyacrylic acid-based water absorbent polymer. It is to provide a method for quantitative determination of a polymer.
[0005]
[Means for Solving the Problems]
The present invention relates to a residue obtained by lowering the water-absorbing polymer in a sample containing cellulosic fibers and a polyacrylic acid-based water-absorbing polymer, and separating and removing low-molecular components generated by the lowering of the molecular weight. The above object is achieved by providing a fiber and / or water-absorbing polymer quantification method for determining the content of fiber and / or water-absorbing polymer in the sample.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on preferred embodiments thereof.
Examples of the cellulosic fibers to be quantified in the present invention include pulp fibers and chemically modified pulps, which are particularly suitable for quantifying pulp fibers.
[0007]
Examples of the water-absorbing polymer to be quantified in the present invention include various polyacrylic acid-based water-absorbing polymers conventionally used for absorbent articles of absorbent articles such as disposable diapers, sanitary napkins, panty liners, and the like. As examples, polymers of acrylic acid or alkali metal acrylates, acrylic acid-vinyl alcohol copolymers, cross-linked sodium polyacrylates, starch-acrylic acid graft copolymers, polyacrylate graft polymers and the like can be mentioned. It is done.
[0008]
In the present invention, separation of the water-absorbing polymer from fibers coexisting in the sample is facilitated by reducing the molecular weight of the water-absorbing polymer and making the water-absorbing polymer a low-molecular component having a lower degree of polymerization.
Here, the molecular weight reduction means a molecular weight reduction to such an extent that the gel strength is sufficiently reduced, and is not limited to the case where the molecular weight is completely decomposed into monomers. Therefore, the low molecular component produced by the low molecular weight may include dimers, trimers, oligomers whose gel strength is sufficiently lower than that of the water absorbent polymer, in addition to the monomer of the water absorbent polymer.
However, lowering the molecular weight of the water-absorbing polymer is preferably performed to the extent that it becomes water-dispersible, and more preferably to the extent that it becomes water-soluble, from the viewpoint of facilitating separation from the fiber component.
[0009]
As a method of lowering the molecular weight of the water-absorbing polymer, it is preferable to irradiate with ultraviolet rays from the viewpoint of the speed of lowering the molecular weight and the ease of operation. For irradiation with ultraviolet rays, an ultraviolet lamp may be used, or exposure to sunlight may be performed. The irradiation time of ultraviolet rays can be appropriately determined according to the amount of sample, the intensity of ultraviolet rays, whether or not to use other low molecular weight treatment, and is, for example, about several hours to one week.
[0010]
When irradiating UV light, the sample containing the fiber and the water-absorbing polymer is immersed in water or an aqueous solution to swell the polymer, and then the sample is taken out from the water or aqueous solution to irradiate the sample. This is preferable because it can be applied to the sample well.
[0011]
The irradiation with ultraviolet rays is preferably performed in the presence of an oxidizing agent, particularly ascorbic acid, from the viewpoint of promoting the reduction in molecular weight. As a specific example, for example, an aqueous solution containing 0.1% by weight or more of ascorbic acid is used as the aqueous solution in which the sample is immersed.
[0012]
In addition, the irradiation with ultraviolet rays can be performed in the presence of riboflavin, and the degree of progress of separation and removal of low molecular weight substances of the polymer can be confirmed with reference to the disappearance of the color of the polymer colored by riboflavin. Further, it is preferable because the photoexcitation reaction is promoted and the molecular weight reduction is accelerated. As a specific example, for example, an aqueous solution containing 0.001 to 0.02% by weight of riboflavin is used as the aqueous solution in which the sample is immersed.
[0013]
As another preferable method for depolymerizing the water-absorbing polymer, there is a method in which a fiber and a sample containing the water-absorbing polymer are immersed for a predetermined time in an aqueous solution containing a substance that cuts the polymer chain to reduce the molecular weight.
As the substance to cleave the polymer chains capable of low molecular weight, generally oxidation agents, it is particularly preferable to use an aqueous solution containing A scan Colvin acid and riboflavin.
[0014]
Furthermore, in the case of generating a low molecular weight by irradiating with ultraviolet rays (oxidizer may or may not be used in combination), the reduction in molecular weight can be promoted by simultaneously performing heating during the irradiation of ultraviolet rays.
[0015]
As a method of separating and removing components generated by lowering the molecular weight of the water-absorbing polymer, the polymer and the water-absorbing polymer sample are placed in a mesh bag, and the polymer is lowered to lower the molecular weight. A method of washing out the water-dispersible or water-soluble low-molecular components generated by the above with water or the like through the eyes of the mesh bag is preferable.
As the mesh bag, various materials such as those made of a porous synthetic resin sheet can be used, but those made of various materials that are resistant to the low molecular weight treatment of the water-absorbing polymer are preferable. . As the shape of the mesh bag, various shapes that can accommodate fibers and a water-absorbing polymer can be used. The fineness of the mesh bag is preferably such a size that it does not permeate cellulosic fibers and can easily permeate components produced by lowering the molecular weight of the water-absorbing polymer. When the water-absorbing polymer is water-solubilized by lowering the molecular weight, even if the eyes are very fine, they pass through the mesh bag and do not pass through the cellulosic fibers. Moreover, it can replace with using a mesh bag and can also use the filter medium which consists of porous materials, such as a glass filter.
[0016]
In the present invention, preferably the total amount of the water-absorbing polymer in the sample is separated from the fiber as a low molecular component, the weight of the residue after removing the low molecular component is quantified, and the quantified weight is used, The fiber and / or water-absorbing polymer content in the sample is calculated. For example, the weight of the residue is defined as the fiber content contained in the sample, and the weight obtained by subtracting the weight of the residue from the weight of the sample before the molecular weight of the water-absorbing polymer is decreased. The content of the water-absorbing polymer is used. Note that the weight of the residue and the weight of the sample before reducing the water-absorbing polymer are both 90 to 105 ° C. and dried for 8 hours or more, and then at room temperature (about 25 to 40 ° C.). Measurement after equilibration is preferable from the viewpoint of improving the quantitative accuracy.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
<Example 1>
(1) NB416 (manufactured by Wafer User) is used as the adjusted pulp fiber of the sample, and a water-absorbing polymer mainly composed of sodium polyacrylate ("BC283FA" manufactured by Taiwan Plastic Co., Ltd.) is used as the polyacrylic acid-based water-absorbing polymer. The following samples were prepared.
-Samples of pulp fiber alone: 3 level samples of 6 g, 10 g and 18 g.
-Sample of water-absorbing polymer alone: 3 level samples of 5 g, 10 g and 15 g.
-Mixed sample of pulp fiber and water-absorbing polymer: Sample of three levels: fiber weight / polymer weight = 6 g / 5 g, 10 g / 10 g, 18 g / 15 g. These samples were prepared in 3 samples (N = 3) for each level.
The pulp fiber and the water-absorbing polymer were each dried at 90 ° C. for 18 hours or more, then equilibrated at room temperature (about 25 ° C.), and then weighed. Hereinafter, the exact weight of the pulp fiber or water-absorbing polymer in these samples is also referred to as the charged amount.
[0018]
(2) Polymer molecular weight reduction treatment Each sample is filled in a mesh bag that has been accurately weighed in advance, and each mesh bag is in an aqueous solution containing 4 wt% ascorbic acid and 0.02 wt% riboflavin. So that the aqueous solution was sufficiently contained in the sample. Subsequently, the mesh bag was taken out from the aqueous solution, and the sample was subjected to a treatment for lowering the molecular weight by sunlight for 8 hours × 3 days, and the components that were solubilized by lowering the molecular weight by lowering the molecular weight were separated and removed from the mesh bag by washing with water. When the color of the polymer colored by riboflavin has not disappeared or when the slimy feeling at the time of washing with water has not disappeared, the mesh bag was again immersed in the aqueous solution, and the low molecular weight treatment by sunlight was repeated. For all samples, the treatment was terminated when the color of the polymer disappeared completely and the slimy feeling during washing was lost.
[0019]
(3) Measurement of weight after molecular weight reduction treatment The mesh bag was sufficiently washed with water, and then dehydrated by centrifugation at a speed of 800 rpm for 10 minutes using a centrifuge. Next, after drying at 90 ° C. for 18 hours or more and equilibrating at room temperature (25 ° C.), the weight of the mesh bag containing the residue was weighed (hereinafter, this weight is also referred to as post-treatment weight). ).
[0020]
(4) Calculation of measured values of fiber and water-absorbing polymer For the sample of pulp fiber alone, the value obtained by subtracting the weight of the mesh bag from the weight after treatment was taken as the measured value of the pulp fiber weight. Table 1 shows the weight of mesh bag alone (labeled as tare), the amount of pulp fiber charged, the weight after treatment, the measured value of pulp fiber, and the ratio of the measured value to the charged amount (known amount) (%). ) Etc. are shown. Moreover, the graph which shows the correlation with the measured value and preparation amount of a pulp fiber was shown in FIG. 1, and the analysis result (slope constant and correlation coefficient) by regression analysis was also shown together in this graph.
[0021]
For the sample of the water-absorbing polymer alone, the value obtained by subtracting the post-treatment weight from the total value of the charged amount of the water-absorbing polymer and the weight of the mesh bag alone was taken as the actual measured value of the weight of the water-absorbing polymer. Table 2 shows the weight of the mesh bag alone (labeled as tare), the amount of water-absorbing polymer charged, the weight after treatment, the actually measured value of the water-absorbing polymer, and the ratio (%) of the actually measured value to the charged amount (known amount). The error etc. were shown. FIG. 2 is a graph showing the correlation between the actual measured value of the water-absorbing polymer and the charged amount, and the graph also shows the analysis results (slope constant and correlation coefficient) by regression analysis.
[0022]
For mixed samples of pulp fiber and water-absorbing polymer, the value obtained by subtracting the weight of the mesh bag from the post-treatment weight is the actual value of the pulp fiber weight. From the total value of the pulp fiber charge and the water-absorbent polymer charge, A value obtained by subtracting the weight after the treatment was taken as an actual measurement value of the weight of the water-absorbing polymer. Table 3 shows the weight of each mesh sample (designated as tare), the amount of pulp fiber and water-absorbing polymer charged, the weight after treatment, the measured value of pulp fiber and water-absorbing polymer, and the amount charged (known amount). The error etc. as a ratio (%) of the measured value with respect to are shown. FIG. 3 shows a graph showing the correlation between the measured value of the water-absorbing polymer measured in the presence of pulp fibers and the charged amount, and the analysis results (slope constant and phase relationship) by regression analysis in the graph. Number).
[0023]
[Table 1]
Figure 0004225821
[0024]
[Table 2]
Figure 0004225821
[0025]
[Table 3]
Figure 0004225821
[0026]
From the results shown in Tables 1 to 3 and FIGS. 1 to 3, the slope constant and the correlation coefficient are both approximately 1.0 under any condition of pulp fiber alone, water absorbent polymer alone, pulp fiber and water absorbent polymer mixed. In addition, regarding the error between the actually measured value and the charged amount, the average value is 99.32% (0.68% deviation) for the pulp fiber, and 100.8% (0.8% for the water-absorbing polymer). The maximum value of the error is only 4.2% of the polymer (Table 3).
From these, it can be seen that according to the method of the present invention, the pulp fiber and the water-absorbing polymer can be quantified with high accuracy and simply.
[0027]
<Example 2>
In Example 1, in place of the water-absorbing polymer used in Example 1, the same four typical water-absorbing polymers (all of which are polyacrylic acid type) were used. Then, a sample of the water-absorbing polymer alone and a mixed sample of pulp fiber and water-absorbing polymer were prepared.
Water-absorbing polymer 1: “EQ-R” manufactured by Kao Corporation
Water-absorbing polymer 2: “CAW4” manufactured by Nippon Shokubai Co., Ltd.
Water-absorbing polymer 3: “CAW16” manufactured by Nippon Shokubai Co., Ltd.
Water-absorbing polymer 4: “IM5800” manufactured by Sanyo Kasei Co., Ltd.
[0028]
Then, for each of the sample of the water-absorbing polymer alone and the mixed sample of the pulp fiber and the water-absorbing polymer, regression analysis was performed on the charged amount of the polymer and the actually measured value in the same manner as in Example 1. The results (slope constant and correlation coefficient) are shown in Table 4.
[0029]
[Table 4]
Figure 0004225821
[0030]
As shown in Table 4, regardless of the type (characteristic) of the polymer, both the slope constant and the correlation coefficient are values close to 1.0. This shows that it is not necessary to create a calibration curve for each type of polymer. It can also be seen that the absolute error is less than 1% and can be quantified with high accuracy.
[0031]
The present invention is particularly preferably used for quantification of each component in a sample comprising a cellulosic fiber and a polyacrylic acid water-absorbing polymer.
In addition, when a water-soluble 3rd component is contained in a sample, only the 3rd component is washed away with water etc., and the remaining fiber and polymer can also be used as the sample in the present invention.
[0032]
【The invention's effect】
According to the fiber and / or water-absorbing polymer quantification method of the present invention, the fiber and / or water-absorbing polymer content in the mixture of cellulosic fibers and polyacrylic acid-based water-absorbing polymer is quantified with high accuracy. be able to.
[Brief description of the drawings]
FIG. 1 is a graph showing a correlation between an actual measured value of pulp fiber weight and an actual amount of pulp fiber charged for a pulp fiber single sample.
FIG. 2 is a graph showing the correlation between the measured value of the polymer weight and the actual charged amount of the water-absorbing polymer for the water-absorbing polymer single sample.
FIG. 3 is a graph showing a correlation between an actual measurement value of a water-absorbing polymer measured in the presence of pulp fibers and a charged amount of the polymer.

Claims (5)

セルロース系の繊維及びポリアクリル酸系の吸水性ポリマーを含むサンプル中の該吸水性ポリマーを低分子化させ、その低分子化により生じた低分子成分を分離除去し、該低分子成分を除去した後の残存物の重量を定量して、前記サンプル中の繊維及び/又は吸水性ポリマーの含有量を求める繊維及び/又は吸水性ポリマーの定量方法。  The water-absorbing polymer in the sample containing the cellulosic fiber and the polyacrylic acid-based water-absorbing polymer was reduced in molecular weight, the low-molecular component generated by the low-molecular-weight separation was separated and removed, and the low-molecular component was removed. A method for quantifying fibers and / or water-absorbing polymers, wherein the weight of the remaining residue is quantified to determine the content of fibers and / or water-absorbing polymers in the sample. 前記吸水性ポリマーの低分子化を、紫外線の照射により生じさせる請求項1記載の繊維及び/又は吸水性ポリマーの定量方法。  The method for quantifying fibers and / or water-absorbing polymers according to claim 1, wherein the molecular weight of the water-absorbing polymer is lowered by irradiation with ultraviolet rays. 前記紫外線の照射を、アコルビン酸の存在下に行う請求項2記載の繊維及び/又は吸水性ポリマーの定量方法。The irradiation of the ultraviolet, quantitative method of fiber and / or water-absorbing polymer according to claim 2, wherein carried out in the presence of A scan Colvin acid. 前記紫外線の照射を、リボフラビンの存在下に行う請求項2又は3記載の繊維及び/又は吸水性ポリマーの定量方法。  The method for quantifying a fiber and / or a water-absorbing polymer according to claim 2 or 3, wherein the ultraviolet irradiation is performed in the presence of riboflavin. 前記吸水性ポリマーの低分子化を、前記繊維及び前記吸水性ポリマーを含む前記サンプルを、アコルビン酸及びリボフラビンを含む水溶液中に浸漬させて生じさせる請求項1記載の繊維及び/又は吸水性ポリマーの定量方法。The low molecular weight of the water-absorbing polymer, said fibers and said sample containing said superabsorbent polymer fibers and / or the water absorbent according to claim 1, wherein the generating is immersed in an aqueous solution containing A scan Colvin acid and riboflavin Polymer quantification method.
JP2003112200A 2002-06-10 2003-04-16 Method for quantifying fibers and / or water-absorbing polymers Expired - Fee Related JP4225821B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003112200A JP4225821B2 (en) 2003-04-16 2003-04-16 Method for quantifying fibers and / or water-absorbing polymers
EP03012919A EP1371348B2 (en) 2002-06-10 2003-06-06 An absorbent member and a method of producing an absorbent member
DE60325672T DE60325672D1 (en) 2002-06-10 2003-06-06 An absorbent core and method of making the same
US10/456,833 US7297307B2 (en) 2002-06-10 2003-06-09 Absorbent member and a method of producing an absorbent member
TW092115530A TWI270371B (en) 2002-06-10 2003-06-09 An absorbent member and a method of producing an absorbent member
CNB031413307A CN100508928C (en) 2002-06-10 2003-06-10 Absorber and manufacturing method thereof
US11/764,054 US20070244453A1 (en) 2002-06-10 2007-06-15 Absorbent member and a method of producing an absorbent member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112200A JP4225821B2 (en) 2003-04-16 2003-04-16 Method for quantifying fibers and / or water-absorbing polymers

Publications (2)

Publication Number Publication Date
JP2004317319A JP2004317319A (en) 2004-11-11
JP4225821B2 true JP4225821B2 (en) 2009-02-18

Family

ID=33472489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112200A Expired - Fee Related JP4225821B2 (en) 2002-06-10 2003-04-16 Method for quantifying fibers and / or water-absorbing polymers

Country Status (1)

Country Link
JP (1) JP4225821B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023592A (en) * 2011-07-21 2013-02-04 Auto Kagaku Kogyo Kk Primer composition, and method for constructing sealing material using the primer composition and method for constructing waterproof material using the primer composition
CN104122165A (en) * 2013-04-26 2014-10-29 广东省东莞市质量监督检测中心 Quantitative determination method for fiber content of viloft fiber and natural protein fiber blended textiles
CN106769633B (en) * 2017-01-22 2020-10-27 巨石集团九江有限公司 Method for testing moisture in high-frequency baked glass fiber yarn cluster

Also Published As

Publication number Publication date
JP2004317319A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
EP1598392B2 (en) Water-absorbent resin composition
US7201941B2 (en) Process for production of surface-treated particulate water-absorbent resin
TWI406883B (en) Water absorbing agent, water absorbing article and method for production of water absorbing agent
US9062140B2 (en) Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US5241009A (en) Polymeric composition containing carboxy nueutralized with lithium or potassium
RU2015141C1 (en) Method of absorbing resin preparing
JP4708646B2 (en) Superabsorbent polymer with delayed moisture absorption
JP5022226B2 (en) Surface treatment method for water absorbent resin
US20090298963A1 (en) Method for production of modified water absorbent resin
US11224857B2 (en) Method for manufacturing water absorbing agent
WO2016158976A1 (en) Particulate water-absorbing agent
EP0837076A2 (en) Water-absorbing agent and production process therefor
US20060128827A1 (en) Absorbent members comprising modified water absorbent resin for use in diapers
MX2008013041A (en) An absorbent member comprising a modified water absorbent resin.
JPH09502221A (en) Aqueous liquid-absorbent powdery polymer, its production method and use as absorbent material
JPH05209010A (en) Production of superabsorbent polymer
JP3597597B2 (en) Water-absorbing resin and method for producing the same
JP4225821B2 (en) Method for quantifying fibers and / or water-absorbing polymers
US8080705B2 (en) Superabsorbent polymers comprising direct covalent bonds between polymer chain segments and method of making them
CN116322973A (en) Method for producing superabsorbent polymer materials using soluble polyacrylic acid polymers having double bonds
JP2003503114A (en) Manufacture of woven superabsorbent polymers and fibers
TWI449732B (en) Production efficiency of superabsorbent polymer
JP2001192464A (en) Surface-cross-linked water-absorbing resin and method for cross-linking surface of water-absorbing resin
EP1693404A1 (en) Superabsorbent polymers comprising direct covalent bonds between polymer chain segments and method of making them
CA2381930A1 (en) Water-absorbing polymers having interstitial compounds, a process for their production, and their use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees