JP4221499B2 - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP4221499B2
JP4221499B2 JP2003302338A JP2003302338A JP4221499B2 JP 4221499 B2 JP4221499 B2 JP 4221499B2 JP 2003302338 A JP2003302338 A JP 2003302338A JP 2003302338 A JP2003302338 A JP 2003302338A JP 4221499 B2 JP4221499 B2 JP 4221499B2
Authority
JP
Japan
Prior art keywords
thin film
dyes
dye
solar cell
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003302338A
Other languages
Japanese (ja)
Other versions
JP2005072410A (en
Inventor
宣孝 谷垣
博孝 望月
登志子 溝黒
隆 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003302338A priority Critical patent/JP4221499B2/en
Publication of JP2005072410A publication Critical patent/JP2005072410A/en
Application granted granted Critical
Publication of JP4221499B2 publication Critical patent/JP4221499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、昇華性色素をドープした高分子薄膜を用いた太陽電池およびその製造方法に関する。   The present invention relates to a solar cell using a polymer thin film doped with a sublimable dye and a method for producing the solar cell.

高分子薄膜を用いる太陽電池は、シリコンなどに代表される無機太陽電池と比較すると、製造工程が容易であり、低コストで大面積化が可能である。しかしながら、エネルギー変換効率についてはいまだ不十分であり、実用レベルには達していない。その原因としては、高分子薄膜の光吸収係数が小さいことや、高分子薄膜の光吸収の波長範囲と太陽光の波長範囲との一致が悪いこと等が挙げられる。   A solar cell using a polymer thin film is easier to manufacture than an inorganic solar cell typified by silicon or the like, and can have a large area at a low cost. However, the energy conversion efficiency is still insufficient and has not reached a practical level. This is because the light absorption coefficient of the polymer thin film is small and the coincidence between the wavelength range of light absorption of the polymer thin film and the wavelength range of sunlight is bad.

この点を改善するために、高分子材料に色素を加えて色素の持つ光吸収特性を高分子材料に付与する試みがなされている。例えば、下記非特許文献1には、色素と高分子材料を有機溶媒に溶解し、スピンコート等の方法で製膜して、色素を含む高分子膜を形成する方法が開示されている。具体的には、高分子材料としてポリチオフェン誘導体を用い、これをポルフィリン系色素と共に共通溶媒であるクロロホルムに溶解し、この溶液からスピンコートによって薄膜を形成し、これを金とアルミニウムの電極で挟んだ構成とした太陽電池が開示されており、この薄膜は、高分子膜単独の場合よりも高効率の高分子薄膜太陽電池となることが示されている。   In order to improve this point, an attempt is made to add a dye to the polymer material to impart the light absorption property of the dye to the polymer material. For example, Non-Patent Document 1 below discloses a method of forming a polymer film containing a dye by dissolving a dye and a polymer material in an organic solvent and forming the film by a method such as spin coating. Specifically, a polythiophene derivative is used as a polymer material, dissolved in chloroform, a common solvent, together with a porphyrin-based dye, a thin film is formed from this solution by spin coating, and this is sandwiched between gold and aluminum electrodes A solar cell having a structure is disclosed, and this thin film is shown to be a polymer thin film solar cell with higher efficiency than that of a polymer film alone.

しかしながら、この方法では、色素と高分子材料を溶解した溶液から薄膜を形成する手法が採られており、色素と高分子材料の溶解性に違いがあるため、高分子材料、色素及び溶媒の選択に大きな制限がある。特に、不溶性の高分子や不溶性の色素については、この方法は全く利用できない。
、K. Takahashi et al., Synthetic Metals, 123, 91 (2001)
However, this method employs a method of forming a thin film from a solution in which a dye and a polymer material are dissolved, and there is a difference in solubility between the dye and the polymer material. There are big restrictions on In particular, this method cannot be used at all for insoluble polymers and insoluble dyes.
, K. Takahashi et al., Synthetic Metals, 123, 91 (2001)

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、高分子薄膜を用いた太陽電池において、高分子薄膜や色素の種類について大きな制限を受けることなく、エネルギー変換効率の高い太陽電池を製造できる方法を提供することである。   The present invention has been made in view of the current state of the prior art described above, and its main purpose is in a solar cell using a polymer thin film, without being greatly restricted with respect to the type of polymer thin film or pigment, It is providing the method which can manufacture a solar cell with high energy conversion efficiency.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、電極上に電荷輸送性高分子からなる薄膜を形成した後、減圧下において、この薄膜に昇華性色素をドープさせる方法によれば、高分子材料や色素の溶解性に関係なく、幅広い材料をから色素をドープした高分子薄膜を形成することができ、優れたエネルギー変換効率を有する太陽電池を得ることが可能となることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, after forming a thin film made of a charge transporting polymer on the electrode, the method of doping the thin film with a sublimable dye under a reduced pressure can be applied regardless of the solubility of the polymer material or the dye. It has been found that a polymer thin film doped with a dye can be formed from a material, and that a solar cell having excellent energy conversion efficiency can be obtained, and the present invention has been completed here.

即ち、本発明は下記の太陽電池及びその製造方法を提供するものである。
1. 昇華性色素が分子状にドープされた電荷輸送性高分子からなる薄膜と、その両面に位置する二つの電極とを有することを特徴とする太陽電池。
2. 電荷輸送性高分子が、π共役系高分子、σ共役系高分子、これらの誘導体及びポリビニルカルバゾールからなる群から選ばれた少なくとも一種である請求項1に記載の太陽電池。
3. 昇華性色素が、ポルフィリン系色素、フタロシアニン系色素、ナフトキノン系色素
、アントラキノン系色素、ナフタレンテトラカルボン酸ジイミド系色素、ペリレンテトラカルボン酸ジイミド系色素、メロシアニン系色素、クマリン系色素、ローダミン系色素、インジゴ系色素、オリゴチオフェン、及びフラーレンからなる群から選ばれた少なくとも一種である請求項1又は2に記載の太陽電池。
4. 一方または両方の電極が、透明乃至半透明の光透過性電極である請求項1〜3のいずれかに記載の太陽電池。
5. 昇華性色素と一方の電極上に電荷輸送性高分子からなる薄膜を形成した材料とを、閉じた空間内に載置し、
該閉じた空間内において、昇華性色素を昇華させ、電荷輸送性高分子からなる薄膜に昇華性色素の蒸気を接触させて電荷輸送性高分子の薄膜中に該色素をドープさせ、
その後、電荷輸送性高分子の薄膜上に電極を形成することを特徴とする太陽電池の製造方法。
That is, this invention provides the following solar cell and its manufacturing method.
1. A solar cell comprising a thin film made of a charge transporting polymer doped with a sublimable dye in the form of molecules, and two electrodes located on both surfaces thereof.
2. The solar cell according to claim 1, wherein the charge transporting polymer is at least one selected from the group consisting of a π-conjugated polymer, a σ-conjugated polymer, derivatives thereof, and polyvinylcarbazole.
3. Sublimation dyes include porphyrin dyes, phthalocyanine dyes, naphthoquinone dyes, anthraquinone dyes, naphthalene tetracarboxylic acid diimide dyes, perylene tetracarboxylic acid diimide dyes, merocyanine dyes, coumarin dyes, rhodamine dyes, indigo The solar cell according to claim 1 or 2, wherein the solar cell is at least one selected from the group consisting of a system dye, oligothiophene, and fullerene.
4). The solar cell according to any one of claims 1 to 3, wherein one or both electrodes are transparent or translucent light transmissive electrodes.
5. A sublimable dye and a material in which a thin film made of a charge transporting polymer is formed on one electrode are placed in a closed space,
In the closed space, the sublimable dye is sublimated, the vapor of the sublimable dye is brought into contact with the thin film made of the charge transporting polymer, and the dye is doped into the thin film of the charge transporting polymer,
Thereafter, an electrode is formed on the charge transporting polymer thin film.

本発明の太陽電池では、昇華性色素をドープした電荷輸送性高分子からなる薄膜を用いる。この様な薄膜によれば、高分子薄膜にドープされた色素の吸収により、高分子薄膜単独の場合と比較してより広い波長範囲の太陽光を利用することが可能となり、エネルギー変換効率の高い太陽電池とすることができる。   In the solar cell of the present invention, a thin film made of a charge transporting polymer doped with a sublimable dye is used. According to such a thin film, absorption of the dye doped in the polymer thin film makes it possible to use sunlight in a wider wavelength range than in the case of the polymer thin film alone, and has high energy conversion efficiency. It can be a solar cell.

電荷輸送性高分子としては、電子輸送性及び正孔輸送性のいずれか、あるいは両方の性質を持つものであれば、どのような高分子でも用いることができる。例えば、ポリフェニレンビニレン、ポリフェニレン、ポリチオフェン、ポリフルオレン等のπ共役系高分子、ポリシラン、ポリゲルマン等のσ共役系高分子等の共役系高分子を用いることができ、これらの高分子のモノマー成分を二種以上含む共重合体も用いることができる。更に、これらの高分子の側鎖にアルキル基、アリール基、アルコキシ基等が結合した誘導体も使用できる。その他、共役系高分子以外の材料としてポリビニルカルバゾールも高い正孔輸送性を有するため使用可能である。本発明では、特に、共役系高分子が望ましい。   As the charge transporting polymer, any polymer can be used as long as it has either or both of electron transporting property and hole transporting property. For example, conjugated polymers such as π-conjugated polymers such as polyphenylene vinylene, polyphenylene, polythiophene, and polyfluorene, and σ-conjugated polymers such as polysilane and polygermane can be used. A copolymer containing two or more kinds can also be used. Furthermore, derivatives in which an alkyl group, an aryl group, an alkoxy group or the like is bonded to the side chain of these polymers can also be used. In addition, as a material other than the conjugated polymer, polyvinyl carbazole can also be used because it has a high hole transport property. In the present invention, a conjugated polymer is particularly desirable.

本発明では、後述する様に、電荷輸送性高分子からなる薄膜を形成した後、減圧下において、昇華性色素を昇華させて、この薄膜中に色素をドープさせる。この方法では、薄膜を形成する際には、薄膜形成材料に色素が含まれていないので、薄膜の形成方法には限定がなく、公知の各種方法を採用できる。通常は、一方の電極上にスピンコート法、ディッピング法、バーコート法、摩擦転写法、電界重合法等の公知の方法によって電荷輸送性高分子からなる薄膜を形成すればよい。薄膜の形成条件については、公知の条件を適宜採用すればよい。   In the present invention, as described later, after a thin film made of a charge transporting polymer is formed, a sublimable dye is sublimated under reduced pressure, and the dye is doped into the thin film. In this method, when a thin film is formed, since the dye is not contained in the thin film forming material, the method for forming the thin film is not limited, and various known methods can be employed. Usually, a thin film made of a charge transporting polymer may be formed on one electrode by a known method such as a spin coating method, a dipping method, a bar coating method, a friction transfer method, or an electric field polymerization method. As for the conditions for forming the thin film, known conditions may be adopted as appropriate.

電荷輸送性高分子薄膜の厚さは、10nm〜2μm程度が適当であり、50nm〜200nm程度が好ましい。   The thickness of the charge transporting polymer thin film is suitably about 10 nm to 2 μm, and preferably about 50 nm to 200 nm.

昇華性色素としては、後述する電荷輸送性高分子に色素をドープさせる条件下において、分解することなく、昇華するものであれば、特に限定なく使用できる。この様な色素の具体例としては、ポルフィリン系色素、フタロシアニン系色素、ナフトキノン系色素、アントラキノン系色素、ナフタレンテトラカルボン酸ジイミド系色素、ペリレンテトラカルボン酸ジイミド系色素、メロシアニン系色素、クマリン系色素、ローダミン系色素、インジゴ系色素、オリゴチオフェンなどを挙げることができる。また、フラーレンも分解することなく昇華する物質であり、本発明で用いる昇華性色素に含まれる。本発明では、要求される吸収特性に応じて、これらの昇華性色素を適宜選択して用いればよく、一種単独又は二種以上混合して用いることができる。   Any sublimable dye can be used without particular limitation as long as it sublimes without decomposing under the condition that the charge transporting polymer described later is doped with the dye. Specific examples of such dyes include porphyrin dyes, phthalocyanine dyes, naphthoquinone dyes, anthraquinone dyes, naphthalene tetracarboxylic acid diimide dyes, perylene tetracarboxylic acid diimide dyes, merocyanine dyes, coumarin dyes, Examples thereof include rhodamine dyes, indigo dyes and oligothiophenes. Further, fullerene is a substance that sublimes without being decomposed, and is included in the sublimable dye used in the present invention. In the present invention, these sublimable dyes may be appropriately selected and used according to the required absorption characteristics, and may be used alone or in combination of two or more.

電荷輸送性高分子からなる薄膜中に昇華性色素をドープする方法としては、一方の電極上に電荷輸送性高分子からなる薄膜を形成した材料と昇華性色素を、密閉性を有する容器
等の閉じた空間内に載置し、空間内の圧力及び温度を調節して色素を昇華状態とすればよい。これにより、色素の蒸気が電荷輸送性高分子材料からなる薄膜の表面に接触し、薄膜の内部に浸透し、分散して、該電荷輸送性高分子の薄膜中に色素をドープさせることができる。
As a method of doping a sublimable dye into a thin film made of a charge transporting polymer, a material having a thin film made of a charge transporting polymer on one electrode and the sublimable dye are made into a container having a sealing property, etc. The pigment may be placed in a closed space, and the dye is sublimated by adjusting the pressure and temperature in the space. As a result, the vapor of the dye contacts the surface of the thin film made of the charge transporting polymer material, penetrates into the thin film, and is dispersed so that the dye can be doped into the thin film of the charge transporting polymer. .

この場合の処理条件については、特に限定的ではないが、通常、密閉容器内の圧力は1×10-3Pa〜1×10-7Pa程度とすればよいが、より低圧状態としてもよい。実用的には、1×10-4Pa〜1×10-5Pa程度が適当である。加熱温度については、使用する電荷輸送性高分子及び昇華性色素の種類によって異なるが、昇華性色素が昇華する温度以上であって、電荷輸送性高分子の分解温度及び融点を下回る温度とすればよく、該高分子の軟化温度及びガラス転移点を下回る温度とすることが好ましい。 The processing conditions in this case are not particularly limited, but normally the pressure in the sealed container may be about 1 × 10 −3 Pa to 1 × 10 −7 Pa, but may be in a lower pressure state. Practically, 1 × 10 −4 Pa to 1 × 10 −5 Pa is appropriate. The heating temperature differs depending on the type of charge transporting polymer and sublimable dye used, but if the temperature is equal to or higher than the temperature at which the sublimable dye sublimates and is below the decomposition temperature and melting point of the charge transporting polymer. The temperature is preferably lower than the softening temperature and glass transition point of the polymer.

この様な方法で昇華性色素を高分子薄膜中にドープさせることによって、昇華性色素が凝集することなく分子状で薄膜中にドープされる。このため、上記した方法で色素をドープさせた高分子薄膜では、比較的少ない色素使用量であっても、優れたエネルギー変換効率を得ることができる。これに対して、従来の溶液から薄膜を形成する方法では、薄膜形成時に色素が凝集することが避けられず、色素を分子状にドープさせることはできない。   By doping the sublimable dye into the polymer thin film by such a method, the sublimable dye is doped into the thin film in a molecular form without aggregation. For this reason, the polymer thin film doped with the dye by the above-described method can obtain excellent energy conversion efficiency even if the amount of the dye used is relatively small. On the other hand, in the conventional method of forming a thin film from a solution, it is inevitable that the dye aggregates during the formation of the thin film, and the dye cannot be doped in a molecular form.

色素のドープ量については、特に限定的ではなく、高分子薄膜中に飽和する濃度までの範囲内で適宜決めればよい。通常は、高分子薄膜100重量部に対して、10重量部程度までの色素量とすればよい。色素量の下限については特に限定的ではなく、目的とする効果の程度に応じて適宜決めれば良く、通常、高分子薄膜100重量部に対して0.01重量部程度以上とすることにより色素のドープ効果を発揮することができる。特に、0.5重量部程度以上の色素量とすることが好ましく、1重量部程度以上の色素量とすることがより好ましい。   The dope amount of the dye is not particularly limited, and may be appropriately determined within a range up to the concentration at which the polymer thin film is saturated. Usually, the amount of dye may be up to about 10 parts by weight with respect to 100 parts by weight of the polymer thin film. The lower limit of the amount of the dye is not particularly limited, and may be appropriately determined depending on the degree of the intended effect. Usually, the amount of the dye is adjusted to about 0.01 part by weight or more with respect to 100 parts by weight of the polymer thin film. The dope effect can be exhibited. In particular, the pigment amount is preferably about 0.5 parts by weight or more, and more preferably about 1 part by weight or more.

本発明の太陽電池は、昇華性色素が分子状にドープされた電荷輸送性高分子からなる薄膜と、その両面に位置する二つの電極とを有するものである。即ち、本発明の太陽電池は、昇華性色素がドープされた電荷輸送性高分子からなる薄膜が、二つの電極間に挟まれた構造を有するものである。   The solar cell of the present invention has a thin film made of a charge transporting polymer doped with a sublimable dye in the form of molecules and two electrodes located on both sides thereof. That is, the solar cell of the present invention has a structure in which a thin film made of a charge transporting polymer doped with a sublimable dye is sandwiched between two electrodes.

電極としては、公知の太陽電池において用いられている電極から適宜選択して用いればよいが、太陽光を薄膜に照射するために、一方または両方は、透明乃至半透明の光透過性電極とすることが必要である。また、太陽光照射によって生じた電荷が電極へ移動するため、両電極は仕事関数が異なるものであることが望ましい。具体的には、仕事関数が大きい電極材料としては、金、白金、インジウム錫酸化物(ITO)などを挙げることができ、
仕事関数が小さい電極材料としては、アルミニウム、銀、カルシウム、アルミニウムをドープした亜鉛酸化物(ZnO)などを挙げることができる。電極の厚さについては、特に限
定はないが、通常、10nm〜1000nm程度とすればよい。上記した電極の内で、ITO、ZnO等は、透明な電極として使用でき、また、他の金属も10〜20nm程度の厚さにすることで半透明電極として使用できる。
The electrodes may be appropriately selected from the electrodes used in known solar cells, but one or both are transparent or translucent light transmissive electrodes in order to irradiate the thin film with sunlight. It is necessary. Moreover, since the electric charge produced by sunlight irradiation moves to an electrode, it is desirable that both electrodes have different work functions. Specifically, examples of electrode materials having a large work function include gold, platinum, indium tin oxide (ITO), and the like.
Examples of the electrode material having a small work function include aluminum, silver, calcium, and zinc oxide doped with aluminum (ZnO). The thickness of the electrode is not particularly limited, but is usually about 10 nm to 1000 nm. Among the above-mentioned electrodes, ITO, ZnO, etc. can be used as transparent electrodes, and other metals can also be used as semi-transparent electrodes by making the thickness about 10 to 20 nm.

本発明の太陽電池のその他の構成は、公知の太陽電池と同様とすればよく、通常は、光透過性電極は、ガラス基板などの透明基板上に形成される。   The other configuration of the solar cell of the present invention may be the same as that of a known solar cell. Usually, the light transmissive electrode is formed on a transparent substrate such as a glass substrate.

本発明によれば、高分子材料や色素の溶解性に関係なく、幅広い材料から適切な原料を選択して、色素がドープされた電荷輸送性高分子薄膜を形成することができる。   According to the present invention, a charge transporting polymer thin film doped with a dye can be formed by selecting an appropriate raw material from a wide range of materials regardless of the solubility of the polymer material and the dye.

この様にして形成された薄膜を用いた太陽電池では、色素が導入された結果、薄膜の光
吸収の範囲が広がり、高いエネルギー効率を有する太陽電池となる。
In the solar cell using the thin film formed in this manner, as a result of the introduction of the dye, the light absorption range of the thin film is widened, and the solar cell has high energy efficiency.

以下、実施例を挙げて本発明を更に詳細に説明する。
実施例1
ガラス基板(大きさ38mm×8mm)上に面抵抗値10Ω/□のITOからなる透明電極を150nm厚、2mm幅で帯状に形成した材料を用い、このITO側表面上に、ポリ(塩化p-キシレンテトラヒドロチオフェン)のメタノール溶液(濃度1%)を滴下し、基板を2000rpm回転させることによりスピンコートを行い、ポリパラフェニレンビニレン(PPV)の前駆体薄膜を形成した。これを減圧下で、250℃で1時間加熱することによって、厚さ80nmのPPV薄膜を形成した。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
A transparent electrode made of ITO with a surface resistance of 10 Ω / □ on a glass substrate (size 38 mm x 8 mm) was formed in a strip shape with a thickness of 150 nm and a width of 2 mm. A methanol solution (concentration: 1%) of xylenetetrahydrothiophene) was dropped, and spin coating was performed by rotating the substrate at 2000 rpm to form a precursor film of polyparaphenylene vinylene (PPV). This was heated at 250 ° C. for 1 hour under reduced pressure to form a PPV thin film having a thickness of 80 nm.

この様にしてPPV薄膜を形成した材料と、ペリレンテトラカルボン酸ジイミド系色素であるN,N'-ビス(2,6-ジメチルフェニル)-3,4,9,10-ペリレンテトラカルボン酸ジイミ
ドの粉末1mgを、一方を封じたガラス管中に置き、ガラス管内の圧力が1×10-4Paと
なるまで減圧した後、開口部をバーナーによって加熱して溶融封管し、PPV薄膜を形成したガラス基板と色素をガラス管中に密封した。
The material for forming the PPV thin film in this way and N, N'-bis (2,6-dimethylphenyl) -3,4,9,10-perylenetetracarboxylic acid diimide, which is a perylenetetracarboxylic acid diimide dye, 1 mg of powder was placed in a glass tube sealed on one side, and the pressure in the glass tube was reduced to 1 × 10 −4 Pa, and then the opening was heated by a burner and melt sealed to form a PPV thin film. The glass substrate and the dye were sealed in a glass tube.

このガラス管を管状炉中に入れ、炉の温度を250℃として1時間保った。これにより色素が昇華して、PPV薄膜中へと侵入した。徐冷後、ガラス管を切断して、ガラス基板を取り出した。このガラス基板は、色素をドープしたPPV薄膜がITO透明電極表面に形成されたものである。   The glass tube was placed in a tubular furnace, and the furnace temperature was kept at 250 ° C. for 1 hour. As a result, the dye sublimated and entered the PPV thin film. After slow cooling, the glass tube was cut and the glass substrate was taken out. This glass substrate is formed by forming a PPV thin film doped with a dye on the surface of an ITO transparent electrode.

次いで、色素をドープしたPPV薄膜の表面に、圧力1×10-4Paでアルミニウムを厚さ100nm(幅2mm)に蒸着して、有効面積0.04cm2の高分子薄膜太陽電池
を得た。
Next, aluminum was deposited to a thickness of 100 nm (width 2 mm) at a pressure of 1 × 10 −4 Pa on the surface of the dye-doped PPV thin film to obtain a polymer thin film solar cell having an effective area of 0.04 cm 2 .

得られた太陽電池の断面の概略図を図1に示す。図1の太陽電池は、色素をドープした電荷輸送性高分子膜3が、透明基板1上に形成された光透過性電極膜2とアルミニウムからなる電極膜4との間に挟まれた構造である。   A schematic view of a cross section of the obtained solar cell is shown in FIG. The solar cell in FIG. 1 has a structure in which a charge-transporting polymer film 3 doped with a dye is sandwiched between a light-transmissive electrode film 2 formed on a transparent substrate 1 and an electrode film 4 made of aluminum. is there.

一方、比較として、色素をドープすること無く、上記した方法と同様にして形成されたPPV薄膜上にアルミニウムからなる電極膜を形成した構造の太陽電池も作製した。   On the other hand, as a comparison, a solar cell having a structure in which an electrode film made of aluminum was formed on a PPV thin film formed in the same manner as described above without doping a dye was also produced.

これらの太陽電池について、100Wキセノンランプからの光を干渉フィルターによって単色化した光をITOガラス側から照射し、ITO電極とアルミニウム電極との間に生じる電流を測定した。光の強度は1mW/cm2で規格化した。図2は、照射された光の
波長と光電流との関係を示すグラフである。波長による光の強度は補正してある。
About these solar cells, the light which monochromatized the light from a 100W xenon lamp with the interference filter was irradiated from the ITO glass side, and the electric current produced between an ITO electrode and an aluminum electrode was measured. The intensity of light was standardized at 1 mW / cm 2 . FIG. 2 is a graph showing the relationship between the wavelength of irradiated light and the photocurrent. The intensity of light due to wavelength is corrected.

色素をドープしたPPV薄膜を用いた太陽電池では、色素をドープしていないPPV膜を用いた太陽電池と比較して、明らかに光電流の増大が認められる。また、光電流の波長応答を見ると、応答の立ち上がりの波長が、色素を導入した薄膜を用いた太陽電池では、少し長波長にシフトしており、色素を導入した増感効果と考えることができる。   In the solar cell using the PPV thin film doped with the dye, an increase in the photocurrent is clearly recognized as compared with the solar cell using the PPV film not doped with the dye. Also, looking at the wavelength response of the photocurrent, the wavelength at which the response rises is slightly shifted to a longer wavelength in a solar cell using a dye-introduced thin film. it can.

実施例1で得られた太陽電池の断面の概略図。1 is a schematic view of a cross section of a solar cell obtained in Example 1. FIG. 照射された光の波長と光電流との関係を示すグラフ。The graph which shows the relationship between the wavelength of the irradiated light, and a photocurrent.

符号の説明Explanation of symbols

1 透明基板
2 光透過性電極膜
3 色素をドープした電荷輸送性高分子膜
4 電極膜
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Light transmissive electrode film 3 Dye-doped charge transporting polymer film 4 Electrode film

Claims (5)

昇華性色素の蒸気を接触させることにより昇華性色素が分子状にドープされた共役系高分子からなる薄膜と、その両面に位置する二つの電極とを有することを特徴とする太陽電池。 A solar cell comprising: a thin film made of a conjugated polymer in which a sublimable dye is molecularly doped by contacting vapor of the sublimable dye; and two electrodes located on both sides thereof. 共役系高分子が、π共役系高分子、σ共役系高分子、これらの誘導体及びポリビニルカルバゾールからなる群から選ばれた少なくとも一種である請求項1に記載の太陽電池。 2. The solar cell according to claim 1, wherein the conjugated polymer is at least one selected from the group consisting of a π-conjugated polymer, a σ-conjugated polymer, derivatives thereof, and polyvinylcarbazole. 昇華性色素が、ポルフィリン系色素、フタロシアニン系色素、ナフトキノン系色素、アントラキノン系色素、ナフタレンテトラカルボン酸ジイミド系色素、ペリレンテトラカルボン酸ジイミド系色素、メロシアニン系色素、クマリン系色素、ローダミン系色素、インジゴ系色素、オリゴチオフェン、及びフラーレンからなる群から選ばれた少なくとも一種である請求項1又は2に記載の太陽電池。 Sublimation dyes include porphyrin dyes, phthalocyanine dyes, naphthoquinone dyes, anthraquinone dyes, naphthalene tetracarboxylic acid diimide dyes, perylene tetracarboxylic acid diimide dyes, merocyanine dyes, coumarin dyes, rhodamine dyes, indigo The solar cell according to claim 1 or 2, wherein the solar cell is at least one selected from the group consisting of a system dye, oligothiophene, and fullerene. 一方または両方の電極が、透明乃至半透明の光透過性電極である請求項1〜3のいずれかに記載の太陽電池。 The solar cell according to any one of claims 1 to 3, wherein one or both electrodes are transparent or translucent light transmissive electrodes. 昇華性色素と一方の電極上に共役系高分子からなる薄膜を形成した材料とを、閉じた空間内に載置し、
該閉じた空間内において、昇華性色素を昇華させ、共役系高分子からなる薄膜に昇華性色素の蒸気を接触させて共役系高分子の薄膜中に該色素をドープさせ、
その後、共役系高分子の薄膜上に電極を形成することを特徴とする太陽電池の製造方法。
A sublimable dye and a material in which a thin film made of a conjugated polymer is formed on one electrode are placed in a closed space,
In The closed space, the sublimable dye is sublimated, by contacting the vapor of a sublimable dye to a thin film formed of a conjugated polymer is doped with dye in the thin film of the conjugated polymer,
Thereafter, an electrode is formed on a thin film of a conjugated polymer, and a method for producing a solar cell.
JP2003302338A 2003-08-27 2003-08-27 Solar cell and manufacturing method thereof Expired - Lifetime JP4221499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302338A JP4221499B2 (en) 2003-08-27 2003-08-27 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003302338A JP4221499B2 (en) 2003-08-27 2003-08-27 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005072410A JP2005072410A (en) 2005-03-17
JP4221499B2 true JP4221499B2 (en) 2009-02-12

Family

ID=34406628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302338A Expired - Lifetime JP4221499B2 (en) 2003-08-27 2003-08-27 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4221499B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200172B2 (en) 2010-11-05 2015-12-01 City University Of Hong Kong Phthalocyanine/ polymer nanocomposite ink for optoelectonics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227784B2 (en) * 1992-06-04 2001-11-12 三菱化学株式会社 Organic electroluminescent device
GB9215003D0 (en) * 1992-07-15 1992-08-26 Courtaulds Plc Coloured film
JPH06318725A (en) * 1993-05-10 1994-11-15 Ricoh Co Ltd Photovoltaic element and its manufacture
JP3362504B2 (en) * 1994-05-27 2003-01-07 三菱化学株式会社 Manufacturing method of organic electroluminescent device
JP3870424B2 (en) * 1994-10-27 2007-01-17 住友電気工業株式会社 Organic photoconductor and device
JP2001513832A (en) * 1997-02-26 2001-09-04 インテグメント テクノロジーズ,インク. Polymer composites and methods of making and using the same
JP4291973B2 (en) * 2001-02-08 2009-07-08 大阪瓦斯株式会社 Photoelectric conversion material and photovoltaic cell

Also Published As

Publication number Publication date
JP2005072410A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
Kumar et al. Liquid crystals in photovoltaics: a new generation of organic photovoltaics
Bucher et al. Porphyrins and BODIPY as building blocks for efficient donor materials in bulk heterojunction solar cells
Teh et al. A review of organic small molecule-based hole-transporting materials for meso-structured organic–inorganic perovskite solar cells
Alam et al. Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers
Hains et al. Molecular semiconductors in organic photovoltaic cells
Ravirajan et al. The effect of polymer optoelectronic properties on the performance of multilayer hybrid polymer/TiO2 solar cells
Krebs et al. Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV: PCBM-aluminium devices
Armstrong et al. Organic/organic′ heterojunctions: organic light emitting diodes and organic photovoltaic devices
Mishra et al. Small molecule organic semiconductors on the move: promises for future solar energy technology
US7655961B2 (en) Organic diodes and materials
Gao et al. High‐Mobility Hydrophobic Conjugated Polymer as Effective Interlayer for Air‐Stable Efficient Perovskite Solar Cells
Gangadhar et al. Phenothiazine functional materials for organic optoelectronic applications
Chang et al. Cross-linked triarylamine-based hole-transporting layer for solution-processed PEDOT: PSS-free inverted perovskite solar cells
Jiang et al. On the interface reactions and stability of nonfullerene organic solar cells
Wang et al. A crosslinked polymer as dopant-free hole-transport material for efficient nip type perovskite solar cells
US20120266960A1 (en) Multi layer organic thin film solar cell
CN107365411A (en) A kind of hole transmission layer containing organic conjugate polymer semi-conducting material and application thereof
JP2005203659A (en) Photoelectric converting material and its manufacturing method, photoelectric converting element and its manufacturing method, and electronic device and its manufacturing method
Yourre et al. Organic materials for photovoltaic and light-emitting devices
Yu et al. An n-type all-fused-ring molecule with narrow bandgap
JP2005116617A (en) Photoelectric conversion element and solar cell
Li et al. Perovskite solar cells based on hole-transporting conjugated polymers by direct arylation polycondensation
Guo et al. Dopant‐Free Ternary Conjugated Polymeric Hole‐Transporting Materials for Efficient Inverted Planar Perovskite Solar Cells
Tepliakova et al. Hole-transport materials based on benzodithiophene-thiazolothiazole-containing conjugated polymers for efficient perovskite solar cells
Wang et al. Organic photovoltaic cells made from sandwich-type rare earth phthalocyaninato double and triple deckers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4221499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term