JP4225641B2 - Turbine controller - Google Patents

Turbine controller Download PDF

Info

Publication number
JP4225641B2
JP4225641B2 JP23214399A JP23214399A JP4225641B2 JP 4225641 B2 JP4225641 B2 JP 4225641B2 JP 23214399 A JP23214399 A JP 23214399A JP 23214399 A JP23214399 A JP 23214399A JP 4225641 B2 JP4225641 B2 JP 4225641B2
Authority
JP
Japan
Prior art keywords
valve
flow rate
steam flow
signal
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23214399A
Other languages
Japanese (ja)
Other versions
JP2001059403A (en
Inventor
均 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23214399A priority Critical patent/JP4225641B2/en
Publication of JP2001059403A publication Critical patent/JP2001059403A/en
Application granted granted Critical
Publication of JP4225641B2 publication Critical patent/JP4225641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電所や原子力発電所における蒸気タービンの蒸気流量を制御するタービン制御装置に関する。
【0002】
【従来の技術】
火力発電所や原子力発電所における蒸気タービン制御には、蒸気タービンの蒸気供給系に供給される蒸気量を蒸気流量要求信号に応じて、蒸気タービンの蒸気供給系に並列に設けられた複数の弁を順次開閉制御することにより行われている。
【0003】
図8に、火力発電所における蒸気タービン系統の構成を示す。
同図に示すように、蒸気発生器1が、主蒸気止め弁2、蒸気加減弁(CV)3を介して蒸気供給配管4によって、高圧タービン5の流入側に接続されている。
この高圧タービン5の軸端側には、タービン速度に比例した速度信号S2を検出するための速度検出器6が設置されている。
蒸気加減弁3は、高圧タービン5に対して並列に4弁(同図では便宜上1弁のみ示す)設けられており、これらの弁を第1弁から最終弁の順に開閉制御することにより、高圧タービン5に流入する蒸気の蒸気流量を制御するものである。
【0004】
高圧タービン5の流出側には、高圧タービン5で仕事を終えた蒸気に熱を加えるための再熱器7、この再熱器7からの蒸気量を調整するための中間蒸気弁(IV)8が蒸気供給配管4によって低圧タービン9の流入側に接続されている。
低圧タービン9の流出側には、低圧タービン9で仕事を終えた蒸気を復水するための復水器10が設けられており、この復水器10で復水された水は、復水回収系にて回収される。
さらに、低圧タービン9の軸端には、発電機10が直結されており、この発電機10は、タービンで得た機械出力を電気エネルギーに変換して負荷11に供給する。
【0005】
次に、このような蒸気タービン系統の動作について説明する。
蒸気発生器1にて発生した蒸気は、タービン運転中は全開となっている主蒸気止め弁2を介して、蒸気加減弁3に入り、この蒸気加減弁3の開度により調整された蒸気量が高圧タービン5に流入する。
高圧タービン5で仕事を終えた蒸気は、再熱器7に入り、熱が加えられた後に、中間蒸気弁8に入り、この中間蒸気弁8で調整された蒸気量が低圧タービン9に流入する。
低圧タービン9で仕事を終えた蒸気は、復水器10に排出されて復水系へ回収される。低圧タービン9の軸端に直結されている発電機10は、低圧タービン9より得た機械力を電気エネルギーに変換して負荷11に供給する。
【0006】
次に、図9に上述のタービン系統における蒸気加減弁制御装置の構成を示す。
この蒸気加減弁制御装置は、図8に示した、高圧タービン5の蒸気供給系統に並列に設けられた蒸気加減弁を制御するものである。
【0007】
図9に示すように、タービン速度検出器6の出力側には、タービン基準速度設定器21にて設定されたタービン基準速度S1からタービン速度検出器6にて検出されたタービン速度信号S2を差し引いて速度偏差信号S3を出力する加算器22が設けられている。
この加算器22の出力側には、CV開度を決定するCV係数器23が接続されている。 このCV係数器23は、速度偏差信号S3に対してどの程度の割合でCV開度調整するかを設定するものである。この調整は、CV速度調定率と呼ばれており、一般に速度偏差信号S3が定格タービン速度の約5%で弁開度を100%変化させるように設定する。
そして、加算器25は、運転員によって出力設定器24に設定された出力設定値P1とCV係数器23からの出力信号CV0を加算してCV流量指令CV1として出力する。さらにCV流量指令CV1は、流量配分制御部26に入力される。流量配分制御部26は、CV流量指令に基づき各弁、ここでは弁3Aから弁3Dまでの4弁の流量指令CV2A,CV2B,CV2C,CV2Dを演算し、これを各々の流量開度変換器27A,27B,27C,27Dへ出力する。ここで、弁3Aないし弁3Dの制御は各々同様であるので、以下、弁3Aについてのみ説明し、他は省略する。
【0008】
弁3AのCV流量指令CV2Aは、蒸気加減弁を流れる蒸気流量指令であり、タービン出力値と比例した値となっているが、蒸気加減弁開度と蒸気加減弁を流れる蒸気流量とは、蒸気加減弁の開度特性により比例していない。
つまり、タービン出力値及びCV流量指令と蒸気加減弁の開度とは非線形の関係にある。そこで、流量配分制御部26の出力側には、CV流量指令CV2Aに比例したCV開度指令信号CV3Aを出力する流量/開度変換器27Aが接続されている。
流量/開度変換器27Aには、CV開度指令信号CV3A及び弁開度検出器28Aにて検出された蒸気加減弁3AのCV実開度信号CV4Aの偏差信号CV5Aを出力する加算器29Aが接続されている。
【0009】
加算器29Aの出力側には、偏差信号CV5Aを比例増幅して信号CV6Aとしてそれぞれ出力する増幅器30Aが接続されている。
増幅器30Aの出力側には、電気信号であるCV6Aを油圧信号CV7Aとして出力する電気/油圧変換器31Aが接続されている。
電気/油圧変換器31Aは、電気信号が正極性の時は弁開に、負極性の時は弁閉とし、電気信号の大きさに比例して弁の開閉速度を変化させて油圧信号CV7Aを出力するものである。
電気/油圧変換器31Aの出力側には、油圧信号CV7Aを機械位置信号CV8Aに変換して弁3Aの開度を操作する弁操作器32Aがそれぞれ接続されている。
すなわち、上述の構成は、偏差信号CV5A、CV6Aが零となるような閉ループ制御となっている。
【0010】
また、急閉検出器33Aの出力側には、急閉検出器33Aから出力される急閉検出信号CV9Aを油圧急閉検出信号CV10Aに変換して出力する急閉操作器34Aが接続されている。
急閉操作器34Aの出力側には、油圧急閉検出出力CV10Aに基づいて弁3ADを急閉させる弁操作器32Aが接続されている。
【0011】
次に、図10及び図11を用いて蒸気加減弁制御装置の動作について説明する。
タービン基準速度設定器21にて設定されたタービン基準速度信号S1からタービン速度検出器6にて検出されたタービン速度信号S2を差し引いて得られる速度偏差信号S3は、CV係数器23に入力される。
CV係数器23は、速度偏差信号S3が定格タービン速度の約5%で弁開度が100%変化するように設定して信号CV0を出力する。
【0012】
そして、出力設定器24からの出力値P1とCV係数器23からの出力信号CV0は、加算器25で加算されてCV流量指令CV1として出力される。さらに、CV流量指令CV1は流量配分制御部26に入力される。図10に示すよう、流量配分制御部26には、蒸気加減弁3A,蒸気加減弁3B,蒸気加減弁3C,蒸気加減弁3Dが順次開動作するような関数発生器26A,26B,26C,26Dが設けられているため、各弁のCV流量指令もCV2A,CV2B,CV2C,CV2Dの順に開指令が出力される。また、図11に示すよう通常プラントでは定格出力の95%までは蒸気加減弁3A,3B,3Cのみの開指令にて得られ、蒸気加減弁3Dがわずかに開(数%程度)することで95%〜100%の出力が得られるように蒸気加減弁の容量が設計されている。
【0013】
CV開度指令CV3A及び蒸気加減弁3Aの弁開度検出器28Aで検出されたCV実開度CV4Aは加算器29Aに入力され、この両信号の偏差が偏差信号CV5Aとして出力される。
この偏差信号CV5Aは、増幅器30Aにて比例増幅された後に、信号CV6Aとして出力され、電気/油圧変換器31Aに入力される。電気/油圧変換器31Aは、電気信号を油圧信号CV7Aに変換して出力する。
この時、電気信号が正極性の時は弁開に、負極性の時は弁閉とし、電気信号の大きさに比例して弁の開閉速度を変化させて油圧信号CV7Aを出力する。
この油圧信号CV7Aは、弁操作器32Aにより機械位置信号CV8Aに変換されて出力され、蒸気加減弁3Aの開度を調整する。
また、蒸気加減弁3Aを高速に全閉させる必要が生じた時には、急閉検出器33Aにより、急閉電気信号CV9Aを出力して、急閉操作器34Aに内蔵されている電磁弁を励磁することにより蒸気加減弁3Aを急速に全閉する。
【0014】
【発明が解決しようとする課題】
しかしながら、上述の構成では、複数の弁を順次開閉制御しながらプラントに要求される所望の出力を得るために運転をしている際に、蒸気加減弁あるいは各蒸気加減弁の制御系に故障が発生した場合、所望の出力を得ることができなくなりプラント運転上支障が生ずる恐れがあった。
本発明は、上記実情に鑑みてなされたものであり、蒸気加減弁あるいは各蒸気加減弁の系統に故障が発生した場合であっても、故障した系統の弁に替えて最後に開かれる蒸気加減弁にて開度補償することができるタービン制御装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために請求項1に係る発明によれば、タービンに供給される蒸気の蒸気流量を制御する制御系に設けられ、タービンの蒸気流入側に並列に設けられた複数の弁を蒸気流量要求信号に応じて各弁毎に順次開閉制御するため、タービンに流れるべき各弁の蒸気流量指令信号を出力する蒸気流量指令信号出力手段と、各弁の蒸気流量指令信号に基づいて各弁の開度指令信号を出力する開度指令信号出力手段と、各弁の制御系にそれぞれ設けられ、各弁の実際の開度を検出して開度信号を出力する開度信号出力手段と、各弁の制御系にそれぞれ設けられ、開度指令信号出力手段から出力された開度指令信号及び開度信号出力手段から出力された開度信号に基づいて各弁の開閉操作を行う弁開閉操作手段とを備えたタービン制御装置において、各弁の制御系にそれぞれ設けられ、開度信号出力手段から出力された開度信号及び開度指令信号出力手段から出力された開度指令信号を基に、各弁または各弁の制御系の異常を検出し、各弁毎の異常検出信号を蒸気流量指令信号出力手段に出力する異常検出手段と、各弁の制御系にそれぞれ設けられ、異常検出手段から出力された異常検出信号に基づいて各弁を閉じる弁閉手段とを設け、蒸気流量指令信号出力手段は異常検出手段からの異常検出信号に基づいて、異常検出手段にて検出された弁を弁閉手段にて閉め、当該弁の蒸気流量を最後に開かれる弁で補償するようにしたことを特徴とする。
これにより、蒸気流量指令に基づき複数の弁を順次開する蒸気加減弁のうち、異常検出信号により異常が検出された弁を弁閉手段により閉じるため、1つの弁に故障が発生しても、それに替えて最後に開かれる弁にて蒸気流量を補償することができる。
【0016】
また、請求項2に係る発明によれば、請求項1記載のタービン制御装置において、各弁の制御系にそれぞれ設けられ、異常検出手段から出力された異常検出信号に基づいて各弁を閉じる弁閉手段とを設け、各弁の蒸気流量指令信号出力手段は異常検出手段からの異常検出信号に基づいて、蒸気流量を異常が検出された弁の蒸気流量と同一にするように最後に開かれる弁の蒸気流量指令信号を出力することにより、当該弁の蒸気流量を最後に開かれる弁で補償するようにしたことを特徴とする。
これにより、蒸気流量指令に基づき複数の弁を順次開する蒸気加減弁のうち、異常検出信号により異常が検出された弁を弁閉手段により閉じ、さらに、蒸気流量指令信号出力手段の最後に開かれる弁の蒸気流量指令を異常が検出された弁の蒸気流量と同一の出力とするため、1つの弁に故障が発生しても、それに替えて最後に開かれる弁にて蒸気流量を補償することができる。
【0017】
また、請求項3に係る発明によれば、請求項1記載のタービン制御装置において、蒸気流量指令信号出力手段は各弁の異常検出手段からの異常検出信号に基づいて、最後に開かれる弁の蒸気流量指令を出力する関数発生手段の関数を異常が検出された弁の関数と同一の関数設定とするための新たな関数発生手段を設けることにより、当該弁の蒸気流量を最後に開かれる弁で補償することを特徴とする。
これにより、蒸気流量指令に基づき複数の弁を順次開する蒸気加減弁のうち、異常検出信号により異常が検出された弁を弁閉手段により閉じ、さらに、蒸気流量指令信号出力手段内の関数発生手段により、最後に開かれる弁の蒸気流量指令を異常が検出された弁の蒸気流量と同一の出力にするため、1つの弁に故障が発生しても、それに替えて最後に開かれる弁にて蒸気流量を補償することができる。
【0018】
また、請求項4に係る発明によれば、請求項1記載のタービン制御装置において、蒸気流量指令信号出力手段は各弁の異常検出手段からの異常検出信号に基づいて、最後に開かれる弁の蒸気流量指令を異常が検出された弁の蒸気流量指令に切替える切替手段を設けることにより、当該弁の蒸気流量を最後に開かれる弁で補償することを特徴とする。
これにより、蒸気流量指令に基づき複数の弁を順次開する蒸気加減弁のうち、異常検出信号により異常が検出された弁を弁閉手段により閉じ、さらに、蒸気流量指令信号出力手段内の切替え手段により、最後に開かれる弁の蒸気流量指令を異常が検出された弁の蒸気流量指令に切替えるため、1つの弁に故障が発生しても、それに替えて最後に開かれる弁にて蒸気流量を補償することができる。
【0019】
また、請求項5に係る発明によれば、請求項1記載のタービン制御装置において、蒸気流量指令信号出力手段は各弁の異常検出手段からの異常検出信号に基づいて、最後に開かれる弁の蒸気流量指令に異常が検出された弁の蒸気流量指令を加算する加算手段を設けることにより、当該弁の蒸気流量を最後に開かれる弁で補償することを特徴とする。
これにより、蒸気流量指令に基づき複数の弁を順次開する蒸気加減弁のうち、異常検出信号により異常が検出された弁を弁閉手段により閉じ、さらに、蒸気流量指令信号出力手段内の加算手段により、第4弁の蒸気流量指令に異常が検出された弁の蒸気流量指令を加算するため、1つの弁に故障が発生しても、それに替えて最後に開かれる弁にて蒸気流量を補償することができる。
【0020】
また、請求項6に係る発明によれば、請求項1記載のタービン制御装置において、各弁の開度検出手段により検出させた開度信号を蒸気流量信号相当に変換する各弁の開度流量変換手段と、各弁の開度流量変換手段から出力される各弁の蒸気流量信号相当を加算する第1加算手段と、各弁の蒸気流量信号の総蒸気流量要求信号から第1加算手段から出力される蒸気流量信号相当信号の差を検出する第2加算手段と、各弁の蒸気流量指令信号出力手段から出力される最後に開かれる弁の蒸気流量指令信号に第2加算手段からの信号を加算する第3加算手段を設け、第3加算手段への第2加算手段から出力される信号加算は、異常検出手段から出力された異常検出信号の動作時のみとすることを特徴とする。
これにより、蒸気流量指令に基づき複数の弁を順次開する蒸気加減弁のうち、異常検出信号により異常が検出された弁を弁閉手段により閉じ、さらに、各弁の蒸気流量信号の総蒸気流量要求信号と各弁の実際に流れている合計流量との差を求め、この差を最後に開かれる弁の蒸気流量指令に加算するため、故障弁系統は1弁に限らず最後に開かれる弁が最大開度となるまでは複数の弁に異常が発生した場合でも最後に開かれる弁にて不足流量を補償することができる。
【0021】
また、請求項7に係る発明によれば、請求項1記載のタービン制御装置において、各弁の開度手段により検出させた開度信号を蒸気流量信号相当に変換する各弁の開度流量変換手段と、各弁の開度流量変換手段から出力される各弁の蒸気流量信号相当を加算する第1加算手段と、各弁の蒸気流量信号の総蒸気流量要求信号から第1加算手段から出力される蒸気流量信号相当信号の差を検出する第2加算手段を設け、最後に開かれる弁の蒸気流量指令のみは蒸気流量指令信号出力手段からの出力に替えて第2加算手段から出力信号を使用して最後に開かれる弁を制御することを特徴とする。
これにより、蒸気流量指令に基づき複数の弁を順次開する蒸気加減弁のうち、異常検出信号により異常が検出された弁を弁閉手段により閉じ、さらに、各弁の蒸気流量信号の総蒸気流量要求信号と各弁の実際に流れている合計流量との差を求め、この差を最後に開かれる弁の蒸気流量指令とするため、故障弁系統は1弁に限らず最後に開かれる弁が最大開度となるまでは複数の弁に異常が発生した場合でも最後に開かれる弁にて不足流量を補償することができる。
【0022】
また、請求項8に係る発明によれば、請求項1ないし7のうちいずれか1記載のタービン制御装置において、タービンの蒸気流入側に並列に設けられた弁を4つとし、異常検出手段で第1弁から第3弁の異常を検出すると、当該弁の蒸気流量を最後に開かれる第4弁で補償するようにしたことを特徴とする。
これにより、蒸気流量指令に基づき第1弁から第4弁まで順次開する蒸気加減弁のうち、異常検出信号により、異常が検出された弁を弁閉手段により閉じ、異常が検出された弁に替えて最後に開かれる第4弁にて蒸気流量を補償することができる。
【0023】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
図1に、本発明の第1の実施の形態に係るタービン制御装置の構成を示す。なお、図9と同一部分には、同一符号を付してその説明は省略する。
図1に示す本実施の形態においては、蒸気加減弁3Aの制御系には、弁開度検出器28Aより検出された蒸気加減弁3Aの実際の開度を示す開度信号CV4A及び弁3Aに対する開度指令信号CV3Aを基に、弁3A又は弁3Aの制御系に異常を検出すると異常検出信号F1Aを急閉検出器33Aに出力する弁異常検出器35Aが設けられている。なお、蒸気加減弁3B,3C,3Dについても各々同様に設けられている。
ここで、蒸気加減弁3Aを例にとれば、上記弁異常検出器35A,35B,35C,35Dにおける異常の検出は、弁3Aの実際の開度を示す開度信号CV4A、すなわち、蒸気加減弁3Aの開度が、蒸気加減弁3Aに対する開度指令信号CV3Aに追従して動作しなくなった場合に行われる。
弁異常検出器35Aの出力側には、異常検出信号F1Aに基づいて急閉検出信号CV9Aを出力する急閉検出器33Aが接続されている。
【0024】
さらに、図2に示すように、流量配分制御器26に、弁異常検出器35A,35B,35Cから出力される異常検出信号F1A,F1B,F1C及び蒸気流量要求信号CV1に基づいて、異常が検出された弁系の流量配分関数26A又は26B又は26Cと同様の流量配分関数を蒸気加減弁3Dの流量配分関数器26Dにセットする関数発生器26Eを設ける。
図3に本実施の形態における関数発生器26Eの入出力特性を示す。この関数発生器は異常検出信号F1Aを入力すると流量配分関数26Aと同一の関数を流量配分関数器26D に、同様に異常検出信号F1Bを入力すると流量配分関数26Bと同一の関数を流量配分関数器26D に、同様に異常検出信号F1Cを入力すると流量配分関数26Cと同一の関数を流量配分関数器26D にセットする特性を有している。
【0025】
次に、本実施の形態の蒸気タービン制御装置の動作について説明する。
本実施の形態の蒸気タービン制御装置は、プラント出力定格の95%までは蒸気加減弁3A及び蒸気加減弁3B及び蒸気加減弁3Cが順次開制御して所望の蒸気流量を流している。
今、蒸気加減弁3A又は蒸気加減弁3Aを制御する弁系統に故障が発生した場合、弁異常検出器35Aから異常検出信号F1Aが出力される。
弁異常検出器35Aから出力された異常検出信号F1Aは、急閉検出器33Aに入力され、急閉検出器33Aは急閉検出信号CV9Aを急閉操作器34Aに出力する。急閉操作器34Aは、急閉検出信号CV9Aを油圧急閉検出信号CV10Aに変換して弁操作器32Aに出力する。そして弁操作器32Aは油圧急閉検出信号CV10Aに基づいて蒸気加減弁3Aを全閉する。
【0026】
さらに、異常検出信号F1Aは流量配分制御器26に出力される。
流量配分制御器26内の関数発生器26Eは異常検出信号F1Aの入力により流量配分関数26Aと同一の関数を流量配分関数器26Dにセットし、流量配分関数器26Dから出力する蒸気加減弁3Dを制御するCV流量指令CV2Dは故障の発生した蒸気加減弁3Aを制御するCV流量指令CV2Aと同一流量指令となる。
【0027】
これにより、蒸気加減弁3Dは故障により弁開度が全閉となっている蒸気加減弁3Aの必要とする開度を得ることができる。
以上、蒸気加減弁3A又は蒸気加減弁3Aを制御する弁系統に故障が発生した場合について説明したが、蒸気加減弁3B又は蒸気加減弁3Bを制御する弁系統及び蒸気加減弁3C又は蒸気加減弁3Cを制御する弁系統に故障が発生した場合にも同様の動作が行なわれる。
【0028】
したがって、本実施の形態に係るタービン制御装置によれば、プラント出力定格の95%までの運転範囲では、蒸気加減弁3A,3B,3Cあるいは蒸気加減弁3A,3B,3Cを制御する弁系統に故障が発生した場合であっても、故障した系統の弁を除外して蒸気加減弁3Dにより開度補償を行なうことができる。このため、タービンの蒸気流量を確保することができ、その結果プラント出力を変えることなくプラント運転を継続することができる。
また、プラント出力95%〜100%で蒸気加減弁3Dが開の状態で運転していた時に、蒸気加減弁3A,3B,3Cが異常になった場合でも、タービン出力を5%減の95%で継続することができタービン出力低下を最少に抑えることができる。
【0029】
図4に、本発明の第2の実施の形態に係るタービン制御装置内の流量配分制御器26の構成を示す。なお、流量配分制御器26内の構成の他は、図1に示す第1の実施の形態と同様であり、図1と同一部分には、同一符号を付してその説明を省略する。
図4に示す本実施の形態においては、流量配分制御器26に弁異常検出器35A,35B,35Cから出力される異常検出信号F1A,F1B,F1Cにより動作する切替器F1AS1,F1BS1,F1CS1及びF1AS2,F1BS2,F1CS2新たにを設ける。
【0030】
そして、蒸気加減弁3Dを制御するCV流量指令CV2Dを出力する回路は、通常、流量配分関数器26Dからの信号が出力されているが、異常検出信号F1Aが入力された際には切替器F1AS1が閉及びF1AS2が開動作し、流量配分関数器26Dからの信号は切離し、流量配分関数器26Aからの信号が出力される。同様に異常検出信号F1Bが入力された際には切替器F1BS1が閉及びF1BS2が開、異常検出信号F1Cが入力された際には切替器F1CS1が閉及びF1CS2が開動作し、流量配分関数器26Dからの信号は切離し、流量配分関数器26B又は26Cからの信号が出力されるように構成する。
【0031】
次に、本実施の形態の蒸気タービン制御装置の動作について説明する。
本実施の形態の蒸気タービン制御装置は、プラント出力定格の95%までは蒸気加減弁3A及び蒸気加減弁3B及び蒸気加減弁3Cが順次開制御して所望の蒸気流量を流している。
【0032】
今、蒸気加減弁3A又は蒸気加減弁3Aを制御する弁系統に故障が発生した場合、弁異常検出器35Aから異常検出信号F1Aが流量配分制御器26に出力される。
流量配分制御器26内では異常検出信号F1Aの入力により正常時流量配分関数26Dからの出力であったCV流量指令CV2Dは流量配分関数器26Aからの出力に切替えられ、故障の発生した蒸気加減弁3Aを制御するのCV流量指令CV2Aと同一と流量指令となる。
【0033】
これにより、蒸気加減弁3Dは故障により弁開度が全閉となっている蒸気加減弁3Aの本来必要とする開度を得ることができる。
以上、蒸気加減弁3A又は蒸気加減弁3Aを制御する弁系統に故障が発生した場合について説明したが、蒸気加減弁3B又は蒸気加減弁3Bを制御する弁系統及び蒸気加減弁3C又は蒸気加減弁3Cを制御する弁系統に故障が発生した場合にも同様の動作が行なわれる。
したがって、本実施の形態に係るタービン制御装置によれば、第1の実施の形態と同様の効果を得ることができる。
【0034】
図5に、本発明の第3の実施の形態に係るタービン制御装置内の流量配分制御器26の構成を示す。なお、流量配分制御器26内の構成の他は、図1に示す第1の実施の形態と同様であり、図1と同一部分には、同一符号を付してその説明を省略する。
図5に示す本実施の形態においては、流量配分制御器26に弁異常検出器35A,35B,35Cから出力される異常検出信号F1A,F1B,F1Cにより動作する切替器F1AS1,F1BS1,F1CS1及び切替器F1AS1を介した流量配分関数器26Aからの信号と、切替器F1BS1を介した流量配分関数器26Bからの信号と、切替器F1CS1を介した流量配分関数器26Cからの信号と、流量配分関数器26Dからの信号を加算する加算器26Fを新たにを設ける。
【0035】
そして、蒸気加減弁3Dを制御するのCV流量指令CV2D1を出力する回路は通常、流量配分関数器26DからのCV2D信号と同一信号が出力されるようになっているため、異常検出信号F1Aが入力された際には切替器F1AS1が動作し、流量配分関数器26DからのCV2D信号に、流量配分関数器26AからのCV2A信号が加算器26Fにより加算されCV2D1として出力される。同様に異常検出信号F1Bが入力された際には切替器F1BS1が、異常検出信号F1Cが入力された際には切替器F1CS1が動作し、流量配分関数器26DからのCV2D信号に、流量配分関数器26B又は26CからのCV2B又はCV2C信号が加算されCV2D1信号として出力されるように構成する。
【0036】
次に、本実施の形態の蒸気タービン制御装置の動作について説明する。
蒸気加減弁3A又は蒸気加減弁3Aを制御する弁系統に故障が発生した場合、弁異常検出器35Aから異常検出信号F1Aが流量配分制御器26に出力される。
流量配分制御器26内では異常検出信号F1Aの入力により正常時流量配分関数26Dからの出力のみであったCV流量指令CV2D1は、流量配分関数器26AからのCV2A信号出力が加算され蒸気加減弁3Dの流量指令としてCV2D1が出力される。
【0037】
これにより、蒸気加減弁3Dは故障により弁開度が全閉となっている蒸気加減弁3Aの本来必要とする開度を得ることができる。
以上、蒸気加減弁3A又は蒸気加減弁3Aを制御する弁系統に故障が発生した場合について説明したが、蒸気加減弁3B又は蒸気加減弁3Bを制御する弁系統及び蒸気加減弁3C又は蒸気加減弁3Cを制御する弁系統に故障が発生した場合にも同様の動作となる。
したがって、本実施の形態に係るタービン制御装置によれば、第1の実施の形態と同様の効果を得ることができる。
【0038】
図6に、本発明の第4の実施の形態に係るタービン制御装置に新たに設けた流量演算部400の構成図を示す。ここで、流量演算部は図1に示すタービン制御装置の流量配分制御部26と流量/開度変換器27Dの間に新たに設けたものであり、その他の構成は、図1に示す第1の実施の形態と同様であり、図1と同一部分には同一符号を付してその説明を省略する。
図6に示す本実施の形態においては、弁開度検出器28A,28B,28Cから出力される開度信号CV4A,開度信号CV4B,開度信号CV4Cから各弁を流れる蒸気流量信号相当を検出する開度流量変換器40A,40B,40Cと開度流量変換器40A,40B,40Cより出力された各弁の流量相当信号CV20A,CV20B,CV20Cを加算する加算器41と、CV流量指令CV1より加算器41の出力信号CV21の偏差信号を演算する加算器42と、加算器42より出力される流量偏差信号CV22と流量配分制御器26内の配分関数器26DからのCV2D信号とを加算する加算器43と、弁異常検出器35A、35B,35Cから出力される異常検出信号F1A,F1B,F1Cにより動作する切替器F1AS1,F1BS1,F1CS1を、流量演算部400として新たにを設けた構成とする。ここで、流量演算部400は、流量配分制御器26DからのCV2D信号に対して,開度信号CV4A,CV4B,CV4Cの値をもとに演算処理することによって,蒸気加減弁3Dの蒸気流量(不足分)を求めるものである。
【0039】
次に、本実施の形態の蒸気タービン制御装置の動作について説明する。
本実施の形態の蒸気タービン制御装置は,プラント出力定格の95%までは蒸気加減弁3A及び蒸気加減弁3B及び蒸気加減弁3Cが順次開制御して所望の蒸気流量を流している。
【0040】
今、蒸気加減弁3A又は蒸気加減弁3Aを制御する弁系統に故障が発生した場合、弁異常検出器35Aから異常検出信号F1Aが出力される。
弁異常検出器35Aから出力された異常検出信号F1Aは,急閉検出器33Aに入力され、急閉検出器33Aは急閉検出信号CV9Aを急閉操作器34Aに出力する。急閉操作器34Aは、急閉検出信号CV9Aを油圧急閉検出信号CV10Aに変換して弁操作器32Aに出力する。そして弁操作器32Aは油圧急閉検出信号CV10Aに基づいて蒸気加減弁3Aを全閉する。
【0041】
さらに、今回新たに設けられた流量演算部400により、開度流量変換器40A,40B,40Cにより各弁を流れる蒸気流量信号相当を検出し開度流量変換器40A,40B,40Cより出力された各弁の流量相当信号CV20A,CV20B,CV20Cを加算器41により加算することにより第1弁から第3弁で流れている合計の総蒸気流量相当の信号が検出できる。さらに加算器41によりCV流量指令CV1と第1弁から第3弁の総蒸気流量相当信号CV21との偏差を演算することにより蒸気加減弁3A,3B,3C,3Dで流すべき所望の蒸気流量に対する不足分が求められる。
【0042】
さらに、不足分の蒸気流量信号CV22を弁異常検出器35A,35B,35Cから出力される異常検出信号F1A,F1B,F1Cにより動作する切替器F1AS1,F1BS1,F1CS1を介して加算器43に入力し蒸気加減弁3DのCV流量指令CV2Dに加算され、CV流量指令CV23として流量開度変換器27Dに入力される。これにより所望の蒸気流量に対する不足分を蒸気加減弁3Dにて補償することができる。
【0043】
したがって、本実施の形態に係るタービン制御装置によれば、プラント出力定格の95%までの運転範囲では、蒸気加減弁3A,3B,3C或いは蒸気加減弁3A,3B,3Cを制御する弁系統に故障が発生した場合であっても、故障した系統の弁を除外して蒸気加減弁3Dにより補償することができるので、タービンの蒸気流量を確保することができ、その結果プラント出力を変えることなくプラント運転を継続することができる。
さらに、上記説明ではプラント出力が定格の95%までで説明したが、本実施の形態によればこのプラント出力を超えたり、また故障弁系統が複数あった場合にも、蒸気加減弁3Dの弁開度が最大開度となるまでは補償できることになる。
【0044】
図7に、本発明の第5の実施の形態に係る流量配分制御器の構成を示す。なお、流量配分制御器26内の構成の他は、図1に示す第1の実施の形態と同様であり、図1と同一部分には、同一符号を付してその説明を省略する。
図7に示す本実施の形態においては、流量配分制御器26に異常検出信号F1A,F1B,F1Cの入力により動作するCV流量指令回路410を新たに設ける。このCV流量指令回路410は、弁開度検出器28A,28B,28Cから出力される開度信号CV4A,CV4B,CV4Cから各弁を流れる蒸気流量信号相当を検出する開度流量変換器40A,40B,40Cと開度流量変換器40A,40B,40Cより出力された各弁の流量相当信号CV20A,CV20B,CV20Cを加算する加算器51と、CV流量指令CV1より加算器51の出力信号CV31の偏差信号を演算する加算器52から構成される。
【0045】
そして、蒸気加減弁3Dを制御するCV流量指令として、通常、流量配分関数器26Dからの信号CV2Dが出力されるが、異常検出信号F1A,F1B,F1Cが入力されたときは、CV流量指令回路410が動作し、 信号CV2Dに替えて信号CV32を出力するように構成する。
【0046】
次に、本実施の形態の蒸気タービン制御装置の動作について説明する。
本実施の形態の蒸気タービン制御装置は、蒸気加減弁3A及び蒸気加減弁3B及び蒸気加減弁3Cを順次開制御して所望の蒸気流量を流している。
今、蒸気加減弁3A又は蒸気加減弁3Aを制御する弁系統に故障が発生した場合、弁異常検出器35Aから異常検出信号F1Aが出力される。
弁異常検出器35Aから出力された異常検出信号F1Aは、急閉検出器34Aに入力され、急閉検出器33Aは急閉検出信号CV9Aを急閉操作器33Aに出力する。急閉操作器34Aは、急閉検出信号CV9Aを油圧急閉検出信号CV10Aに変換して弁操作器32Aに出力する。そして弁操作器32Aは油圧急閉検出信号CV10Aに基づいて蒸気加減弁3Aを全閉する。
【0047】
さらに、新たに設けた、蒸気加減弁3Dの開度を決めるCV流量指令回路410により、開度流量変換器40A、40B、40Cにより第1弁から第3弁を流れる蒸気流量信号相当を検出し開度流量変換器40A、40B、40Cより出力された第1弁から第3弁の流量相当信号CV20A、CV20B、CV20Cを加算器51により加算することにより第1弁から第3弁で流れている蒸気加減弁3A,3B,3Cの合計の総蒸気流量相当の信号が検出できる。さらに加算器51によりCV流量指令CV1と蒸気加減弁3A,3B,3Cの合計総蒸気流量相当信号CV31との偏差を演算することにより蒸気加減弁3A,3B,3Cで流すべき所望の蒸気流量に対する不足分が求められる。
【0048】
さらに、図1の流量配分関数器26Dをやめ、流量配分関数器26Dで求められたCV流量指令CV2Dに変えて、加算器52で求められた出力信号CV32を、蒸気加減弁3DのCV流量指令にすることにより、所望の蒸気流量に対する蒸気加減弁3A及び蒸気加減弁3B及び蒸気加減弁3Cで得られる蒸気流量の不足分を蒸気加減弁3Dにて得ることができる。
言い替えれば蒸気加減弁3A,3B,3Cの各弁にて本来得るべき蒸気流量が不足分を蒸気加減弁3Dにて得ることができる。
【0049】
本実施の形態に係るタービン制御装置によれば、蒸気加減弁3A,3B,3C或いは蒸気加減弁3A,3B,3Cを制御する弁系統に故障が発生した場合であっても、故障した系統の弁を除外して蒸気加減弁3Dによりの蒸気加減弁3Dの弁開度が最大開度となるまでは補償することができるので、所望のタービンの蒸気流量を確保することができ、その結果プラント出力を変えることなくプラント運転を継続することができる。
【0050】
なお、上述の実施の形態においては、蒸気加減弁が4つの場合について説明しているが、任意の複数の蒸気加減弁の場合にも同様に適用することができる。また、弁閉手段としては、たとえば、弁を急速に閉じる場合を考慮し、急閉検出器や急閉操作器を用いたが、これに限るものではない。
【0051】
【発明の効果】
請求項1ないし請求項8に係る発明によれば、最後に開かれる弁の制御を必要としないプラント出力定格の95%以下の範囲では、1つの弁に故障が発生した場合にもタービン出力を変えることなくプラントの運転を継続させることができる。
さらに、請求項6または請求項7の構成によれば、各々に記載の手段によりプラント出力が定格の95%を超えたり、また複数の弁系統に異常が発生した場合にも、最後に開かれる弁が最大開度となるまではこの最後に開かれる弁で不足流量を補償できるため、タービン出力を変えることなくプラントの運転を継続させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るタービン制御装置の構成図
【図2】本発明の第1の実施の形態における流量配分制御部の内部構成図
【図3】本発明の第1の実施の形態の流量配分制御部内における関数発生器の入出力特性図
【図4】本発明の第2の実施の形態における流量配分制御部の内部構成図
【図5】本発明の第3の実施の形態における流量配分制御部の内部構成図
【図6】本発明の第4の実施の形態に係るタービン制御装置の構成を示す図
【図7】本発明の第5の実施の形態に係るタービン制御装置の構成図
【図8】従来の火力発電所における蒸気タービン系統の構成図
【図9】従来の蒸気加減弁制御装置の構成図
【図10】従来の蒸気加減弁制御装置における流量配分制御部の内部構成図
【図11】従来の流量配分制御部内における関数発生器の入出力特性図
【符号の説明】
1…蒸気発生器、2…主蒸気止め弁、3,3A,3B,3C,3D…蒸気加減弁、4…蒸気供給配管、5…高圧タービン、6…速度検出器、7…再熱器、8…中間蒸気弁、9…低圧タービン、10…復水器、11…負荷、21…タービン基準速度設定器、22…加算器、23…CV係数器、24…出力設定器、25…加算器、26…流量配分制御部、26A,26B,26C,26D…流量配分関数器、26E…関数発生器、26F…加算器、27A,27B,27C,27D…流量/開度変換器、28A,28B,28C,28D…弁開度検出器、29A,29B,29C,29D…加算器,30A,30B,30C,30D…増幅器、31A,31B,31C,31D…電気/油圧変換器、32A,32B,32C,32D…弁操作器、33A,33B,33C,33D…急閉検出器、34A,34B,34C,34D…急閉操作器、35A,35B,35C,35D…弁異常検出器、40A,40B,40C…開度/流量変換器、41,42,43…加算器、F1AS1,F1AS2,F1BS1,F1BS2,F1CS1,F1CS2…切替器、400…流量演算部、410…CV流量指令回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a turbine control device that controls a steam flow rate of a steam turbine in a thermal power plant or a nuclear power plant.
[0002]
[Prior art]
For steam turbine control in thermal power plants and nuclear power plants, the amount of steam supplied to the steam supply system of the steam turbine is determined by a plurality of valves provided in parallel with the steam supply system of the steam turbine according to the steam flow request signal. Are sequentially controlled by opening and closing.
[0003]
FIG. 8 shows the configuration of the steam turbine system in the thermal power plant.
As shown in the figure, a steam generator 1 is connected to an inflow side of a high-pressure turbine 5 by a steam supply pipe 4 through a main steam stop valve 2 and a steam control valve (CV) 3.
A speed detector 6 for detecting a speed signal S2 proportional to the turbine speed is installed on the shaft end side of the high-pressure turbine 5.
The steam control valve 3 is provided with four valves (only one valve is shown for convenience in the figure) in parallel with the high-pressure turbine 5, and these valves are controlled to open and close in order from the first valve to the final valve. The steam flow rate of the steam flowing into the turbine 5 is controlled.
[0004]
On the outflow side of the high-pressure turbine 5, there are a reheater 7 for adding heat to the steam finished work in the high-pressure turbine 5, and an intermediate steam valve (IV) 8 for adjusting the amount of steam from the reheater 7. Is connected to the inflow side of the low-pressure turbine 9 by the steam supply pipe 4.
On the outflow side of the low-pressure turbine 9, a condenser 10 for condensing steam that has finished work in the low-pressure turbine 9 is provided, and the water condensed in the condenser 10 is recovered from the condensate. Collected in the system.
Furthermore, a generator 10 is directly connected to the shaft end of the low-pressure turbine 9, and the generator 10 converts the mechanical output obtained by the turbine into electric energy and supplies it to the load 11.
[0005]
Next, the operation of such a steam turbine system will be described.
The steam generated in the steam generator 1 enters the steam control valve 3 through the main steam stop valve 2 that is fully open during turbine operation, and the amount of steam adjusted by the opening of the steam control valve 3. Flows into the high-pressure turbine 5.
The steam that has finished work in the high-pressure turbine 5 enters the reheater 7, and after heat is added, enters the intermediate steam valve 8, and the amount of steam adjusted by the intermediate steam valve 8 flows into the low-pressure turbine 9. .
The steam that has finished its work in the low-pressure turbine 9 is discharged to the condenser 10 and recovered into the condensate system. The generator 10 directly connected to the shaft end of the low-pressure turbine 9 converts the mechanical force obtained from the low-pressure turbine 9 into electric energy and supplies it to the load 11.
[0006]
Next, FIG. 9 shows the configuration of the steam control valve control device in the turbine system described above.
This steam control valve control device is a steam control valve provided in parallel with the steam supply system of the high-pressure turbine 5 shown in FIG. 3 Is to control.
[0007]
As shown in FIG. 9, on the output side of the turbine speed detector 6, the turbine speed signal S 2 detected by the turbine speed detector 6 is subtracted from the turbine reference speed S 1 set by the turbine reference speed setter 21. An adder 22 for outputting the speed deviation signal S3 is provided.
A CV coefficient unit 23 that determines the CV opening degree is connected to the output side of the adder 22. The CV coefficient unit 23 sets how much the CV opening degree is adjusted with respect to the speed deviation signal S3. This adjustment is called a CV speed adjustment rate, and is generally set so that the speed deviation signal S3 changes the valve opening degree by 100% at about 5% of the rated turbine speed.
The adder 25 adds the output set value P1 set in the output setter 24 by the operator and the output signal CV0 from the CV coefficient unit 23, and outputs the result as a CV flow rate command CV1. Further, the CV flow rate command CV 1 is input to the flow rate distribution control unit 26. The flow distribution control unit 26 calculates flow commands CV2A, CV2B, CV2C, and CV2D of each valve, here, from the valve 3A to the valve 3D, based on the CV flow command, and outputs the flow commands 27A to 27A. , 27B, 27C, 27D. Here, since the control of the valves 3A to 3D is the same, only the valve 3A will be described below, and the others will be omitted.
[0008]
The CV flow command CV2A of the valve 3A is a steam flow command that flows through the steam control valve, and is a value proportional to the turbine output value. The steam control valve opening and the steam flow through the steam control valve are It is not proportional due to the opening characteristics of the adjusting valve.
That is, the turbine output value and the CV flow rate command and the opening of the steam control valve are in a non-linear relationship. Therefore, a flow rate / opening degree converter 27A that outputs a CV opening degree command signal CV3A proportional to the CV flow rate instruction CV2A is connected to the output side of the flow rate distribution control unit 26.
The flow rate / opening converter 27A includes an adder 29A that outputs a deviation signal CV5A of the CV actual opening signal CV4A of the steam control valve 3A detected by the CV opening command signal CV3A and the valve opening detector 28A. It is connected.
[0009]
An amplifier 30A that proportionally amplifies the deviation signal CV5A and outputs it as a signal CV6A is connected to the output side of the adder 29A.
Connected to the output side of the amplifier 30A is an electric / hydraulic converter 31A that outputs the electric signal CV6A as a hydraulic signal CV7A.
The electrical / hydraulic converter 31A opens the valve when the electrical signal is positive, and closes the valve when the electrical signal is negative, and changes the opening / closing speed of the valve in proportion to the magnitude of the electrical signal to generate the hydraulic signal CV7A. Output.
Connected to the output side of the electric / hydraulic converter 31A are valve actuators 32A for converting the hydraulic signal CV7A into the mechanical position signal CV8A and operating the opening of the valve 3A.
That is, the above-described configuration is a closed loop control in which the deviation signals CV5A and CV6A are zero.
[0010]
Further, the output side of the sudden closing detector 33A is connected to a sudden closing operation unit 34A that converts the sudden closing detection signal CV9A output from the sudden closing detector 33A into a hydraulic sudden closing detection signal CV10A and outputs it. .
A valve operator 32A for suddenly closing the valve 3AD based on the hydraulic rapid-closing detection output CV10A is connected to the output side of the quick-close operator 34A.
[0011]
Next, operation | movement of a steam control valve control apparatus is demonstrated using FIG.10 and FIG.11.
A speed deviation signal S3 obtained by subtracting the turbine speed signal S2 detected by the turbine speed detector 6 from the turbine reference speed signal S1 set by the turbine reference speed setter 21 is input to the CV coefficient unit 23. .
The CV coefficient unit 23 sets the speed deviation signal S3 to be about 5% of the rated turbine speed and changes the valve opening degree by 100%, and outputs a signal CV0.
[0012]
The output value P1 from the output setting unit 24 and the output signal CV0 from the CV coefficient unit 23 are added by the adder 25 and output as a CV flow rate command CV1. Further, the CV flow command CV 1 is input to the flow distribution control unit 26. As shown in FIG. 10, the flow rate distribution control unit 26 includes function generators 26A, 26B, 26C, and 26D that sequentially open the steam control valve 3A, the steam control valve 3B, the steam control valve 3C, and the steam control valve 3D. Are provided, the CV flow command for each valve is also output in the order of CV2A, CV2B, CV2C, CV2D. In addition, as shown in FIG. 11, up to 95% of the rated output in a normal plant can be obtained by opening the steam control valves 3A, 3B, 3C only, and the steam control valve 3D is slightly opened (about several percent). The capacity of the steam control valve is designed so that an output of 95% to 100% can be obtained.
[0013]
The CV opening command CV3A and the CV actual opening CV4A detected by the valve opening detector 28A of the steam control valve 3A are input to the adder 29A, and the deviation between these signals is output as a deviation signal CV5A.
The deviation signal CV5A is proportionally amplified by the amplifier 30A, then output as a signal CV6A, and input to the electric / hydraulic converter 31A. The electric / hydraulic converter 31A converts the electric signal into a hydraulic signal CV7A and outputs it.
At this time, when the electrical signal is positive, the valve is opened, and when the electrical signal is negative, the valve is closed, and the hydraulic pressure signal CV7A is output by changing the opening / closing speed of the valve in proportion to the magnitude of the electrical signal.
The hydraulic pressure signal CV7A is converted into a mechanical position signal CV8A by the valve operating device 32A and output to adjust the opening of the steam control valve 3A.
Further, when it becomes necessary to fully close the steam control valve 3A at high speed, the sudden closing detector 33A outputs the sudden closing electric signal CV9A to excite the electromagnetic valve built in the sudden closing operator 34A. As a result, the steam control valve 3A is rapidly fully closed.
[0014]
[Problems to be solved by the invention]
However, in the above-described configuration, when the operation is performed to obtain a desired output required for the plant while sequentially opening and closing a plurality of valves, the steam control valve or the control system of each steam control valve has failed. If it occurs, there is a possibility that a desired output cannot be obtained and troubles occur in plant operation.
The present invention has been made in view of the above circumstances, and even when a failure occurs in the steam control valve or the system of each steam control valve, the steam control valve that is opened last in place of the valve of the failed system is provided. An object of the present invention is to provide a turbine control device that can compensate for opening by a valve.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of valves provided in a control system for controlling the steam flow rate of steam supplied to the turbine and provided in parallel on the steam inflow side of the turbine are provided. In order to sequentially control the opening and closing of each valve according to the steam flow request signal, the steam flow command signal output means for outputting the steam flow command signal of each valve that should flow to the turbine, and each based on the steam flow command signal of each valve An opening command signal output means for outputting an opening command signal for the valve, and an opening signal output means for detecting an actual opening of each valve and outputting an opening signal provided in each valve control system; Opening / closing operation of each valve based on the opening degree command signal output from the opening degree command signal output means and the opening degree signal output from the opening degree signal output means provided in the control system of each valve Turbine control device having operating means In the control system of each valve, each valve or each valve is controlled based on the opening signal output from the opening signal output means and the opening command signal output from the opening command signal output means. An abnormality detection means for detecting an abnormality in the control system and outputting an abnormality detection signal for each valve to the steam flow rate command signal output means, and an abnormality detection signal provided from the abnormality detection means provided in each valve control system Valve closing means for closing each valve based on Steamed Based on the abnormality detection signal from the abnormality detection means, the air flow command signal output means closes the valve detected by the abnormality detection means by the valve closing means, and compensates the steam flow rate of the valve with the valve that is opened last. It is characterized by doing so.
Accordingly, among the steam control valves that sequentially open the plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing means, so that even if a failure occurs in one valve, Instead, the steam flow rate can be compensated by a valve that is opened last.
[0016]
According to a second aspect of the present invention, in the turbine control device according to the first aspect, the valve is provided in each valve control system and closes each valve based on the abnormality detection signal output from the abnormality detection means. And a steam flow rate command signal output means for each valve is finally opened based on the abnormality detection signal from the abnormality detection means so that the steam flow rate is the same as the steam flow rate of the valve where the abnormality is detected. By outputting a steam flow rate command signal of the valve, the steam flow rate of the valve is compensated by the valve that is opened last.
As a result, among the steam control valves that sequentially open a plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing means, and further opened at the end of the steam flow command signal output means. In order to make the steam flow command of the valve to be the same output as the steam flow of the valve where the abnormality is detected, even if one valve fails, the steam flow is compensated by the valve that is opened last instead be able to.
[0017]
According to a third aspect of the present invention, in the turbine control device according to the first aspect, the steam flow rate command signal output means is configured to detect the last valve to be opened based on the abnormality detection signal from the abnormality detection means of each valve. By providing new function generating means for setting the function of the function generating means for outputting the steam flow rate command to the same function setting as the function of the valve in which the abnormality is detected, the valve that opens the steam flow of the valve last is provided. It is characterized by compensating by.
As a result, among the steam control valves that sequentially open a plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing means, and further, the function generation in the steam flow command signal output means is generated. In order to make the steam flow command of the valve that is opened last the same output as the steam flow of the valve in which an abnormality is detected, even if a failure occurs in one valve, the valve that is opened last is replaced. The steam flow rate can be compensated.
[0018]
According to a fourth aspect of the present invention, in the turbine control device according to the first aspect, the steam flow rate command signal output means is configured such that the last opened valve is based on the abnormality detection signal from the abnormality detection means of each valve. By providing a switching means for switching the steam flow rate command to the steam flow rate command of the valve in which an abnormality is detected, the steam flow rate of the valve is compensated by the valve that is opened last.
Thus, among the steam control valves that sequentially open the plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing means, and further, the switching means in the steam flow command signal output means Therefore, the steam flow command of the valve that is opened last is switched to the steam flow command of the valve in which an abnormality has been detected. Can be compensated.
[0019]
According to a fifth aspect of the present invention, in the turbine control device according to the first aspect, the steam flow rate command signal output means is configured to detect the last valve to be opened based on the abnormality detection signal from the abnormality detection means of each valve. By providing an adding means for adding the steam flow rate command of the valve in which an abnormality is detected to the steam flow rate command, the steam flow rate of the valve is compensated by the last opened valve.
Thereby, among the steam control valves that sequentially open the plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing means, and the addition means in the steam flow command signal output means is further provided. To add the steam flow command of the valve where the abnormality was detected to the steam flow command of the 4th valve, even if a failure occurs in one valve, the steam flow is compensated by the valve that is opened last instead can do.
[0020]
According to the invention according to claim 6, in the turbine control device according to claim 1, the opening degree flow rate of each valve for converting the opening degree signal detected by the opening degree detecting means of each valve into the steam flow rate signal equivalent. From the conversion means, the first addition means for adding the steam flow signal equivalent of each valve outputted from the opening flow rate conversion means of each valve, and the first addition means from the total steam flow request signal of the steam flow signal of each valve A signal from the second addition means is added to the second addition means for detecting the difference between the output signals corresponding to the steam flow signal and the steam flow command signal of the valve to be opened lastly outputted from the steam flow instruction signal output means of each valve. The third addition means for adding is provided, and the signal added from the second addition means to the third addition means is added only during operation of the abnormality detection signal output from the abnormality detection means.
As a result, among the steam control valves that sequentially open the plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing means, and the total steam flow of the steam flow signal of each valve is further closed. In order to calculate the difference between the request signal and the total flow of each valve and add this difference to the steam flow command of the valve that is opened last, the failure valve system is not limited to one valve, but the valve that is opened last. Until the maximum opening is reached, even if an abnormality occurs in a plurality of valves, the insufficient flow rate can be compensated by the valve that is opened last.
[0021]
According to the invention of claim 7, in the turbine control device of claim 1, the opening degree flow rate conversion of each valve for converting the opening degree signal detected by the opening degree means of each valve into the steam flow rate signal equivalent. Output from the first addition means from the total steam flow request signal of the steam flow signal of each valve, the first addition means for adding the steam flow signal equivalent of each valve output from the opening flow rate conversion means of each valve The second addition means for detecting the difference between the signals corresponding to the steam flow signal to be performed is provided, and only the steam flow command of the valve to be opened last is output from the second addition means instead of the output from the steam flow command signal output means. Used to control the last opened valve.
As a result, among the steam control valves that sequentially open the plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing means, and the total steam flow of the steam flow signal of each valve is further closed. In order to obtain the difference between the request signal and the total flow that is actually flowing through each valve, and to use this difference as the steam flow command for the valve that is opened last, the failure valve system is not limited to one valve but the valve that is opened last. Until the maximum opening is reached, even if an abnormality occurs in a plurality of valves, the insufficient flow rate can be compensated by the valve that is opened last.
[0022]
According to an eighth aspect of the present invention, in the turbine control device according to any one of the first to seventh aspects, there are four valves provided in parallel on the steam inflow side of the turbine, and the abnormality detecting means When abnormality of the third valve is detected from the first valve, the steam flow rate of the valve is compensated by the fourth valve that is opened last.
As a result, among the steam control valves that are sequentially opened from the first valve to the fourth valve based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing means, and the valve in which the abnormality is detected is detected. Instead, the steam flow rate can be compensated by the fourth valve that is opened last.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows the configuration of the turbine control device according to the first embodiment of the present invention. The same parts as those in FIG. 9 are denoted by the same reference numerals, and the description thereof is omitted.
In the present embodiment shown in FIG. 1, the control system for the steam control valve 3A includes an opening signal CV4A indicating the actual opening of the steam control valve 3A detected by the valve opening detector 28A and the valve 3A. Based on the opening command signal CV3A, there is provided a valve abnormality detector 35A that outputs an abnormality detection signal F1A to the rapid closing detector 33A when an abnormality is detected in the valve 3A or the control system of the valve 3A. The steam control valves 3B, 3C, 3D are also provided in the same manner.
Here, taking the steam control valve 3A as an example, the detection of the abnormality in the valve abnormality detectors 35A, 35B, 35C, 35D is an opening signal CV4A indicating the actual opening of the valve 3A, that is, the steam control valve. This is performed when the opening of 3A stops following the opening command signal CV3A for the steam control valve 3A.
A sudden closing detector 33A that outputs a sudden closing detection signal CV9A based on the abnormality detection signal F1A is connected to the output side of the valve abnormality detector 35A.
[0024]
Further, as shown in FIG. 2, the flow distribution controller 26 detects an abnormality based on the abnormality detection signals F1A, F1B, F1C output from the valve abnormality detectors 35A, 35B, 35C and the steam flow rate request signal CV1. A function generator 26E is provided for setting a flow rate distribution function similar to the flow rate distribution function 26A, 26B or 26C of the valve system to the flow rate distribution function unit 26D of the steam control valve 3D.
FIG. 3 shows input / output characteristics of the function generator 26E in the present embodiment. This function generator inputs the same function as the flow distribution function 26A to the flow distribution function unit 26D when the abnormality detection signal F1A is input, and similarly, the same function as the flow distribution function 26B is input to the flow distribution function unit 26D when the abnormality detection signal F1B is input. Similarly, when the abnormality detection signal F1C is input to 26D, the same function as the flow distribution function 26C is set in the flow distribution function unit 26D.
[0025]
Next, operation | movement of the steam turbine control apparatus of this Embodiment is demonstrated.
In the steam turbine control device of the present embodiment, the steam control valve 3A, the steam control valve 3B, and the steam control valve 3C are sequentially controlled to open a desired steam flow rate up to 95% of the plant output rating.
If a failure occurs in the steam control valve 3A or the valve system that controls the steam control valve 3A, an abnormality detection signal F1A is output from the valve abnormality detector 35A.
The abnormality detection signal F1A output from the valve abnormality detector 35A is input to the sudden closing detector 33A, and the sudden closing detector 33A outputs the sudden closing detection signal CV9A to the rapid closing operator 34A. The rapid closing operator 34A converts the rapid closing detection signal CV9A into a hydraulic rapid closing detection signal CV10A and outputs it to the valve operating unit 32A. Then, the valve operator 32A fully closes the steam control valve 3A based on the hydraulic rapid closing detection signal CV10A.
[0026]
Further, the abnormality detection signal F1A is output to the flow rate distribution controller 26.
The function generator 26E in the flow rate distribution controller 26 sets the same function as the flow rate distribution function 26A in the flow rate distribution function unit 26D by the input of the abnormality detection signal F1A, and sets the steam control valve 3D output from the flow rate distribution function unit 26D. The CV flow rate command CV2D to be controlled is the same flow rate command as the CV flow rate command CV2A that controls the steam control valve 3A in which the failure has occurred.
[0027]
Thereby, the steam control valve 3D can obtain the opening required by the steam control valve 3A whose valve opening is fully closed due to a failure.
The case where a failure has occurred in the steam control valve 3A or the valve system that controls the steam control valve 3A has been described above, but the valve control system that controls the steam control valve 3B or the steam control valve 3B and the steam control valve 3C or the steam control valve The same operation is performed when a failure occurs in the valve system that controls 3C.
[0028]
Therefore, according to the turbine control device according to the present embodiment, in the operating range up to 95% of the plant output rating, the valve control system for controlling the steam control valves 3A, 3B, 3C or the steam control valves 3A, 3B, 3C. Even when a failure occurs, the opening degree compensation can be performed by the steam control valve 3D, excluding the valves of the failed system. For this reason, the steam flow rate of the turbine can be secured, and as a result, the plant operation can be continued without changing the plant output.
Further, when the steam control valve 3D is operating with the plant output 95% to 100% open, even if the steam control valves 3A, 3B, 3C become abnormal, the turbine output is reduced by 5% to 95%. The turbine output can be kept to a minimum.
[0029]
FIG. 4 shows the configuration of the flow rate distribution controller 26 in the turbine control device according to the second embodiment of the present invention. The configuration other than the configuration in the flow distribution controller 26 is the same as that of the first embodiment shown in FIG. 1, and the same parts as those in FIG.
In the present embodiment shown in FIG. 4, the switches F1AS1, F1BS1, F1CS1 and F1AS2 operated by the abnormality detection signals F1A, F1B, F1C output from the valve abnormality detectors 35A, 35B, 35C to the flow distribution controller 26. , F1BS2, F1CS2 are newly provided.
[0030]
The circuit that outputs the CV flow command CV2D that controls the steam control valve 3D normally outputs a signal from the flow distribution function unit 26D, but when the abnormality detection signal F1A is input, the switch F1AS1. Is closed and F1AS2 is opened, the signal from the flow distribution function unit 26D is disconnected, and the signal from the flow distribution function unit 26A is output. Similarly, when the abnormality detection signal F1B is input, the switching unit F1BS1 is closed and F1BS2 is opened, and when the abnormality detection signal F1C is input, the switching unit F1CS1 is closed and F1CS2 is opened, and the flow distribution function unit The signal from 26D is disconnected and the signal from the flow distribution function unit 26B or 26C is output.
[0031]
Next, operation | movement of the steam turbine control apparatus of this Embodiment is demonstrated.
In the steam turbine control device of the present embodiment, the steam control valve 3A, the steam control valve 3B, and the steam control valve 3C are sequentially controlled to open a desired steam flow rate up to 95% of the plant output rating.
[0032]
If a failure occurs in the steam control valve 3A or the valve system that controls the steam control valve 3A, an abnormality detection signal F1A is output from the valve abnormality detector 35A to the flow rate distribution controller 26.
In the flow rate distribution controller 26, the CV flow rate command CV2D, which is the output from the normal flow rate distribution function 26D, is switched to the output from the flow rate distribution function unit 26A by the input of the abnormality detection signal F1A, and the steam control valve in which a failure has occurred. The flow rate command is the same as the CV flow rate command CV2A for controlling 3A.
[0033]
Thereby, the steam control valve 3D can obtain the opening degree originally required for the steam control valve 3A whose valve opening degree is fully closed due to a failure.
The case where a failure has occurred in the steam control valve 3A or the valve system that controls the steam control valve 3A has been described above, but the valve control system that controls the steam control valve 3B or the steam control valve 3B and the steam control valve 3C or the steam control valve The same operation is performed when a failure occurs in the valve system that controls 3C.
Therefore, according to the turbine control device according to the present embodiment, the same effects as those of the first embodiment can be obtained.
[0034]
FIG. 5 shows a configuration of the flow rate distribution controller 26 in the turbine control device according to the third embodiment of the present invention. The configuration other than the configuration in the flow distribution controller 26 is the same as that of the first embodiment shown in FIG. 1, and the same parts as those in FIG.
In the present embodiment shown in FIG. 5, the switches F1AS1, F1BS1, F1CS1 operated by the abnormality detection signals F1A, F1B, F1C output from the valve abnormality detectors 35A, 35B, 35C to the flow distribution controller 26 and the switching are provided. A signal from the flow distribution function unit 26A through the switch F1AS1, a signal from the flow distribution function unit 26B through the switch F1BS1, a signal from the flow distribution function unit 26C through the switch F1CS1, and a flow distribution function An adder 26F for adding the signals from the adder 26D is newly provided.
[0035]
The circuit that outputs the CV flow command CV2D1 for controlling the steam control valve 3D normally outputs the same signal as the CV2D signal from the flow distribution function unit 26D, and therefore the abnormality detection signal F1A is input. When this occurs, the switch F1AS1 operates, and the CV2A signal from the flow distribution function unit 26A is added to the CV2D signal from the flow distribution function unit 26D by the adder 26F, and is output as CV2D1. Similarly, when the abnormality detection signal F1B is input, the switch F1BS1 operates. When the abnormality detection signal F1C is input, the switch F1CS1 operates, and the CV2D signal from the flow distribution function unit 26D is converted into the flow distribution function. The CV2B or CV2C signal from the device 26B or 26C is added and output as a CV2D1 signal.
[0036]
Next, operation | movement of the steam turbine control apparatus of this Embodiment is demonstrated.
When a failure occurs in the steam control valve 3A or the valve system that controls the steam control valve 3A, the abnormality detection signal F1A is output from the valve abnormality detector 35A to the flow rate distribution controller 26.
The CV flow command CV2D1, which was only output from the normal flow distribution function 26D by the input of the abnormality detection signal F1A in the flow distribution controller 26, is added with the CV2A signal output from the flow distribution function unit 26A, and the steam control valve 3D. CV2D1 is output as the flow rate command.
[0037]
Thereby, the steam control valve 3D can obtain the opening degree originally required for the steam control valve 3A whose valve opening degree is fully closed due to a failure.
The case where a failure has occurred in the steam control valve 3A or the valve system that controls the steam control valve 3A has been described above, but the valve control system that controls the steam control valve 3B or the steam control valve 3B and the steam control valve 3C or the steam control valve The same operation is performed when a failure occurs in the valve system that controls 3C.
Therefore, according to the turbine control device according to the present embodiment, the same effects as those of the first embodiment can be obtained.
[0038]
FIG. 6 shows a configuration diagram of a flow rate calculation unit 400 newly provided in the turbine control apparatus according to the fourth embodiment of the present invention. Here, the flow rate calculation unit is newly provided between the flow rate distribution control unit 26 and the flow rate / opening degree converter 27D of the turbine control device shown in FIG. 1, and other configurations are the first configuration shown in FIG. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
In the present embodiment shown in FIG. 6, the equivalent of the steam flow signal flowing through each valve is detected from the opening signal CV4A, the opening signal CV4B, and the opening signal CV4C output from the valve opening detectors 28A, 28B, 28C. From the opening degree flow converters 40A, 40B, 40C to be added and the adder 41 for adding the flow rate equivalent signals CV20A, CV20B, CV20C of the respective valves outputted from the opening degree flow converters 40A, 40B, 40C, and the CV flow rate command CV1 An adder 42 that calculates a deviation signal of the output signal CV21 of the adder 41, an addition that adds the flow deviation signal CV22 output from the adder 42 and the CV2D signal from the distribution function unit 26D in the flow distribution controller 26. And a switch F1AS1, which is operated by the abnormality detection signals F1A, F1B, F1C output from the valve abnormality detectors 35A, 35B, 35C. 1BS1, the F1CS1, and newly a provided configuration as flow rate calculation unit 400. Here, the flow rate calculation unit 400 performs a calculation process on the CV2D signal from the flow rate distribution controller 26D based on the values of the opening degree signals CV4A, CV4B, and CV4C, so that the steam flow rate of the steam control valve 3D ( Deficiency).
[0039]
Next, operation | movement of the steam turbine control apparatus of this Embodiment is demonstrated.
In the steam turbine control device of the present embodiment, the steam control valve 3A, the steam control valve 3B, and the steam control valve 3C are sequentially controlled to open a desired steam flow rate up to 95% of the plant output rating.
[0040]
If a failure occurs in the steam control valve 3A or the valve system that controls the steam control valve 3A, an abnormality detection signal F1A is output from the valve abnormality detector 35A.
The abnormality detection signal F1A output from the valve abnormality detector 35A is input to the sudden closing detector 33A, and the sudden closing detector 33A outputs the sudden closing detection signal CV9A to the rapid closing operation unit 34A. The rapid closing operator 34A converts the rapid closing detection signal CV9A into a hydraulic rapid closing detection signal CV10A and outputs it to the valve operating unit 32A. Then, the valve operator 32A fully closes the steam control valve 3A based on the hydraulic rapid closing detection signal CV10A.
[0041]
Further, the flow rate calculation unit 400 newly provided this time detects the equivalent of the steam flow rate signal flowing through each valve by the opening degree flow rate converters 40A, 40B, 40C, and is output from the opening degree flow rate converters 40A, 40B, 40C. By adding the flow rate equivalent signals CV20A, CV20B, and CV20C of the respective valves by the adder 41, signals corresponding to the total total steam flow flowing from the first valve to the third valve can be detected. Further, the adder 41 calculates the deviation between the CV flow rate command CV1 and the total steam flow equivalent signal CV21 of the first valve to the third valve, and thereby the desired steam flow to be flowed by the steam control valves 3A, 3B, 3C, 3D. A shortage is required.
[0042]
Further, the insufficient steam flow rate signal CV22 is input to the adder 43 via the switching devices F1AS1, F1BS1, and F1CS1 operated by the abnormality detection signals F1A, F1B, and F1C output from the valve abnormality detectors 35A, 35B, and 35C. It is added to the CV flow rate command CV2D of the steam control valve 3D and input to the flow rate opening degree converter 27D as the CV flow rate command CV23. Thereby, the shortage with respect to the desired steam flow rate can be compensated by the steam control valve 3D.
[0043]
Therefore, according to the turbine control device according to the present embodiment, the valve control system for controlling the steam control valves 3A, 3B, 3C or the steam control valves 3A, 3B, 3C in the operating range up to 95% of the plant output rating. Even if a failure occurs, the steam control valve 3D can be compensated by excluding the failed system valve, so that the steam flow rate of the turbine can be secured, and as a result, the plant output is not changed. Plant operation can be continued.
Furthermore, in the above description, the plant output has been described up to 95% of the rating. However, according to the present embodiment, even when this plant output is exceeded or there are a plurality of failure valve systems, the valve of the steam control valve 3D. Compensation is possible until the opening reaches the maximum opening.
[0044]
FIG. 7 shows a configuration of a flow rate distribution controller according to the fifth embodiment of the present invention. The configuration other than the configuration in the flow distribution controller 26 is the same as that of the first embodiment shown in FIG. 1, and the same parts as those in FIG.
In the present embodiment shown in FIG. 7, a CV flow rate command circuit 410 that operates in response to the input of abnormality detection signals F1A, F1B, and F1C is newly provided in the flow rate distribution controller 26. This CV flow rate command circuit 410 detects opening flow rate converters 40A and 40B that detect the equivalent of the steam flow signal flowing through each valve from the opening signals CV4A, CV4B, and CV4C output from the valve opening detectors 28A, 28B, and 28C. , 40C and the flow rate equivalent signals CV20A, CV20B, CV20C of the valves output from the opening flow rate converters 40A, 40B, 40C, and the deviation of the output signal CV31 of the adder 51 from the CV flow rate command CV1 It comprises an adder 52 for computing a signal.
[0045]
As a CV flow command for controlling the steam control valve 3D, a signal CV2D from the flow distribution function unit 26D is normally output. When the abnormality detection signals F1A, F1B, F1C are input, a CV flow command circuit is provided. 410 operates, and is configured to output the signal CV32 instead of the signal CV2D.
[0046]
Next, operation | movement of the steam turbine control apparatus of this Embodiment is demonstrated.
In the steam turbine control device of the present embodiment, the steam control valve 3A, the steam control valve 3B, and the steam control valve 3C are sequentially opened to flow a desired steam flow rate.
If a failure occurs in the steam control valve 3A or the valve system that controls the steam control valve 3A, an abnormality detection signal F1A is output from the valve abnormality detector 35A.
The abnormality detection signal F1A output from the valve abnormality detector 35A is input to the rapid closing detector 34A, and the rapid closing detector 33A outputs the rapid closing detection signal CV9A to the rapid closing operation unit 33A. The rapid closing operator 34A converts the rapid closing detection signal CV9A into a hydraulic rapid closing detection signal CV10A and outputs it to the valve operating unit 32A. Then, the valve operator 32A fully closes the steam control valve 3A based on the hydraulic rapid closing detection signal CV10A.
[0047]
Further, the newly provided CV flow rate command circuit 410 that determines the opening of the steam control valve 3D detects the equivalent of the steam flow signal flowing from the first valve to the third valve by the opening flow rate converters 40A, 40B, and 40C. By adding the flow-equivalent signals CV20A, CV20B, CV20C of the first valve to the third valve output from the opening flow rate converters 40A, 40B, 40C by the adder 51, the first valve flows from the first valve to the third valve. A signal corresponding to the total total steam flow of the steam control valves 3A, 3B, 3C can be detected. Further, by calculating the deviation between the CV flow command CV1 and the total steam flow equivalent signal CV31 of the steam control valves 3A, 3B, 3C by the adder 51, the desired steam flow to be made to flow through the steam control valves 3A, 3B, 3C. A shortage is required.
[0048]
Further, the flow rate distribution function unit 26D of FIG. 1 is stopped, and instead of the CV flow rate command CV2D obtained by the flow rate distribution function unit 26D, the output signal CV32 obtained by the adder 52 is changed to the CV flow rate command of the steam control valve 3D. Thus, the steam control valve 3D can obtain the shortage of the steam flow obtained by the steam control valve 3A, the steam control valve 3B, and the steam control valve 3C with respect to the desired steam flow.
In other words, the steam control valve 3D can obtain the shortage of the steam flow that should be originally obtained by each of the steam control valves 3A, 3B, 3C.
[0049]
According to the turbine control device according to the present embodiment, even if a failure occurs in the valve control system for controlling the steam control valves 3A, 3B, 3C or the steam control valves 3A, 3B, 3C, Since it is possible to compensate until the valve opening degree of the steam control valve 3D by the steam control valve 3D reaches the maximum opening degree by excluding the valve, the steam flow rate of the desired turbine can be secured, and as a result, the plant Plant operation can be continued without changing the output.
[0050]
In addition, in the above-mentioned embodiment, although the case where the number of steam control valves is four is demonstrated, it can apply similarly to the case of arbitrary several steam control valves. Further, as the valve closing means, for example, in consideration of a case where the valve is rapidly closed, a quick closing detector or a quick closing operation device is used. However, the valve closing means is not limited to this.
[0051]
【The invention's effect】
According to the first to eighth aspects of the invention, in the range of 95% or less of the plant output rating that does not require control of the valve that is opened last, the turbine output can be increased even when one valve fails. Plant operation can be continued without change.
Furthermore, according to the structure of Claim 6 or Claim 7, when the plant output exceeds 95% of the rating by each of the means described above, or when an abnormality occurs in a plurality of valve systems, it is finally opened. Until the valve reaches the maximum opening, the last opened valve can compensate for the insufficient flow rate, so that the operation of the plant can be continued without changing the turbine output.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a turbine control device according to a first embodiment of the present invention.
FIG. 2 is an internal configuration diagram of a flow rate distribution control unit according to the first embodiment of the present invention.
FIG. 3 is an input / output characteristic diagram of a function generator in the flow rate distribution control unit of the first embodiment of the present invention.
FIG. 4 is an internal configuration diagram of a flow rate distribution control unit according to a second embodiment of the present invention.
FIG. 5 is an internal configuration diagram of a flow rate distribution control unit according to a third embodiment of the present invention.
FIG. 6 is a diagram showing a configuration of a turbine control device according to a fourth embodiment of the present invention.
FIG. 7 is a configuration diagram of a turbine control device according to a fifth embodiment of the present invention.
FIG. 8 is a configuration diagram of a steam turbine system in a conventional thermal power plant
FIG. 9 is a configuration diagram of a conventional steam control valve control device.
FIG. 10 is an internal configuration diagram of a flow rate distribution control unit in a conventional steam control valve control device.
FIG. 11 is a graph showing input / output characteristics of a function generator in a conventional flow rate distribution control unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Steam generator, 2 ... Main steam stop valve, 3, 3A, 3B, 3C, 3D ... Steam control valve, 4 ... Steam supply piping, 5 ... High-pressure turbine, 6 ... Speed detector, 7 ... Reheater, 8 ... Intermediate steam valve, 9 ... Low pressure turbine, 10 ... Condenser, 11 ... Load, 21 ... Turbine reference speed setter, 22 ... Adder, 23 ... CV coefficient unit, 24 ... Output setter, 25 ... Adder , 26 ... Flow rate distribution control unit, 26A, 26B, 26C, 26D ... Flow rate distribution function unit, 26E ... Function generator, 26F ... Adder, 27A, 27B, 27C, 27D ... Flow rate / opening degree converter, 28A, 28B , 28C, 28D ... valve opening detectors, 29A, 29B, 29C, 29D ... adders, 30A, 30B, 30C, 30D ... amplifiers, 31A, 31B, 31C, 31D ... electric / hydraulic converters, 32A, 32B, 32C, 32D ... valve actuator, 3 3A, 33B, 33C, 33D ... rapid closing detector, 34A, 34B, 34C, 34D ... rapid closing operation device, 35A, 35B, 35C, 35D ... valve abnormality detector, 40A, 40B, 40C ... opening / flow rate conversion 41, 42, 43 ... adder, F1AS1, F1AS2, F1BS1, F1BS2, F1CS1, F1CS2 ... switch, 400 ... flow rate calculation unit, 410 ... CV flow rate command circuit

Claims (8)

タービンに供給される蒸気の蒸気流量を制御する制御系に設けられ、前記タービンの蒸気流入側に並列に設けられた複数の弁を蒸気流量要求信号に応じて各弁毎に順次開閉制御するため、前記タービンに流れるべき各弁の蒸気流量指令信号を出力する蒸気流量指令信号出力手段と、前記各弁の蒸気流量指令信号に基づいて前記各弁の開度指令信号を出力する開度指令信号出力手段と、前記各弁の制御系にそれぞれ設けられ、前記各弁の実際の開度を検出して開度信号を出力する開度信号出力手段と、前記各弁の制御系にそれぞれ設けられ、前記開度指令信号出力手段から出力された開度指令信号及び前記開度信号出力手段から出力された開度信号に基づいて前記各弁の開閉操作を行う弁開閉操作手段とを備えたタービン制御装置において、前記各弁の制御系にそれぞれ設けられ、前記開度信号出力手段から出力された開度信号及び前記開度指令信号出力手段から出力された開度指令信号を基に、前記各弁または前記各弁の制御系の異常を検出し、各弁毎の異常検出信号を前記蒸気流量指令信号出力手段に出力する異常検出手段と、前記各弁の制御系にそれぞれ設けられ、前記異常検出手段から出力された異常検出信号に基づいて前記各弁を閉じる弁閉手段とを設け、前記蒸気流量指令信号出力手段は前記異常検出手段からの異常検出信号に基づいて、前記異常検出手段にて検出された弁を前記弁閉手段にて閉め、当該弁の蒸気流量を最後に開かれる弁で補償するようにしたことを特徴とするタービン制御装置。Provided in a control system for controlling the steam flow rate of steam supplied to the turbine, and sequentially opening and closing a plurality of valves provided in parallel on the steam inflow side of the turbine for each valve according to a steam flow request signal A steam flow command signal output means for outputting a steam flow command signal for each valve to flow to the turbine; and an opening command signal for outputting an opening command signal for each valve based on the steam flow command signal for each valve An output means, an opening degree signal output means for detecting an actual opening degree of each of the valves and outputting an opening degree signal, and an output means of each of the valves; and a control system of each of the valves. And a valve opening / closing operation means for opening / closing each valve based on the opening degree command signal output from the opening degree command signal output means and the opening degree signal output from the opening degree signal output means. In the control unit, before Based on the opening degree signal output from the opening degree signal output means and the opening degree instruction signal output from the opening degree command signal output means, respectively provided in the control system of each valve, An abnormality detecting means for detecting an abnormality in the control system and outputting an abnormality detection signal for each valve to the steam flow rate command signal output means, and a control system for each valve, respectively, and output from the abnormality detecting means. and was closing the valves on the basis of the abnormality detection signal closed valve means is provided, before Ki蒸 air flow rate command signal output means on the basis of the abnormality detection signal from the abnormality detecting means is detected by said abnormality detecting means The turbine control device is characterized in that the valve is closed by the valve closing means and the steam flow rate of the valve is compensated by the valve that is opened last. 請求項1記載のタービン制御装置において、前記各弁の制御系にそれぞれ設けられ、前記異常検出手段から出力された異常検出信号に基づいて前記各弁を閉じる弁閉手段とを設け、前記各弁の蒸気流量指令信号出力手段は前記異常検出手段からの異常検出信号に基づいて、蒸気流量を異常が検出された弁の蒸気流量と同一にするように最後に開かれる弁の蒸気流量指令信号を出力することにより、当該弁の蒸気流量を最後に開かれる弁で補償するようにしたことを特徴とするタービン制御装置。2. The turbine control device according to claim 1, further comprising: a valve closing unit that is provided in a control system of each of the valves and that closes each of the valves based on an abnormality detection signal output from the abnormality detection unit. Based on the abnormality detection signal from the abnormality detecting means, the steam flow rate command signal output means outputs a steam flow rate command signal of the valve that is finally opened so that the steam flow rate is the same as the steam flow rate of the valve where the abnormality is detected. A turbine control device characterized in that, by outputting, the steam flow rate of the valve is compensated by a valve that is opened last. 請求項1記載のタービン制御装置において、前記蒸気流量指令信号出力手段は前記各弁の異常検出手段からの異常検出信号に基づいて、最後に開かれる弁の蒸気流量指令を出力する関数発生手段の関数を異常が検出された弁の関数と同一の関数設定とするための新たな関数発生手段を設けることにより、当該弁の蒸気流量を最後に開かれる弁で補償することを特徴とするタービン制御装置。2. The turbine control apparatus according to claim 1, wherein the steam flow command signal output means is a function generating means for outputting a steam flow command of a valve to be opened last based on an abnormality detection signal from the abnormality detection means of each valve. Turbine control characterized by providing a new function generating means for setting the function to be the same as the function of the valve in which an abnormality is detected, thereby compensating the steam flow rate of the valve with the valve that is opened last apparatus. 請求項1記載のタービン制御装置において、前記蒸気流量指令信号出力手段は前記各弁の異常検出手段からの異常検出信号に基づいて、最後に開かれる弁の蒸気流量指令を異常が検出された弁の蒸気流量指令に切替える切替手段を設けることにより、当該弁の蒸気流量を最後に開かれる弁で補償することを特徴とするタービン制御装置。2. The turbine control device according to claim 1, wherein the steam flow command signal output means is a valve in which an abnormality is detected in a steam flow command of a valve to be opened last based on an abnormality detection signal from an abnormality detection means of each valve. By providing a switching means for switching to the steam flow rate command, the steam flow rate of the valve is compensated by the valve that is opened last. 請求項1記載のタービン制御装置において、前記蒸気流量指令信号出力手段は前記各弁の異常検出手段からの異常検出信号に基づいて、最後に開かれる弁の蒸気流量指令に異常が検出された弁の蒸気流量指令を加算する加算手段を設けることにより、当該弁の蒸気流量を最後に開かれる弁で補償することを特徴とするタービン制御装置。2. The turbine control device according to claim 1, wherein the steam flow command signal output means is a valve in which an abnormality is detected in a steam flow command of a valve to be opened last based on an abnormality detection signal from an abnormality detection means of each valve. A turbine control device characterized in that by adding an adding means for adding the steam flow rate command, the steam flow rate of the valve is compensated by the valve that is opened last. 請求項1記載のタービン制御装置において、前記各弁の開度検出手段により検出させた開度信号を蒸気流量信号相当に変換する各弁の開度流量変換手段と、前記各弁の開度流量変換手段から出力される各弁の蒸気流量信号相当を加算する第1加算手段と、前記各弁の蒸気流量信号の総蒸気流量要求信号から前記第1加算手段から出力される蒸気流量信号相当信号の差を検出する第2加算手段と、前記各弁の蒸気流量指令信号出力手段から出力される最後に開かれる弁の蒸気流量指令信号に前記第2加算手段からの信号を加算する第3加算手段とを備え、前記第3加算手段への前記第2加算手段から出力される信号加算は、前記異常検出手段から出力された異常検出信号の動作時のみとする流量演算部を設けたことを特徴とするタービン制御装置。2. The turbine control apparatus according to claim 1, wherein an opening flow rate converting means for each valve for converting an opening degree signal detected by the opening degree detecting means for each valve into a steam flow signal equivalent, and an opening flow rate for each valve. First addition means for adding the steam flow signal equivalent of each valve output from the conversion means, and a steam flow signal equivalent signal output from the first addition means from the total steam flow request signal of the steam flow signal of each valve And a third addition for adding the signal from the second addition means to the steam flow rate command signal of the valve to be opened lastly output from the steam flow rate command signal output means of each valve. And a flow rate calculation unit that performs signal addition output from the second addition means to the third addition means only during operation of the abnormality detection signal output from the abnormality detection means. Characteristic turbine control device 請求項1記載のタービン制御装置において、前記各弁の開度手段により検出させた開度信号を蒸気流量信号相当に変換する各弁の開度流量変換手段と、前記各弁の開度流量変換手段から出力される各弁の蒸気流量信号相当を加算する第1加算手段と、前記各弁の蒸気流量信号の総蒸気流量要求信号から前記第1加算手段から出力される蒸気流量信号相当信号の差を検出する第2加算手段とを備え、最後に開かれる弁の蒸気流量指令のみは前記蒸気流量指令信号出力手段からの出力に替えて前記第2加算手段から出力信号を使用して最後に開かれる弁を制御する回路を設けたことを特徴とするタービン制御装置。2. The turbine control device according to claim 1, wherein the opening degree flow rate conversion means of each valve for converting the opening degree signal detected by the opening degree means of each valve into a steam flow rate signal equivalent, and the opening degree flow rate conversion of each valve. A first addition means for adding the steam flow signal equivalent of each valve output from the means, and a steam flow signal equivalent signal output from the first addition means from a total steam flow request signal of the steam flow signal of each valve. A second addition means for detecting the difference, and only the steam flow rate command of the valve that is opened last is replaced with the output from the steam flow rate command signal output means, and finally the output signal from the second addition means is used. A turbine control device comprising a circuit for controlling a valve to be opened. 請求項1ないし7のうちいずれか1記載のタービン制御装置において、前記タービンの蒸気流入側に並列に設けられた弁を4つとし、前記異常検出手段で前記第1弁から第3弁の異常を検出すると、当該弁の蒸気流量を最後に開かれる第4弁で補償するようにしたことを特徴とするタービン制御装置。The turbine control device according to any one of claims 1 to 7, wherein there are four valves provided in parallel on the steam inflow side of the turbine, and the abnormality detection means detects abnormality of the first valve to the third valve. When the engine is detected, the steam flow rate of the valve is compensated by the fourth valve that is opened last.
JP23214399A 1999-08-19 1999-08-19 Turbine controller Expired - Fee Related JP4225641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23214399A JP4225641B2 (en) 1999-08-19 1999-08-19 Turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23214399A JP4225641B2 (en) 1999-08-19 1999-08-19 Turbine controller

Publications (2)

Publication Number Publication Date
JP2001059403A JP2001059403A (en) 2001-03-06
JP4225641B2 true JP4225641B2 (en) 2009-02-18

Family

ID=16934678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23214399A Expired - Fee Related JP4225641B2 (en) 1999-08-19 1999-08-19 Turbine controller

Country Status (1)

Country Link
JP (1) JP4225641B2 (en)

Also Published As

Publication number Publication date
JP2001059403A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
JP5916043B2 (en) Method and apparatus for controlling a moisture separator reheater
US4437313A (en) HRSG Damper control
US20030167774A1 (en) Method for the primary control in a combined gas/steam turbine installation
US4007595A (en) Dual turbine power plant and a reheat steam bypass flow control system for use therein
US4007596A (en) Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply
JP4225641B2 (en) Turbine controller
KR100584835B1 (en) Feedwater control system for steam generator in nuclear power plant and control method thereof
JP3364341B2 (en) Turbine control device
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP3468854B2 (en) Turbine control device
JP5836709B2 (en) Turbine valve control device and turbine equipment
JP2823347B2 (en) Turbine control device
JP3272843B2 (en) Turbine control device
JP2531755B2 (en) Water supply control device
JPH0577501U (en) Steam turbine plant
JPH0231763B2 (en) JOKITAABINNOJOKIATSURYOKUSEIGYOSOCHI
JP2000179304A (en) Multi-series gasified combined power generating plant
JPS60187702A (en) Turbine output control method and apparatus for power generation plant
JP3132792B2 (en) Steam valve control device
JPS60233302A (en) Main steam pressure reduction prevention device
JPH0486306A (en) Combined cycle main steam temperature control device
JPS59185808A (en) Control device for main steam pressure of power plant
JPS61213504A (en) Boiler with parallel tube system, temperature thereof is controlled
JPH09195718A (en) Main steam temperature control device
JPH07293807A (en) Method for controlling water feeding in boiler of multi-shaft type combined facility and water feeding control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees