JP4224181B2 - Electrophotographic carrier - Google Patents

Electrophotographic carrier Download PDF

Info

Publication number
JP4224181B2
JP4224181B2 JP33765399A JP33765399A JP4224181B2 JP 4224181 B2 JP4224181 B2 JP 4224181B2 JP 33765399 A JP33765399 A JP 33765399A JP 33765399 A JP33765399 A JP 33765399A JP 4224181 B2 JP4224181 B2 JP 4224181B2
Authority
JP
Japan
Prior art keywords
particle size
carrier
weight
volume
saturation magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33765399A
Other languages
Japanese (ja)
Other versions
JP2001154416A (en
Inventor
政友 林
尚之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP33765399A priority Critical patent/JP4224181B2/en
Publication of JP2001154416A publication Critical patent/JP2001154416A/en
Application granted granted Critical
Publication of JP4224181B2 publication Critical patent/JP4224181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二成分系現像剤における電子写真用キャリアに関する。
【0002】
【従来の技術】
電子写真法は、光導電現象を利用し、感光体面に静電潜像を形成し、これを現像剤で現像化し、転写用紙等に定着せしめるものである。従来より、静電潜像を可視化するためには、カスケード法や磁気ブラシ法等で知られるように、キャリアとトナーを混合した二成分系現像剤が使用されている。
【0003】
二成分系現像剤のキャリアとして、特公昭62−37783号公報に記載されているように、Cu、Co、CuとZnとの組み合わせ、または、CoとCu、Zn及びMgの1〜3種との組み合わせによる磁性キャリア粒子、及び特公平5−59423号公報に記載されているように、MgO、ZnO、Fe23からなる電子写真用フェライトキャリアがある。
【0004】
しかし、近年、環境面の問題から、Cu、Co、Zn等を含まないキャリアの使用が検討されている。例えば、Cu、Co、Zn等を含まないキャリアとして、特公平2−60186号公報に記載されている、球状マグネタイト粒子よりなる電子写真用キャリアがある。
【0005】
しかし、球状マグネタイト粒子よりなる電子写真用キャリアは、実質的に飽和磁化のコントロールが不可能で、飽和磁化が高い。このため、キャリア付着に対しては有利であるが、現像トルクが高いため、現像剤の劣化が早く、耐久性に問題があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記キャリアの問題点を解消し、Cu、Zn、Co、Cr、Pb等の重金属を含まない成分で構成された、環境に優しく、キャリア付着が無く、耐久性に優れた電子写真用キャリアを提供することにある。
【0007】
【課題を解決するための手段】
本発明は、下記の構成よりなるキャリアであることを特徴とする。
【0008】
主構成成分が鉄・酸素・マグネシウムで、該マグネシウムを0.5〜10重量%含有するコア材が樹脂被覆されている電子写真用キャリアであって、飽和磁化が55〜85(Am2/kg)、残留磁化が3(Am2/kg)以下、保磁力が4(kA/m)以下であり、且つ飽和磁化をσs(Am2/kg)とし、体積基準粒度分布1%粒径をx1(μm)としたとき、σsとx1が下記式を満足することを特徴とする電子写真用キャリア。
【0009】
(1/σs)×750 ≦ x1
本発明者等は、上記目的を達成するべく鋭意検討した結果、鉄・酸素以外の主構成成分として、環境に優しい成分は、マグネシウムであることを見出した。
【0010】
本発明のコア材の構成として、最も基本的なものは、鉄・酸素・マグネシウムである。その他の成分の含有量は、合計で2重量%以下であることが望ましい。
【0011】
マグネシウムの含有量は、0.5〜10重量%であることが必要で、特に0.8〜8重量%の範囲であることが望ましい。飽和磁化は、55〜85(Am2/kg)であることが必要で、特に58〜83(Am2/kg)の範囲であることが望ましい。マグネシウムの含有量が少なくて、飽和磁化が高いと、現像トルクが高くなり耐久性に劣る。また、マグネシウムの含有量が多くて、飽和磁化が低いと、キャリア付着が発生する。
【0012】
マグネシウムの含有量を多くすると飽和磁化は低下し、焼成温度を高くすると飽和磁化は高くなる。このため、焼成温度を調整することにより、マグネシウムの含有量が0.5重量%未満でも、飽和磁化が85(Am2/kg)以下の粒子を得ることができるが、粒子の空隙量が増大し、キャリアとしては好ましくない。また、マグネシウムの含有量が、10重量%を超えても、飽和磁化が55(Am2/kg)以上のキャリアを得ることができるが、焼成温度が高くなり、経済性に問題が生じる。
【0013】
また、焼成の雰囲気を調整することにより、飽和磁化は調整できる。通常、焼成は窒素雰囲気で行うが、窒素、酸素共存下で焼成することにより、飽和磁化は低くなる。しかし、残留磁化及び保磁力が高くなる欠点がある。このため、酸素分圧を調整し、残留磁化及び保磁力を調整する必要がある。
【0014】
残留磁化は3(Am2/kg)以下にすることが必要で、特に2(Am2/kg)以下にすることが望ましい。また、保磁力は4(kA/m)以下にすることが必要で、特に3(kA/m)以下にすることが望ましい。残留磁化及び保磁力が高くなると、現像剤の流動性が悪化し、耐久性が悪化する。また、前記のキャリアは、通常樹脂被覆されている。
【0015】
【発明の実施の形態】
本発明で、使用される被覆樹脂としては、例えば、シリコーン系樹脂(シリコーン樹脂及びその誘導体)、フッ素系樹脂、スチレン系樹脂、アクリル系樹脂、メタアクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、エポキシ系樹脂、ポリエーテル系樹脂、フェノール系樹脂等が挙げられる。これらは、単独或いは組み合わせて使用することができ、また、共重合体として使用することもでき、その使用に特に制限はない。
【0016】
上記樹脂の被覆量は、樹脂の種類、キャリアに要求される帯電特性及び電気抵抗特性によって異なるが、キャリアの重量に対して、0.05〜5.0重量%の範囲が望ましい。
【0017】
次に、飽和磁化をσs(Am2/kg)とし、体積基準粒度分布1%粒径をx1(μm)としたとき、σsとx1が、(1/σs)×750≦x1、特に(1/σs)×1000≦x1を満足することが望ましい。さらに好ましくは、体積基準粒度分布50%粒径をx50(μm)としたとき、x50×0.35≦x1を満足することが望ましい。この場合、キャリア付着が防止できる。
【0018】
本発明での飽和磁化、残留磁化、保磁力の測定は、東英工業(株)製の振動型磁力計VSMP−1S型を用いる。サンプルは測定用カプセル(0.0565cc)に充填し、磁場1.1(MA/m)で測定する。また、本発明での体積基準粒度分布の測定は、SYMPATEC社製のレーザー回折式粒度分布測定装置を用いる。体積基準粒度分布1%粒径、及び体積基準粒度分布50%粒径は、得られた体積基準粒度分布を、粒径の小さい方から積算して算出する。
【0019】
本発明のキャリアは、トナーと混合して、二成分現像剤として用いられる。トナーは、結着樹脂中に着色剤等を分散させたもので、結着樹脂としては、ポリスチレン系樹脂、スチレン−アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂等が挙げられる。
【0020】
【実施例】
以下、本発明を実施例により説明する。尚、本発明は、以下の実施例に限られるものではない。
実施例1
ヘマタイトに、酸化マグネシウムをマグネシウム含有量5.0重量%になるよう配合し、次に、バインダー(ポリビニルアルコール)1.5重量%及び分散剤0.5重量%を添加し、スラリー濃度50重量%になるよう水を加えた。これを、三井鉱山(株)製のアトライターで1時間湿式粉砕混合し、スラリーを作成した。
【0021】
該スラリーをスプレードライヤーで造粒乾燥し、次に電気炉で、窒素雰囲気下、1460℃で5時間焼成し、振動フルイで分級を行ない、芯材キャリアを得た。得られた芯材キャリア1000重量部に対し、メチル系シリコーン樹脂(東レダウコーニング(株)製のSR2410)75重量部をトルエンで希釈して被覆樹脂溶液を調製し、この樹脂溶液を流動コーティング装置を用いて、上記芯材キャリアにスプレーコートした。その後、流動層にて、250℃で60分間の熱処理を行い、本発明のキャリアを得た。得られたキャリアのマグネシウム含有量は5.0重量%、飽和磁化は57(Am2/kg)、残留磁化は1(Am2/kg)、保磁力は1(kA/m)、体積基準粒度分布1%粒径は55(μm)、体積基準粒度分布50%粒径は125(μm)であった。
【0022】
このようにして得られた樹脂被覆キャリア1000重量部に対して、市販のトナー55重量部を5リットルのV型ブレンダーで30分間混合して二成分現像剤を得た。この現像剤を用い、市販の複写機で連続実写テストを行った。その結果、20万枚後においても初期の画質と大差なく、キャリア付着もなく、カブリも少なく、画像濃度の高い画像が得られた。
実施例2
ヘマタイトに、酸化マグネシウムをマグネシウム含有量1.0重量%になるよう配合し、分級条件以外は実施例1と同様な方法で芯材キャリアを得、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は1.0重量%、飽和磁化は84(Am2/kg)、残留磁化は1(Am2/kg)、保磁力は1(kA/m)、体積基準粒度分布1%粒径は59(μm)、体積基準粒度分布50%粒径は140(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、20万枚後においても初期の画質と大差なく、キャリア付着もなく、カブリも少なく、画像濃度の高い画像が得られた。
実施例3
マグネタイトに、酸化マグネシウムをマグネシウム含有量4.6重量%になるよう配合し、実施例1と分級条件以外は同様な方法で芯材キャリアを得、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は4.6重量%、飽和磁化は58(Am2/kg)、残留磁化は1(Am2/kg)、保磁力は1(kA/m)、体積基準粒度分布1%粒径は20(μm)、体積基準粒度分布50%粒径は53(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、20万枚後においても初期の画質と大差なく、キャリア付着もなく、カブリも少なく、画像濃度の高い画像が得られた。
実施例4
マグネタイトに、酸化マグネシウムをマグネシウム含有量1.3重量%になるよう配合し、実施例1と分級条件以外は同様な方法で芯材キャリアを得、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は1.3重量%、飽和磁化は82(Am2/kg)、残留磁化は1(Am2/kg)、保磁力は1(kA/m)、体積基準粒度分布1%粒径は14(μm)、体積基準粒度分布50%粒径は35(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、20万枚後においても初期の画質と大差なく、キャリア付着もなく、カブリも少なく、画像濃度の高い画像が得られた。
実施例5
マグネタイトに、酸化マグネシウムをマグネシウム含有量2.5重量%になるよう配合し、実施例1と分級条件以外は同様な方法で芯材キャリアを得、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は2.5重量%、飽和磁化は74(Am2/kg)、残留磁化は1(Am2/kg)、保磁力は1(kA/m)、体積基準粒度分布1%粒径は22(μm)、体積基準粒度分布50%粒径は50(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、20万枚後においても初期の画質と大差なく、キャリア付着もなく、カブリも少なく、画像濃度の高い画像が得られた。
実施例6
マグネタイトに、酸化マグネシウムをマグネシウム含有量2.0重量%になるよう配合し、実施例1と同様な方法でスラリーを得た。スラリーをスプレードライヤーで造粒乾燥し、次に、電気炉で、窒素+酸素雰囲気下、1460℃で焼成し、振動フルイで分級を行い、芯材キャリアを得、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は2.0重量%、飽和磁化は75(Am2/kg)、残留磁化は2(Am2/kg)、保磁力は2(kA/m)、体積基準粒度分布1%粒径は52(μm)、体積基準粒度分布50%粒径は115(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、20万枚後においても初期の画質と大差なく、キャリア付着もなく、カブリも少なく、画像濃度の高い画像が得られた。
実施例7
マグネタイトに、酸化マグネシウムをマグネシウム含有量2.5重量%になるよう配合し、実施例6と分級条件以外は同様な方法で芯材キャリアを得、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は2.5重量%、飽和磁化は72(Am2/kg)、残留磁化は2(Am2/kg)、保磁力は2(kA/m)、体積基準粒度分布1%粒径は19(μm)、体積基準粒度分布50%粒径は40(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、20万枚後においても初期の画質と大差なく、キャリア付着もなく、カブリも少なく、画像濃度の高い画像が得られた。
比較例1
ヘマタイトに、酸化マグネシウムをマグネシウム含有量10.5重量%になるよう配合し、実施例1と分級条件以外は同様な方法で芯材キャリアを得、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は10.5重量%、飽和磁化は52(Am2/kg)、残留磁化は1(Am2/kg)、保磁力は1(kA/m)、体積基準粒度分布1%粒径は22(μm)、体積基準粒度分布50%粒径は50(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、初期からキャリア付着が発生した。
比較例2
芯材キャリアにマグネタイト(ヘガネス社製)を使用した以外は、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は0重量%、飽和磁化は90(Am2/kg)、残留磁化は2(Am2/kg)、保磁力は2(kA/m)、体積基準粒度分布1%粒径は52(μm)、体積基準粒度分布50%粒径は115(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、10万枚後において、カブリが発生した。
比較例3
マグネタイトに酸化マグネシウムをマグネシウム含有量2.5重量%になるよう配合し、実施例1と同様な方法でスラリーを得た。スラリーをスプレードライヤーで、造粒乾燥し、次に電気炉で、窒素+酸素雰囲気下、1460℃で、焼成し、振動フルイで、分級を行い、芯材キャリアを得た。芯材キャリアを得、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は2.5重量%、飽和磁化は68(Am2/kg)、残留磁化は4(Am2/kg)、保持力は5(kA/m)、体積基準粒度分布1%粒径は19(μm)、体積基準粒度分布50%粒径は40(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、キャリア付着は発生しなかったが、15万枚後において、カブリが発生した。
比較例4
ヘマタイトに、酸化マグネシウムをマグネシウム含有量2.5重量%になるよう配合し、実施例1と分級条件以外は同様な方法で芯材キャリアを得、実施例1と同様な方法で、樹脂被覆キャリアを得た。得られたキャリアのマグネシウム含有量は2.5重量%、飽和磁化は75(Am2/kg)、残留磁化は1(Am2/kg)、保磁力は1(kA/m)、体積基準粒度分布1%粒径は9(μm)、体積基準粒度分布50%粒径は35(μm)であった。実施例1と同様な方法で、二成分現像剤を得、連続実写テストを行った。その結果、初期からキャリア付着が発生した。
【0023】
以上の実施例と比較例をまとめた結果を表1に示す。また、図1の本発明のマグネシウム含有量と飽和磁化の関係を示す図に、実施例と比較例の結果を記入し、図2の本発明の飽和磁化とx1の関係を示す図に、実施例と比較例の結果を記入した。図1の太線で囲まれた部分と、図2の太線の内側の部分を合わせた範囲が、本発明の範囲である。
【0024】
【表1】

Figure 0004224181
【0025】
【発明の効果】
以上説明したように、本発明によれば、Cu、Zn、Co等の重金属による環境汚染を防ぎ、キャリア付着がなく、耐久性に優れた電子写真用キャリアを得ることができる。
【図面の簡単な説明】
【図1】本発明のマグネシウム含有量と飽和磁化の関係を示した図である。
【図2】本発明の飽和磁化とx1の関係を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic carrier in a two-component developer.
[0002]
[Prior art]
Electrophotography uses a photoconductive phenomenon to form an electrostatic latent image on the surface of a photoreceptor, which is developed with a developer and fixed on a transfer sheet or the like. Conventionally, in order to visualize an electrostatic latent image, a two-component developer in which a carrier and a toner are mixed is used, as is known by a cascade method, a magnetic brush method, or the like.
[0003]
As a carrier of a two-component developer, as described in JP-B-62-37783, Cu, Co, a combination of Cu and Zn, or 1 to 3 types of Co, Cu, Zn and Mg As described in Japanese Patent Publication No. 5-59423, there is a ferrite carrier for electrophotography made of MgO, ZnO, and Fe 2 O 3 .
[0004]
However, in recent years, due to environmental problems, the use of carriers that do not contain Cu, Co, Zn, or the like has been studied. For example, as a carrier that does not contain Cu, Co, Zn, etc., there is an electrophotographic carrier made of spherical magnetite particles described in Japanese Patent Publication No. 2-60186.
[0005]
However, the carrier for electrophotography made of spherical magnetite particles cannot substantially control the saturation magnetization and has a high saturation magnetization. For this reason, it is advantageous for carrier adhesion, but since the developing torque is high, the developer is rapidly deteriorated and there is a problem in durability.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems of the carrier and to be composed of components not containing heavy metals such as Cu, Zn, Co, Cr, Pb, etc., which are environmentally friendly, have no carrier adhesion, and have excellent durability. It is to provide a carrier for electrophotography.
[0007]
[Means for Solving the Problems]
The present invention is a carrier having the following configuration.
[0008]
An electrophotographic carrier in which main components are iron, oxygen, and magnesium, and a core material containing 0.5 to 10% by weight of magnesium is coated with a resin, and has a saturation magnetization of 55 to 85 (Am 2 / kg ), The residual magnetization is 3 (Am 2 / kg) or less, the coercive force is 4 (kA / m) or less, the saturation magnetization is σs (Am 2 / kg), and the volume-based particle size distribution 1% particle size is x1 A carrier for electrophotography, wherein σs and x1 satisfy the following formula when (μm) is satisfied.
[0009]
(1 / σs) × 750 ≦ x1
As a result of intensive studies to achieve the above object, the present inventors have found that an environmentally friendly component is magnesium as the main component other than iron and oxygen.
[0010]
The most basic configuration of the core material of the present invention is iron, oxygen, and magnesium. The total content of other components is preferably 2% by weight or less.
[0011]
The magnesium content is required to be 0.5 to 10% by weight, and particularly preferably in the range of 0.8 to 8% by weight. The saturation magnetization needs to be 55 to 85 (Am 2 / kg), and is particularly preferably in the range of 58 to 83 (Am 2 / kg). If the magnesium content is low and the saturation magnetization is high, the development torque becomes high and the durability is poor. Further, when the content of magnesium is large and the saturation magnetization is low, carrier adhesion occurs.
[0012]
Increasing the magnesium content decreases the saturation magnetization, and increasing the firing temperature increases the saturation magnetization. Therefore, by adjusting the firing temperature, particles having a saturation magnetization of 85 (Am 2 / kg) or less can be obtained even when the magnesium content is less than 0.5% by weight, but the void volume of the particles is increased. However, it is not preferable as a carrier. Further, even if the magnesium content exceeds 10% by weight, a carrier having a saturation magnetization of 55 (Am 2 / kg) or more can be obtained, but the firing temperature becomes high, resulting in a problem in economy.
[0013]
Further, the saturation magnetization can be adjusted by adjusting the firing atmosphere. Usually, firing is performed in a nitrogen atmosphere, but saturation magnetization is lowered by firing in the presence of nitrogen and oxygen. However, there is a drawback that the residual magnetization and the coercive force are increased. For this reason, it is necessary to adjust the oxygen partial pressure and adjust the residual magnetization and the coercive force.
[0014]
The residual magnetization needs to be 3 (Am 2 / kg) or less, and particularly preferably 2 (Am 2 / kg) or less. Further, the coercive force needs to be 4 (kA / m) or less, and particularly preferably 3 (kA / m) or less. When the residual magnetization and the coercive force are increased, the fluidity of the developer is deteriorated and the durability is deteriorated. The carrier is usually coated with a resin.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the coating resin used in the present invention include silicone resins (silicone resins and derivatives thereof), fluorine resins, styrene resins, acrylic resins, methacrylic resins, polyester resins, polyamide resins, An epoxy resin, a polyether resin, a phenol resin, etc. are mentioned. These can be used alone or in combination, and can also be used as a copolymer, and the use thereof is not particularly limited.
[0016]
The coating amount of the resin varies depending on the type of resin, charging characteristics and electrical resistance characteristics required for the carrier, but is preferably in the range of 0.05 to 5.0% by weight with respect to the weight of the carrier.
[0017]
Next, when the saturation magnetization is σs (Am 2 / kg) and the volume-based particle size distribution 1% particle size is x1 (μm), σs and x1 are (1 / σs) × 750 ≦ x1, particularly (1 / Σs) × 1000 ≦ x1 is preferably satisfied. More preferably, it is desirable to satisfy x50 × 0.35 ≦ x1 when the 50% volume-based particle size distribution is x50 (μm). In this case, carrier adhesion can be prevented.
[0018]
For measurement of saturation magnetization, residual magnetization, and coercive force in the present invention, a vibration type magnetometer VSMP-1S manufactured by Toei Kogyo Co., Ltd. is used. The sample is filled in a measurement capsule (0.0565 cc) and measured with a magnetic field of 1.1 (MA / m). The volume-based particle size distribution in the present invention is measured using a laser diffraction particle size distribution measuring device manufactured by SYMPATEC. The volume-based particle size distribution 1% particle size and the volume-based particle size distribution 50% particle size are calculated by integrating the obtained volume-based particle size distribution from the smaller particle size.
[0019]
The carrier of the present invention is mixed with toner and used as a two-component developer. The toner is obtained by dispersing a colorant or the like in a binder resin. Examples of the binder resin include polystyrene resins, styrene-acrylic resins, polyester resins, and epoxy resins.
[0020]
【Example】
Hereinafter, the present invention will be described with reference to examples. The present invention is not limited to the following examples.
Example 1
Hematite is blended with magnesium oxide so that the magnesium content is 5.0% by weight, and then 1.5% by weight of binder (polyvinyl alcohol) and 0.5% by weight of dispersant are added, and the slurry concentration is 50% by weight. Water was added to become. This was wet pulverized and mixed for 1 hour with an attritor manufactured by Mitsui Mining Co., Ltd. to prepare a slurry.
[0021]
The slurry was granulated and dried with a spray dryer, then fired in an electric furnace at 1460 ° C. for 5 hours in a nitrogen atmosphere, and classified with a vibration sieve to obtain a core carrier. A coating resin solution is prepared by diluting 75 parts by weight of methyl-based silicone resin (SR2410 manufactured by Toray Dow Corning Co., Ltd.) with toluene with respect to 1000 parts by weight of the obtained core material carrier. Was used to spray coat the core material carrier. Thereafter, heat treatment was performed at 250 ° C. for 60 minutes in the fluidized bed to obtain the carrier of the present invention. The obtained carrier has a magnesium content of 5.0% by weight, a saturation magnetization of 57 (Am 2 / kg), a residual magnetization of 1 (Am 2 / kg), a coercive force of 1 (kA / m), and a volume-based particle size The distribution 1% particle size was 55 (μm), and the volume-based particle size distribution 50% particle size was 125 (μm).
[0022]
A two-component developer was obtained by mixing 55 parts by weight of a commercially available toner with a 5-liter V-type blender for 30 minutes with respect to 1000 parts by weight of the resin-coated carrier thus obtained. Using this developer, a continuous live-action test was conducted with a commercially available copying machine. As a result, even after 200,000 sheets, an image having a high image density was obtained with no significant difference from the initial image quality, no carrier adhesion, little fogging.
Example 2
Hematite is blended with magnesium oxide to a magnesium content of 1.0% by weight, and a core material carrier is obtained in the same manner as in Example 1 except for the classification conditions. In the same manner as in Example 1, a resin-coated carrier is obtained. Got. The obtained carrier has a magnesium content of 1.0% by weight, a saturation magnetization of 84 (Am 2 / kg), a residual magnetization of 1 (Am 2 / kg), a coercive force of 1 (kA / m), and a volume-based particle size The distribution 1% particle size was 59 (μm), and the volume-based particle size distribution 50% particle size was 140 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, even after 200,000 sheets, an image having a high image density was obtained with no significant difference from the initial image quality, no carrier adhesion, little fogging.
Example 3
Magnesium oxide is blended with magnetite so that the magnesium content is 4.6% by weight, and a core material carrier is obtained in the same manner as in Example 1 except for the classification conditions. In the same manner as in Example 1, the resin-coated carrier is obtained. Got. The obtained carrier has a magnesium content of 4.6% by weight, a saturation magnetization of 58 (Am 2 / kg), a residual magnetization of 1 (Am 2 / kg), a coercive force of 1 (kA / m), and a volume-based particle size The distribution 1% particle size was 20 (μm), and the volume-based particle size distribution 50% particle size was 53 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, even after 200,000 sheets, an image having a high image density was obtained with no significant difference from the initial image quality, no carrier adhesion, little fogging.
Example 4
Magnesium is mixed with magnesium oxide so that the magnesium content is 1.3% by weight, and a core material carrier is obtained in the same manner as in Example 1 except for the classification conditions. In the same manner as in Example 1, the resin-coated carrier is obtained. Got. The obtained carrier has a magnesium content of 1.3% by weight, a saturation magnetization of 82 (Am 2 / kg), a residual magnetization of 1 (Am 2 / kg), a coercive force of 1 (kA / m), and a volume-based particle size The distribution 1% particle size was 14 (μm), and the volume-based particle size distribution 50% particle size was 35 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, even after 200,000 sheets, an image having a high image density was obtained with no significant difference from the initial image quality, no carrier adhesion, little fogging.
Example 5
Magnesium is mixed with magnesium oxide so that the magnesium content is 2.5% by weight, a core material carrier is obtained in the same manner as in Example 1 except for the classification conditions, and the resin-coated carrier is obtained in the same manner as in Example 1. Got. The obtained carrier has a magnesium content of 2.5% by weight, a saturation magnetization of 74 (Am 2 / kg), a residual magnetization of 1 (Am 2 / kg), a coercive force of 1 (kA / m), and a volume-based particle size The distribution 1% particle size was 22 (μm), and the volume-based particle size distribution 50% particle size was 50 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, even after 200,000 sheets, an image having a high image density was obtained with no significant difference from the initial image quality, no carrier adhesion, little fogging.
Example 6
Magnesium oxide was blended with magnetite so that the magnesium content was 2.0 wt%, and a slurry was obtained in the same manner as in Example 1. The slurry is granulated and dried with a spray dryer, then fired at 1460 ° C. in a nitrogen + oxygen atmosphere in an electric furnace, classified with a vibrating sieve to obtain a core carrier, and the same method as in Example 1 A resin-coated carrier was obtained. The obtained carrier has a magnesium content of 2.0% by weight, a saturation magnetization of 75 (Am 2 / kg), a residual magnetization of 2 (Am 2 / kg), a coercive force of 2 (kA / m), and a volume-based particle size The distribution 1% particle size was 52 (μm), and the volume-based particle size distribution 50% particle size was 115 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, even after 200,000 sheets, an image having a high image density was obtained with no significant difference from the initial image quality, no carrier adhesion, little fogging.
Example 7
Magnesium is blended with magnesium oxide so that the magnesium content is 2.5% by weight, and a core material carrier is obtained in the same manner as in Example 6 except for the classification conditions. In the same manner as in Example 1, the resin-coated carrier is obtained. Got. The obtained carrier has a magnesium content of 2.5% by weight, a saturation magnetization of 72 (Am 2 / kg), a residual magnetization of 2 (Am 2 / kg), a coercive force of 2 (kA / m), and a volume-based particle size The distribution 1% particle size was 19 (μm), and the volume-based particle size distribution 50% particle size was 40 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, even after 200,000 sheets, an image having a high image density was obtained with no significant difference from the initial image quality, no carrier adhesion, little fogging.
Comparative Example 1
Hematite is blended with magnesium oxide to a magnesium content of 10.5% by weight, and a core material carrier is obtained in the same manner as in Example 1 except for the classification conditions. In the same manner as in Example 1, a resin-coated carrier is obtained. Got. The obtained carrier has a magnesium content of 10.5% by weight, a saturation magnetization of 52 (Am 2 / kg), a residual magnetization of 1 (Am 2 / kg), a coercive force of 1 (kA / m), and a volume-based particle size The distribution 1% particle size was 22 (μm), and the volume-based particle size distribution 50% particle size was 50 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, carrier adhesion occurred from the beginning.
Comparative Example 2
A resin-coated carrier was obtained in the same manner as in Example 1 except that magnetite (manufactured by Höganäs) was used for the core material carrier. The obtained carrier has a magnesium content of 0% by weight, a saturation magnetization of 90 (Am 2 / kg), a residual magnetization of 2 (Am 2 / kg), a coercive force of 2 (kA / m), and a volume-based particle size distribution 1 The% particle size was 52 (μm), and the volume-based particle size distribution 50% particle size was 115 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, fogging occurred after 100,000 sheets.
Comparative Example 3
Magnesium oxide was blended with magnetite so that the magnesium content was 2.5% by weight, and a slurry was obtained in the same manner as in Example 1. The slurry was granulated and dried with a spray dryer, then baked in an electric furnace at 1460 ° C. in a nitrogen + oxygen atmosphere, and classified with a vibration sieve to obtain a core carrier. A core material carrier was obtained, and a resin-coated carrier was obtained in the same manner as in Example 1. The obtained carrier has a magnesium content of 2.5% by weight, a saturation magnetization of 68 (Am 2 / kg), a residual magnetization of 4 (Am 2 / kg), a holding force of 5 (kA / m), and a volume-based particle size The distribution 1% particle size was 19 (μm), and the volume-based particle size distribution 50% particle size was 40 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, no carrier adhesion occurred, but fogging occurred after 150,000 sheets.
Comparative Example 4
Hematite is blended with magnesium oxide to a magnesium content of 2.5% by weight, and a core material carrier is obtained in the same manner as in Example 1 except for the classification conditions. In the same manner as in Example 1, a resin-coated carrier is obtained. Got. The obtained carrier has a magnesium content of 2.5% by weight, a saturation magnetization of 75 (Am 2 / kg), a residual magnetization of 1 (Am 2 / kg), a coercive force of 1 (kA / m), and a volume-based particle size The distribution 1% particle size was 9 (μm), and the volume-based particle size distribution 50% particle size was 35 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous live-action test was performed. As a result, carrier adhesion occurred from the beginning.
[0023]
Table 1 shows a summary of the above examples and comparative examples. In addition, the results of Examples and Comparative Examples are entered in the graph showing the relationship between the magnesium content and the saturation magnetization of the present invention in FIG. 1, and the graph showing the relationship between the saturation magnetization and x1 in the present invention in FIG. The results of examples and comparative examples were entered. A range in which the portion surrounded by the thick line in FIG. 1 and the portion inside the thick line in FIG. 2 are combined is the range of the present invention.
[0024]
[Table 1]
Figure 0004224181
[0025]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an electrophotographic carrier that is excellent in durability because it prevents environmental contamination by heavy metals such as Cu, Zn, and Co, has no carrier adhesion.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between magnesium content and saturation magnetization of the present invention.
FIG. 2 is a diagram showing a relationship between saturation magnetization and x1 of the present invention.

Claims (2)

主構成成分が鉄・酸素・マグネシウムで、その他の成分の含有量が合計で2重量%以下であり、該マグネシウムを0.5〜10重量%含有するコア材が樹脂被覆されている電子写真用キャリアであって、飽和磁化が55〜85(Am/kg)、残留磁化が3(Am/kg)以下、保磁力が4(kA/m)以下であり、且つ飽和磁化をσs(Am/kg)とし、体積基準粒度分布1%粒径をx1(μm)としたとき、σsとx1が下記式(1)を満足することを特徴とする電子写真用キャリア。
(1/σs)×750 ≦ x1 (1)
For electrophotography in which the main constituents are iron, oxygen, and magnesium, the total content of other components is 2% by weight or less, and the core material containing 0.5 to 10% by weight of magnesium is resin-coated. The carrier has a saturation magnetization of 55 to 85 (Am 2 / kg), a residual magnetization of 3 (Am 2 / kg) or less, a coercive force of 4 (kA / m) or less, and a saturation magnetization of σs (Am 2 / kg), and σs and x1 satisfy the following formula (1) when the volume-based particle size distribution 1% particle size is x1 (μm).
(1 / σs) × 750 ≦ x1 (1)
請求項1に電子写真用キャリアであって、さらに下記式(2)を満足することを特徴とする電子写真用キャリア。2. The electrophotographic carrier according to claim 1, wherein the electrophotographic carrier further satisfies the following formula (2).
x50×0.35≦x1x50 × 0.35 ≦ x1 (2)(2)
(式中、x50は体積基準粒度分布50%粒径(μm)である。)(In the formula, x50 is a volume-based particle size distribution 50% particle size (μm).)
JP33765399A 1999-11-29 1999-11-29 Electrophotographic carrier Expired - Fee Related JP4224181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33765399A JP4224181B2 (en) 1999-11-29 1999-11-29 Electrophotographic carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33765399A JP4224181B2 (en) 1999-11-29 1999-11-29 Electrophotographic carrier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007322731A Division JP4700677B2 (en) 2007-12-14 2007-12-14 Electrophotographic carrier

Publications (2)

Publication Number Publication Date
JP2001154416A JP2001154416A (en) 2001-06-08
JP4224181B2 true JP4224181B2 (en) 2009-02-12

Family

ID=18310693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33765399A Expired - Fee Related JP4224181B2 (en) 1999-11-29 1999-11-29 Electrophotographic carrier

Country Status (1)

Country Link
JP (1) JP4224181B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540668B2 (en) * 2003-03-31 2010-09-08 関東電化工業株式会社 Mg-based ferrite material, carrier for electrophotographic development containing the ferrite material, and developer containing the carrier
JP4596452B2 (en) 2004-04-20 2010-12-08 株式会社巴川製紙所 Resin-coated carrier for electrophotography and two-component developer for electrophotography using the same
US7452651B2 (en) 2004-11-05 2008-11-18 Canon Kabushiki Kaisha Carrier, two-component developer, and image forming method
JP4534061B2 (en) * 2005-05-11 2010-09-01 Dowaエレクトロニクス株式会社 Method for producing ferrite particles of carrier powder core material for electrophotographic development
JP4817390B2 (en) 2007-01-16 2011-11-16 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier and electrophotographic developer
JP5307414B2 (en) * 2008-02-07 2013-10-02 Dowaエレクトロニクス株式会社 Magnetic carrier core material for electrophotographic developer, magnetic carrier for electrophotographic developer, and method for producing electrophotographic developer
JP2010164829A (en) 2009-01-16 2010-07-29 Fuji Xerox Co Ltd Electrostatic image developing carrier, electrostatic image developer, process cartridge, image forming method, and image forming apparatus
JP2010210975A (en) * 2009-03-11 2010-09-24 Fuji Xerox Co Ltd Carrier for developing electrostatic charge image and method of producing the same, electrostatic charge image developer, process cartridge, image forming method, and image forming apparatus
JP5446593B2 (en) 2009-08-24 2014-03-19 富士ゼロックス株式会社 Electrostatic image developing carrier, electrostatic image developer, process cartridge, image forming method, and image forming apparatus

Also Published As

Publication number Publication date
JP2001154416A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
EP1729180B1 (en) Ferrite core material for resin-filled type carrier, resin-filled type carrier, and electrophotographic developer using the carrier
JP5086865B2 (en) Carrier core material for electrophotographic developer, carrier and electrophotographic developer using the carrier
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
JP5037982B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2001066820A (en) Electrostatic latent image developing toner, its production, electrostatic latent image developing developer and image forming method
US8039190B2 (en) Carrier core material for electrophotographic developer, carrier, and electrophotographic developer using the carrier
JP2008241742A5 (en)
JP4224181B2 (en) Electrophotographic carrier
US20070231722A1 (en) Ferromagnetic material powder, carrier for electrophotographic developer, process for producing them and electrophotographic developer
JP4700677B2 (en) Electrophotographic carrier
JP3875584B2 (en) Ferromagnetic material powder and carrier for electrophotographic developer using the magnetic material powder
JP4948191B2 (en) Two-component electrophotographic developer carrier and two-component electrophotographic developer
JP3005120B2 (en) Electrophotographic carrier
JPH081521B2 (en) Toner for electrostatic charge development
JP2503221B2 (en) Developer for electrostatic image
US5532095A (en) Magnetic toner
JP2887026B2 (en) Magnetic material dispersed resin carrier
JP2000267443A (en) Device and method for forming full color image
JP3109937B2 (en) Magnetic material dispersed resin carrier
JP3148951B2 (en) Color toner and image forming method
JP2000131952A (en) Image forming method
JPH1039548A (en) Ferrite carrier for electrophotographic development and reversal developing method using same
JPS6313056A (en) Developer for electrostatic development
JPH01246561A (en) Electrostatic image developing toner
JPH06118722A (en) Carrier for developing electrostatic charge image

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081121

R150 Certificate of patent or registration of utility model

Ref document number: 4224181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees