JP4222101B2 - Gas measuring method and gas measuring device - Google Patents

Gas measuring method and gas measuring device Download PDF

Info

Publication number
JP4222101B2
JP4222101B2 JP2003139459A JP2003139459A JP4222101B2 JP 4222101 B2 JP4222101 B2 JP 4222101B2 JP 2003139459 A JP2003139459 A JP 2003139459A JP 2003139459 A JP2003139459 A JP 2003139459A JP 4222101 B2 JP4222101 B2 JP 4222101B2
Authority
JP
Japan
Prior art keywords
concentration
fuel injection
exhaust gas
gas
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003139459A
Other languages
Japanese (ja)
Other versions
JP2004340834A (en
Inventor
勇 中田
信久 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003139459A priority Critical patent/JP4222101B2/en
Publication of JP2004340834A publication Critical patent/JP2004340834A/en
Application granted granted Critical
Publication of JP4222101B2 publication Critical patent/JP4222101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気ガスの流動状態を計測するガス計測方法及びガス計測装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関のガス計測装置として、特開2001−124674号公報に記載されるように、エンジンの排気管にトレーサガスとして六フッ化硫黄を注入し、排気管における注入位置の下流側で排気ガスの各成分の濃度をトレーサガスの濃度と同時に連続分析するものが知られている。この装置は、トレーサガスの濃度を検出し、そのトレーサガスの濃度に基づいて排気ガスの排出重量を検出しようとするものである。
【0003】
【特許文献1】
特開2001−124674号公報
【0004】
【発明が解決しようとする課題】
しかしながら、このようなガス計測装置にあっては、トレーサガスを排気管の途中から注入する必要があり、ガス計測に必要な設備が大掛かりになってしまう。このため、より簡易な設備によって排気ガスの計測が行える技術開発が切望されている。
【0005】
そこで本発明は、このような技術課題に鑑みてなされたものであって、簡易に排気ガスの計測が行えるガス計測方法及びガス計測装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
すなわち、本発明に係るガス計測方法は、内燃機関の排気ガスを計測するガス計測方法であって、内燃機関の複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対し増量又は減量して燃料噴射を行う燃料噴射工程と、内燃機関の排気系の複数の計測ポイントにおいて燃料噴射量の増減に伴って増加する排気ガス中の特定成分の濃度を検出する濃度検出工程と、特定成分の濃度変化に基づいて排気ガスの流動状態を演算する演算工程とを備えて構成される。
【0007】
また本発明に係るガス計測方法は、前述の燃料噴射工程では内燃機関の複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対し増量して燃料噴射を行い、前述の濃度検出工程では排気ガスに含まれる炭化水素の濃度を検出し、前述の演算工程では炭化水素の濃度変化に基づいて排気ガスの流動状態を演算することを特徴とする。
【0008】
また本発明に係るガス計測装置は、内燃機関の排気ガスを計測するガス計測装置において、内燃機関の複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対し増量又は減量して燃料噴射を行う燃料噴射制御手段と、内燃機関の排気系の複数の計測ポイントにおいて燃料噴射量の増減に伴って増加する排気ガス中の特定成分の濃度を検出する濃度検出手段と、特定成分の濃度変化に基づいて排気ガスの流動状態を演算する演算手段とを備えて構成される。
【0009】
また本発明に係るガス計測装置は、前述の燃料噴射手段が内燃機関の複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対し増量して燃料噴射を行い、前述の濃度検出手段が排気ガスに含まれる炭化水素の濃度を検出し、前述の演算手段が炭化水素の濃度変化に基づいて排気ガスの流動状態を演算することを特徴とする。
【0010】
これらの発明によれば、一部の気筒の燃料噴射量を増量又は減量することにより、意図的に燃料を不完全燃焼させて排気ガス中に炭化水素などの特定の成分を増加させ、その成分濃度を検出することで排気ガスの流動状態を演算する。このため、燃料とは別個にトレーサガスを注入する必要がない。従って、簡易設備で排気ガスの計測が可能となる。
【0011】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0012】
図1に本実施形態に係るガス計測装置の構成概略図を示す。
【0013】
本実施形態に係るガス計測装置1は、エンジン2の排気系3を流れる排気ガスの流動を計測する装置である。図1に示すように、ガス計測装置1は、濃度検出器4を備えている。濃度検出器4は、エンジン2の排気系3を流れる排気ガスに含まれる炭化水素の濃度を検出するものである。
【0014】
この濃度検出器4は、排気系3に設置されたプローブ5を通じて排気ガスに含まれる特定成分の濃度、即ち炭化水素の濃度を検出する。プローブ5は、排気系3に沿って所定の間隔で複数箇所に設けることが望ましい。このように複数設けることにより、排気系3を流れる排気ガスの流速の計測が可能となる。
【0015】
濃度検出器4としては、炭化水素の濃度を検出できるものであれば、いずれの検出方式のものでもよいが、応答速度の速いものを用いることが好ましい。例えば、4msec.程度の応答速度で連続して計測できるものが好適である。
【0016】
ガス計測装置1は、ECU6を備えている。ECU6は、ガス計測装置1の装置全体の制御を行うものであり、例えばCPU、ROM、RAMを含むコンピュータを主体として構成されている。また、ECU6は、エンジン2に設置されるインジェクタ7に噴射制御信号を出力し、燃料噴射量を制御する燃料噴射制御手段として機能する。
【0017】
エンジン2は複数の気筒を有しており、各気筒に対し少なくとも一つのインジェクタ7を備えており、気筒ごとに燃料噴射量を調整できるようになっている。
【0018】
ECU6は、濃度検出器4と接続され、濃度検出器4に燃料噴射制御信号に同期する同期信号を出力可能となっている。濃度検出器4は、同期信号を受けることにより、インジェクタ7の燃料噴射タイミングを検知することができる。
【0019】
図2に濃度検出位置の説明図を示す。
【0020】
図2は排気系3を構成する管体3aの断面をとって示したものである。排気系3の管体3aには、プローブ5を挿通するための挿通孔3bが周方向に所定の間隔で複数形成されている。この挿通孔3bは、管体3aの外側から差し込んだプローブ5が計測ポイントxに配置できるように形成される。
【0021】
計測ポイントxは、管体3aの断面を網羅するように複数設定するのが好ましい。例えば、図2に示すように、計測ポイントxは、外側に8つ、内側に4つ設定される。
【0022】
このように、排気系3のエキゾーストマニホルドの集合部や排気管の分岐部に多点計測できるようにプローブ5を配置可能とすることにより、排気系3の所定の断面において排気ガスの流動状態が計測可能となる。
【0023】
次に、本実施形態に係るガス計測装置の動作及びガス計測方法について説明する。
【0024】
まず、排気ガスの流速を計測する場合について説明する。
【0025】
図1に示すように、エンジン2の排気系3の上流から下流にかけて複数の計測位置にそれぞれプローブ5を設置する。このとき、各計測位置においてプローブ5を一つ設置すればよい。
【0026】
そして、エンジン2を駆動させる。このとき、エンジンの複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対して増量して燃料噴射が行われる。例えば、複数ある気筒のうち一つの気筒の燃料噴射量が他の気筒に対して増量される。その際、燃料の増量噴射は、例えば一つの気筒について一サイクルだけ行う。この燃料増量により、燃料が不完全燃焼の状態となり、排気ガス中の炭化水素の濃度が増加する。
【0027】
そして、各プローブ5の設置位置における炭化水素の濃度を濃度検出器4で検出する。ここで、炭化水素は、燃料噴射量の増量に伴って排気ガス中に増加する特定成分である。
【0028】
そして、濃度検出器4にて検出された濃度に基づいて排気ガスの流速が演算される。この演算処理は、濃度検出器4で行ってもよいし、ECU6に濃度検出信号を入力しECU6で行ってもよい。
【0029】
例えば、図1に示すように、排気系4の位置A、B、Cで濃度検出を行う場合、各検出位置A、B、Cにおける濃度の時間的変化を計測する。
【0030】
そして、図3に示すように、炭化水素(HC)の濃度変化を計測したら、検出位置A、B、Cにおける濃度増加時間ta、tb、tcをそれぞれ検出する。そして、検出位置における濃度増加時間の時間差と距離に基づいて排気ガスの流速を算出する。例えば、検出位置A、Bにおける濃度増加時間の時間差をtb−ta、検出位置A、B間の距離をd1とすると、A−B間の排気ガスの流速がd1/(tb−ta)を計算することにより算出できる。
【0031】
次に、排気ガスの挙動状態を計測する場合について説明する。
【0032】
図2に示すように、排気系3の管体3a内の計測ポイントxにプローブ5を配置し、各計測ポイントxの濃度変化を検出できるようにする。例えば、計測ポイントxの全てにプローブ5を配置する。なお、後述するように計測ポイントxの一部、例えば一つの計測ポイントxにプローブ5を配置する場合もある。
【0033】
そして、エンジン2を駆動させる。このとき、エンジンの複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対して増量して燃料噴射が行われる。例えば、複数ある気筒のうち一つの気筒の燃料噴射量が他の気筒に対して増量される。この燃料増量により、燃料が不完全燃焼の状態となり、排気ガス中の炭化水素の濃度が増加する。
【0034】
そして、各計測ポイントxにおける炭化水素の濃度を濃度検出器4で検出する。ここで、炭化水素は、燃料噴射量の増量に伴って排気ガス中に増加する特定成分である。
【0035】
そして、濃度検出器4にて検出された濃度に基づいて排気ガスの挙動が演算される。この演算処理は、濃度検出器4で行ってもよいし、ECU6に濃度検出信号を入力しECU6で行ってもよい。
【0036】
例えば、図2の各計測ポイントxにおける炭化水素の濃度変化を検出し、所定時間ごとの濃度分布を演算し画像として表す。図4に排気ガスの挙動を示した図を示す。本図は、クランク角30度ごとに濃度分布を示したものである。図4中の暗い部分は濃度が濃く、明るい部分は濃度が薄い部分である。図4では、特定の気筒の排気ガスが下方の位置から右回りに回転して移動していることがわかる。
【0037】
なお、この排気ガスの挙動計測において、計測ポイントxの一つにのみプローブ5を配置して濃度検出を行う場合には、計測ポイントxの一つについて濃度計測を行った後、プローブ5の配置位置を順次変えて、複数ある計測ポイントxの全てについて濃度計測を行い、燃料噴射タイミングに基づいて時間軸を合わせて、各計測ポイントxの濃度検出結果を合成すればよい。これにより、図4に示すような排気ガスの挙動を示す画像が得られる。
【0038】
以上のように、本実施形態に係るガス計測装置及びガス計測方法によれば、エンジン2の一部の気筒の燃料噴射量を増量することにより、意図的に燃料を不完全燃焼させて排気ガス中の炭化水素の成分を増加させ、その成分濃度を検出することで排気ガスの流動状態を演算する。このため、燃料とは別個にトレーサガスを注入する必要がない。従って、簡易な設備で排気ガスの計測が精度良く行える。
【0039】
また、エンジン2の一つの気筒の燃料噴射量を増量することにより、気筒ごとの排気ガスの流動状態を計測することができる。このため、O2センサに対する気筒ごとの排気ガスのガス当たりの状態などを正確に検出することができる。
【0040】
なお、上述した実施形態では、複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対し増量する場合について説明したが、本発明に係るガス計測方法及びガス計測装置はそのようなものに限定されるものではなく、一部の気筒の燃料噴射量を他の気筒に対し減量してガス計測を行ってもよい。この場合、エンジン2の排気系3にて排気ガスの特定成分として窒素酸化物(NOx)の濃度を検出し、その成分濃度に基づいて排気ガスの流動状態を演算すればよい。このようなガス計測方法及びガス計測装置であっても、上述したガス計測方法及びガス計測装置と同様な作用効果が得られる。
【0041】
【発明の効果】
以上説明したように本発明によれば、簡易に排気ガスの計測が行えるガス計測方法及びガス計測装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るガス計測装置の構成概略図である。
【図2】本発明の実施形態に係るガス計測装置及びガス計測方法におけるプローブの配置の説明図である。
【図3】本発明の実施形態に係るガス計測装置及びガス計測方法における排気ガスの流動計測の説明図である。
【図4】本発明の実施形態に係るガス計測装置及びガス計測方法における排気ガスの挙動計測の説明図である。
【符号の説明】
1…ガス計測装置、2…エンジン(内燃機関)、3…排気系、4…濃度検出器、5…プローブ、6…ECU、7…インジェクタ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas measuring method and a gas measuring device for measuring a flow state of exhaust gas of an internal combustion engine.
[0002]
[Prior art]
Conventionally, as a gas measuring device for an internal combustion engine, as described in JP-A-2001-124673, sulfur hexafluoride is injected as a tracer gas into an exhaust pipe of the engine and exhausted downstream of the injection position in the exhaust pipe. One that continuously analyzes the concentration of each component of the gas simultaneously with the concentration of the tracer gas is known. This apparatus detects the concentration of the tracer gas and attempts to detect the exhaust weight of the exhaust gas based on the concentration of the tracer gas.
[0003]
[Patent Document 1]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-124673
[Problems to be solved by the invention]
However, in such a gas measuring device, it is necessary to inject the tracer gas from the middle of the exhaust pipe, and the equipment necessary for gas measurement becomes large. For this reason, there is an urgent need for technological development that enables measurement of exhaust gas with simpler equipment.
[0005]
Therefore, the present invention has been made in view of such a technical problem, and an object thereof is to provide a gas measuring method and a gas measuring device capable of easily measuring exhaust gas.
[0006]
[Means for Solving the Problems]
That is, the gas measurement method according to the present invention is a gas measurement method for measuring exhaust gas of an internal combustion engine, and increases the fuel injection amount of some cylinders among a plurality of cylinders of the internal combustion engine relative to other cylinders. A fuel injection process for performing fuel injection at a reduced amount, a concentration detection process for detecting a concentration of a specific component in the exhaust gas that increases as the fuel injection amount increases or decreases at a plurality of measurement points of the exhaust system of the internal combustion engine, and a specific And a calculation step for calculating the flow state of the exhaust gas based on the concentration change of the component .
[0007]
In the gas measurement method according to the present invention, in the fuel injection process described above, the fuel injection is performed by increasing the fuel injection amount of some of the cylinders of the internal combustion engine to the other cylinders, and the concentration detection described above. In the process, the concentration of hydrocarbons contained in the exhaust gas is detected, and in the aforementioned calculation process, the flow state of the exhaust gas is calculated based on the change in the concentration of hydrocarbons.
[0008]
The gas measuring device according to the present invention is a gas measuring device that measures exhaust gas of an internal combustion engine, and increases or decreases the fuel injection amount of some of the cylinders of the internal combustion engine relative to other cylinders. Fuel injection control means for performing fuel injection, concentration detection means for detecting the concentration of a specific component in exhaust gas that increases as the fuel injection amount increases or decreases at a plurality of measurement points of the exhaust system of the internal combustion engine , And a calculation means for calculating the flow state of the exhaust gas based on the concentration change .
[0009]
Further, in the gas measuring device according to the present invention, the above-described fuel injection means performs fuel injection by increasing the fuel injection amount of some cylinders of the plurality of cylinders of the internal combustion engine to the other cylinders, and detects the concentration described above. The means detects the concentration of hydrocarbons contained in the exhaust gas, and the calculating means described above calculates the flow state of the exhaust gas based on the change in the hydrocarbon concentration .
[0010]
According to these inventions, by increasing or decreasing the fuel injection amount of some cylinders, the fuel is intentionally incompletely burned to increase specific components such as hydrocarbons in the exhaust gas. The flow state of the exhaust gas is calculated by detecting the concentration. For this reason, it is not necessary to inject the tracer gas separately from the fuel. Therefore, exhaust gas can be measured with simple equipment.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0012]
FIG. 1 shows a schematic configuration diagram of a gas measuring apparatus according to the present embodiment.
[0013]
The gas measuring device 1 according to the present embodiment is a device that measures the flow of exhaust gas flowing through the exhaust system 3 of the engine 2. As shown in FIG. 1, the gas measuring device 1 includes a concentration detector 4. The concentration detector 4 detects the concentration of hydrocarbons contained in the exhaust gas flowing through the exhaust system 3 of the engine 2.
[0014]
The concentration detector 4 detects the concentration of a specific component contained in the exhaust gas, that is, the concentration of hydrocarbons, through a probe 5 installed in the exhaust system 3. The probes 5 are preferably provided at a plurality of locations along the exhaust system 3 at predetermined intervals. By providing a plurality of the exhaust gases in this way, the flow velocity of the exhaust gas flowing through the exhaust system 3 can be measured.
[0015]
As the concentration detector 4, any detection system may be used as long as it can detect the concentration of hydrocarbons, but it is preferable to use one having a high response speed. For example, 4 msec. What can measure continuously with the response speed of a grade is suitable.
[0016]
The gas measuring device 1 includes an ECU 6. The ECU 6 controls the entire apparatus of the gas measuring device 1 and is configured mainly by a computer including a CPU, a ROM, and a RAM, for example. The ECU 6 also functions as fuel injection control means for outputting an injection control signal to an injector 7 installed in the engine 2 to control the fuel injection amount.
[0017]
The engine 2 has a plurality of cylinders, and includes at least one injector 7 for each cylinder so that the fuel injection amount can be adjusted for each cylinder.
[0018]
The ECU 6 is connected to the concentration detector 4 and can output a synchronization signal synchronized with the fuel injection control signal to the concentration detector 4. The concentration detector 4 can detect the fuel injection timing of the injector 7 by receiving the synchronization signal.
[0019]
FIG. 2 is an explanatory diagram of the density detection position.
[0020]
FIG. 2 shows a cross section of a tube body 3 a constituting the exhaust system 3. A plurality of insertion holes 3b through which the probe 5 is inserted are formed in the tubular body 3a of the exhaust system 3 at predetermined intervals in the circumferential direction. The insertion hole 3b is formed so that the probe 5 inserted from the outside of the tube 3a can be placed at the measurement point x.
[0021]
It is preferable to set a plurality of measurement points x so as to cover the cross section of the tubular body 3a. For example, as shown in FIG. 2, eight measurement points x are set on the outside and four on the inside.
[0022]
In this way, by allowing the probe 5 to be arranged so that multipoint measurement can be performed at the exhaust manifold 3 exhaust manifold assembly and the exhaust pipe branching portion, the flow state of the exhaust gas in a predetermined cross section of the exhaust system 3 can be improved. It becomes possible to measure.
[0023]
Next, the operation of the gas measuring device and the gas measuring method according to this embodiment will be described.
[0024]
First, the case where the flow rate of exhaust gas is measured will be described.
[0025]
As shown in FIG. 1, probes 5 are respectively installed at a plurality of measurement positions from upstream to downstream of the exhaust system 3 of the engine 2. At this time, one probe 5 may be installed at each measurement position.
[0026]
Then, the engine 2 is driven. At this time, fuel injection is performed by increasing the fuel injection amount of some of the cylinders of the engine to other cylinders. For example, the fuel injection amount of one cylinder among a plurality of cylinders is increased with respect to the other cylinders. At that time, the fuel injection is performed only for one cycle per cylinder, for example. This fuel increase causes the fuel to be incompletely burned and increases the concentration of hydrocarbons in the exhaust gas.
[0027]
Then, the concentration detector 4 detects the hydrocarbon concentration at the installation position of each probe 5. Here, the hydrocarbon is a specific component that increases in the exhaust gas as the fuel injection amount increases.
[0028]
Then, the flow rate of the exhaust gas is calculated based on the concentration detected by the concentration detector 4. This calculation process may be performed by the concentration detector 4 or may be performed by the ECU 6 by inputting a concentration detection signal to the ECU 6.
[0029]
For example, as shown in FIG. 1, when concentration detection is performed at positions A, B, and C of the exhaust system 4, the temporal change in concentration at each detection position A, B, and C is measured.
[0030]
As shown in FIG. 3, when the change in hydrocarbon (HC) concentration is measured, the concentration increase times ta, tb, and tc at the detection positions A, B, and C are detected. Then, the flow rate of the exhaust gas is calculated based on the time difference and distance of the concentration increase time at the detection position. For example, assuming that the time difference between the concentration increase times at the detection positions A and B is tb-ta and the distance between the detection positions A and B is d1, the exhaust gas flow velocity between A and B is calculated as d1 / (tb-ta). This can be calculated.
[0031]
Next, the case where the behavior state of exhaust gas is measured will be described.
[0032]
As shown in FIG. 2, a probe 5 is arranged at a measurement point x in the tube 3a of the exhaust system 3 so that a change in concentration at each measurement point x can be detected. For example, the probes 5 are arranged at all the measurement points x. As will be described later, the probe 5 may be arranged at a part of the measurement point x, for example, at one measurement point x.
[0033]
Then, the engine 2 is driven. At this time, fuel injection is performed by increasing the fuel injection amount of some of the cylinders of the engine to other cylinders. For example, the fuel injection amount of one cylinder among a plurality of cylinders is increased with respect to the other cylinders. This fuel increase causes the fuel to be incompletely burned and increases the concentration of hydrocarbons in the exhaust gas.
[0034]
Then, the concentration detector 4 detects the hydrocarbon concentration at each measurement point x. Here, the hydrocarbon is a specific component that increases in the exhaust gas as the fuel injection amount increases.
[0035]
Then, the behavior of the exhaust gas is calculated based on the concentration detected by the concentration detector 4. This calculation process may be performed by the concentration detector 4 or may be performed by the ECU 6 by inputting a concentration detection signal to the ECU 6.
[0036]
For example, a change in the hydrocarbon concentration at each measurement point x in FIG. 2 is detected, and the concentration distribution for each predetermined time is calculated and represented as an image. FIG. 4 shows the behavior of the exhaust gas. This figure shows the density distribution for every 30 degrees of crank angle. The dark part in FIG. 4 has a high density, and the bright part has a low density. In FIG. 4, it can be seen that the exhaust gas of a specific cylinder is moving clockwise from a lower position.
[0037]
In this exhaust gas behavior measurement, when the probe 5 is arranged at only one of the measurement points x and concentration detection is performed, the concentration measurement is performed for one of the measurement points x and then the probe 5 is arranged. It is only necessary to sequentially change the position, measure the concentration at all of the plurality of measurement points x, match the time axis based on the fuel injection timing, and synthesize the concentration detection results at each measurement point x. Thereby, an image showing the behavior of the exhaust gas as shown in FIG. 4 is obtained.
[0038]
As described above, according to the gas measuring device and the gas measuring method according to the present embodiment, the exhaust gas is intentionally burnt incompletely by increasing the fuel injection amount of some cylinders of the engine 2. The flow state of the exhaust gas is calculated by increasing the components of hydrocarbons therein and detecting the concentration of the components. For this reason, it is not necessary to inject the tracer gas separately from the fuel. Therefore, exhaust gas can be accurately measured with simple equipment.
[0039]
Further, by increasing the fuel injection amount of one cylinder of the engine 2, the flow state of the exhaust gas for each cylinder can be measured. For this reason, the state per gas of the exhaust gas for each cylinder with respect to the O2 sensor can be accurately detected.
[0040]
In the above-described embodiment, the case where the fuel injection amount of some of the cylinders is increased with respect to the other cylinders has been described. However, the gas measurement method and the gas measurement device according to the present invention are such The gas measurement may be performed by reducing the fuel injection amount of some cylinders relative to other cylinders. In this case, the exhaust system 3 of the engine 2 may detect the concentration of nitrogen oxide (NOx) as a specific component of the exhaust gas, and calculate the flow state of the exhaust gas based on the component concentration. Even with such a gas measurement method and gas measurement device, the same effects as those of the gas measurement method and gas measurement device described above can be obtained.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a gas measuring method and a gas measuring device that can easily measure exhaust gas.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a gas measurement device according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of the arrangement of probes in a gas measuring device and a gas measuring method according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram of exhaust gas flow measurement in the gas measurement device and the gas measurement method according to the embodiment of the present invention.
FIG. 4 is an explanatory diagram of exhaust gas behavior measurement in the gas measurement device and the gas measurement method according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas measuring device, 2 ... Engine (internal combustion engine), 3 ... Exhaust system, 4 ... Concentration detector, 5 ... Probe, 6 ... ECU, 7 ... Injector.

Claims (4)

内燃機関の排気ガスを計測するガス計測方法であって、
前記内燃機関の複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対し増量又は減量して燃料噴射を行う燃料噴射工程と、
前記内燃機関の排気系の複数の計測ポイントにおいて、前記燃料噴射量の増減に伴って増加する前記排気ガス中の特定成分の濃度を検出する濃度検出工程と、
前記特定成分の濃度変化に基づいて前記排気ガスの流動状態を演算する演算工程と、
を備えたことを特徴とするガス計測方法。
A gas measurement method for measuring exhaust gas of an internal combustion engine,
A fuel injection step of performing fuel injection by increasing or decreasing the fuel injection amount of some of the plurality of cylinders of the internal combustion engine relative to other cylinders;
A concentration detection step of detecting a concentration of a specific component in the exhaust gas that increases as the fuel injection amount increases or decreases at a plurality of measurement points of the exhaust system of the internal combustion engine;
A calculation step of calculating a flow state of the exhaust gas based on a concentration change of the specific component ;
A gas measuring method comprising:
前記燃料噴射工程では、前記内燃機関の複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対し増量して燃料噴射を行い、
前記濃度検出工程では、前記排気ガスに含まれる炭化水素の濃度を検出し、
前記演算工程では、前記炭化水素の濃度変化に基づいて前記排気ガスの流動状態を演算すること、
を特徴とする請求項1に記載のガス計測方法。
In the fuel injection step, fuel injection is performed by increasing the fuel injection amount of some of the plurality of cylinders of the internal combustion engine relative to other cylinders,
In the concentration detection step, the concentration of hydrocarbons contained in the exhaust gas is detected,
In the calculation step, calculating a flow state of the exhaust gas based on a change in the concentration of the hydrocarbon,
The gas measurement method according to claim 1, wherein:
内燃機関の排気ガスを計測するガス計測装置において、
前記内燃機関の複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対し増量又は減量して燃料噴射を行う燃料噴射制御手段と、
前記内燃機関の排気系の複数の計測ポイントにおいて、前記燃料噴射量の増減に伴って増加する前記排気ガス中の特定成分の濃度を検出する濃度検出手段と、
前記特定成分の濃度変化に基づいて前記排気ガスの流動状態を演算する演算手段と、
を備えたことを特徴とするガス計測装置。
In a gas measuring device for measuring exhaust gas of an internal combustion engine,
Fuel injection control means for performing fuel injection by increasing or decreasing the fuel injection amount of some of the plurality of cylinders of the internal combustion engine relative to other cylinders;
Concentration detecting means for detecting the concentration of a specific component in the exhaust gas that increases with an increase or decrease in the fuel injection amount at a plurality of measurement points of the exhaust system of the internal combustion engine;
A calculation means for calculating a flow state of the exhaust gas based on a concentration change of the specific component ;
A gas measuring device comprising:
前記燃料噴射手段は、前記内燃機関の複数ある気筒のうち一部の気筒の燃料噴射量を他の気筒に対し増量して燃料噴射を行い、
前記濃度検出手段は、前記排気ガスに含まれる炭化水素の濃度を検出し、
前記演算手段は、前記炭化水素の濃度変化に基づいて前記排気ガスの流動状態を演算すること、
を特徴とする請求項3に記載のガス計測装置。
The fuel injection means performs fuel injection by increasing the fuel injection amount of some of the cylinders of the internal combustion engine to other cylinders,
The concentration detection means detects the concentration of hydrocarbons contained in the exhaust gas,
The calculating means calculates a flow state of the exhaust gas based on a change in the concentration of the hydrocarbon;
The gas measuring device according to claim 3.
JP2003139459A 2003-05-16 2003-05-16 Gas measuring method and gas measuring device Expired - Fee Related JP4222101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139459A JP4222101B2 (en) 2003-05-16 2003-05-16 Gas measuring method and gas measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139459A JP4222101B2 (en) 2003-05-16 2003-05-16 Gas measuring method and gas measuring device

Publications (2)

Publication Number Publication Date
JP2004340834A JP2004340834A (en) 2004-12-02
JP4222101B2 true JP4222101B2 (en) 2009-02-12

Family

ID=33528537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139459A Expired - Fee Related JP4222101B2 (en) 2003-05-16 2003-05-16 Gas measuring method and gas measuring device

Country Status (1)

Country Link
JP (1) JP4222101B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376884C (en) * 2005-04-08 2008-03-26 天津大学 Total cylinder sampling system capable of simulating high-pressure common-rail, supercharged intercooling and waste gas recirculation

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE370562B (en) * 1973-02-15 1974-10-21 Collin Consult Ab Lars
JPS6379550U (en) * 1986-11-13 1988-05-26
JPH0458051A (en) * 1990-06-28 1992-02-25 Suzuki Motor Corp Used fuel determining device for internal combustion engine
JP3240526B2 (en) * 1992-12-08 2001-12-17 バブコック日立株式会社 Automatic exhaust gas analyzer
JPH06207888A (en) * 1993-01-12 1994-07-26 Toyota Motor Corp Exhaust gas measuring apparatus
JPH07167746A (en) * 1993-12-14 1995-07-04 Hitachi Ltd Device for diagnosing combustion state of engine
JP2935000B2 (en) * 1994-02-28 1999-08-16 株式会社ユニシアジェックス Fuel property detection device for internal combustion engine
JPH07269851A (en) * 1994-03-31 1995-10-20 Ngk Insulators Ltd Oxygen analyzing device
JPH09318572A (en) * 1996-05-27 1997-12-12 Hitachi Ltd Method and equipment for measuring component of exhaust gas
RU2224233C2 (en) * 1998-01-05 2004-02-20 Ю.Эс. Энвайрнментал Протекшн Эйдженси Mobile system for recording exhaust gases of automobile and flowmeter module for system
JP2001124674A (en) * 1999-10-25 2001-05-11 Horiba Ltd On-vehicle engine exhaust gas analyzer
JP2003041991A (en) * 2001-07-30 2003-02-13 Hitachi Unisia Automotive Ltd Catalyst deterioration diagnosing device for engine
JP2003050186A (en) * 2001-08-07 2003-02-21 Sekiya Motors:Kk Vehicle-inspecting apparatus

Also Published As

Publication number Publication date
JP2004340834A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
Guardiola et al. Cycle by cycle NOx model for diesel engine control
KR101574499B1 (en) Method and device for the diagnosis of an nox sensor for an internal combustion engine
JPH06294320A (en) Diagnostic device for exhaust purifying device
US20090120174A1 (en) Misfire detecting apparatus for an internal combustion engine
JP4008810B2 (en) Calculation method of nitrogen oxide content in exhaust gas of internal combustion engine
JP2019158758A (en) Apparatus and method for evaluating response time of gas sensor
JP4647393B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP3759641B2 (en) Method and apparatus for generating simulated signal related to automobile exhaust system temperature
US8489270B2 (en) Method and device for diagnosing the dynamics of an exhaust gas sensor
JP4328439B2 (en) How to identify an abnormal cylinder in an automobile
De Cesare et al. Neural network based models for virtual no x sensing of compression ignition engines
CN111307463B (en) Air leakage detection method and device for engine exhaust system
JP4222101B2 (en) Gas measuring method and gas measuring device
KR101937000B1 (en) Method for operating an internal combustion engine
KR100465609B1 (en) Method for detecting periodic combustion fluctuations of internal combustion engine
JP5640967B2 (en) Cylinder air-fuel ratio variation abnormality detection device
JP2008038737A (en) Catalyst deterioration detecting device
JP4365830B2 (en) Air-fuel ratio sensor diagnostic device for internal combustion engine
US6644097B2 (en) Method and apparatus for inferring fuel mixture
CN115263504B (en) Sensor credibility judging method and device
JP2009138663A (en) Misfire detection device of internal combustion engine
US20160312727A1 (en) Diagnostic system for internal combustion engine
JP5459235B2 (en) Control device for internal combustion engine
Bannister et al. Further investigations on time-alignment
JP3972532B2 (en) Exhaust gas purification device for multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees