JP4222701B2 - Fluid transport route changing method and fluid transport route changing device used therefor - Google Patents

Fluid transport route changing method and fluid transport route changing device used therefor Download PDF

Info

Publication number
JP4222701B2
JP4222701B2 JP37284599A JP37284599A JP4222701B2 JP 4222701 B2 JP4222701 B2 JP 4222701B2 JP 37284599 A JP37284599 A JP 37284599A JP 37284599 A JP37284599 A JP 37284599A JP 4222701 B2 JP4222701 B2 JP 4222701B2
Authority
JP
Japan
Prior art keywords
pipe
fluid transport
case
branch
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37284599A
Other languages
Japanese (ja)
Other versions
JP2001187993A (en
Inventor
太一 佐藤
晴彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waterworks Technology Development Organization Co Ltd
Original Assignee
Waterworks Technology Development Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waterworks Technology Development Organization Co Ltd filed Critical Waterworks Technology Development Organization Co Ltd
Priority to JP37284599A priority Critical patent/JP4222701B2/en
Publication of JP2001187993A publication Critical patent/JP2001187993A/en
Application granted granted Critical
Publication of JP4222701B2 publication Critical patent/JP4222701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/02Branch units, e.g. made in one piece, welded, riveted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/04Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor
    • F16L41/06Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor making use of attaching means embracing the pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水道管等の流体輸送管の特定箇所に、管内流体の流れを維持したまま弁挿入口となる貫通孔を形成し、この貫通孔を通して流体輸送管の流路を閉止(遮断)する仕切弁体を装着したのち、その仕切弁体の上流側又は下流側の特定箇所に、管内流体の流れを維持したまま分岐口となる貫通孔を形成して、該貫通孔に分岐管を接続する流体輸送経路変更工法及びそれに用いられる流体輸送経路変更装置に関する。
【0002】
【従来の技術】
従来の流体輸送経路変更工法では、下記(イ)〜(ト)の行程を経て流体輸送管に仕切弁体を装着するとともに分岐管を接続していた。
【0003】
(イ)図22、図23に示すように、流体輸送管Pの流路遮断相当箇所(仕切弁装着相当箇所)に、管周方向で分離可能に連結される複数の分割ケース体80Aを備え、かつ、一つの分割ケース体80Aに管軸芯Xに対して交差する方向に開口する管部80Bを備えた割T字状の弁ケース80を、流体輸送管Pの外周面との間を密封した状態で回動不能及び管軸芯X方向に摺動不能にボルト等で外嵌固定するとともに、前記弁ケース80の管部80Bに形成したフランジ部80aに、該管部80Bの通路を開閉する作業用仕切弁81を取付け、更に、前記作業用仕切弁81のフランジ部81aに、管部80Bを通して流体輸送管Pの管壁1に貫通孔1Aを形成するための回転切削具であるホールソー82を備えた穿孔装置83を脱着自在に取付ける。
【0004】
(ロ)図23、図24に示すように、前記作業用仕切弁81を開き操作し、穿孔装置83のホールソー82に駆動回転力と送込み力とを付与して、流体輸送管Pの管壁1に弁挿入口となる貫通孔1Aを形成したのち、穿孔装置83のホールソー82を初期の待機位置に復帰させ、作業用仕切弁81を閉じ操作する。
【0005】
(ハ)図25に示すように、前記作業用仕切弁81から穿孔装置83を撤去し、この作業用仕切弁81のフランジ部81aに、仕切弁ユニット84を内装可能なハウジング85及び仕切弁ユニット84を管径方向に沿って送込む昇降機構86を備えた挿入機87を取付ける。
【0006】
前記仕切弁ユニット84は、弁ケース80の管部80Bとで密閉された弁体収納空間を形成する上側カバー88に、流体輸送管P内の流路を閉止可能な仕切弁体89、及び、該仕切弁体89を管径方向に沿って開閉移動操作する弁操作手段90とを予め組付けて構成されていて、前記昇降機構86のホルダー部86aに吊下げ状態で取付けられている。
【0007】
(ニ)図26、図27に示すように、前記作業用仕切弁81を開き操作し、挿入機87の昇降機構86を、それのホルダー部86aに取付けられた仕切弁ユニット84の仕切弁体89の一部が弁ケース80の管部80B内に入込む状態にまで下降操作し、仕切弁ユニット84の上側カバー88の連結フランジ部88aと管部80Bのフランジ部80aとをボルト等で仮止め固定する。その状態で挿入機87及び作業用仕切弁81を撤去して、仕切弁ユニット84の上側カバー88の連結フランジ部88aと管部80Bのフランジ部80aとをボルト等で固定連結する。
【0008】
(ホ)図28に示すように、流体輸送管Pの分岐口形成相当箇所に、管周方向で分離可能に連結される複数の分割ケース体91Aを備え、かつ、一つの分割ケース体91Aに管軸芯Xに対して交差する方向に開口する分岐管部91Bを備えた割T字状の分岐ケース91を、流体輸送管Pの外周面との間を密封した状態で回転不能及び管軸芯X方向に摺動不能にボルト等で外嵌固定するとともに、前記分岐ケース91の分岐管部91Bに形成したフランジ部91aに、該分岐管部91Bの通路を開閉する作業用仕切弁92を取付け、更に、前記作業用仕切弁92のフランジ部92aに、分岐管部91Bを通して流体輸送管Pの管壁1に貫通孔1Bを形成するための回転切削具であるホールソー82を備えた穿孔装置83を脱着自在に取付ける。
【0009】
(ヘ)図28〜図30に示すように、前記作業用仕切弁92を開き操作し、穿孔装置83のホールソー82に駆動回転力と送込み力とを付与して、流体輸送管Pの管壁1に分岐口となる貫通孔1Bを形成したのち、穿孔装置83のホールソー82を初期の待機位置に復帰させ、作業用仕切弁92を閉じ操作する。
【0010】
(ト)図31に示すように、前記作業用仕切弁92のフランジ部92aから穿孔装置83を撤去した後、該作業用仕切弁92のフランジ部92aに分岐管P1を接続する。
【0011】
【発明が解決しようとする課題】
従来の流体輸送経路変更工法による場合は、仕切弁体89を装着するに当たって、流体輸送管Pに弁ケース80を回動不能及び管軸芯方向に摺動不能に外嵌固定する工程、弁ケース80の管部80Bに作業用仕切弁81を取付ける工程、作業用仕切弁81に穿孔装置83を取付ける工程、穿孔装置83による穿孔作業工程、作業用仕切弁81から穿孔装置83を撤去する工程、作業用仕切弁81に仕切弁ユニット84を予め組付けてある挿入機87を取付ける工程、仕切弁ユニット84を弁ケース80の管部80Bに固定する工程、挿入機87を作業用仕切弁81から撤去する工程、作業用仕切弁81を弁ケース80の管部80Bから撤去する工程といった多数の工程が必要であり、また、分岐管P1を接続するに当たっても、流体輸送管Pに分岐ケース91を回動不能及び管軸芯X方向に摺動不能に外嵌固定する工程、分岐ケース91の分岐管部91Bに作業用仕切弁92を取付ける工程、作業用仕切弁92に穿孔装置83を取付ける工程、穿孔装置83による穿孔作業工程、作業用仕切弁92から穿孔装置83を撤去する工程、作業用仕切弁92に分岐管P1を接続する工程といった多数の工程が必要で、その上、作業用仕切弁81,92の多数の開閉操作が加わるため、工事期間が長くなるばかりでなく、多数の手間を要し、しかも、工事のための機器類も多くなるため、工事費が高騰化する問題があった。
【0012】
本発明は、上述の実状に鑑みて為されたものであって、その第1の主たる課題は、流体輸送管にそれぞれ最終的に外嵌固定される弁ケース及び分岐ケースを効率良く合理的に運用することにより、工事期間の短縮化を図ると同時に、手間及び工事機器類の削減化も促進して工事費の低廉化を図ることのできる流体輸送経路変更工法を提供する点にあり、第2の主たる課題は、流体輸送管に最終的に外嵌固定される弁ケース及び分岐ケースを気密性を維持したまま効率良く運用することにより、漏洩のない状態で工事期間の短縮化と工事費の低廉化とを図ることのできる流体輸送経路変更装置を提供する点にある。
【0013】
【課題を解決するための手段】
本発明の請求項1による特徴構成は、流体輸送管の流路を遮断する仕切弁体を装着したのち、その仕切弁体の上流側又は下流側の特定箇所に分岐管を接続する流体輸送経路変更工法であって、下記(イ)〜(ハ)の工程を備えている点にある。
(イ)流体輸送管の管軸芯に対して交差する方向に沿う分岐管部を備えた分岐ケースと、流体輸送管内の流路を閉止可能な仕切弁体及び該仕切弁体を管径方向に沿って開閉移動操作する弁操作手段を備えた弁ケースとを、それぞれ流体輸送管の外周面との間を密封した状態で流体輸送管に対して管軸芯方向に摺動自在に装着するとともに、前記分岐ケースの分岐管部に取付けた作業用仕切弁に、分岐管部を通して流体輸送管の管壁に貫通孔を形成する穿孔装置を脱着自在に取付けたのち、この穿孔装置により、流体輸送管の管壁に弁挿入口となる貫通孔を形成する。
(ロ)前記穿孔装置による第1穿孔作業終了後に、管壁に形成された貫通孔に対して仕切弁体を管径方向外方から挿入可能な弁装着位置にまで、前記分岐ケース及び弁ケースを管軸芯方向に沿って摺動させたのち、弁ケースを流体輸送管に所定姿勢で固定し、更に、前記流体輸送管に対して分岐ケースを必要に応じて管軸芯周りで回動させて、それの分岐管部が流体輸送管の分岐口形成相当箇所に対向する姿勢で流体輸送管に固定したのち、前記穿孔装置により、流体輸送管の管壁に分岐口となる貫通孔を形成する。
(ハ)前記穿孔装置による第2穿孔作業終了後に、閉止操作されている作業用仕切弁から穿孔装置を取外したのち、該作業用仕切弁に分岐管を接続する。
【0014】
上記特徴構成によれば、流体輸送管に、分岐管部を備えた分岐ケースと、仕切弁体及び弁操作手段を備えた弁ケースとを、流体輸送管の外周面との間を密封した状態で管軸芯方向に摺動自在に装着することにより、分岐ケースの分岐管部に作業用仕切弁を介して脱着自在に取付けられた穿孔装置によって、流体輸送管の管壁に弁挿入口となる貫通孔を形成することができるとともに、この穿孔装置による第1穿孔作業終了後に、分岐ケース及び弁ケースを管軸芯方向に沿って摺動させることにより、管壁に形成された貫通孔に対して弁ケース内の仕切弁体を管径方向外方から挿入することが可能となる。
【0015】
更に、弁装着位置で弁ケースを流体輸送管に所定姿勢で固定するとともに、流体輸送管の分岐口形成相当箇所と分岐ケースの分岐管部とが管径方向で相対向する、換言すれば、流体輸送管の分岐口形成相当箇所の中心と穿孔装置の中心とが合致するまで、必要に応じて分岐ケースを管軸芯周りで回動操作したのち、該分岐ケースを流体輸送管に固定し、この状態で穿孔装置にて流体輸送管の管壁に分岐口となる貫通孔を形成する。この穿孔装置による第2穿孔作業終了後に、閉止操作された作業用仕切弁から穿孔装置を取外したのち、該作業用仕切弁に分岐管を接続する。
【0016】
従って、流体輸送管に最終的に外嵌固定される弁ケース及び分岐ケースを摺動操作自在に構成し、かつ、分岐ケースを管軸芯周りで回動操作自在に構成して、この弁ケースと分岐ケースとを前述のごとく効率良く運用することにより、従来工法に比較して、作業工程数の大幅な削減と工事期間の短縮化とを図ることができ、しかも、手間及び工事機器類の削減化も促進することができ、工事費の低廉化を図ることができる。
【0017】
本発明の請求項2による流体輸送経路変更工法の特徴構成は、前記穿孔装置による第1穿孔作業終了後に、分岐ケースと弁ケースとを、それらの管軸芯周りでの相対回動及び管軸芯方向での相対移動を阻止した連結状態で管軸芯方向に沿って摺動させるように構成した点にある。
【0018】
上記特徴構成によれば、管壁に形成された貫通孔に対して仕切弁体を管径方向外方から挿入可能な弁装着位置、換言すれば、弁ケース側の仕切弁体の中心位置と、管壁に形成された貫通孔の中心位置とが合致する弁装着位置にまで、分岐ケースと弁ケースとを管軸芯方向に沿って摺動させる際、この分岐ケースと弁ケースとを穿孔時の相対位置関係を維持したまま摺動させることができるから、仕切弁体の中心位置と管壁に形成された貫通孔の中心位置との位置ずれを抑制することができる。
【0019】
本発明の請求項3による流体輸送経路変更工法の特徴構成は、前記流体輸送管に脱着自在に取付けられた強制移行装置と分岐ケース又は弁ケースとを連結して、前記穿孔装置による第1穿孔作業終了後に、分岐ケースと弁ケースとを強制移行装置にて管軸芯方向に沿って摺動させるように構成されている点にある。
【0020】
上記特徴構成によれば、第1穿孔作業終了後における分岐ケース及び弁ケースの摺動操作を、流体輸送管に取付けられた強制移行装置で容易に行うことができ、しかも、分岐ケースと弁ケースを手動で押し又は引張り操作する場合に比較して、分岐ケース及び弁ケースに回動方向の操作力が付与される可能性が少なくなり、仕切弁体の中心位置と管壁に形成された貫通孔の中心位置との位置ずれを一層良好に抑制することができる。
【0021】
本発明の請求項4による流体輸送経路変更装置の特徴構成は、流体輸送管の管軸芯に対して交差する方向に沿う分岐管部を備えた分岐ケースと、流体輸送管内の流路を閉止可能な仕切弁体及び該仕切弁体を管径方向に沿って開閉移動操作する弁操作手段を備えた弁ケースとを、それぞれ流体輸送管の外周面との間を密封した状態で流体輸送管に対して管軸芯方向に摺動自在に装着し、前記分岐ケースを流体輸送管の管軸芯周りで回動操作可能に構成するとともに、前記分岐ケースの分岐管部に取付けた作業用仕切弁に対して、分岐管部を通して流体輸送管の管壁に貫通孔を形成する穿孔装置と分岐管とを選択的に付け替え自在に構成し、更に、前記分岐ケースと弁ケースとを脱着自在に連結する連結手段と、該連結手段による連結時に、両ケースの隣接端部の内周面と流体輸送管の外周面との間に形成される空間を外部に対して密封する密封手段と、弁ケースを流体輸送管に固定する第1固定手段と、分岐ケースを流体輸送管に固定する第2固定手段とを設けた点にある。
【0022】
上記特徴構成によれば、流体輸送管に、分岐管部を備えた分岐ケースと、仕切弁体及び弁操作手段を備えた弁ケースとを、流体輸送管の外周面との間を密封した状態で管軸芯方向に摺動自在に装着することにより、分岐ケースの分岐管部に作業用仕切弁を介して脱着自在に取付けられた穿孔装置によって、流体輸送管の管壁に弁挿入口となる貫通孔を形成することができるとともに、この穿孔装置による第1穿孔作業終了後に、分岐ケース及び弁ケースを管軸芯方向に沿って摺動させることにより、管壁に形成された貫通孔に対して仕切弁体を管径方向外方から挿入することが可能となる。
【0023】
しかも、このとき、両ケースの隣接端部の内周面と流体輸送管の外周面との間に形成される空間を外部に対して密封する密封手段が設けられているから、管壁に形成された貫通孔から流出した流体が、管軸芯方向に沿って摺動操作される両ケースの隣接端部間を通して外部に漏洩することがない。
【0024】
また、管壁に形成された貫通孔に対して仕切弁体を管径方向外方から挿入可能な弁装着位置、換言すれば、弁ケース側の仕切弁体の中心位置と、管壁に形成された貫通孔の中心位置とが合致する弁装着位置にまで、分岐ケースと弁ケースとを管軸芯方向に沿って摺動させる際、この分岐ケースと弁ケースとを穿孔時の相対位置関係を維持したまま摺動させることができるから、仕切弁体の中心位置と管壁に形成された貫通孔の中心位置との位置ずれを抑制することができる。
【0025】
更に、弁ケースを流体輸送管の弁装着位置に第1固定手段で固定したのち、流体輸送管の分岐口形成相当箇所と分岐ケースの分岐管部とが管径方向で相対向する、換言すれば、流体輸送管の分岐口形成相当箇所の中心と穿孔装置の中心とが合致するまで、必要に応じて分岐ケースを管軸芯周りで回動操作したのち、該分岐ケースを第2固定手段で流体輸送管に固定し、この状態で穿孔装置にて流体輸送管の管壁に分岐口となる貫通孔を形成する。この穿孔装置による第2穿孔作業終了後に、閉止操作された作業用仕切弁から穿孔装置を取外したのち、該作業用仕切弁に分岐管を接続する。
【0026】
従って、流体輸送管に最終的に外嵌固定される弁ケース及び分岐ケースを摺動操作自在に構成し、かつ、分岐ケースを管軸芯周りで回動操作自在に構成して、この弁ケースと分岐ケースとを前述のごとく気密性を維持したまま効率良く運用することにより、従来工法に比較して、流体の漏洩のない状態で作業工程数の大幅な削減と工事期間の短縮化とを図ることができ、しかも、手間及び工事機器類の削減化も促進することができ、工事費の低廉化を図ることができる。
【0027】
本発明の請求項5による流体輸送経路変更装置の特徴構成は、前記分岐ケースの内周面と流体輸送管の外周面との間を密封する状態で分岐ケースに保持されるシール材、及び、弁ケースの内周面と流体輸送管の外周面との間を密封する状態で弁ケースに保持されるシール材のうち、少なくとも管壁に形成された貫通孔を通過する必要のあるシール部分を流体輸送管の外周面から離間させた状態で摺動案内するシール摺動案内手段が設けられている点にある。
【0028】
上記特徴構成によれば、第1穿孔作業終了時に分岐ケース及び弁ケースを管軸芯方向に沿って摺動させる際、分岐ケースに保持されるシール材及び弁ケースに保持されるシール材が、管壁に形成された鋭利な貫通孔の開口周縁に引っ掛かって損傷することを抑制することができるとともに、分岐ケース及び弁ケースの摺動に要する操作力の軽減化を図ることができる。
【0029】
本発明の請求項6による流体輸送経路変更装置の特徴構成は、前記シール摺動案内手段が、両シール材の少なくとも管壁に形成された貫通孔を通過する必要のあるシール部分と流体輸送管の外周面との間に介在される薄板状又はシート状のシール摺動案内体から構成されている点にある。
【0030】
上記特徴構成によれば、貫通孔を通過する必要のあるシール部分と流体輸送管の外周面との間に、薄板状又はシート状のシール摺動案内体を介在するだけで、分岐ケース及び弁ケースの摺動時におけるシール材の損傷を抑制することができるから、前記シール摺動案内手段を構造面及び製造コスト面で有利に製作することができる。
【0031】
本発明の請求項7による流体輸送経路変更装置の特徴構成は、前記シール摺動案内体が、両シール材の少なくとも管壁に形成された貫通孔を通過する必要あるシール部分と流体輸送管の外周面との間を密封可能な合成樹脂製の柔軟なシートシール材から構成されている点にある。
【0032】
上記特徴構成によれば、分岐ケース及び弁ケースの摺動時におけるシール材の損傷を抑制するためのシール摺動案内体をもって、貫通孔を通過する必要のあるシール部分と流体輸送管の外周面との間を密封することができるから、このシール摺動案内体を構成する合成樹脂製の柔軟なシートシール材を必ずしも取外す必要がなく、作業能率の向上と容易化を図ることが可能である。
【0033】
本発明の請求項8による流体輸送経路変更装置の特徴構成は、前記シール摺動案内体に、両シール材の少なくとも管壁に形成された貫通孔を通過する必要のあるシール部分と流体輸送管の外周面との間に介在された状態から管軸芯方向に沿って引抜くための操作部が設けられている点にある。
【0034】
上記特徴構成によれば、分岐ケース及び弁ケースの摺動時におけるシール材の損傷を抑制するためのシール摺動案内体を設けながらも、弁ケース側の仕切弁体の中心位置と、管壁に形成された貫通孔の中心位置とが合致する弁装着位置にまで、分岐ケースと弁ケースとを管軸芯方向に沿って摺動させたときには、シール部分と流体輸送管の外周面との間に介在されているシール摺動案内体をそれに設けた操作部を介して管軸芯方向に容易に引抜くことができる。
【0035】
本発明の請求項9による流体輸送経路変更装置の特徴構成は、前記シール摺動案内体に、分岐ケースに対して管径方向内方から係脱自在で、かつ、係合時に分岐ケースとシール摺動案内体とを一体的に摺動させる係合部と、流体輸送管の外周面に対する穿孔装置の回転切削具の通過移動を許容する通過部とが形成されている点にある。
【0036】
上記特徴構成によれば、前記分岐ケースを流体輸送管に外嵌装着するとき、シール摺動案内体の係合部を管径方向内方から容易に係合させることができるとともに、分岐ケース及び弁ケースの摺動時におけるシール摺動案内体の位置ずれを抑制することができ、しかも、前記穿孔装置による穿孔作業時にシール摺動案内体が邪魔になることも回避することができる。
【0037】
本発明の請求項10による流体輸送経路変更装置の特徴構成は、前記分岐ケースには、管壁に形成された貫通孔の外周面側周縁を面取り加工する面取加工手段が脱着自在に設けられている点にある。
【0038】
上記特徴構成によれば、弁ケース側の仕切弁体の中心位置と、管壁に形成された貫通孔の中心位置とが合致する弁装着位置にまで、分岐ケースと弁ケースとを管軸芯方向に沿って摺動させるとき、分岐ケースに保持されるシール材及び弁ケースに保持されるシール材が、貫通孔の外周面側周縁に引っ掛かって損傷することを抑制することができる。
【0039】
本発明の請求項11による流体輸送経路変更装置の特徴構成は、前記穿孔装置の回転切削具が、管径方向に沿った送り込み移動によって貫通孔を形成するホールソーから構成されている点にある。
【0040】
上記特徴構成によれば、駆動回転するホールソーを管径方向に沿って送り込むだけで済むから、流体輸送管の管壁に対する穿孔作業を能率良く容易に行うことができる。
【0041】
本発明の請求項12による流体輸送経路変更装置の特徴構成は、前記穿孔装置の回転切削具が、管径方向に沿った送り込み移動と管周方向に沿った移動とによって貫通孔を形成するエンドミルであって、該エンドミルの管周方向への移動を、流体輸送管に対する分岐ケースの管軸芯周りでの相対回転によって付与するように構成した点にある。
【0042】
上記特徴構成によれば、流体輸送管の管壁に穿設される弁挿入口としての貫通孔が管周方向に沿った長円形状となるから、仕切弁体の管軸芯方向での厚みを薄く構成することができるばかりでなく、この貫通孔の管周方向での長さも、流体輸送管に対する分岐ケースの管軸芯周りでの回転角度操作によって任意に変更することができる。
【0043】
【発明の実施の形態】
〔第1実施形態〕
図1〜図16は、水道管やガス管等の流体輸送管Pの特定箇所(仕切弁装着相当箇所)に、流体輸送管P内に流体を流動させたままの不断流状態で弁挿入口となる貫通孔1Aを形成し、この貫通孔1Aを通して流体輸送管Pの流路を閉止 (遮断)する仕切弁体2を装着したのち、その仕切弁体2の上流側又は下流側の特定箇所(分岐管接続相当箇所)に、同じく流体輸送管P内に流体を流動させたままの不断流状態で分岐口となる貫通孔1Bを形成して、その貫通孔1Bに分岐管P1を接続する場合に用いられる流体輸送経路変更工法及びそれに用いられる流体輸送経路変更装置を示す。
【0044】
この流体輸送経路変更装置は、流体輸送管Pの管軸芯Xに対して交差する方向(当該実施形態では直交方向)に沿って径方向外方に突出する分岐管部3Bを一体形成してある鋳鉄製の分岐ケース3と、流体輸送管P内の流路を閉止可能な仕切弁体2及び該仕切弁体2を管径方向に沿って開閉移動操作する弁操作手段4を備えた鋳鉄製の弁ケース5とを、それぞれ流体輸送管Pの外周面との間を密封 (液密又は気密状態に密封)した状態で流体輸送管Pに対して管軸芯X方向に摺動自在に外嵌装着(外装)するとともに、前記分岐ケース3を流体輸送管Pの管軸芯X周りで回動操作可能に構成してある。
【0045】
また、前記分岐ケース3の分岐管部3Bに取付けられた作業用仕切弁6に対して、分岐管部3Bを通して流体輸送管Pの管壁1に貫通孔1A,1Bを形成する穿孔装置Aと分岐管P1とを選択的に付け替え自在に構成するとともに、前記分岐ケース3と弁ケース5とを管軸芯X方向から脱着自在に固定連結する連結手段7と、該連結手段7による固定連結時に、両ケース3,5の隣接端部の内周面3a,5aと流体輸送管Pの外周面との間に形成される環状空間S1を外部に対して密封(液密又は気密状態に密封)する密封手段8と、弁ケース5を流体輸送管Pに固定する第1固定手段9と、分岐ケース3を流体輸送管Pに固定する第2固定手段10と、弁挿入口となる貫通孔1Aの形成後(穿孔装置Aによる第1穿孔作業終了後)に、分岐ケース3と弁ケース5とを管軸芯X方向に沿って強制移動させる強制移行装置Bとを設けてある。
【0046】
更に、前記分岐ケース3の管受け部3aの内周面と流体輸送管Pの外周面との間を密封(液密又は気密状態に密封)する状態で分岐ケース3に保持されるOリング等の合成ゴム製(例えば、スチレンブタジエンゴム等)の環状シール材13、及び、前記弁ケース5の管軸芯X方向両側部に形成された管受け部5aの内周面と流体輸送管Pの外周面との間を密封(液密又は気密状態に密封)する状態で弁ケース5に保持されるOリング等の合成ゴム製(例えば、スチレンブタジエンゴム等)の環状シール材13のうち、少なくとも弁挿入口として管壁1に形成された貫通孔1Aを通過する必要のあるシール部分を流体輸送管Pの外周面から離間させた状態で摺動案内するシール摺動案内手段Cを設けてある。
【0047】
前記分岐ケース3は、図1〜図9に示すように、流体輸送管Aに対して管径方向の両側方から外套装着自在な管周方向で二分割された半円筒状の分割ケース体3Aから構成されているとともに、各分割ケース体3Aの管周方向両端部には、流体輸送管Aに外套された両分割ケース体3Aを締結手段の一例である複数本のボルト15を介して脱着自在に固定連結するための第1連結フランジ部3bが一体形成され、更に、流体輸送管Aの上半部に外套される一方の分割ケース体3Aのうち、管軸芯方向の中央部で、かつ、管周方向の中央部には、前記分岐管部3Bが一体形成されている。
【0048】
また、各分割ケース体3Aの管軸芯X方向両端部近くに一体形成されている管受け部3aの内周面には、両分割ケース体3Aの固定連結時に一つの連続した環状シール材13を構成するための半環状シール材を保持するシール保持溝3cが形成され、更に、前記両分割ケース体3Aの第1連結フランジ部3bの対向面間には、シート状に形成された合成ゴム製(例えば、スチレンブタジエンゴム等)のシール材14が介在されている。
【0049】
更に、前記分岐管部3Bの先端部には、作業用仕切弁6のケーシング6Aの下端側に一体形成された第1連結フランジ部6aをボルト等の締結手段を介して脱着自在に固定連結する第2連結フランジ部3dが一体形成されているとともに、前記各分割ケース体3Aの管軸芯X方向両端部には、管径方向外方に突出する第3連結フランジ部3eが一体形成され、この第3連結フランジ部3eには、後述する弁ケース5の第4連結フランジ部5fに対して管軸芯X方向又は管径方向から相対回転自在に嵌合して、流体輸送管Aに対する分岐ケース3の管軸芯X周りでの回転操作を案内する鍔状の環状ガイド部3fが一体形成されている。
つまり、前記環状ガイド部3fをもって、流体輸送管Aに対する分岐ケース3の管軸芯X周りでの回転操作を案内する回転ガイド手段が構成されている。
【0050】
前記シート状シール材14には、図9に示すように、締結手段のボルト15に対するボルト挿通孔14aと、各環状シール材13がそれぞれ接触状態で入り込む凹部14bとが形成されていて、前記流体輸送管Aに外套された両分割ケース体3Aを締結手段のボルト15で締付け固定することにより、分岐ケース3の内周面と流体輸送管Pの外周面との間を環状シール材13及びシート状シール材14で密封するように構成されている。
【0051】
前記弁ケース5は、図1〜図9に示すように、上述の分岐ケース3と同様に、流体輸送管Aに対して管径方向の両側方から外套装着自在な管周方向で二分割された半円筒状の分割ケース体5Aから構成されているとともに、各分割ケース体5Aの管周方向両端部には、流体輸送管Aに外套された両分割ケース体5Aを締結手段の一例である複数本のボルト15を介して脱着自在に固定連結するための第1連結フランジ部5bが一体形成され、更に、流体輸送管Aの上半部に外套される一方の分割ケース体5Aのうち、管軸芯X方向の中央部で、かつ、管周方向の中央部には、流体輸送管Pの管軸芯Xに対して交差する方向(当該実施形態では、管軸芯Xに対して直交する直交方向)に沿って径方向外方に突出する管部5Bが一体形成されている。
【0052】
また、各分割ケース体5Aの管軸芯X方向両端部近くに一体形成されている管受け部5aの内周面には、両分割ケース体5Aの固定連結時に一つの連続した環状シール材13を構成するための半環状シール材を保持するシール保持溝5cが形成され、更に、前記両分割ケース体5Aの第1連結フランジ部5bの対向面間には、シート状に形成された合成ゴム製(例えば、スチレンブタジエンゴム等)のシール材14が介在されている。
【0053】
更に、前記管部5Bの先端部には、該管部5Bとで仕切弁体2の格納空間S2を形成する弁カバー5Dの第2連結フランジ部5dをボルト等の締結手段を介して脱着自在に固定連結する第3連結フランジ部5eが一体形成されているとともに、前記各分割ケース体5Aの管軸芯X方向両端部には、管径方向外方に突出する第4連結フランジ部5fが一体形成されている。
【0054】
前記シートシール材14には、前述したように、締結手段のボルト15に対するボルト挿通孔14aと、各環状シール材13がそれぞれ接触状態で入り込む凹部14bとが形成されていて、前記流体輸送管Aに外套された両分割ケース体5Aを締結手段のボルト15で締付け固定することにより、弁ケース5の内周面と流体輸送管Pの外周面との間を環状シール材13及びシート状シール材14で密封するように構成されている。
【0055】
前記弁操作手段4は、図1に示すように、弁ケース5の弁カバー5Dに、操作軸部4aが外部に突出する状態で回転のみ自在に取付けられるネジ軸4Aと、仕切弁体2の芯材に形成されたネジ孔(図示せず)とから構成されていて、ネジ軸4Aとネジ孔との螺合操作による軸間距離変動により、格納空間S2内に位置する仕切弁体2を切削形成された貫通孔1Aを通して管内に挿入移動させ、該仕切弁体2により弁挿入口1Aを密封した状態で流体輸送管A内の流路を閉止(遮断)するように構成してある。
【0056】
前記連結手段7は、図1、図10に示すように、分岐ケース3の第3連結フランジ部3eと弁ケース5の第4連結フランジ部5fとを管周方向の複数箇所で管軸芯X方向から締付け固定するボルト7a・ナット7bから構成されている。
【0057】
前記密閉手段8は、図1、図10に示すように、分岐ケース3の第3連結フランジ部3eと弁ケース5の第4連結フランジ部5fとの間に挾持固定される環状の合成ゴム製(例えば、スチレンブタジエンゴム等)のシート状シール材から構成されていて、前記ボルト7a・ナット7bによる締付け固定操作に連れて、穿孔作業ケース3の第3連結フランジ部3eと弁ケース5の第4連結フランジ部5fとの間を密封するように構成されている。
【0058】
前記第1固定手段9は、図4、図10に示すように、弁ケース5の端部側のテーパー状内周面5gと流体輸送管Pの外周面との対向面間を密封する円環状の合成ゴム製(例えば、スチレンブタジエンゴム)のシール材9Aと、シール材9Aを管軸芯X方向から押圧して密封状態にまで圧縮可能な鋳鉄製の押輪9Bと、該押輪9Bと弁ケース5の第4連結フランジ部5fとを管軸芯X方向から引寄せながら締付け固定するT字ボルト9Cとナット9D、及び、流体輸送管Pの外周面に対して喰い込む状態で管径方向外方から螺合操作される複数本の押しボルト (図示せず)とから構成されている。
【0059】
前記第2固定手段10は、図5、図10に示すように、分岐ケース3の端部側のテーパー状内周面3gと流体輸送管Pの外周面との対向面間を密封する円環状の合成ゴム製(例えば、スチレンブタジエンゴム)のシール材10Aと、シール材10Aを管軸芯X方向から押圧して密封状態にまで圧縮可能な鋳鉄製の押輪10Bと、該押輪9Bと分岐ケース3の第3連結フランジ部3eとを管軸芯X方向から引寄せながら締付け固定するT字ボルト10Cとナット10D、及び、流体輸送管Pの外周面に対して喰い込む状態で管径方向外方から螺合操作される複数本の押しボルト(図示せず)とから構成されている。
【0060】
尚、当該実施形態においては、前記分岐ケース3の第3連結フランジ部3eと弁ケース5の第4連結フランジ部5fとが連結手段7によつて固定連結されているため、一方の第1固定手段9又は第2固定手段10が、他方の第2固定手段10又は第1固定手段9の構成部材の一部に兼用構成されている。
【0061】
つまり、他方の第2固定手段10が、弁ケース5を流体輸送管Pに固定する第1固定手段9の一部を兼用し、他方の第1固定手段9が、分岐ケース3を流体輸送管Pに固定する第2固定手段10の一部を兼用するように構成されている。
【0062】
前記穿孔装置Aとしては種々の構造のものが存在するが、その一例を挙げると、図16に示すように、前記作業用仕切弁6のケーシング6Aの上端側に一体形成された第2連結フランジ部6bに対して、カッターカバー33に一体形成された連結フランジ部32を介してボルト等で脱着自在に連結されるケーシング20に、駆動回転軸21を相対回転並びにその回転軸芯方向に相対摺動自在に支承し、この駆動回転軸21内に、当該駆動回転軸21の先端部(送込み側端部)側に対して相対回転のみ自在に連結された第1送り軸22と、該第1送り軸22の後端部(戻り側端部)の外周面に形成された雄ネジ22aに螺合する雌ネジ23aを備えた第2送り軸23とを同芯状態で配設するとともに、前記ケーシング20から突出する第2送り軸23の後端部には手動ハンドル24を止着してある。
【0063】
また、前記駆動回転軸21の後端部の外周面に対して回転軸芯方向に摺動自在にスプライン嵌合された駆動筒軸25を、前記ケーシング20に回転のみ自在に支承させ、この駆動筒軸25の先端部側近くには、図外の電動モータやエンジン等の原動部に連動された駆動入力軸26のウォーム27に噛合するウォームホイール28を固着するとともに、前記駆動筒軸25の後端部に外嵌固着された食違い歯車29から第2送り軸23の後端側に外嵌固着された平歯車30への動力伝達系の途中には、原動部側の回転力を第2送り軸23に伝達する自動送り状態と、手動ハンドル24による第2送り軸23の回転操作を許容する手動送り状態とに切替え操作自在なクラッチ31が設けられている。
【0064】
そして、前記クラッチ31が自動送り状態に操作されている状態で、前記原動部の回転力が駆動筒軸25に伝達されると、この駆動筒軸25に対して摺動自在にスプライン嵌合されている駆動回転軸21が駆動回転されると同時に、前記駆動筒軸21にクラッチ31を介して連動されている第2送り軸23が駆動回転され、この第2送り軸23に螺合連動されている第1送り軸22が伸展作動し、駆動回転軸21が駆動回転されながら送り出される。
【0065】
つまり、電動モータやエンジン等の原動部の駆動により、駆動回転軸21に駆動回転力と送り力とを付与し、この駆動回転軸21の先端側の連結フランジ部21aに他種のものと付替え自在に連結された回転切削具の一例であるホールソー11を、分岐ケース3の分岐管部3B内を通して管径方向から送り込むことにより、流体輸送管Pの管壁1に貫通孔1A,1Bを形成する。
【0066】
前記ホールソー11は、先端部に切削チップを備えた円筒状ボディー11Aの底壁部の中心位置に、切削チップよりも前方に突出するセンタードリル11Bを設けて構成されている。
【0067】
前記強制移行手段Bは、図11〜図15に示すように、分岐ケース3と弁ケース5に亘って脱着自在に装着される第1装着体B1と、流体輸送管Pに対して管軸芯X方向での移動を規制した状態で脱着自在に外嵌固定される鋳鉄製の第2装着体B2とが備えられているとともに、前記第1装着体B1を構成する左右の連結ボルト35の先端に形成した第1受け部36と、第2装着体B2の管軸芯Xを挟んで相対向する二個所に形成した第2受け部41とのうち、管軸芯X方向で相対向する両受け部36,41の各々に亘って、流体輸送管Pに固定された第2装着体B2に対して第1装着体B1を管軸芯X方向に沿って引寄せることにより、弁挿入口となる貫通孔1Aに対して仕切弁体2を管径方向外方から挿入可能な弁装着位置、換言すれば、弁ケース5側の仕切弁体2の中心位置と、管壁1に形成された貫通孔1Aの中心位置とが合致する弁装着位置にまで、分岐ケース3と弁ケース3とを管軸芯X方向に沿って強制的に摺動させるジャッキ機構B3が脱着自在に架設されて構成されている。
【0068】
前記第1装着体B1は、図11に示すように、分岐ケース3の第3連結フランジ部3eの管周方向二個所と、弁ケース5の第4連結フランジ部5fの管周方向二個所とに亘って、前記第1受け部36を構成する上向きコの字状(凹状の一例)の嵌合凹部を固着してある連結ボルト35を複数のナット37で固定して構成されている。
【0069】
前記第2装着体B2は、図11、図13、図14に示すように、流体輸送管Aに対して管径方向の両側方から外套装着自在な管周方向で二分割された半円筒状の分割装着体42から構成されているとともに、各分割装着体42の管周方向両端部には、流体輸送管Aに外套された両分割装着体42を締結手段の一例である連結ボルト43・ナット44を介して脱着自在に固定連結するための連結フランジ部42aが一体形成され、更に、前記各分割装着体42の管周方向複数箇所に突出形成された各取付け部42bには、分割装着体42を流体輸送管Aに固定するロックボルト45が螺合されているとともに、前記各分割装着体42の外側面には、前記受け部41を構成する上向き開口のボックス状(凹状の一例)の嵌合凹部を一体形成して構成されている。
【0070】
また、図11、図14に示すように、前記嵌合凹部41の構成部材のうち、管軸芯X方向で相対向する一対の第1側壁体41Aの各々には、ジャッキ機構B3の押引杆(ラック)51を管径方向に沿う上方から落し込み状態で脱着自在に嵌合保持可能な嵌合凹部41aが形成されているとともに、外方側に位置する第2側壁体41Bには、ジャッキ機構B3の操作部58が臨むUの字状の操作窓41bが形成され、更に、ジャッキ機構B3のケース52を載置支持する底壁体41C には、軽量化と侵入した異物を外部に排出するための貫通孔41dが形成されている。
【0071】
前記ジャッキ機構B3は、図11〜図15に示すように、第1 装着体B1の嵌合凹部36に落し込み嵌合して管軸芯X方向に沿う押引力(主として引寄せ力)を付与するための押圧体50を備えた押引杆51と、該押引杆51を管軸芯X方向に往復移動自在に貫通保持するケース52とから構成されているとともに、前記ケース52には、ラチェットレンチ等の工具で加えられる回転操作力を押引杆51の往復移動力に変換する変換手段52、及び、押引杆51の往行移動のみを許容する引寄せ状態と押引杆51の復行移動のみを許容する押出し状態並びに押引杆51の往復移動が自由となる中立状態とに切替え操作自在な移動方向切替手段54とが設けられている。
【0072】
前記変換手段53は、図14(イ)、(ロ)、図15に示すように、前記押引杆51を構成する四角柱状のラックと、該ラック51に管軸芯X方向に沿って所定ピッチで貫通形成された係合孔55と噛み合うピニオン56、及び、該ピニオン56に一体形成された回転操作用の操作軸57とから構成されているとともに、前記操作軸57のうち、ケース52の側板部から突出する角軸端部には、ラチェットレンチ等の工具(人為操作具)で操作可能な六角筒状の操作部58が外嵌状態でボルト59にて締付け固定されている。
【0073】
前記移動方向切替手段54は、図14(イ)、(ロ)、図15に示すように、前記ケース52内の上部側に、操作レバー60を備えた切替操作軸61と揺動支点軸62とを、前記操作軸57と平行に架設し、そのうち、前記揺動支点軸62には、ラック51の係合孔55に対して管軸芯X方向の一方向側から係合して該ラック51の往行移動のみを許容する第1爪部材63と、ラック51の係合孔55に対して管軸芯X方向の他方向側から係合して該ラック51の復行移動のみを許容する第2爪部材64とを揺動自在に取付けるとともに、前記第1爪部材63及び第2爪部材64を係合方向にそれぞれ揺動付勢するスプリング65を設け、更に、前記切替操作軸61には、前記第1爪部材63のみをスプリング65の弾性付勢力で係合位置に揺動させる引寄せ状態と、第2爪部材64のみをスプリング65の弾性付勢力で係合位置に揺動させる押出し状態、並びに、両爪部材63,64をスプリング65の弾性付勢力に抗して係合解除位置に保持する中立状態とに切替えるカム66を固着してある。
【0074】
前記シール摺動案内手段Cは、図10(イ)、(ロ)に示すように、両環状シール材13のうち、少なくとも管壁1に形成された貫通孔1Aを通過する必要あるシール部分と流体輸送管Pの外周面との間に介在される金属製(例えばステンレス鋼)又は合成樹脂製(例えばポリアセタール)の薄板状(例えば、厚みが1mm以下)又はシート状のシール摺動案内体17から構成されていて、該シール摺動案内体17の管軸芯X方向の一端部には、貫通孔1Aを通過する必要あるシール部分と流体輸送管Pの外周面との間に介在された状態から管軸芯X方向に沿って引抜くための操作部17Aが、管径方向外方に直角に突出する状態で屈曲形成されている。
【0075】
前記操作部17Aは、分岐ケース3の両第3連結フランジ部3eのうち、弁ケース5と非連結状態にある外端側の第3連結フランジ部3eに対して管軸芯X方向から係合可能な突出代に形成されていて、該操作部17Aをもって、分岐ケース3に対して管径方向内方から係脱自在で、かつ、係合時に分岐ケース3とシール摺動案内体17とを一体的に摺動させる係合部に兼用構成されているとともに、前記シール摺動案内体17の管軸芯方向中間部には、穿孔装置Aの回転切削具であるホールソー11の流体輸送管P側への通過移動を許容する通過部の一例である通過孔17aが形成されている。
【0076】
次に、上述の流体輸送経路変更装置を用いての流体輸送経路変更工法について簡単に説明する。
(イ)図1、図2に示すように、分岐管部3Bを一体形成してある鋳鉄製の分岐ケース3と、流体輸送管P内の流路を閉止可能な仕切弁体2及び該仕切弁体2を管径方向に沿って開閉移動操作する弁操作手段4を備えた鋳鉄製の弁ケース5とを、それらに設けられたシール材13,14を介して、流体輸送管Pの外周面との間を密封(液密又は気密状態に密封)した状態で流体輸送管Pに対して管軸芯X方向に摺動自在に外嵌装着(外装)するとともに、前記分岐ケース3の分岐管部3Bの第2連結フランジ部3dに、作業用仕切弁6の第1連結フランジ部6aをボルト等の締結手段で着脱自在に密封状態で固定連結し、更に、作業用仕切弁6の第2連結フランジ部6bに、分岐管部3Bを通して流体輸送管Pの管壁1に貫通孔1Aを形成する穿孔装置Aの連結フランジ部32をボルト等の締結手段で着脱自在に密封状態で固定連結する。
【0077】
(ロ)図1、図3に示すように、前記分岐ケース3の第3連結フランジ部3eと弁ケース5の第4連結フランジ部5fとの隣接するもの同士を、連結手段7のボルト7a・ナット7bで管軸芯X方向から締付け固定するとともに、前記作業用仕切弁6の弁体6Bを開き操作したのち、穿孔装置Aの原動部を駆動して、駆動回転軸21に駆動回転力と送り力とを付与し、この駆動回転軸21の連結フランジ部21aに連結された回転切削具の一例であるホールソー11を、分岐ケース3の分岐管部3B内を通して管径方向から送り込むことにより、流体輸送管Pの管壁1に弁挿入口となる貫通孔1Aを形成する。
【0078】
前記管壁1に貫通孔1Aが形成されると、穿孔装置Aの原動部を逆転駆動するか、若しくは、手動ハンドル24を操作して、ホールソー11を流体輸送管Pの外周面から管径方向外方に離間させた待機位置に上昇させる。
【0079】
(ハ)図4に示すように、前記穿孔装置Aによる第1穿孔作業終了後に、強制移行手段Bの両ジャッキ機構B3を操作して、管壁1に形成された貫通孔1Aに対して仕切弁体2を管径方向外方から挿入可能な弁装着位置にまで、前記分岐ケース3及び弁ケース5を管軸芯X方向に沿って強制的に摺動させる。
【0080】
尚、前記強制移行手段Bは、図1〜図7の作業工程図では省略されているが、穿孔作業ケース3及び弁ケース5を流体輸送管Pに装着するとき、又は、それから穿孔作業ケース3及び弁ケース5を摺動操作する直前までの適宜時期に流体輸送管Pに装着する。
【0081】
更に、図1〜図7の作業工程図には省略されているが、図10に示すように、両環状シール材13の少なくとも管壁1に形成された貫通孔1Aを通過する必要あるシール部分と流体輸送管Pの外周面との間には、貫通孔1Aを通過する必要のあるシール部分を流体輸送管Pの外周面から離間させた状態で摺動案内する薄板状又はシート状のシール摺動案内体17が介在されているから、分岐ケース3に保持される環状シール材13及び弁ケース5に保持される環状シール材13が、貫通孔1Aの外周面側周縁に引っ掛かって損傷することを抑制することができる。
【0082】
そして、前記分岐ケース3及び弁ケース5が弁装着位置にまで摺動操作されると、前記分岐ケース3の管軸芯X方向の一端側から外部に露出しているシール摺動案内体17の操作部17Aを操作して、貫通孔1Aを通過する必要あるシール部分と流体輸送管Pの外周面との間に介在されているシール摺動案内体17を管軸芯X方向に沿って引抜いたのち、弁ケース5を第1固定手段9にて流体輸送管Pに所定姿勢で固定する。
【0083】
(ニ)図4、図5に示すように、前記分岐ケース3の第3連結フランジ部3eと弁ケース5の第4連結フランジ部5fとの隣接するもの同士の固定連結を解除操作したのち、更に、前記流体輸送管Pに対して分岐ケース3を必要に応じて管軸芯X周りで回動(当該実施形態では、分岐管P1を水平方向から接続するために、分岐ケース3を90度回動させるが、分岐管P1を上方から接続する場合には、分岐ケース3を回動させる必要はない)操作させ、それの分岐管部3Bの中心が流体輸送管Pの分岐口形成相当箇所の中心に対向する姿勢で第2固定手段10にて流体輸送管Pに固定するとともに、前記分岐ケース3の第3連結フランジ部3eと弁ケース5の第4連結フランジ部5fとの隣接するもの同士を、連結手段7のボルト7a・ナット7bで再び締付け固定する。
【0084】
(ホ)図5、図6に示すように、穿孔装置Aの原動部を駆動して、駆動回転軸21に駆動回転力と送り力とを付与し、この駆動回転軸21の連結フランジ部21aに連結されたホールソー11を、分岐ケース3の分岐管部3B内を通して管径方向から送り込むことにより、流体輸送管Pの管壁1に分岐口となる貫通孔1Bを形成する。
【0085】
前記管壁1に貫通孔1Bが形成されると、穿孔装置Aの原動部を逆転駆動するか、若しくは、手動ハンドル24を操作して、ホールソー11を初期の待機位置にまで上昇させたのち、前記作業用仕切弁6の弁体6Bを閉じ操作する。
【0086】
(ヘ)図7に示すように、前記穿孔装置Aによる第2穿孔作業終了後に、作業用仕切弁6の第2連結フランジ部6bから穿孔装置Aの連結フランジ部32を取外したのち、作業用仕切弁6の第2連結フランジ部6bに、分岐管P1の連結フランジ部18をボルト等の締結手段で着脱自在に気密状態で固定連結する。
【0087】
〔第2実施形態〕
上述の第1実施形態では、前記穿孔装置Aの回転切削具11として、管径方向に沿った送り込み移動によって管壁1に貫通孔1A,1Bを形成するホールソーを用いたが、この回転切削具11としては、図17〜図19に示すように、管径方向に沿った送り込み移動と管周方向に沿った移動とによって貫通孔1A,1Bを形成するエンドミルであってもよい。
この実施形態の場合、前記エンドミル11の管周方向への移動を、流体輸送管Pに対する分岐ケース3の管軸芯X周りでの回転操作によって付与するように構成してある。
【0088】
また、前記穿孔装置Aを備えた分岐ケース3は、図18に示すように、流体輸送管Aに対して管径方向の両側方から外套装着自在な管周方向で二分割された半円筒状の分割ケース体3Aから構成されているとともに、各分割ケース体3Aの管周方向両端部には、流体輸送管Aに外套された両分割ケース体3Aを締結手段の一例である複数本のボルト15を介して脱着自在に固定連結するための第1連結フランジ部3bが一体形成され、更に、一方の分割ケース体3Aの管軸芯方向の中央部で、かつ、管周方向の一端側に偏位した部位には、流体輸送管Pの管軸芯Xに対して交差する方向(当該実施形態では直交方向)に沿って径方向外方に突出する管部3Bが一体形成されている。
【0089】
更に、流体輸送管P内の流路を閉止可能な仕切弁体2及び該仕切弁体2を管径方向に沿って開閉移動操作する弁操作手段4を備えた鋳鉄製の弁ケース5は、図19に示すように、流体輸送管Aに対して管径方向の両側方から外套装着自在な管周方向で二分割された半円筒状の分割ケース体5Aとから構成されているとともに、各分割ケース体5Aの管周方向両端部には、流体輸送管Aに外套された両分割ケース体5Aを締結手段の一例である複数本のボルト15を介して脱着自在に固定連結するための第1連結フランジ部5bが一体形成され、更に、一方の分割ケース体5Aの管軸芯X 方向の中央部で、かつ、管周方向の中央部には、流体輸送管Pの管軸芯Xに対して交差する方向(当該実施形態では、管軸芯Xに対して直交する直交方向)に沿って径方向外方に突出する管部5Bが一体形成されている。
【0090】
更に、前記管部5Bの先端部には、該管部5Bとで仕切弁体2の格納空間S2を形成する弁カバー5Dの第2連結フランジ部5dをボルト等の締結手段を介して脱着自在に固定連結する第3連結フランジ部5eが一体形成されているとともに、前記各分割ケース体5Aの管軸芯X方向両端部には、管径方向外方に突出する第4連結フランジ部5fが一体形成されている。
尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
【0091】
〔第3実施形態〕
図20は、前記シール摺動案内体17の別実施形態を示し、これは、両環状シール材13のうち、少なくとも管壁1に形成された貫通孔1Aを通過する必要あるシール部分と流体輸送管Pの外周面との間を密封可能な合成樹脂製(例えば、ポリエチレン)の柔軟なシートシール材から構成するとともに、このシートシール材17の管軸芯方向の一端部には、分岐ケース3のシール保持溝3cに対して管径方向内方から係脱自在で、かつ、係合時に分岐ケース3とシートシール材17とを一体的に摺動させる係合部17Bと、流体輸送管Pの外周面に対する穿孔装置Aの回転切削具11の通過移動を許容する通過孔(通過部の一例)17aとが形成されている。
【0092】
この実施形態による場合では、分岐ケース3及び弁ケース5の摺動時におけるシール材13の損傷を抑制するためのシール摺動案内体17をもって、貫通孔1Aを通過する必要あるシール部分と流体輸送管Pの外周面との間を密封することができるから、このシール摺動案内体17を構成する合成樹脂製の柔軟なシートシール材を必ずしも取外す必要がなく、作業能率の向上と容易化を図ることが可能である。
尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
【0093】
〔第4実施形態〕
図21は、第2実施形態で説明した穿孔装置Aの回転切削具11であるエンドミル11の基端部側で、かつ、円周方向の複数箇所に、エンドミル11で管壁1に形成された弁挿入口1Aの外周面側周縁を面取り加工する刃部19を形成してある。
換言すれば、前記刃部19をもって、管壁1に形成された弁挿入口1Aの外周面側周縁を面取り加工する面取加工手段が構成されている。
【0094】
この実施形態による場合では、前記弁ケース5側の仕切弁体2の中心位置と、管壁1に形成された弁挿入口1Aの中心位置とが合致する弁装着位置にまで、穿孔作業ケース3と弁ケース5とを管軸芯X方向に沿って摺動させるとき、穿孔作業ケース3に保持されるシール材13及び弁ケースに保持されるシール材13が、弁挿入口1Aの外周面側周縁1aに引っ掛かって損傷することを抑制することができる。
尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
【0095】
〔その他の実施形態〕
(1)前記穿孔装置としては、従来から種々のものが開発されており、分岐管部3Bを通して流体輸送管Pの管壁1に貫通孔1A,1Bを形成することのできるものであれば、如何なるものを用いて実施してもよい。
(2)上述の各実施形態では、弁挿入口となる貫通孔1Aの形成後(穿孔装置Aによる第1穿孔作業終了後)に、分岐ケース3と弁ケース5とを弁装着位置まで管軸芯X方向に沿って強制移動させる強制移行装置Bを設けて実施したが、流体輸送管Pの管径が小さく、それに連れて分岐ケース3及び弁ケース5の自重が小さくなる場合では、この分岐ケース3及び弁ケース5を手動操作で直接管軸芯に沿って摺動させるように構成してもよい。
(3)上述の各実施形態では、前記強制移行装置Bの主要部をジャッキ機構B3から構成したが、この構成に限定されるものではなく、例えば、油圧等の流体圧や伝動モータ等を利用した強制移行装置Bを用いて実施してもよい。
(4)上述の第4実施形態では、エンドミル11に形成された刃部19をもって、管壁1に形成された弁挿入口1Aの外周面側周縁を面取り加工する面取加工手段を構成したが、前記穿孔作業ケース3に、管壁1に形成された弁挿入口1Aの外周面側周縁を面取り加工する専用の面取加工手段19を脱着自在に設けて実施してもよい。
この場合、前記作業用仕切弁6に対して、穿孔装置Aと専用の面取加工手段19とを選択的に付け替え差自在に構成するとよい。
また、第1実施形態においても、前記作業用仕切弁6に対して、穿孔装置Aと専用の面取加工手段19とを選択的に付け替え差自在に構成してもよい。
更に、専用の面取加工手段19を、倣い手段によって弁挿入口1Aの外周面側周縁に沿って面取り加工するように構成してもよい。
(5) 上述の各実施形態では、分岐ケース3及び弁ケース5のむ各々を管周方向に沿って二分割したが、三つ以上に分割して実施してもよい。
(6) 上述の各実施形態では、分岐ケース3の内周面と流体輸送管Pの外周面との間を環状シール材13及びシート状シール材14で密封し、かつ、弁ケース5の内周面と流体輸送管Pの外周面との間を環状シール材13及びシート状シール材14で密封するように構成したが、分岐ケース3の内周面と流体輸送管Pの外周面との間、及び、弁ケース5の内周面と流体輸送管Pの外周面との間をそれぞれ密封することのできるシール構造であれば、いかなるシール材を用いて実施してもよい。
(7) 前記第1固定手段9及び第2固定手段10としては、弁ケース5及び分岐ケース3をそれぞれ流体輸送管Pに所定姿勢で固定することのできるものであれば、如何なる固定方法を採用してもよい。
【図面の簡単な説明】
【図1】本発明の流体輸送経路変更工法及び流体輸送経路変更装置の第1実施形態を示す全体の一部断面側面図
【図2】全体の断面正面図
【図3】穿孔装置による第1穿孔作業時の全体の一部断面側面図
【図4】分岐ケース及び弁ケースを弁装着位置に摺動させたときの全体の一部断面側面図
【図5】分岐ケースを90度回動操作したときの全体の一部断面側面図
【図6】穿孔装置による第2穿孔作業時の全体の一部断面正面図
【図7】分岐管接続時の全体の一部断面正面図
【図8】分岐ケース及び弁ケースの要部の拡大断面正面図
【図9】分岐ケース及び弁ケースの要部の拡大水平断面図
【図10】(イ)はシール案内手段を装備したときの要部の拡大断面側面図
(ロ)はシール案内手段と流体輸送管の拡大断面正面図
【図11】強制移行装置の組付け状態を示す全体の平面図
【図12】強制移行装置のジャッキ機構を示す斜視図
【図13】強制移行装置の断面正面図
【図14】(イ)は、移動方向切替手段が中立状態にあるときのケースの断面側面図
(ロ)は、移動方向切替手段が引寄せ状態にあるときのケースの断面側面図
【図15】ケースの断面正面図
【図16】穿孔装置の縦断面図
【図17】本発明の流体輸送経路変更工法及び流体輸送経路変更装置の第2実施形態を示す全体の一部断面側面図
【図18】分岐ケースの一部断面正面図
【図19】弁ケースの一部断面正面図
【図20】本発明の流体輸送経路変更工法及び流体輸送経路変更装置の第3実施形態を示す要部の拡大断面側面図
【図21】本発明の流体輸送経路変更工法及び流体輸送経路変更装置の第4実施形態を示す要部の拡大断面側面図
【図22】従来の流体輸送経路変更工法を示し、弁ケースに作業用仕切弁を取付けたときの全体の一部断面側面図
【図23】穿孔装置による第1穿孔作業開始直前における全体の一部断面側面図
【図24】穿孔装置による第1穿孔作業終了後の全体の一部断面側面図
【図25】仕切弁ユニットを備えた挿入機を組付けたときの全体の一部断面側面図
【図26】挿入機で仕切弁ユニットを下降させたときの全体の一部断面側面図
【図27】仕切弁ユニットを固定したときの全体の一部断面側面図
【図28】分岐ケースに作業用仕切弁を取付けたときの全体の一部断面側面図
【図29】穿孔装置による第2穿孔作業時の全体の一部断面側面図
【図30】穿孔装置による第2穿孔作業終了後の全体の一部断面側面図
【図31】分岐ケースに分岐管を接続したときの全体の一部断面側面図
【符号の説明】
A 穿孔装置
B 強制移行装置
C シール案内手段
P 流体輸送管
P1 分岐管
1 管壁
1A 貫通孔(弁挿入口)
1B 貫通孔(分岐口)
2 仕切弁体
3 分岐ケース
3B 分岐管部
4 弁操作手段
5 弁ケース
6 作業用仕切弁
7 連結手段
8 密封手段
9 第1固定手段
10 第2固定手段
11 回転切削具(ホールソー、エンドミル)
13 シール材(環状シール材)
17 シール摺動案内体
17A 操作部
17B 係合部
17a 通過孔(通過部)
19 面取加工手段(刃部)
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a through hole serving as a valve insertion port is formed at a specific location of a fluid transport pipe such as a water pipe while maintaining the flow of fluid in the pipe, and the flow path of the fluid transport pipe is closed (blocked) through the through hole. After installing the gate valve body to be formed, a through hole serving as a branch port is formed while maintaining the flow of the fluid in the pipe at a specific location upstream or downstream of the gate valve body, and the branch pipe is connected to the through hole. The present invention relates to a fluid transportation route changing method to be connected and a fluid transportation route changing device used therefor.
[0002]
[Prior art]
In the conventional fluid transport path changing method, the gate valve is attached to the fluid transport pipe and the branch pipe is connected through the following steps (a) to (g).
[0003]
(A) As shown in FIG. 22 and FIG. 23, a plurality of divided case bodies 80A connected to the flow passage blocking equivalent part (a part equivalent to the gate valve attachment) of the fluid transport pipe P so as to be separable in the pipe circumferential direction are provided. In addition, a split T-shaped valve case 80 having a pipe portion 80B that opens in a direction intersecting the tube axis X in one split case body 80A is provided between the outer peripheral surface of the fluid transport pipe P and The tube portion 80B is fixed to the flange portion 80a formed in the tube portion 80B of the valve case 80 by being fitted and fixed with a bolt or the like so that it cannot rotate and cannot slide in the tube axis X direction in a sealed state. It is a rotary cutting tool for attaching a work gate valve 81 to be opened and closed, and for forming a through hole 1A in the pipe wall 1 of the fluid transport pipe P through the pipe part 80B in the flange part 81a of the work gate valve 81. Removable drilling device 83 with hole saw 82 Kick.
[0004]
(B) As shown in FIGS. 23 and 24, the working gate valve 81 is opened to apply a driving rotational force and a feeding force to the hole saw 82 of the punching device 83, so that the pipe of the fluid transport pipe P After the through hole 1A serving as a valve insertion port is formed in the wall 1, the hole saw 82 of the punching device 83 is returned to the initial standby position, and the work gate valve 81 is closed.
[0005]
(C) As shown in FIG. 25, the perforating device 83 is removed from the work gate valve 81, and the housing 85 and the gate valve unit in which the gate valve unit 84 can be installed in the flange portion 81a of the work gate valve 81. An insertion machine 87 provided with an elevating mechanism 86 for feeding 84 along the pipe radial direction is attached.
[0006]
The gate valve unit 84 includes an upper cover 88 that forms a valve body housing space sealed with the pipe portion 80B of the valve case 80, and a gate valve body 89 capable of closing a flow path in the fluid transport pipe P. Valve operation means 90 for opening and closing the gate valve body 89 along the pipe diameter direction is assembled in advance and attached to the holder portion 86a of the lifting mechanism 86 in a suspended state.
[0007]
(D) As shown in FIGS. 26 and 27, the gate valve 81 of the gate valve unit 84 attached to the holder portion 86a of the insertion mechanism 87 is operated by opening the work gate valve 81 and operating the lifting mechanism 86 of the insertion machine 87. 89 is lowered to a state where the part 89 enters the pipe part 80B of the valve case 80, and the connecting flange part 88a of the upper cover 88 of the gate valve unit 84 and the flange part 80a of the pipe part 80B are temporarily connected with bolts or the like. Stop and fix. In this state, the insertion machine 87 and the work gate valve 81 are removed, and the connection flange portion 88a of the upper cover 88 of the gate valve unit 84 and the flange portion 80a of the pipe portion 80B are fixedly connected with a bolt or the like.
[0008]
(E) As shown in FIG. 28, the fluid transport pipe P is provided with a plurality of split case bodies 91A connected to the branch port formation portion so as to be separable in the pipe circumferential direction. The split T-shaped branch case 91 provided with the branch pipe portion 91B that opens in a direction intersecting the tube axis X cannot be rotated and sealed with the outer peripheral surface of the fluid transport pipe P. A work gate valve 92 that opens and closes the passage of the branch pipe portion 91B is formed in the flange portion 91a formed in the branch pipe portion 91B of the branch case 91, while being fitted and fixed with a bolt or the like so as not to slide in the core X direction. Further, a drilling device provided with a hole saw 82 which is a rotary cutting tool for forming a through hole 1B in the pipe wall 1 of the fluid transport pipe P through the branch pipe part 91B in the flange part 92a of the working gate valve 92. 83 is attached detachably.
[0009]
(F) As shown in FIGS. 28 to 30, the working gate valve 92 is opened to apply a driving rotational force and a feeding force to the hole saw 82 of the punching device 83, so that the pipe of the fluid transport pipe P After the through hole 1B serving as a branch port is formed in the wall 1, the hole saw 82 of the punching device 83 is returned to the initial standby position, and the work gate valve 92 is closed.
[0010]
(G) As shown in FIG. 31, after removing the punching device 83 from the flange portion 92a of the work gate valve 92, the branch pipe P1 is connected to the flange portion 92a of the work gate valve 92.
[0011]
[Problems to be solved by the invention]
In the case of using the conventional fluid transport route changing method, when attaching the gate valve body 89, the valve case 80 is fitted and fixed to the fluid transport pipe P so that it cannot be rotated and cannot be slid in the tube axis direction. A step of attaching the work gate valve 81 to the pipe portion 80B of 80, a step of attaching the punching device 83 to the work gate valve 81, a punching step of the punching device 83, a step of removing the punching device 83 from the work gate valve 81, A step of attaching the insertion machine 87 in which the gate valve unit 84 is assembled in advance to the work gate valve 81, a step of fixing the gate valve unit 84 to the pipe portion 80B of the valve case 80, and the insertion machine 87 from the work gate valve 81. Numerous processes such as a process of removing and a process of removing the working gate valve 81 from the pipe portion 80B of the valve case 80 are necessary. Even when the branch pipe P1 is connected, the fluid transport pipe P The step of fitting and fixing the branch case 91 so that it cannot rotate and cannot slide in the tube axis X direction, the step of attaching the work gate valve 92 to the branch pipe portion 91B of the branch case 91, and the punching device on the work gate valve 92 83, a step of drilling work by the punching device 83, a step of removing the punching device 83 from the working gate valve 92, and a step of connecting the branch pipe P1 to the working gate valve 92 are necessary. Since a large number of opening / closing operations of the work gate valves 81 and 92 are added, not only the construction period is lengthened, but also a lot of labor is required, and more construction equipment is required, resulting in an increase in construction costs. There was a problem.
[0012]
The present invention has been made in view of the above circumstances, and a first main problem thereof is to efficiently and rationally provide a valve case and a branch case that are finally fitted and fixed to a fluid transport pipe. It is intended to provide a fluid transport route change method that can reduce the construction cost by shortening the construction period and promoting the reduction of labor and construction equipment. The main problem of 2 is that the valve case and the branch case that are finally fitted and fixed to the fluid transport pipe are operated efficiently while maintaining airtightness, so that the construction period can be shortened and the construction cost can be reduced without leakage. The present invention is to provide a fluid transport path changing device capable of reducing the cost.
[0013]
[Means for Solving the Problems]
The characteristic configuration according to claim 1 of the present invention is a fluid transport path in which a branch valve body that blocks a flow path of a fluid transport pipe is mounted, and then a branch pipe is connected to a specific location on the upstream side or downstream side of the gate valve body. It is a change construction method, and is in the point provided with the following steps (a) to (c).
(A) a branch case provided with a branch pipe portion along a direction intersecting the tube axis of the fluid transport pipe, a gate valve body capable of closing the flow path in the fluid transport pipe, and the pipe valve body in the radial direction And a valve case provided with a valve operating means for opening / closing movement along the outer periphery of the fluid transport pipe is slidably attached to the fluid transport pipe in the tube axis direction. In addition, a piercing device for forming a through hole in the pipe wall of the fluid transport pipe through the branch pipe portion is detachably attached to the working gate valve attached to the branch pipe portion of the branch case. A through hole serving as a valve insertion port is formed in the pipe wall of the transport pipe.
(B) After the completion of the first drilling operation by the drilling device, the branch case and the valve case up to the valve mounting position where the gate valve body can be inserted into the through hole formed in the pipe wall from the outside in the radial direction of the pipe. The valve case is fixed to the fluid transport pipe in a predetermined posture, and the branch case is rotated around the pipe axis as necessary with respect to the fluid transport pipe. After that, the branch pipe portion of the fluid transport pipe is fixed to the fluid transport pipe in a posture facing the portion corresponding to the branch port formation of the fluid transport pipe, and then the through-hole serving as the branch port is formed in the pipe wall of the fluid transport pipe by the punching device. Form.
(C) After completion of the second drilling operation by the punching device, after removing the punching device from the work gate valve being closed, a branch pipe is connected to the work gate valve.
[0014]
According to the above characteristic configuration, the fluid transport pipe is in a state where the branch case provided with the branch pipe portion and the valve case provided with the gate valve body and the valve operating means are sealed between the outer peripheral surface of the fluid transport pipe. With a piercing device that is detachably attached to the branch pipe portion of the branch case via the work gate valve, the valve insertion port and the pipe wall of the fluid transport pipe are A through hole formed in the tube wall by sliding the branch case and the valve case along the tube axis direction after the completion of the first drilling operation by the drilling device. On the other hand, the gate valve body in the valve case can be inserted from the outside in the pipe radial direction.
[0015]
Further, the valve case is fixed to the fluid transport pipe in a predetermined posture at the valve mounting position, and the branching port formation portion of the fluid transport pipe and the branch pipe portion of the branch case face each other in the pipe radial direction, in other words, Rotate the branch case around the axis of the pipe as necessary until the center of the part corresponding to the formation of the branch port of the fluid transport pipe matches the center of the drilling device, and then fix the branch case to the fluid transport pipe. In this state, a through-hole serving as a branch port is formed in the pipe wall of the fluid transport pipe by the perforating apparatus. After the second drilling operation by the punching device is completed, the punching device is removed from the work gate valve that has been closed, and then a branch pipe is connected to the work gate valve.
[0016]
Accordingly, the valve case and the branch case that are finally fitted and fixed to the fluid transport pipe are configured to be slidable, and the branch case is configured to be rotatable around the axis of the pipe. And efficient operation of the branch case as described above, the number of work processes can be greatly reduced and the construction period can be shortened compared to the conventional construction method. Reduction can also be promoted, and construction costs can be reduced.
[0017]
According to claim 2 of the present invention, the fluid transport path changing method is characterized in that the branch case and the valve case are rotated relative to each other around the tube axis and the tube shaft after the first drilling operation by the drilling device is completed. The point is that it is configured to slide along the tube axis direction in a connected state in which relative movement in the core direction is prevented.
[0018]
According to the above characteristic configuration, the valve mounting position into which the gate valve body can be inserted from the outside in the pipe radial direction with respect to the through hole formed in the pipe wall, in other words, the center position of the gate valve body on the valve case side, When the branch case and the valve case are slid along the tube axis direction to the valve mounting position where the center position of the through hole formed in the pipe wall matches, the branch case and the valve case are perforated. Since it can be slid while maintaining the relative positional relationship at the time, it is possible to suppress the displacement between the center position of the gate valve body and the center position of the through hole formed in the pipe wall.
[0019]
According to a third aspect of the present invention, there is provided a fluid transport path changing method characterized in that a forcible transfer device detachably attached to the fluid transport pipe is connected to a branch case or a valve case, and the first drilling by the drilling device is performed. After the operation is completed, the branch case and the valve case are configured to slide along the tube axis direction by the forced transfer device.
[0020]
According to the above characteristic configuration, the sliding operation of the branch case and the valve case after completion of the first drilling operation can be easily performed by the forced transfer device attached to the fluid transport pipe, and the branch case and the valve case Compared with manual push or pull operation, there is less possibility of operating force in the turning direction being applied to the branch case and valve case, and the through hole formed in the center position of the gate valve body and the pipe wall The positional deviation from the center position of the hole can be further suppressed.
[0021]
According to a fourth aspect of the present invention, there is provided a fluid transport path changing device characterized in that a branch case provided with a branch pipe portion along a direction intersecting the tube axis of the fluid transport pipe and a flow path in the fluid transport pipe are closed. And a valve case provided with a valve operating means for opening and closing the gate valve body along the pipe radial direction in a state where the space between the outer peripheral surface of the fluid transport pipe is sealed. The slidably mounted in the direction of the tube axis with respect to the tube, the branch case is configured to be rotatable around the tube axis of the fluid transport pipe, and the work partition is attached to the branch tube portion of the branch case A perforating device that forms a through hole in the pipe wall of the fluid transport pipe through the branch pipe portion and the branch pipe can be selectively replaced with respect to the valve, and the branch case and the valve case can be detached. The connecting means to be connected, and at the time of connection by the connecting means, Sealing means for sealing a space formed between the inner peripheral surface of the adjacent end portion of the gas pipe and the outer peripheral surface of the fluid transport pipe with respect to the outside; first fixing means for fixing the valve case to the fluid transport pipe; The second fixing means for fixing the branch case to the fluid transport pipe is provided.
[0022]
According to the above characteristic configuration, the fluid transport pipe is in a state where the branch case provided with the branch pipe portion and the valve case provided with the gate valve body and the valve operating means are sealed between the outer peripheral surface of the fluid transport pipe. With a piercing device that is detachably attached to the branch pipe portion of the branch case via the work gate valve, the valve insertion port and the pipe wall of the fluid transport pipe are A through hole formed in the tube wall by sliding the branch case and the valve case along the tube axis direction after the completion of the first drilling operation by the drilling device. On the other hand, the gate valve body can be inserted from the outside in the pipe radial direction.
[0023]
In addition, at this time, a sealing means for sealing the space formed between the inner peripheral surface of the adjacent end portions of both cases and the outer peripheral surface of the fluid transport pipe is provided to the outside. The fluid that has flowed out of the through hole thus formed does not leak to the outside through between the adjacent ends of both cases that are slid along the tube axis direction.
[0024]
Further, a valve mounting position in which the gate valve body can be inserted from the outside in the pipe radial direction with respect to the through hole formed in the pipe wall, in other words, the central position of the gate valve body on the valve case side and the pipe wall is formed. When the branch case and the valve case are slid along the pipe axis direction to the valve mounting position where the center position of the formed through hole matches, the relative positional relationship when drilling the branch case and the valve case Therefore, it is possible to suppress the positional deviation between the center position of the gate valve body and the center position of the through hole formed in the pipe wall.
[0025]
Further, after the valve case is fixed to the valve mounting position of the fluid transport pipe by the first fixing means, the portion corresponding to the formation of the branch port of the fluid transport pipe and the branch pipe portion of the branch case face each other in the pipe radial direction. For example, the branch case is rotated around the axis of the pipe as necessary until the center of the portion corresponding to the formation of the branch port of the fluid transport pipe coincides with the center of the punching device, and then the branch case is fixed to the second fixing means. In this state, a through-hole serving as a branch port is formed in the tube wall of the fluid transport pipe by a perforating apparatus. After the second drilling operation by the punching device is completed, the punching device is removed from the work gate valve that has been closed, and then a branch pipe is connected to the work gate valve.
[0026]
Accordingly, the valve case and the branch case that are finally fitted and fixed to the fluid transport pipe are configured to be slidable, and the branch case is configured to be rotatable around the axis of the pipe. And the branch case efficiently while maintaining airtightness as described above, the number of work processes can be greatly reduced and the construction period can be shortened with no fluid leakage compared to the conventional method. Moreover, it is possible to promote the reduction of labor and construction equipment, and the construction cost can be reduced.
[0027]
The characteristic configuration of the fluid transport path changing device according to claim 5 of the present invention is a seal material held in the branch case in a state of sealing between the inner peripheral surface of the branch case and the outer peripheral surface of the fluid transport pipe, and Of the sealing material held by the valve case in a state of sealing between the inner peripheral surface of the valve case and the outer peripheral surface of the fluid transport pipe, at least a seal portion that needs to pass through a through hole formed in the pipe wall. A seal sliding guide means is provided which slides and guides the fluid transport pipe while being separated from the outer peripheral surface of the fluid transport pipe.
[0028]
According to the above characteristic configuration, when the branch case and the valve case are slid along the tube axis direction at the end of the first drilling operation, the seal material held by the branch case and the seal material held by the valve case are: It is possible to suppress the damage by being caught by the opening peripheral edge of the sharp through hole formed in the pipe wall, and it is possible to reduce the operating force required for sliding the branch case and the valve case.
[0029]
According to a sixth aspect of the present invention, there is provided a fluid transport path changing device characterized in that the seal sliding guide means needs to pass through a through hole formed in at least the tube wall of both seal members and a fluid transport pipe. It is in the point comprised from the thin-plate-shaped or sheet-like seal sliding guide body interposed between the outer peripheral surfaces of.
[0030]
According to the above characteristic configuration, the branch case and the valve can be formed only by interposing the thin plate-like or sheet-like seal sliding guide between the seal portion that needs to pass through the through hole and the outer peripheral surface of the fluid transport pipe. Since the seal material can be prevented from being damaged when the case slides, the seal sliding guide means can be advantageously manufactured in terms of structure and manufacturing cost.
[0031]
According to a seventh aspect of the present invention, there is provided a fluid transport path changing device characterized in that the seal sliding guide body includes a seal portion and a fluid transport pipe that are required to pass through through holes formed in at least the pipe walls of both seal members. It is in the point comprised from the flexible sheet | seat sealing material made from a synthetic resin which can seal between outer peripheral surfaces.
[0032]
According to the above characteristic configuration, the seal portion that needs to pass through the through hole and the outer peripheral surface of the fluid transport pipe have the seal sliding guide body for suppressing damage to the seal material when the branch case and the valve case slide. Therefore, it is not always necessary to remove the flexible sheet sealing material made of synthetic resin constituting the seal sliding guide body, and it is possible to improve and facilitate the work efficiency. .
[0033]
The fluid transport path changing device according to claim 8 of the present invention is characterized in that the seal sliding guide body includes a seal portion and a fluid transport pipe that are required to pass through through holes formed in at least the tube walls of both seal materials. The operation part for drawing out along the pipe-axis direction from the state interposed between the outer peripheral surfaces of these is provided.
[0034]
According to the above characteristic configuration, the center position of the gate valve on the valve case side and the pipe wall are provided while the seal sliding guide body is provided to prevent damage to the sealing material when the branch case and the valve case slide. When the branch case and the valve case are slid along the pipe axis direction to the valve mounting position where the center position of the through-hole formed in the pipe matches, the seal portion and the outer peripheral surface of the fluid transport pipe The seal sliding guide body interposed therebetween can be easily pulled out in the direction of the tube axis through the operation portion provided thereon.
[0035]
According to a ninth aspect of the present invention, there is provided a fluid transport path changing device characterized in that the seal sliding guide body can be engaged with and disengaged from the inner side in the pipe radial direction with respect to the branch case, and the branch case and the seal when engaged. An engaging portion that integrally slides the sliding guide body and a passage portion that allows passage of the rotary cutting tool of the drilling device with respect to the outer peripheral surface of the fluid transport pipe are formed.
[0036]
According to the above characteristic configuration, when the branch case is externally fitted to the fluid transport pipe, the engaging portion of the seal sliding guide body can be easily engaged from the inside in the pipe radial direction, and the branch case and The positional deviation of the seal sliding guide during sliding of the valve case can be suppressed, and it is also possible to prevent the seal sliding guide from interfering during the drilling operation by the punching device.
[0037]
According to a tenth aspect of the present invention, in the fluid transport path changing device, the branch case is provided with a chamfering means for chamfering a peripheral edge on the outer peripheral surface side of the through hole formed in the pipe wall. There is in point.
[0038]
According to the above characteristic configuration, the branch case and the valve case are connected to the pipe axis until the center position of the gate valve on the valve case side matches the center position of the through hole formed in the pipe wall. When sliding along the direction, it is possible to suppress the sealing material held by the branch case and the sealing material held by the valve case from being caught and damaged by the outer peripheral surface side periphery of the through hole.
[0039]
The characteristic configuration of the fluid transport path changing device according to claim 11 of the present invention is that the rotary cutting tool of the perforating device is composed of a hole saw that forms a through-hole by feeding movement along the pipe radial direction.
[0040]
According to the above characteristic configuration, it is only necessary to feed the hole saw that is driven and rotated along the pipe radial direction, so that the drilling operation for the pipe wall of the fluid transport pipe can be performed efficiently and easily.
[0041]
The fluid transport path changing device according to claim 12 of the present invention is characterized in that an end mill in which the rotary cutting tool of the drilling device forms a through hole by a feed movement along the pipe radial direction and a movement along the pipe circumferential direction. The movement of the end mill in the pipe circumferential direction is provided by relative rotation around the pipe axis of the branch case with respect to the fluid transport pipe.
[0042]
According to the above characteristic configuration, since the through hole as the valve insertion port formed in the pipe wall of the fluid transport pipe has an oval shape along the pipe circumferential direction, the thickness of the gate valve body in the pipe axis direction In addition, the length of the through hole in the pipe circumferential direction can be arbitrarily changed by a rotation angle operation around the pipe axis of the branch case with respect to the fluid transport pipe.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
1 to 16 show a valve insertion port in a non-continuous flow state with fluid flowing in the fluid transport pipe P at a specific place (a part corresponding to a gate valve) of the fluid transport pipe P such as a water pipe or a gas pipe. A through-hole 1A is formed, and after attaching the gate valve body 2 for closing (blocking) the flow path of the fluid transport pipe P through this through-hole 1A, a specific location on the upstream side or downstream side of the gate valve body 2 Similarly, a through-hole 1B serving as a branch port is formed in the fluid transport pipe P in a non-continuous flow state in the fluid transport pipe P, and the branch pipe P1 is connected to the through-hole 1B. 1 shows a fluid transport route changing method used in the case and a fluid transport route changing device used therefor.
[0044]
This fluid transport path changing device is integrally formed with a branch pipe portion 3B that protrudes radially outward along the direction intersecting the tube axis X of the fluid transport pipe P (the orthogonal direction in this embodiment). Cast iron having a branch case 3 made of cast iron, a gate valve 2 capable of closing the flow path in the fluid transport pipe P, and a valve operating means 4 for opening and closing the gate valve 2 along the pipe diameter direction Each valve case 5 is slidable in the direction of the tube axis X with respect to the fluid transport pipe P in a state of being sealed (sealed in a liquid-tight or air-tight state) with the outer peripheral surface of the fluid transport pipe P. In addition to external fitting (exterior), the branch case 3 is configured to be rotatable around the tube axis X of the fluid transport pipe P.
[0045]
A punching device A for forming through holes 1A and 1B in the pipe wall 1 of the fluid transport pipe P through the branch pipe portion 3B with respect to the working gate valve 6 attached to the branch pipe portion 3B of the branch case 3; The branch pipe P1 is configured to be selectively replaceable, and the branch case 3 and the valve case 5 are fixedly connected to each other so as to be detachable from the tube axis X direction. The annular space S1 formed between the inner peripheral surfaces 3a, 5a of the adjacent ends of the cases 3, 5 and the outer peripheral surface of the fluid transport pipe P is sealed from the outside (sealed in a liquid-tight or air-tight state). Sealing means 8, first fixing means 9 for fixing the valve case 5 to the fluid transport pipe P, second fixing means 10 for fixing the branch case 3 to the fluid transport pipe P, and a through hole 1A serving as a valve insertion port After forming (after completion of the first drilling operation by the drilling device A) It is provided with a forced migration device B forcibly moved along the over scan 3 and the valve casing 5 on the pipe axis X direction.
[0046]
Further, an O-ring or the like held by the branch case 3 in a state in which the space between the inner peripheral surface of the pipe receiving portion 3a of the branch case 3 and the outer peripheral surface of the fluid transport pipe P is sealed (sealed in a liquid-tight or air-tight state). Of the synthetic rubber (for example, styrene butadiene rubber) and the inner peripheral surface of the tube receiving portion 5a formed on both sides in the tube axis X direction of the valve case 5 and the fluid transport pipe P. At least of the annular sealing material 13 made of a synthetic rubber such as an O-ring (for example, styrene butadiene rubber) held by the valve case 5 in a state of sealing between the outer peripheral surfaces (sealed in a liquid-tight or air-tight state). Seal sliding guide means C is provided that slides and guides a seal portion that needs to pass through a through hole 1A formed in the tube wall 1 as a valve insertion port while being separated from the outer peripheral surface of the fluid transport pipe P. .
[0047]
As shown in FIGS. 1 to 9, the branch case 3 is a semi-cylindrical divided case body 3 </ b> A that is divided into two in the pipe circumferential direction that can be externally attached to the fluid transport pipe A from both sides in the pipe radial direction. The split case bodies 3A are attached to both ends of each split case body 3A in the pipe circumferential direction via a plurality of bolts 15 as an example of fastening means. A first connecting flange portion 3b for fixedly connecting freely is formed integrally. Further, in one divided case body 3A that is sheathed on the upper half portion of the fluid transport pipe A, at the center portion in the tube axis direction, And the branch pipe part 3B is integrally formed in the center part of the pipe circumferential direction.
[0048]
Further, one continuous annular sealing material 13 is provided on the inner peripheral surface of the tube receiving portion 3a formed integrally near both ends of the tube axis X direction of each divided case body 3A when the divided case bodies 3A are fixedly connected. A synthetic rubber formed in a sheet shape is formed between the opposing surfaces of the first connecting flange portions 3b of the two split case bodies 3A. A sealing material 14 made of (for example, styrene butadiene rubber) is interposed.
[0049]
Further, a first connecting flange portion 6a integrally formed on the lower end side of the casing 6A of the work gate valve 6 is fixedly connected to the distal end portion of the branch pipe portion 3B through a fastening means such as a bolt. The second connection flange portion 3d is integrally formed, and the third connection flange portion 3e protruding outward in the tube radial direction is integrally formed at both ends of the divided case body 3A in the tube axis X direction. The third connection flange portion 3e is fitted to a fourth connection flange portion 5f of the valve case 5 described later so as to be relatively rotatable from the tube axis X direction or the tube radial direction, and is branched to the fluid transport pipe A. A bowl-shaped annular guide portion 3 f that guides the rotation operation of the case 3 around the tube axis X is integrally formed.
That is, the annular guide portion 3f constitutes a rotation guide means for guiding a rotation operation around the tube axis X of the branch case 3 with respect to the fluid transport pipe A.
[0050]
As shown in FIG. 9, the sheet-like sealing material 14 is formed with a bolt insertion hole 14a for the bolt 15 of the fastening means and a recess 14b into which each annular sealing material 13 enters in contact with each other. By fastening and fixing the two split case bodies 3A that are covered by the transport pipe A with the bolts 15 of the fastening means, the annular seal member 13 and the sheet are provided between the inner peripheral surface of the branch case 3 and the outer peripheral surface of the fluid transport pipe P. It is comprised so that it may seal with the shape sealing material 14.
[0051]
As shown in FIGS. 1 to 9, the valve case 5 is divided into two in the pipe circumferential direction that can be externally attached to the fluid transport pipe A from both sides in the pipe radial direction, like the above-described branch case 3. The split case body 5A is an example of a fastening means. The split case bodies 5A are covered with the fluid transport pipe A at both ends in the pipe circumferential direction of each split case body 5A. A first connecting flange portion 5b for detachably fixedly connecting via a plurality of bolts 15 is integrally formed, and one of the divided case bodies 5A that is sheathed on the upper half of the fluid transport pipe A, A direction intersecting the tube axis X of the fluid transport pipe P at the center portion in the tube axis X direction and in the tube circumferential direction (in the embodiment, orthogonal to the tube axis X) The tube portion 5B that protrudes radially outward along the orthogonal direction) is integrally formed. .
[0052]
In addition, one continuous annular sealing material 13 is formed on the inner peripheral surface of the tube receiving portion 5a integrally formed near both ends of the tube axis X direction of each divided case body 5A when the divided case bodies 5A are fixedly connected. A synthetic rubber formed in a sheet shape is formed between the opposing surfaces of the first connecting flange portions 5b of the two split case bodies 5A. A sealing material 14 made of (for example, styrene butadiene rubber) is interposed.
[0053]
Furthermore, the second connecting flange portion 5d of the valve cover 5D, which forms the storage space S2 of the gate valve body 2 with the tube portion 5B, is detachable at the distal end portion of the tube portion 5B via fastening means such as bolts. A third connection flange portion 5e that is fixedly connected to each other is integrally formed, and a fourth connection flange portion 5f that protrudes outward in the radial direction of the tube is provided at both ends of each split case body 5A in the tube axis X direction. It is integrally formed.
[0054]
As described above, the seat seal material 14 is formed with the bolt insertion holes 14a for the bolts 15 of the fastening means and the recesses 14b into which the respective annular seal materials 13 enter in contact with each other, and the fluid transport pipe A By tightening and fixing the two split case bodies 5A that are covered with the bolts 15 of the fastening means, the annular seal member 13 and the sheet-like seal member are provided between the inner peripheral surface of the valve case 5 and the outer peripheral surface of the fluid transport pipe P. 14 for sealing.
[0055]
As shown in FIG. 1, the valve operating means 4 includes a screw shaft 4 </ b> A attached to a valve cover 5 </ b> D of the valve case 5 so as to be rotatable only with the operating shaft portion 4 a protruding outward, and a gate valve body 2. The gate valve body 2 is configured by a screw hole (not shown) formed in the core material, and the gate valve body 2 positioned in the storage space S2 is caused by the inter-axis distance variation caused by the screwing operation between the screw shaft 4A and the screw hole. The flow passage in the fluid transport pipe A is closed (blocked) while being inserted and moved into the pipe through the through-hole 1A formed by cutting, and the valve insertion port 1A is sealed by the gate valve body 2.
[0056]
As shown in FIGS. 1 and 10, the connecting means 7 connects the third connecting flange portion 3 e of the branch case 3 and the fourth connecting flange portion 5 f of the valve case 5 at a plurality of locations in the pipe circumferential direction. The bolt 7a and the nut 7b are fastened and fixed from the direction.
[0057]
As shown in FIGS. 1 and 10, the sealing means 8 is made of an annular synthetic rubber that is sandwiched and fixed between the third connection flange portion 3 e of the branch case 3 and the fourth connection flange portion 5 f of the valve case 5. (For example, styrene butadiene rubber) is formed of a sheet-like sealing material, and the third connecting flange portion 3e of the drilling work case 3 and the valve case 5 are connected with the tightening and fixing operation by the bolts 7a and nuts 7b. It is comprised so that between 4 connection flange parts 5f may be sealed.
[0058]
As shown in FIGS. 4 and 10, the first fixing means 9 is an annular shape that seals between the opposing surfaces of the tapered inner peripheral surface 5 g on the end side of the valve case 5 and the outer peripheral surface of the fluid transport pipe P. A synthetic rubber (for example, styrene butadiene rubber) sealing material 9A, a cast iron push ring 9B that can be compressed to a sealed state by pressing the sealing material 9A from the tube axis X direction, and the push ring 9B and valve case 5 and the fourth connecting flange portion 5f are tightened and fixed while being pulled from the tube axis X direction, and the outside of the pipe radial direction in a state of biting into the outer peripheral surface of the fluid transport pipe P. It comprises a plurality of push bolts (not shown) that are screwed from one side.
[0059]
As shown in FIGS. 5 and 10, the second fixing means 10 has an annular shape that seals between the facing surfaces of the tapered inner peripheral surface 3 g on the end side of the branch case 3 and the outer peripheral surface of the fluid transport pipe P. A synthetic rubber (for example, styrene butadiene rubber) seal material 10A, a cast iron push ring 10B that can be compressed to a sealed state by pressing the seal material 10A from the tube axis X direction, and the push ring 9B and a branch case 3 and the third connecting flange portion 3e are tightened and fixed while being pulled from the tube axis X direction. And a plurality of push bolts (not shown) screwed from one side.
[0060]
In this embodiment, since the third connecting flange portion 3e of the branch case 3 and the fourth connecting flange portion 5f of the valve case 5 are fixedly connected by the connecting means 7, one of the first fixed portions is fixed. The means 9 or the second fixing means 10 is also used as a part of the constituent members of the other second fixing means 10 or the first fixing means 9.
[0061]
That is, the other second fixing means 10 also serves as a part of the first fixing means 9 that fixes the valve case 5 to the fluid transport pipe P, and the other first fixing means 9 connects the branch case 3 to the fluid transport pipe. A part of the second fixing means 10 for fixing to P is also used.
[0062]
As the perforating apparatus A, there are various structures. For example, as shown in FIG. 16, the second connecting flange integrally formed on the upper end side of the casing 6A of the working gate valve 6 is provided. The drive rotary shaft 21 is relatively rotated and relatively slid in the direction of the rotation axis to the casing 20 that is detachably connected to the portion 6b by a bolt or the like via a connecting flange portion 32 formed integrally with the cutter cover 33. A first feed shaft 22 that is movably supported, and is connected to the tip end portion (feed-side end portion) side of the drive rotation shaft 21 only in a relative rotation manner within the drive rotation shaft 21; A second feed shaft 23 provided with a female screw 23a that is screwed into a male screw 22a formed on the outer peripheral surface of the rear end portion (return side end portion) of the first feed shaft 22 is disposed in a concentric state. Second feed protruding from the casing 20 The rear end portion 23 are then secured handwheel 24.
[0063]
Further, the drive cylinder shaft 25, which is spline-fitted to the outer peripheral surface of the rear end portion of the drive rotation shaft 21 so as to be slidable in the rotation axis direction, is supported on the casing 20 so as to be rotatable only. A worm wheel 28 that meshes with a worm 27 of a drive input shaft 26 that is linked to a driving portion such as an electric motor or an engine (not shown) is fixed near the distal end side of the cylindrical shaft 25, and In the middle of the power transmission system from the staggered gear 29 that is externally fitted and fixed to the rear end portion to the spur gear 30 that is externally fitted and fixed to the rear end side of the second feed shaft 23, the rotational force on the prime mover side is increased. A clutch 31 is provided that can be switched between an automatic feed state that is transmitted to the two feed shafts 23 and a manual feed state that allows a rotation operation of the second feed shaft 23 by the manual handle 24.
[0064]
When the rotational force of the driving portion is transmitted to the drive cylinder shaft 25 while the clutch 31 is operated in the automatic feed state, the drive cylinder shaft 25 is slidably splined. At the same time as the driving rotary shaft 21 is driven to rotate, the second feed shaft 23 linked to the drive cylinder shaft 21 via the clutch 31 is driven to rotate, and the second feed shaft 23 is screwed together. The first feed shaft 22 is extended and the drive rotary shaft 21 is fed while being rotated.
[0065]
That is, by driving a driving part such as an electric motor or an engine, a driving rotational force and a feeding force are applied to the driving rotary shaft 21, and the connecting flange portion 21 a on the distal end side of the driving rotary shaft 21 is attached with another type. A hole saw 11 which is an example of a rotary cutting tool connected in a replaceable manner is fed from the pipe radial direction through the branch pipe portion 3B of the branch case 3 so that the through holes 1A and 1B are formed in the pipe wall 1 of the fluid transport pipe P. Form.
[0066]
The hole saw 11 is configured by providing a center drill 11B protruding forward from the cutting tip at the center position of the bottom wall portion of the cylindrical body 11A having a cutting tip at the tip.
[0067]
As shown in FIGS. 11 to 15, the forced transition means B includes a first mounting body B1 that is detachably mounted across the branch case 3 and the valve case 5, and a tube axis with respect to the fluid transport pipe P. A cast iron second mounting body B2 that is detachably fitted and fixed in a state where movement in the X direction is restricted, and tips of left and right connecting bolts 35 that constitute the first mounting body B1 Of the first receiving part 36 formed in the second mounting part B2 and the second receiving part 41 formed in two places facing each other across the tube axis X of the second mounting body B2, both facing each other in the direction of the tube axis X By pulling the first mounting body B1 along the tube axis X direction with respect to the second mounting body B2 fixed to the fluid transport pipe P over each of the receiving portions 36 and 41, the valve insertion port The valve mounting position into which the gate valve body 2 can be inserted from the outside in the pipe radial direction into the through hole 1A, in other words, The branch case 3 and the valve case 3 are connected to the tube axis X up to the valve mounting position where the center position of the gate valve body 2 on the valve case 5 side matches the center position of the through hole 1A formed in the tube wall 1. A jack mechanism B3 forcibly sliding along the direction is detachably installed.
[0068]
As shown in FIG. 11, the first mounting body B1 includes two pipe circumferential direction locations of the third connection flange portion 3e of the branch case 3, and two pipe circumferential direction locations of the fourth connection flange portion 5f of the valve case 5. The connecting bolt 35 to which the fitting recess having an upward U-shape (an example of a concave shape) constituting the first receiving portion 36 is fixed is fixed by a plurality of nuts 37.
[0069]
As shown in FIGS. 11, 13, and 14, the second mounting body B <b> 2 is a semi-cylindrical shape that is divided into two in the pipe circumferential direction that can be externally mounted on the fluid transport pipe A from both sides in the pipe radial direction. The divided mounting bodies 42 are connected to each other, and at both ends in the pipe circumferential direction of each of the divided mounting bodies 42, both split mounting bodies 42 that are sheathed on the fluid transport pipe A are connected bolts 43. A connecting flange portion 42a for detachably fixing and connecting via a nut 44 is integrally formed, and each mounting portion 42b formed in a protruding manner at a plurality of locations in the pipe circumferential direction of each split mounting body 42 is splitly mounted. Lock bolts 45 for fixing the body 42 to the fluid transport pipe A are screwed together, and the box-like shape (an example of a concave shape) of the upward opening constituting the receiving portion 41 is formed on the outer surface of each divided mounting body 42. The fitting recess is integrally formed. It is.
[0070]
Further, as shown in FIGS. 11 and 14, among the constituent members of the fitting recess 41, the pair of first side wall bodies 41 </ b> A facing each other in the tube axis X direction is pushed and pulled by the jack mechanism B <b> 3. A fitting recess 41a that can be detachably fitted and held in a state where the rack 51 is dropped from above along the pipe diameter direction is formed, and the second side wall body 41B located on the outer side includes A U-shaped operation window 41b facing the operation portion 58 of the jack mechanism B3 is formed. Further, the bottom wall body 41C for placing and supporting the case 52 of the jack mechanism B3 is reduced in weight and invaded foreign matter to the outside. A through hole 41d for discharging is formed.
[0071]
As shown in FIGS. 11 to 15, the jack mechanism B <b> 3 drops and fits into the fitting recess 36 of the first mounting body B <b> 1 to apply a pulling force (mainly pulling force) along the tube axis X direction. The push / pull bar 51 is provided with a pressing body 50 for carrying out and a case 52 for penetrating and holding the push / pull bar 51 so as to be reciprocally movable in the tube axis X direction. The converting means 52 that converts the rotational operation force applied by a tool such as a ratchet wrench into the reciprocating force of the push / pull rod 51, and the pulling state that allows only the forward movement of the push / pull rod 51 and the push / pull rod 51 A moving direction switching means 54 is provided which can be switched between an extruded state allowing only backward movement and a neutral state where the reciprocating movement of the push / pull bar 51 is free.
[0072]
As shown in FIGS. 14 (a), 14 (b), and 15, the conversion means 53 includes a rectangular columnar rack that constitutes the push / pull bar 51, and a predetermined distance along the tube axis X direction to the rack 51. A pinion 56 that meshes with the engagement holes 55 that are formed to penetrate at a pitch, and an operation shaft 57 for rotational operation that is integrally formed with the pinion 56, and of the operation shaft 57, A hexagonal cylindrical operation portion 58 that can be operated with a tool (artificial operation tool) such as a ratchet wrench is fastened and fixed to the end portion of the square shaft protruding from the side plate portion with a bolt 59 in an externally fitted state.
[0073]
As shown in FIGS. 14 (a), 14 (b), and 15, the moving direction switching means 54 includes a switching operation shaft 61 having an operation lever 60 and a swing fulcrum shaft 62 on the upper side in the case 52. Are installed in parallel with the operation shaft 57, and the swing fulcrum shaft 62 is engaged with the engagement hole 55 of the rack 51 from one direction side in the tube axis X direction. The first claw member 63 that allows only the forward movement of the 51 and the engagement hole 55 of the rack 51 are engaged from the other direction side in the tube axis X direction and only the backward movement of the rack 51 is allowed. And a spring 65 for swinging and biasing the first claw member 63 and the second claw member 64 in the engaging direction, respectively, and a switching operation shaft 61. In this case, only the first claw member 63 is brought into the engagement position by the elastic biasing force of the spring 65. The pulling state to be moved, the pushing state in which only the second claw member 64 is swung to the engagement position by the elastic urging force of the spring 65, and both the claw members 63 and 64 against the elastic urging force of the spring 65. A cam 66 for switching to a neutral state held at the disengagement position is fixed.
[0074]
As shown in FIGS. 10 (a) and 10 (b), the seal sliding guide means C includes a seal portion that needs to pass through at least a through-hole 1A formed in the tube wall 1 out of both annular seal members 13. A sheet-shaped seal sliding guide 17 made of metal (for example, stainless steel) or synthetic resin (for example, polyacetal) or sheet-shaped or sheet-like interposed between the outer peripheral surface of the fluid transport pipe P The seal sliding guide 17 is interposed at one end in the tube axis X direction between the seal portion that needs to pass through the through hole 1A and the outer peripheral surface of the fluid transport pipe P. The operation portion 17A for pulling out from the state along the tube axis X direction is bent so as to protrude perpendicularly outward in the tube radial direction.
[0075]
The operation portion 17A engages with the third connection flange portion 3e on the outer end side that is not connected to the valve case 5 from both the third connection flange portions 3e of the branch case 3 from the direction of the tube axis X. The projecting margin is formed so that it can be engaged with and disengaged from the inner side in the pipe radial direction with respect to the branch case 3 with the operation portion 17A, and the branch case 3 and the seal sliding guide body 17 are engaged with each other when engaged. A fluid transport pipe P of the hole saw 11 which is a rotary cutting tool of the drilling apparatus A is formed in the middle part of the seal sliding guide body 17 in the axial direction of the pipe axis. A passage hole 17a, which is an example of a passage portion that allows passage movement to the side, is formed.
[0076]
Next, a fluid transport route changing method using the above-described fluid transport route changing device will be briefly described.
(A) As shown in FIGS. 1 and 2, a cast iron branch case 3 integrally formed with a branch pipe portion 3B, a gate valve body 2 capable of closing a flow path in a fluid transport pipe P, and the partition A cast iron valve case 5 provided with a valve operating means 4 for opening and closing the valve body 2 along the pipe diameter direction is connected to the outer periphery of the fluid transport pipe P via seals 13 and 14 provided on them. In a state of being sealed (sealed in a liquid-tight or air-tight state) with respect to the surface, the fluid transport pipe P is slidably fitted (exterior) in the direction of the tube axis X, and the branch case 3 is branched. The first connection flange portion 6a of the work gate valve 6 is detachably fixedly connected to the second connection flange portion 3d of the pipe portion 3B by a fastening means such as a bolt in a sealed state. 2 A through hole 1A is formed in the pipe wall 1 of the fluid transport pipe P through the branch pipe part 3B in the connecting flange part 6b. The coupling flange 32 of the perforating apparatus A is fixedly connected with freely sealed detachably by fastening means such as bolts.
[0077]
(B) As shown in FIGS. 1 and 3, the adjacent ones of the third connecting flange portion 3 e of the branch case 3 and the fourth connecting flange portion 5 f of the valve case 5 are connected to each other by bolts 7 a. The nut 7b is fastened and fixed from the X axis direction of the tube axis, and after opening the valve body 6B of the working gate valve 6, the driving portion of the drilling device A is driven, and the driving rotational force is applied to the driving rotary shaft 21. By feeding a hole saw 11 which is an example of a rotary cutting tool connected to the connecting flange portion 21a of the drive rotating shaft 21 through the inside of the branch pipe portion 3B of the branch case 3, A through hole 1A serving as a valve insertion port is formed in the pipe wall 1 of the fluid transport pipe P.
[0078]
When the through-hole 1A is formed in the pipe wall 1, the driving part of the drilling device A is driven in reverse or the manual handle 24 is operated to move the hole saw 11 from the outer peripheral surface of the fluid transport pipe P in the pipe radial direction. Raise to a standby position spaced outward.
[0079]
(C) As shown in FIG. 4, after the completion of the first drilling operation by the drilling device A, both jack mechanisms B3 of the forced transition means B are operated to partition the through hole 1A formed in the tube wall 1. The branch case 3 and the valve case 5 are forcibly slid along the tube axis X direction to the valve mounting position where the valve body 2 can be inserted from the outside in the tube diameter direction.
[0080]
The forced transfer means B is omitted in the work process diagrams of FIGS. 1 to 7, but when the drilling work case 3 and the valve case 5 are attached to the fluid transport pipe P, or from there, the drilling work case 3. The valve case 5 is attached to the fluid transport pipe P at an appropriate time until just before the sliding operation.
[0081]
Furthermore, although omitted in the work process diagrams of FIGS. 1 to 7, as shown in FIG. 10, as shown in FIG. 10, a seal portion that needs to pass through at least a through-hole 1 </ b> A formed in the tube wall 1 of both annular seal members 13. A sheet-like or sheet-like seal that slides and guides a seal portion that needs to pass through the through hole 1A between the outer peripheral surface of the fluid transport pipe P and the outer peripheral surface of the fluid transport pipe P. Since the sliding guide body 17 is interposed, the annular sealing material 13 held by the branch case 3 and the annular sealing material 13 held by the valve case 5 are caught by the outer peripheral surface side periphery of the through hole 1A and damaged. This can be suppressed.
[0082]
When the branch case 3 and the valve case 5 are slid to the valve mounting position, the seal sliding guide body 17 exposed to the outside from one end side in the tube axis X direction of the branch case 3 By operating the operation portion 17A, the seal sliding guide body 17 interposed between the seal portion that needs to pass through the through-hole 1A and the outer peripheral surface of the fluid transport pipe P is pulled out along the tube axis X direction. After that, the valve case 5 is fixed to the fluid transport pipe P by the first fixing means 9 in a predetermined posture.
[0083]
(D) As shown in FIG. 4 and FIG. 5, after releasing the fixed connection between the third connection flange 3 e of the branch case 3 and the fourth connection flange 5 f of the valve case 5 adjacent to each other, Further, the branch case 3 is rotated around the tube axis X as necessary with respect to the fluid transport pipe P (in this embodiment, the branch case 3 is rotated 90 degrees to connect the branch pipe P1 from the horizontal direction. If the branch pipe P1 is connected from above, it is not necessary to rotate the branch case 3), and the center of the branch pipe portion 3B corresponds to the formation of the branch port of the fluid transport pipe P. Is fixed to the fluid transport pipe P by the second fixing means 10 in a posture opposite to the center of the pipe, and the third connecting flange portion 3e of the branch case 3 and the fourth connecting flange portion 5f of the valve case 5 are adjacent to each other. Connect the bolts 7a Again tightened and fixed with door 7b.
[0084]
(E) As shown in FIG. 5 and FIG. 6, the driving portion of the drilling device A is driven to apply the driving rotational force and the feeding force to the driving rotary shaft 21, and the connecting flange portion 21 a of the driving rotary shaft 21. The through hole 1B serving as a branch port is formed in the pipe wall 1 of the fluid transport pipe P by feeding the hole saw 11 coupled to the pipe through the branch pipe portion 3B of the branch case 3 from the pipe radial direction.
[0085]
When the through-hole 1B is formed in the tube wall 1, the driving part of the drilling device A is driven in reverse or the manual handle 24 is operated to raise the hole saw 11 to the initial standby position. The valve body 6B of the working gate valve 6 is closed.
[0086]
(F) As shown in FIG. 7, after the second drilling operation by the drilling device A is completed, the connection flange portion 32 of the drilling device A is removed from the second connection flange portion 6b of the work gate valve 6 and then the work is performed. The connection flange portion 18 of the branch pipe P1 is detachably fixedly connected to the second connection flange portion 6b of the gate valve 6 by a fastening means such as a bolt in an airtight state.
[0087]
[Second Embodiment]
In the first embodiment described above, as the rotary cutting tool 11 of the drilling device A, a hole saw that forms the through holes 1A and 1B in the tube wall 1 by feeding movement along the pipe radial direction is used. As shown in FIGS. 17 to 19, 11 may be an end mill that forms through holes 1 </ b> A and 1 </ b> B by feeding movement along the pipe radial direction and movement along the pipe circumferential direction.
In the case of this embodiment, the movement of the end mill 11 in the pipe circumferential direction is provided by a rotation operation around the pipe axis X of the branch case 3 with respect to the fluid transport pipe P.
[0088]
Further, as shown in FIG. 18, the branch case 3 provided with the perforating device A is a semi-cylindrical shape divided into two in the pipe circumferential direction that can be externally attached to the fluid transport pipe A from both sides in the pipe radial direction. The divided case bodies 3A are provided with a plurality of divided case bodies 3A that are covered with the fluid transport pipe A at both ends in the pipe circumferential direction of each divided case body 3A. 15 is integrally formed with a first connecting flange portion 3b that is detachably fixedly connected via 15 and is further formed at the center portion of one split case body 3A in the tube axis direction and at one end side in the tube circumferential direction. A tube portion 3B that protrudes radially outward along a direction intersecting the tube axis X of the fluid transport tube P (the orthogonal direction in the present embodiment) is integrally formed at the displaced portion.
[0089]
Furthermore, a valve case 5 made of cast iron provided with a gate valve 2 capable of closing the flow path in the fluid transport pipe P and a valve operating means 4 for opening and closing the gate valve body 2 along the pipe radial direction, As shown in FIG. 19, the fluid transport pipe A is composed of a semi-cylindrical divided case body 5 </ b> A that is divided into two in the pipe circumferential direction so that the outer tube can be mounted from both sides in the pipe radial direction. First and second split case bodies 5A sheathed on the fluid transport pipe A are fixed to both ends of the split case body 5A in a circumferential direction through a plurality of bolts 15 as an example of fastening means. One connecting flange portion 5b is integrally formed, and further, at the center portion in the tube axis X direction of one divided case body 5A and at the center portion in the pipe circumferential direction, the tube axis X of the fluid transport pipe P is provided. Direction intersecting with each other (in this embodiment, an orthogonal direction perpendicular to the tube axis X) Tube portion 5B projecting radially outward along is integrally formed.
[0090]
Furthermore, the second connecting flange portion 5d of the valve cover 5D, which forms the storage space S2 of the gate valve body 2 with the tube portion 5B, is detachable at the distal end portion of the tube portion 5B via fastening means such as bolts. A third connection flange portion 5e that is fixedly connected to each other is integrally formed, and a fourth connection flange portion 5f that protrudes outward in the radial direction of the tube is provided at both ends of each split case body 5A in the tube axis X direction. It is integrally formed.
In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.
[0091]
[Third Embodiment]
FIG. 20 shows another embodiment of the seal sliding guide body 17, which is a fluid transport and a seal portion that needs to pass through at least a through-hole 1 </ b> A formed in the tube wall 1 of both annular seal members 13. It is made of a synthetic resin (for example, polyethylene) flexible sheet seal material that can seal between the outer peripheral surface of the pipe P, and a branch case 3 is provided at one end of the sheet seal material 17 in the tube axis direction. An engagement portion 17B that can be freely engaged and disengaged with respect to the seal holding groove 3c from the inside in the pipe radial direction and that integrally slides the branch case 3 and the sheet seal material 17 when engaged, and a fluid transport pipe P A passage hole (an example of a passage portion) 17a that allows passage of the rotary cutting tool 11 of the drilling device A with respect to the outer peripheral surface is formed.
[0092]
In the case of this embodiment, the seal portion that needs to pass through the through hole 1A and the fluid transportation are provided with the seal sliding guide body 17 for suppressing the damage of the sealing material 13 when the branch case 3 and the valve case 5 slide. Since the space between the outer peripheral surface of the pipe P can be sealed, it is not always necessary to remove the synthetic resin-made flexible sheet seal material that constitutes the seal sliding guide body 17, thereby improving and facilitating work efficiency. It is possible to plan.
In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.
[0093]
[Fourth Embodiment]
FIG. 21 is formed on the tube wall 1 by the end mill 11 on the base end side of the end mill 11 which is the rotary cutting tool 11 of the drilling apparatus A described in the second embodiment and at a plurality of locations in the circumferential direction. A blade portion 19 for chamfering the outer peripheral surface side periphery of the valve insertion port 1A is formed.
In other words, the blade portion 19 constitutes a chamfering means for chamfering the outer peripheral surface side periphery of the valve insertion port 1 </ b> A formed in the tube wall 1.
[0094]
In the case of this embodiment, the drilling work case 3 reaches the valve mounting position at which the center position of the gate valve body 2 on the valve case 5 side matches the center position of the valve insertion port 1A formed in the pipe wall 1. And the valve case 5 are slid along the tube axis X direction, the sealing material 13 held by the drilling work case 3 and the sealing material 13 held by the valve case are on the outer peripheral surface side of the valve insertion port 1A. It is possible to prevent the peripheral edge 1a from being caught and damaged.
In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.
[0095]
[Other Embodiments]
(1) As the perforating device, various devices have been conventionally developed, and if the through holes 1A and 1B can be formed in the tube wall 1 of the fluid transport tube P through the branch tube portion 3B, Any method may be used.
(2) In each of the above-described embodiments, after the formation of the through hole 1A serving as the valve insertion port (after the completion of the first drilling operation by the drilling device A), the branch case 3 and the valve case 5 are moved to the valve mounting position. The forced transfer device B forcibly moving along the direction of the core X is provided, but this branching occurs when the diameter of the fluid transport pipe P is small and the weight of the branch case 3 and the valve case 5 is reduced accordingly. The case 3 and the valve case 5 may be configured to be slid directly along the tube axis by manual operation.
(3) In each of the above-described embodiments, the main part of the forced transition device B is configured by the jack mechanism B3. However, the configuration is not limited to this configuration. For example, fluid pressure such as hydraulic pressure, a transmission motor, or the like is used. The forced transfer device B may be used.
(4) In the above-described fourth embodiment, the chamfering means for chamfering the peripheral edge on the outer peripheral surface side of the valve insertion port 1 </ b> A formed in the tube wall 1 is configured with the blade portion 19 formed in the end mill 11. The drilling work case 3 may be provided with a dedicated chamfering means 19 for chamfering the outer peripheral surface side periphery of the valve insertion port 1A formed in the tube wall 1 in a detachable manner.
In this case, it is preferable that the punching device A and the dedicated chamfering means 19 are selectively exchanged with the work gate valve 6 so as to be freely exchangeable.
Also in the first embodiment, the punching device A and the dedicated chamfering means 19 may be selectively exchanged with respect to the work gate valve 6 so as to be freely replaceable.
Furthermore, the dedicated chamfering means 19 may be configured to be chamfered along the outer peripheral surface side periphery of the valve insertion port 1A by the copying means.
(5) In each of the above-described embodiments, each of the branch case 3 and the valve case 5 is divided into two along the pipe circumferential direction, but may be divided into three or more.
(6) In each of the above-described embodiments, the space between the inner peripheral surface of the branch case 3 and the outer peripheral surface of the fluid transport pipe P is sealed with the annular seal member 13 and the sheet-like seal member 14, and the inside of the valve case 5 The space between the peripheral surface and the outer peripheral surface of the fluid transport pipe P is configured to be sealed with the annular sealing material 13 and the sheet-shaped sealing material 14, but the inner peripheral surface of the branch case 3 and the outer peripheral surface of the fluid transport pipe P are Any sealing material may be used as long as the sealing structure is capable of sealing the space between the inner peripheral surface of the valve case 5 and the outer peripheral surface of the fluid transport pipe P.
(7) As the first fixing means 9 and the second fixing means 10, any fixing method may be adopted as long as the valve case 5 and the branch case 3 can be fixed to the fluid transport pipe P in a predetermined posture. May be.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional side view of a fluid transport path changing method and a fluid transport path changing apparatus according to a first embodiment of the present invention.
FIG. 2 is an overall cross-sectional front view.
FIG. 3 is a partial sectional side view of the whole during the first drilling operation by the drilling device.
FIG. 4 is a partial sectional side view of the whole when the branch case and the valve case are slid to the valve mounting position.
FIG. 5 is a partial cross-sectional side view of the whole when the branch case is rotated 90 degrees.
FIG. 6 is a partial cross-sectional front view of the whole during the second drilling operation by the drilling device.
FIG. 7 is a partially sectional front view of the whole when a branch pipe is connected.
FIG. 8 is an enlarged sectional front view of the main part of the branch case and the valve case.
FIG. 9 is an enlarged horizontal sectional view of the main part of the branch case and the valve case.
FIG. 10 (a) is an enlarged cross-sectional side view of the main part when equipped with seal guide means.
(B) is an enlarged cross-sectional front view of the seal guide means and the fluid transport pipe
FIG. 11 is an overall plan view showing the assembly state of the forced transition device
FIG. 12 is a perspective view showing a jack mechanism of a forced transition device.
FIG. 13 is a cross-sectional front view of a forced transfer device.
14A is a sectional side view of the case when the moving direction switching means is in a neutral state. FIG.
(B) is a cross-sectional side view of the case when the moving direction switching means is in the drawing state
FIG. 15 is a sectional front view of the case.
FIG. 16 is a longitudinal sectional view of a punching device.
FIG. 17 is an overall partial cross-sectional side view showing a second embodiment of the fluid transport path changing method and the fluid transport path changing apparatus of the present invention.
FIG. 18 is a partial sectional front view of a branch case.
FIG. 19 is a partially sectional front view of the valve case.
FIG. 20 is an enlarged cross-sectional side view of the main part showing a third embodiment of the fluid transport path changing method and fluid transport path changing apparatus of the present invention.
FIG. 21 is an enlarged cross-sectional side view of essential parts showing a fourth embodiment of a fluid transport route changing method and a fluid transport route changing device of the present invention.
FIG. 22 is a partial sectional side view of the whole when the working gate valve is attached to the valve case, showing a conventional method for changing the fluid transportation route.
FIG. 23 is a partial sectional side view of the whole immediately before the start of the first drilling operation by the drilling device.
FIG. 24 is a partial sectional side view of the whole after the completion of the first drilling operation by the drilling device;
FIG. 25 is a partial cross-sectional side view of the whole when an insertion machine equipped with a gate valve unit is assembled.
FIG. 26 is a partial cross-sectional side view of the whole when the gate valve unit is lowered by the insertion machine.
FIG. 27 is a partial sectional side view of the whole when the gate valve unit is fixed.
FIG. 28 is a partial sectional side view of the whole when a work gate valve is attached to the branch case.
FIG. 29 is a partial sectional side view of the whole during the second drilling operation by the drilling device.
FIG. 30 is a partial cross-sectional side view of the whole after the completion of the second drilling operation by the drilling device.
FIG. 31 is a partial sectional side view of the whole when a branch pipe is connected to the branch case.
[Explanation of symbols]
A punching device
B Forced transfer device
C Seal guide means
P Fluid transport pipe
P1 branch pipe
1 pipe wall
1A Through hole (Valve insertion port)
1B Through hole (branch port)
2 Gate valve
3 branch case
3B Branch pipe section
4 Valve operation means
5 Valve case
6 Work gate valve
7 connection means
8 Sealing means
9 First fixing means
10 Second fixing means
11 Rotary cutting tools (hole saws, end mills)
13 Sealing material (annular sealing material)
17 Seal sliding guide
17A Operation unit
17B engagement part
17a Passing hole (passing part)
19 Chamfering means (blade)

Claims (12)

流体輸送管の流路を閉止する仕切弁体を装着したのち、その仕切弁体の上流側又は下流側の特定箇所に分岐管を接続する流体輸送経路変更工法であって、下記(イ)〜(ハ)の工程を備えていることを特徴とする流体輸送経路変更工法。
(イ)流体輸送管の管軸芯に対して交差する方向に沿う分岐管部を備えた分岐ケースと、流体輸送管内の流路を閉止可能な仕切弁体及び該仕切弁体を管径方向に沿って開閉移動操作する弁操作手段を備えた弁ケースとを、それぞれ流体輸送管の外周面との間を密封した状態で流体輸送管に対して管軸芯方向に摺動自在に装着するとともに、前記分岐ケースの分岐管部に取付けた作業用仕切弁に、分岐管部を通して流体輸送管の管壁に貫通孔を形成する穿孔装置を脱着自在に取付けたのち、この穿孔装置により、流体輸送管の管壁に弁挿入口となる貫通孔を形成する。
(ロ)前記穿孔装置による第1穿孔作業終了後に、管壁に形成された貫通孔に対して仕切弁体を管径方向外方から挿入可能な弁装着位置にまで、前記分岐ケース及び弁ケースを管軸芯方向に沿って摺動させたのち、弁ケースを流体輸送管に所定姿勢で固定し、更に、前記流体輸送管に対して分岐ケースを必要に応じて管軸芯周りで回動させて、それの分岐管部が流体輸送管の分岐口形成相当箇所に対向する姿勢で流体輸送管に固定したのち、前記穿孔装置により、流体輸送管の管壁に分岐口となる貫通孔を形成する。
(ハ)前記穿孔装置による第2穿孔作業終了後に、閉止操作されている作業用仕切弁から穿孔装置を取外したのち、該作業用仕切弁に分岐管を接続する。
A fluid transport path changing method for connecting a branch pipe to a specific location on the upstream side or downstream side of the gate valve body after mounting the gate valve body for closing the flow path of the fluid transport pipe, and A fluid transport route changing method characterized by comprising the step (c).
(A) a branch case provided with a branch pipe portion along a direction intersecting the tube axis of the fluid transport pipe, a gate valve body capable of closing the flow path in the fluid transport pipe, and the pipe valve body in the radial direction And a valve case provided with a valve operating means for opening / closing movement along the outer periphery of the fluid transport pipe is slidably attached to the fluid transport pipe in the tube axis direction. In addition, a piercing device for forming a through hole in the pipe wall of the fluid transport pipe through the branch pipe portion is detachably attached to the working gate valve attached to the branch pipe portion of the branch case. A through hole serving as a valve insertion port is formed in the pipe wall of the transport pipe.
(B) After the completion of the first drilling operation by the drilling device, the branch case and the valve case up to the valve mounting position where the gate valve body can be inserted into the through hole formed in the pipe wall from the outside in the radial direction of the pipe. The valve case is fixed to the fluid transport pipe in a predetermined posture, and the branch case is rotated around the pipe axis as necessary with respect to the fluid transport pipe. After that, the branch pipe portion of the fluid transport pipe is fixed to the fluid transport pipe in a posture facing the portion corresponding to the branch port formation of the fluid transport pipe, and then the through-hole serving as the branch port is formed in the pipe wall of the fluid transport pipe by the punching device. Form.
(C) After completion of the second drilling operation by the punching device, after removing the punching device from the work gate valve being closed, a branch pipe is connected to the work gate valve.
前記穿孔装置による第1穿孔作業終了後に、分岐ケースと弁ケースとを、それらの管軸芯周りでの相対回動及び管軸芯方向での相対移動を阻止した連結状態で管軸芯方向に沿って摺動させるように構成してある請求項1記載の流体輸送経路変更工法。After the completion of the first drilling operation by the drilling device, the branch case and the valve case are connected in the tube axis direction in a connected state in which relative rotation around the tube axis and relative movement in the tube axis direction are prevented. The fluid transport route changing method according to claim 1, wherein the fluid transport route changing method is configured to slide along. 前記流体輸送管に脱着自在に取付けられた強制移行装置と分岐ケース又は弁ケースとを連結して、前記穿孔装置による第1穿孔作業終了後に、分岐ケースと弁ケースとを強制移行装置にて管軸芯方向に沿って摺動させるように構成してある請求項1又は2記載の流体輸送経路変更工法。The forcible transfer device, which is detachably attached to the fluid transport pipe, is connected to a branch case or a valve case, and after the first drilling operation by the drilling device is completed, the branch case and the valve case are connected by the forced transfer device. The fluid transport route changing method according to claim 1 or 2, wherein the method is configured to slide along the axial direction. 請求項1〜3のいずれか1項に記載の流体輸送経路変更工法に用いられる装置であって、流体輸送管の管軸芯に対して交差する方向に沿う分岐管部を備えた分岐ケースと、流体輸送管内の流路を閉止可能な仕切弁体及び該仕切弁体を管径方向に沿って開閉移動操作する弁操作手段を備えた弁ケースとを、それぞれ流体輸送管の外周面との間を密封した状態で流体輸送管に対して管軸芯方向に摺動自在に装着し、前記分岐ケースを流体輸送管の管軸芯周りで回動操作可能に構成するとともに、前記分岐ケースの分岐管部に取付けた作業用仕切弁に対して、分岐管部を通して流体輸送管の管壁に貫通孔を形成する穿孔装置と分岐管とを選択的に付け替え自在に構成し、更に、前記分岐ケースと弁ケースとを脱着自在に連結する連結手段と、該連結手段による連結時に、両ケースの隣接端部の内周面と流体輸送管の外周面との間に形成される空間を外部に対して密封する密封手段と、弁ケースを流体輸送管に固定する第1固定手段と、分岐ケースを流体輸送管に固定する第2固定手段とを設けてある流体輸送経路変更装置。It is an apparatus used for the fluid transportation route change construction method of any one of Claims 1-3, Comprising: The branch case provided with the branch pipe part along the direction which cross | intersects with respect to the tube axis of a fluid transport pipe; A valve case provided with a gate valve capable of closing the flow path in the fluid transport pipe and a valve operating means for opening and closing the gate valve body along the pipe radial direction, and an outer peripheral surface of the fluid transport pipe. In a state where the space is sealed, the fluid transport pipe is slidably mounted in the direction of the pipe axis, and the branch case is configured to be rotatable around the pipe axis of the fluid transport pipe. With respect to the working gate valve attached to the branch pipe part, a perforation device that forms a through hole in the pipe wall of the fluid transport pipe through the branch pipe part and the branch pipe can be selectively replaced, and the branch Connecting means for detachably connecting the case and the valve case, and the connection Sealing means for sealing a space formed between the inner peripheral surface of the adjacent end portion of both cases and the outer peripheral surface of the fluid transport pipe at the time of connection by the step, and the valve case is fixed to the fluid transport pipe A fluid transport path changing device provided with first fixing means and second fixing means for fixing the branch case to the fluid transport pipe. 前記分岐ケースの内周面と流体輸送管の外周面との間を密封する状態で分岐ケースに保持されるシール材、及び、弁ケースの内周面と流体輸送管の外周面との間を密封する状態で弁ケースに保持されるシール材のうち、少なくとも管壁に形成された貫通孔を通過する必要のあるシール部分を流体輸送管の外周面から離間させた状態で摺動案内するシール摺動案内手段が設けられている請求項4記載の流体輸送経路変更装置。A sealing material held in the branch case in a state of sealing between the inner peripheral surface of the branch case and the outer peripheral surface of the fluid transport pipe, and between the inner peripheral surface of the valve case and the outer peripheral surface of the fluid transport pipe A seal that slides and guides a seal part that needs to pass through at least a through-hole formed in the pipe wall of the seal material held in the valve case in a sealed state while being separated from the outer peripheral surface of the fluid transport pipe. 5. The fluid transport path changing device according to claim 4, wherein sliding guide means is provided. 前記シール摺動案内手段が、両シール材の少なくとも管壁に形成された貫通孔を通過する必要のあるシール部分と流体輸送管の外周面との間に介在される薄板状又はシート状のシール摺動案内体から構成されている請求項5記載の流体輸送経路変更装置。The seal sliding guide means is a thin plate-like or sheet-like seal interposed between a seal portion that needs to pass through a through-hole formed in at least the pipe wall of both seal materials and the outer peripheral surface of the fluid transport pipe. 6. The fluid transport path changing device according to claim 5, wherein the fluid transport path changing device is constituted by a sliding guide body. 前記シール摺動案内体が、両シール材の少なくとも管壁に形成された貫通孔を通過する必要のあるシール部分と流体輸送管の外周面との間を密封可能な合成樹脂製の柔軟なシートシール材から構成されている請求項6記載の流体輸送経路変更装置。A flexible sheet made of synthetic resin capable of sealing between the seal portion where the seal sliding guide body needs to pass through a through hole formed in at least the tube wall of both seal materials and the outer peripheral surface of the fluid transport pipe 7. The fluid transport path changing device according to claim 6, wherein the fluid transport path changing device is made of a sealing material. 前記シール摺動案内体には、両シール材の少なくとも管壁に形成された貫通孔を通過する必要のあるシール部分と流体輸送管の外周面との間に介在された状態から管軸芯方向に沿って引抜くための操作部が設けられている請求項6又は7記載の流体輸送経路変更装置。The seal sliding guide body includes a seal portion that needs to pass through a through-hole formed in at least the tube wall of both seal materials, and a state where the seal slide guide body is interposed between the outer peripheral surface of the fluid transport pipe and the pipe axis direction. The fluid transport path changing device according to claim 6 or 7, further comprising an operation unit for pulling out along the line. 前記シール摺動案内体には、分岐ケースに対して管径方向内方から係脱自在で、かつ、係合時に分岐ケースとシール摺動案内体とを一体的に摺動させる係合部と、流体輸送管の外周面に対する穿孔装置の回転切削具の通過移動を許容する通過部とが形成されている請求項6〜8のいずれか1項に記載の流体輸送経路変更装置。The seal sliding guide body can be engaged with and disengaged from the inner side in the pipe radial direction with respect to the branch case, and an engaging portion that integrally slides the branch case and the seal slide guide body when engaged. The fluid transport path changing device according to any one of claims 6 to 8, wherein a passage portion allowing passage of the rotary cutting tool of the drilling device with respect to the outer peripheral surface of the fluid transport pipe is formed. 前記分岐ケースには、管壁に形成された貫通孔の外周面側周縁を面取り加工する面取加工手段が脱着自在に設けられている請求項4〜9のいずれか1項に記載の流体輸送経路変更装置。The fluid transport according to any one of claims 4 to 9, wherein the branch case is provided with a chamfering means for chamfering a peripheral edge on the outer peripheral surface side of the through hole formed in the pipe wall. Route change device. 前記穿孔装置の回転切削具が、管径方向に沿った送り込み移動によって貫通孔を形成するホールソーである請求項4〜10のいずれか1項に記載の流体輸送経路変更装置。The fluid transport path changing device according to any one of claims 4 to 10, wherein the rotary cutting tool of the drilling device is a hole saw that forms a through hole by feeding movement along a pipe radial direction. 前記穿孔装置の回転切削具が、管径方向に沿った送り込み移動と管周方向に沿った移動とによって貫通孔を形成するエンドミルであって、該エンドミルの管周方向への移動を、流体輸送管に対する分岐ケースの管軸芯周りでの相対回転によって付与するように構成してある請求項4〜10のいずれか1項に記載の流体輸送経路変更装置。The rotary cutting tool of the drilling device is an end mill in which a through hole is formed by a feed movement along a pipe radial direction and a movement along a pipe circumferential direction, and the movement of the end mill in the pipe circumferential direction is a fluid transport The fluid transport path changing device according to any one of claims 4 to 10, wherein the fluid transport path changing device is configured to be provided by relative rotation around the tube axis of the branch case with respect to the tube.
JP37284599A 1999-12-28 1999-12-28 Fluid transport route changing method and fluid transport route changing device used therefor Expired - Fee Related JP4222701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37284599A JP4222701B2 (en) 1999-12-28 1999-12-28 Fluid transport route changing method and fluid transport route changing device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37284599A JP4222701B2 (en) 1999-12-28 1999-12-28 Fluid transport route changing method and fluid transport route changing device used therefor

Publications (2)

Publication Number Publication Date
JP2001187993A JP2001187993A (en) 2001-07-10
JP4222701B2 true JP4222701B2 (en) 2009-02-12

Family

ID=18501145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37284599A Expired - Fee Related JP4222701B2 (en) 1999-12-28 1999-12-28 Fluid transport route changing method and fluid transport route changing device used therefor

Country Status (1)

Country Link
JP (1) JP4222701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827444B (en) * 2023-01-13 2023-12-21 幻象冷氣空調工程有限公司 Intubation equipment and methods

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180455B1 (en) 2012-04-16 2012-09-06 박창묵 non cut off water supply method by non cut off water supply module equipment
KR101199002B1 (en) * 2012-04-16 2012-11-07 박창묵 non cut off water supply module equipment
KR101352658B1 (en) 2012-08-30 2014-01-16 박창묵 Cutting saw structure of non cut off water supply module equipment
JP7061004B2 (en) * 2018-04-17 2022-04-27 コスモ工機株式会社 A branch path forming device used for a method for forming a hole in a fluid pipe and a method for forming a hole.
KR102023538B1 (en) * 2019-07-16 2019-09-24 신진정공 주식회사 Boring machine for installing resilient seated gate valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827444B (en) * 2023-01-13 2023-12-21 幻象冷氣空調工程有限公司 Intubation equipment and methods

Also Published As

Publication number Publication date
JP2001187993A (en) 2001-07-10

Similar Documents

Publication Publication Date Title
US20170225303A9 (en) Torque tool for b-nut fitting
JPH0626795B2 (en) Power gripping device
JP4222701B2 (en) Fluid transport route changing method and fluid transport route changing device used therefor
US20050086809A1 (en) Hand held pipe cutters
US20160303755A1 (en) Hand-held knockout punch driver
EP0100355A1 (en) Portable machine tool for preparing pipe joints for welding
JP2002530210A (en) Milling equipment for pipe cleaning and regeneration technology
JP4318361B2 (en) Gate valve mounting method for fluid transport pipe and gate valve mounting device used therefor
US6993949B2 (en) Power or manually operated pipe grooving tool
GB2036832A (en) Manually operated blowout preventer and hydraulic operator therefor
CN108633265B (en) Hand-held handle-driven hand riveter
EP0115530A1 (en) Portable tube end preparation tool
US8220371B2 (en) Pipe turning tool
JP4399421B2 (en) Non-water-based fluid control valve installation method
JP3860804B2 (en) Hole closing jig
JP3953269B2 (en) Plug mounting jig
EP2271453A2 (en) Pipe cutting and chamfering too
CN219445309U (en) Pipe cutter of locating type tool changing
CN214463960U (en) Drill rod quick connector and drill rod comprising same
US11655901B2 (en) Gate valve
CN218719580U (en) Pipeline elbow
JP4086831B2 (en) Valve installation method for existing pipes
JP4262567B2 (en) Continuous water valve insertion method
RU2212518C1 (en) Blowout preventer
JP3963902B2 (en) Valve installation method for existing pipes and valves used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees