JP4221476B2 - Plasmid cloned icosapentaenoic acid biosynthesis genes and cyanobacteria producing icosapentaenoic acid - Google Patents

Plasmid cloned icosapentaenoic acid biosynthesis genes and cyanobacteria producing icosapentaenoic acid Download PDF

Info

Publication number
JP4221476B2
JP4221476B2 JP32916999A JP32916999A JP4221476B2 JP 4221476 B2 JP4221476 B2 JP 4221476B2 JP 32916999 A JP32916999 A JP 32916999A JP 32916999 A JP32916999 A JP 32916999A JP 4221476 B2 JP4221476 B2 JP 4221476B2
Authority
JP
Japan
Prior art keywords
cyanobacteria
icosapentaenoic acid
plasmid
epa
pjrdepa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32916999A
Other languages
Japanese (ja)
Other versions
JP2001145490A (en
Inventor
一良 矢澤
玲子 湯
章子 山田
是 松永
春子 竹山
隆一郎 倉根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP32916999A priority Critical patent/JP4221476B2/en
Publication of JP2001145490A publication Critical patent/JP2001145490A/en
Application granted granted Critical
Publication of JP4221476B2 publication Critical patent/JP4221476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イコサペンタエン酸(以下EPAと称する)産生菌から得られたEPA生合成遺伝子群を含有するプラスミド及び当該プラスミドを導入して作製されるイコサペンタエン酸を産生する形質転換体ラン藻に関する。
【0002】
【従来の技術】
イコサペンタエン酸・ドコサヘキサエン酸に代表されるn-3系列高度不飽和脂肪酸は、細胞膜の構成脂肪酸であり循環系・脳神経系の正常な機能の発現に重要な役割を果たしていることが知られている。しかし、人間はこれらを生合成することができないため主に魚介類からの摂取に頼っている。また、慣習的に魚介類を摂取しない民族も多く存在している。そのためn-3系列高度不飽和脂肪酸は、生活習慣病の治療や予防のため医薬品・健康食品として広く販売されている。さらに、粉ミルク等の乳幼児向けの食品や養殖魚の稚魚の必須栄養として飼料に添加するかたちでも用いられている。
【0003】
現在n-3系列高度不飽和脂肪酸の原料としては、主としてマグロ・イワシなどの魚類が用いられている。これらの魚類は自ら高度不飽和脂肪酸を生合成するのではなく餌として取り込んだものを蓄積している。n-3系列高度不飽和脂肪酸を生合成できる生物として知られているのは主に海洋細菌や海洋微細藻類等の海における食物連鎖の低次生産者となる海洋微生物であるが、海洋ラン藻でこれを産生するものは知られていない。
【0004】
海洋ラン藻に遺伝子組換え技術を用いてn-3系列高度不飽和脂肪酸の生合成遺伝群を導入した例として、海洋細菌由来のEPA生合成遺伝子群をシネココッカス(Synechoccus)sp.NKBG042902に導入した竹山らの報告(H. Takeyama et al., Microbiolgy,143,2725-2731(1997))が有る。しかし、導入したプラスミドが約50kbと巨大なものであったため複製の際問題が生じて安定なEPA生産はみられなかった。
【0005】
【発明が解決しようとする課題】
海洋ラン藻は地球レベルでの酸素の生産者として重要であり、その物質生産能力を利用することにより二酸化炭素の削減にも寄与できる。また、ラン藻は光合成による独立栄養生物であるため、培養には安価な無機培地を用いることができ照明以外には特殊な設備を要さない点で産業レベルに載せやすいと考えられる。さらに、ラン藻は原核生物であるため菌体全体を物質生産の原料として用いることにより廃棄物の量を低く押さえることができるのも有利な点である。このような性質を持ったラン藻に有用物質であるn-3系列高度不飽和脂肪酸を生産させることは非常に意義のあることと考えられる。本発明は、実用化のためにn-3系列高度不飽和脂肪酸、とくにEPAの産生能の向上と導入するプラスミドの安定化を目的とする。
【0006】
【課題を解決するための手段】
本発明は、高度不飽和脂肪酸を広範な細菌で発現するプラスミド及び該プラスミドを導入し高度不飽和脂肪酸を安定に効率よく産生する形質転換体ラン藻を提供する。すなわち、本発明は、以下のとおりである。
(1)配列番号2,4,6,8,10,及び12で示される塩基配列からなる、イコサペンタエン酸生合成酵素群をコードする遺伝子群を、広域宿主ベクターにクローニングして得られるプラスミド。
(2)配列番号3,5,7,9,11,及び13で示されるアミノ酸配列からなるイコサペンタエン酸生合成酵素群をコードする遺伝子群を、広域宿主ベクターにクローニングして得られるプラスミド。
(3)上記(1)又は(2)に記載のプラスミドを導入して得られるイコサペンタエン酸を産生するラン藻。
【0007】
【発明の実施の形態】
本発明において用いられるEPA生合成酵素群をコードする遺伝子群は、例えば実施例1あるいは特開平8−242867号に記載の方法により単離することができる。なお、本発明において、EPA生合成酵素群をコードする遺伝子群は、配列番号2,4,6,8,10,及び12で示される塩基配列によってコードされるものとストリンジェントな条件でハイブリダイズするものを包含する。
【0008】
EPA生合成酵素群をコードする遺伝子群を他の生物に導入するためには、これらの遺伝子を運んで発現させる部品を備えたベクターが必要である。原核生物に上述の遺伝子群を導入する際は、多くの場合にはそのままのプロモーター/ターミネーターが使用できるので、それぞれの微生物で複製のできる複製開始点を有したベクターを用いることができる。一般的な広域宿主ベクターが使用可能であり、例えばpJRD215(Davidson et al.,Gene, 51,275-280(1987))及びpBBR1MCSシリーズ(Kovach et al., Gene, 166,175-176(1995))等を例示することができる。これらのベクターへの上述の遺伝子群のクローニングは、すべての遺伝子群を含むDNA断片あるいはすべての遺伝子群を含むことになる複数のDNA断片を用いて、慣用の方法で行うことができる。
【0009】
一般的にベクターにクローニングした遺伝子をそれぞれの原核生物に導入する方法としては、形質転換法・接合法・エレクトロポーレーション法が挙げられる。細胞内への遺伝子の導入を確認する方法としては、直接的には、その発現の結果である生産物、高度不飽和脂肪酸を検出する。上述のように作製されたプラスミドを導入した生物から有機溶媒抽出を行うことによりEPA等の高度不飽和脂肪酸を得ることができる。間接的には、導入した遺伝子の一部をプローブやプライマーとしたハイブリダイゼーションやPCRにより遺伝子が導入されたことを確認することが可能である。
【0010】
本発明の上記プラスミドをラン藻に導入する際にも、上記の方法を適用して行うことができる。用いられるラン藻としては、特に制限はないが、例えばシネココッカスsp.NKBG15041c、シネココッカスsp.NKBG042902等を挙げることができる。上記プラスミドを導入したイコサペンタエン酸を産生するラン藻として、平成11年11月9日に工業技術院生命工学工業技術研究所に受託番号FERM P-17634として寄託された、15041c/pJRDEPA-Sが挙げられる。
【0011】
【発明の効果】
本発明では、高度不飽和脂肪酸の生合成に必須でないORF及び遺伝子をコードしていていない部分を可能な限り取り除いて短縮化することにより、他の生物に導入した場合に細胞***に伴う脱落を防ぎ遺伝子群の安定で効率良い発現が達成される。
【0012】
【実施例】
次に、実施例及び参考例により本発明をさらに具体的に説明する。
【0013】
実施例1 小型化プラスミドの作製
特開平8-242867に記載のプラスミドpEPAに挿入されたEPA生合成遺伝子群のうち、EPA生合成に必須であるORF3 5 6 7 8 および 9のサブクローニングを行った。ORF5、6、7、8および9については、クローニングベクターpBSIIKS(+)(Stratagene社製)のXbaI-SpeI部位にXbaI-SpeI断片(23,045-31,443)、XbaI部位にXbaI-XbaI断片(12,314-23,045)SpeI部位にSpeI-NheI断片(31,443-32,514)を順次サブクローニングを行いΔX4XbNh/pBS を作製した。ΔX4XbNh/pBS をNotIで処理したものをT4DNAポリメラーゼにより平滑末端を作り、それをXhoIで処理して DNA断片Aを得た。また、ORF3については、R/pSTV28(HpaI断片7,951-9,129を宝酒造製ベクターpSTV28のSmaI部位に挿入したもの)をEcoRI及びPstIで処理して切り出した断片をpBSIIKS(+)のEcoRI-PstI部位に挿入してR/pBSを作製した。R/pBSをPstIで処理後T4DNAポリメラーゼにより平滑末端を作りXhoIリンカーを導入してからXhoIでORF3を含む断片を切り出しDNA断片Bを得た。広域宿主ベクターであるpJRD215(カナマイシン及びストレプトマイシン耐性)のXhoI-StuI部位に断片AをパッカジンラムダDNAパケージングシステム(Promega社製)により導入した後に、XhoI部位に断片BをDNA ライゲーションキット (宝酒造製)を用いて導入しプラスミドを完成させた。これをpJRDEPA-Sと命名した(図1)。
【0014】
参考例1 pJRDEPA-Sを導入した大腸菌でのEPA生産
pJRDEPA-Sを用いて大腸菌K12/JM109を常法により形質転換した。50μg/mlのカナマイシンを含むLB寒天培地(トリプトン1%、酵母エキス0.5%、NaCl 1%、寒天1.5%)を用いて選別を行いJM109/pJRDEPA-Sのコロニーを得た。このコロニーを50μg/mlのカナマイシンを含む2mlLB液体培地に接種し25℃で24時間培養した。これを遠心分離して菌体を集め培地を除いた後、10mMトリス塩酸緩衝液 pH7.5を加えて懸濁し再度遠心分離を行って洗浄した。洗浄菌体に少量の10mMトリス塩酸緩衝液 pH7.5を加えて再懸濁し凍結乾燥をした。乾燥菌体に5%塩化水素を含むメタノルーを1ml加え80℃1時間処理して脂肪酸のメチルエステル化を行った。冷却後同量のn-ヘキサンで3回抽出しn-ヘキサン層を減圧乾固して20μlのメタノールに溶解し試料とした。この試料の一部をガスクロマトグラフィー(以下GLCと略す)により分析した。その結果、標品のEPAメチルエステルと同様の保持時間にピークが検出された。そのピークの面積比から算出される総脂肪酸に対する割合は5.7%であった。また、このピークはガスクロマトグラフィー質量スペクトル(以下GC-MSと略す)分析により親イオン(M) m/z316、ベースピークm/z79でありEPAメチルエステル標品と一致した。
【0015】
実施例2−1 ラン藻のトランスコンジュゲーション
ラン藻シネココッカス(Synechococcus) sp. NKBG15041c(K.Sode et al., Appl. Microbiol. Biotechnol., 37,369-373 (1992))を3%NaClを含むBG11(表1)液体培地(BG11M)1,000-1,500 Luxの光照射下23℃で 4-5日間静置培養を行い(A550<1)、室温で3,000rpm20分間遠心して集め、BG11M液体培地に懸濁して3回洗った。このラン藻の濃度を分光光度計でA550=1に合わせた。上記pJRDEPA-Sでトランスコンジュゲーション用大腸菌S-17(Simon et al., Bio/Technolgy,118,640-659(1983) )を形質転換し、50μg/mlのカナマイシンを含むLB寒天培地に37℃一晩培養して生育したコロニーをBG11Mに懸濁したものを分光光度計で濃度を測定しA650=10に合わせた。以上のように調製したラン藻と大腸菌を等量ずつラン藻A550=1に対し大腸菌A650=10になるように混合した。この菌液を遠心後元の10分の1になるように懸濁したものをBG11に15mMNaClを加えた1.2%寒天培地に50μlずつスポットし、照明下24〜48時間23℃で培養した。寒天培地上にできた緑色のコロニーをメスで切り出して1mlBG11Mに懸濁し75μg/mlカナマイシンを含むBG11M液体培地に50分の1の濃度になるように加え照明下23℃で培養した。
【0016】

Figure 0004221476
【0017】
実施例2−2 ラン藻のシングルコロニーアイソレーション
pJRDEPA-Sを有するラン藻をA730=3-4に生育させ、10-4-10-5希釈したものを75μg/mlカナマイシンを含むBG11Mの寒天培地に塗布し23℃照明下約1ヶ月培養してシングルコロニーを形成させた。このコロニーを75μg/mlカナマイシンを含むBG11M液体培地に移して培養した。得られた組換え体ラン藻を15041c/pJRDEPA-Sと命名した(受託番号FERM P-17634)。
【0018】
実施例2−3 ラン藻の菌体脂質の調製及び分析
pJRDEPA-S を有するラン藻及び非組換え体のラン藻を培養しその菌体を実施例1-2と同様に遠心分離で集め洗浄後凍結乾燥を行った。乾燥菌体に実施例1-2と同様の脂肪酸のメチルエステル化を行いn-ヘキサン抽出し減圧乾固後メタノールに溶解して粗試料とした。この粗試料をシリカゲル薄層プレートにスポットしn-ヘキサン:エチルエーテル(4:1、v/v)で展開してメチルエステルを分離した。プリムリン発色により検出したメチルエステル画分を掻き取り、メタノール:10%食塩(9:1、v/v)1ml及び水1mlを加えたものから上述と同様にn-ヘキサン抽出を行い試料を調製した。この試料の一部をGLCにかけて分析した。標品のEPAメチルエステルと保持時間が一致するピーク及びその約1分前にもほぼ同じ高さのピークが検出された。2本ののピークはその面積比から求めた総脂肪酸に対する割合はそれぞれ3.8%及び2.6%であった。主な脂肪酸の総脂質に占める割合を表2に示す。残りの試料を硝酸銀シリカゲル薄層プレートにスポットしn-ヘキサン:エチルエーテル(85:15、v/v)で3回展開して2',7'-ジクロロフルオレセイン発色により検出した多価不飽和脂肪酸画分を掻き取り上述と同様な方法で GC-MS分析用試料を調製した。GC-MS分析により、EPAメチルエステルと保持時間が一致するピークの分子量は316でEPAと一致した。また、その前のピークは分子量318で20:4であるが、アラキドン酸メチルエステル(20:4(n-6))のガスクロマトグラフィーの保持時間とは異なっていた。このピークは、標品の20:4(n-3)メチルエステルの保持時間及びGC-MSのの解裂パターンと一致しており、20:4(n-3)メチルエステルと同定された。
【0019】
Figure 0004221476
【0020】
実施例3. プラスミドの比較
pJRDEPA-Sと同時にpJRDEPA(H. Takeyama et al., Microbiolgy,143,2725-2731(1997))を実施例2-1と同様にシネココッカスsp.NKBG15041cに導入して75μg/mlのカナマイシンを加えたBG11M液体培地1lで培養を行った。実施例2-3と同様に脂肪酸メチルエステルを調製しGLCで分析を行った。その結果を表3に示す。
【0021】
Figure 0004221476
このようにpJRDEPA-Sを導入したNKBG15041cでは、pJRDEPAを導入したものに比較して飛躍的にEPA生産能が増加した。
【0022】
参考例2 ラン藻の培養条件
pJRDEPA-S を有するラン藻を通常(23℃、1,000Lux、静置)、低温(18℃、800Lux、振とう)及び弱照明(23℃、40Lux、静置)の3条件で培養し、それぞれの脂肪酸組成を実施例2-3を同様の方法でGLCにより分析した結果を表3に示す。EPA及び20:4(n-3)の総脂肪酸に対する割合は、通常に比べ生育を抑制した場合(低温及び弱照明)の方が高く、それぞれ3.8%・2.6%に対し、6.0%・5.7%及び5.2%・6.6%であった。
【0023】
Figure 0004221476
【0024】
参考例3
pJRDEPAに関しては、ラン藻を継代すると、ラン藻の***にプラスミドの複製が間に合わなくなりプラスミドが失われていったとの報告がある(H. Takeyama et al., Microbiolgy,143,2725-2731(1997))。しかし、 pJRDEPA-Sを有するラン藻ではそのような現象は観察されず、カナマイシンの存在下で継代を繰り返すことができた。
【0025】
【配列表】
Figure 0004221476
【0026】
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476

【図面の簡単な説明】
【図1】 本発明のプラスミドの一態様であるpJRDEPA−Sの構造を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasmid containing an EPA biosynthetic gene group obtained from an icosapentaenoic acid (hereinafter referred to as EPA) -producing bacterium, and a transformant cyanobacteria producing icosapentaenoic acid produced by introducing the plasmid.
[0002]
[Prior art]
It is known that n-3 series highly unsaturated fatty acids represented by icosapentaenoic acid and docosahexaenoic acid are constituent fatty acids of cell membranes and play an important role in the expression of normal functions of the circulatory and cranial nervous systems. However, humans are unable to biosynthesize these, so they rely mainly on intake from seafood. There are also many ethnic groups who do not traditionally consume seafood. Therefore, n-3 series highly unsaturated fatty acids are widely sold as pharmaceuticals and health foods for the treatment and prevention of lifestyle-related diseases. Furthermore, it is also used in the form of added to feed as an essential nutrient for food for infants such as powdered milk and fry of cultured fish.
[0003]
Currently, fish such as tuna and sardines are mainly used as raw materials for n-3 series highly unsaturated fatty acids. These fish do not biosynthesize polyunsaturated fatty acids themselves, but accumulate what they take in as food. Known as organisms capable of biosynthesizing n-3 series highly unsaturated fatty acids are marine microorganisms that are lower producers of the food chain in the sea, mainly marine bacteria and marine microalgae. No one is known to produce this.
[0004]
As an example of introducing a biosynthetic genetic group of n-3 series polyunsaturated fatty acids into marine cyanobacteria using genetic recombination technology, an EPA biosynthetic gene group derived from marine bacteria was introduced into Synechoccus sp.NKBG042902. There is a report by Takeyama et al. (H. Takeyama et al., Microbiolgy, 143, 275-2731 (1997)). However, since the introduced plasmid was as large as about 50 kb, a problem occurred during replication, and stable EPA production was not observed.
[0005]
[Problems to be solved by the invention]
Marine cyanobacteria are important as oxygen producers at the global level, and they can contribute to the reduction of carbon dioxide by utilizing their material production capacity. In addition, since cyanobacteria are autotrophic organisms by photosynthesis, it is considered that an inexpensive inorganic medium can be used for culturing and that it is easy to put on an industrial level in that no special equipment other than lighting is required. Furthermore, since cyanobacteria are prokaryotes, it is also advantageous that the amount of waste can be kept low by using the entire cells as raw materials for substance production. Producing n-3 series highly unsaturated fatty acids, which are useful substances, to cyanobacteria with such properties is considered to be very significant. The purpose of the present invention is to improve the productivity of n-3 series highly unsaturated fatty acids, particularly EPA, and to stabilize the introduced plasmid for practical use.
[0006]
[Means for Solving the Problems]
The present invention provides a plasmid that expresses polyunsaturated fatty acids in a wide range of bacteria, and a transformant cyanobacteria that introduces the plasmid and produces polyunsaturated fatty acids stably and efficiently. That is, the present invention is as follows.
(1) A plasmid obtained by cloning a gene group encoding an icosapentaenoic acid biosynthetic enzyme group consisting of the base sequences represented by SEQ ID NOs: 2, 4, 6, 8, 10, and 12 into a broad host vector.
(2) A plasmid obtained by cloning a gene group encoding an icosapentaenoic acid biosynthetic enzyme group consisting of the amino acid sequences shown in SEQ ID NOs: 3, 5, 7, 9, 11, and 13 into a broad-area host vector.
(3) Cyanobacteria producing icosapentaenoic acid obtained by introducing the plasmid according to (1) or (2) above.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The gene group encoding the EPA biosynthetic enzyme group used in the present invention can be isolated by, for example, the method described in Example 1 or JP-A-8-242867. In the present invention, the gene group encoding the EPA biosynthetic enzyme group hybridizes under stringent conditions with those encoded by the base sequences represented by SEQ ID NOs: 2, 4, 6, 8, 10, and 12. To include.
[0008]
In order to introduce a gene group encoding an EPA biosynthetic enzyme group into other organisms, a vector having a component for carrying and expressing these genes is required. When introducing the above-mentioned genes into prokaryotes, in many cases, the promoter / terminator can be used as it is, and therefore a vector having an origin of replication that can be replicated by each microorganism can be used. Common broad host vectors can be used, for example, pJRD215 (Davidson et al., Gene, 51,275-280 (1987)) and pBBR1MCS series (Kovach et al., Gene, 166,175-176 (1995)) can do. Cloning of the above gene group into these vectors can be performed by a conventional method using a DNA fragment containing all gene groups or a plurality of DNA fragments containing all gene groups.
[0009]
In general, methods for introducing a gene cloned into a vector into each prokaryotic organism include a transformation method, a conjugation method, and an electroporation method. As a method for confirming the introduction of a gene into a cell, a product and a highly unsaturated fatty acid as a result of the expression are directly detected. Polyunsaturated fatty acids such as EPA can be obtained by performing organic solvent extraction from the organism introduced with the plasmid prepared as described above. Indirectly, it is possible to confirm that the gene has been introduced by hybridization or PCR using a part of the introduced gene as a probe or primer.
[0010]
The introduction of the plasmid of the present invention into cyanobacteria can also be performed by applying the above method. The cyanobacteria used is not particularly limited, and examples thereof include Synechococcus sp.NKBG15041c and Synecococcus sp.NKBG042902. The cyanobacteria producing icosapentaenoic acid introduced with the above-mentioned plasmid is 15041c / pJRDEPA-S, deposited at the National Institute of Advanced Industrial Science and Technology under the accession number FERM P-17634 on November 9, 1999. It is done.
[0011]
【The invention's effect】
In the present invention, ORF that is not essential for the biosynthesis of polyunsaturated fatty acids and the portion that does not encode the gene are removed as much as possible, and shortened by removing as much as possible when introduced into other organisms. Stable and efficient expression of preventing genes is achieved.
[0012]
【Example】
Next, the present invention will be described more specifically with reference to examples and reference examples.
[0013]
Example 1 Preparation of miniaturized plasmid Subcloning of ORF3 , 5 , 6 , 7 , 8 and 9 essential for EPA biosynthesis among EPA biosynthetic genes inserted into plasmid pEPA described in JP-A-8-242867 Went. For ORF5, 6, 7, 8, and 9, the XbaI-SpeI fragment (23,045-31,443) at the XbaI-SpeI site and the XbaI-XbaI fragment (12,314-23,045) at the XbaI site of the cloning vector pBSIIKS (+) (Stratagene) ) SpeI-NheI fragments (31,443-32,514) were sequentially subcloned into the SpeI site to produce ΔX4XbNh / pBS. A blunt end of ΔX4XbNh / pBS treated with NotI was made with T4 DNA polymerase and treated with XhoI to obtain DNA fragment A. In addition, for ORF3, R / pSTV28 (HpaI fragment 7,951-9,129 inserted into the SmaI site of Takara Shuzo vector pSTV28) was digested with EcoRI and PstI and the fragment excised at the EcoRI-PstI site of pBSIIKS (+). R / pBS was prepared by insertion. After treating R / pBS with PstI, blunt ends were made with T4 DNA polymerase, an XhoI linker was introduced, and then a fragment containing ORF3 was cut out with XhoI to obtain DNA fragment B. Fragment A was introduced into the XhoI-StuI site of pJRD215 (kanamycin and streptomycin resistance), a broad host vector, using the Paccadine lambda DNA packaging system (Promega), and then the fragment B was inserted into the XhoI site using a DNA ligation kit (Takara Shuzo). ) Was used to complete the plasmid. This was named pJRDEPA-S (Figure 1).
[0014]
Reference Example 1 EPA production in E. coli with pJRDEPA-S
Escherichia coli K12 / JM109 was transformed by a conventional method using pJRDEPA-S. Sorting was performed using LB agar medium (trypton 1%, yeast extract 0.5%, NaCl 1%, agar 1.5%) containing 50 μg / ml kanamycin to obtain JM109 / pJRDEPA-S colonies. This colony was inoculated into 2 ml LB liquid medium containing 50 μg / ml kanamycin and cultured at 25 ° C. for 24 hours. After centrifuging the cells to collect the cells and removing the medium, 10 mM Tris-HCl buffer pH 7.5 was added to suspend the cells, followed by centrifugation and washing. A small amount of 10 mM Tris-HCl buffer (pH 7.5) was added to the washed cells, resuspended and lyophilized. 1 ml of methanol containing 5% hydrogen chloride was added to the dried cells and treated at 80 ° C. for 1 hour to methylate fatty acids. After cooling, extraction was performed three times with the same amount of n-hexane, and the n-hexane layer was dried under reduced pressure and dissolved in 20 μl of methanol to prepare a sample. A part of this sample was analyzed by gas chromatography (hereinafter abbreviated as GLC). As a result, a peak was detected at the same retention time as the standard EPA methyl ester. The ratio with respect to the total fatty acid calculated from the area ratio of the peak was 5.7%. Further, this peak was a parent ion (M) m / z 316 and a base peak m / z 79 by gas chromatography mass spectrum (hereinafter abbreviated as GC-MS) analysis, which was consistent with the EPA methyl ester sample.
[0015]
Example 2-1 Transconjugation of Cyanobacteria Cyanobacteria Synechococcus sp. NKBG15041c (K. Sode et al., Appl. Microbiol. Biotechnol., 37,369-373 (1992)) containing BG11 containing 3% NaCl ( Table 1) Liquid medium (BG11M) 1,000-1,500 Lux light irradiation at 23 ° C for 4-5 days (A 550 <1), collected by centrifugation at room temperature for 3,000rpm for 20 minutes, suspended in BG11M liquid medium And washed 3 times. The concentration of cyanobacteria was adjusted to A 550 = 1 with a spectrophotometer. E. coli S-17 for transconjugation (Simon et al., Bio / Technolgy, 118,640-659 (1983)) was transformed with the above-mentioned pJRDEPA-S, and overnight on an LB agar medium containing 50 μg / ml kanamycin at 37 ° C. A colony grown by culturing was suspended in BG11M, and the concentration was measured with a spectrophotometer and adjusted to A 650 = 10. The cyanobacterium and E. coli prepared as described above were mixed in equal amounts so that E. coli A 650 = 10 with respect to cyanobacterium A 550 = 1. After centrifuging this bacterial solution to 1/10 of the original, 50 μl each was spotted on 1.2% agar medium in which 15 mM NaCl was added to BG11 and cultured at 23 ° C. for 24 to 48 hours under illumination. A green colony formed on an agar medium was cut out with a scalpel, suspended in 1 ml BG11M, added to a BG11M liquid medium containing 75 μg / ml kanamycin to a concentration of 1/50, and cultured at 23 ° C. under illumination.
[0016]
Figure 0004221476
[0017]
Example 2-2 Single colony isolation of cyanobacteria
Cyanobacteria with pJRDEPA-S is grown to A 730 = 3-4, diluted 10 -4 -10 -5 to BG11M agar medium containing 75 μg / ml kanamycin, and cultured for about 1 month under illumination at 23 ° C A single colony was formed. This colony was transferred to a BG11M liquid medium containing 75 μg / ml kanamycin and cultured. The obtained recombinant cyanobacteria was named 15041c / pJRDEPA-S (Accession Number FERM P-17634).
[0018]
Example 2-3 Preparation and Analysis of Cyanobacterial Lipids
Cyanobacteria having pJRDEPA-S and non-recombinant cyanobacteria were cultured, and the cells were collected by centrifugation as in Example 1-2, washed and freeze-dried. Fatty acid methyl esterification was performed on the dried cells in the same manner as in Example 1-2, followed by extraction with n-hexane, drying under reduced pressure, and dissolution in methanol to obtain a crude sample. The crude sample was spotted on a silica gel thin layer plate and developed with n-hexane: ethyl ether (4: 1, v / v) to separate the methyl ester. The methyl ester fraction detected by primulin color development was scraped, and a sample was prepared by extracting n-hexane in the same manner as described above from 1 ml of methanol: 10% sodium chloride (9: 1, v / v) and 1 ml of water. . A portion of this sample was analyzed by GLC. A peak with the same retention time as the EPA methyl ester of the sample and a peak approximately the same height were detected about 1 minute before. The ratio of the two peaks to the total fatty acid determined from the area ratio was 3.8% and 2.6%, respectively. Table 2 shows the ratio of main fatty acids to total lipids. The remaining sample was spotted on a silver nitrate silica gel thin layer plate and developed three times with n-hexane: ethyl ether (85:15, v / v) and detected by 2 ', 7'-dichlorofluorescein color development. The fraction was scraped off and a sample for GC-MS analysis was prepared in the same manner as described above. According to GC-MS analysis, the molecular weight of the peak whose retention time coincided with EPA methyl ester was 316, which was consistent with EPA. The previous peak had a molecular weight of 318 and was 20: 4, but was different from the retention time of arachidonic acid methyl ester (20: 4 (n-6)) in gas chromatography. This peak was consistent with the retention time of the standard 20: 4 (n-3) methyl ester and the cleavage pattern of GC-MS, and was identified as 20: 4 (n-3) methyl ester.
[0019]
Figure 0004221476
[0020]
Example 3. Comparison of plasmids
Simultaneously with pJRDEPA-S, pJRDEPA (H. Takeyama et al., Microbiolgy, 143, 275-2731 (1997)) was introduced into Synechococcus sp. NKBG15041c in the same manner as in Example 2-1, and 75 μg / ml kanamycin was added. Culturing was performed in 1 liter of BG11M liquid medium. Fatty acid methyl esters were prepared in the same manner as in Example 2-3 and analyzed by GLC. The results are shown in Table 3.
[0021]
Figure 0004221476
In this way, NKBG15041c introduced with pJRDEPA-S dramatically increased EPA production capacity compared to that introduced pJRDEPA.
[0022]
Reference Example 2 Cyanobacterial culture conditions
Cultivation of cyanobacteria with pJRDEPA-S under normal conditions (23 ° C, 1,000 Lux, standing), low temperature (18 ° C, 800 Lux, shaking) and weak lighting (23 ° C, 40 Lux, standing) Table 3 shows the fatty acid composition of Example 2-3 analyzed by GLC in the same manner as in Example 2-3. The ratio of EPA and 20: 4 (n-3) to total fatty acids is higher when growth is suppressed (low temperature and weak lighting) than usual, 3.8% and 2.6%, respectively, 6.0% and 5.7% And 5.2% and 6.6%.
[0023]
Figure 0004221476
[0024]
Reference example 3
Regarding pJRDEPA, it has been reported that when cyanobacteria were passaged, plasmid replication was lost in time for the disruption of cyanobacteria (H. Takeyama et al., Microbiolgy, 143, 275-2731 (1997). )). However, such a phenomenon was not observed in cyanobacteria with pJRDEPA-S, and the passage could be repeated in the presence of kanamycin.
[0025]
[Sequence Listing]
Figure 0004221476
[0026]
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476
Figure 0004221476

[Brief description of the drawings]
1 shows the structure of pJRDEPA-S, which is one embodiment of the plasmid of the present invention.

Claims (3)

配列番号2,4,6,8,10,及び12で示される塩基配列からなる、イコサペンタエン酸生合成酵素群をコードする遺伝子群を、広域宿主ベクターにクローニングして得られるプラスミド。A plasmid obtained by cloning a gene group encoding the icosapentaenoic acid biosynthetic enzyme group consisting of the base sequences represented by SEQ ID NOs: 2, 4, 6, 8, 10, and 12 into a broad-area host vector. 配列番号3,5,7,9,11,及び13で示されるアミノ酸配列からなるイコサペンタエン酸生合成酵素群をコードする遺伝子群を、広域宿主ベクターにクローニングして得られるプラスミド。A plasmid obtained by cloning a gene group encoding an icosapentaenoic acid biosynthetic enzyme group consisting of the amino acid sequences shown in SEQ ID NOs: 3, 5, 7, 9, 11, and 13 into a broad-area host vector. 請求項1又は2に記載のプラスミドを導入して得られるイコサペンタエン酸を産生するラン藻。  Cyanobacteria producing icosapentaenoic acid obtained by introducing the plasmid according to claim 1 or 2.
JP32916999A 1999-11-19 1999-11-19 Plasmid cloned icosapentaenoic acid biosynthesis genes and cyanobacteria producing icosapentaenoic acid Expired - Lifetime JP4221476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32916999A JP4221476B2 (en) 1999-11-19 1999-11-19 Plasmid cloned icosapentaenoic acid biosynthesis genes and cyanobacteria producing icosapentaenoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32916999A JP4221476B2 (en) 1999-11-19 1999-11-19 Plasmid cloned icosapentaenoic acid biosynthesis genes and cyanobacteria producing icosapentaenoic acid

Publications (2)

Publication Number Publication Date
JP2001145490A JP2001145490A (en) 2001-05-29
JP4221476B2 true JP4221476B2 (en) 2009-02-12

Family

ID=18218426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32916999A Expired - Lifetime JP4221476B2 (en) 1999-11-19 1999-11-19 Plasmid cloned icosapentaenoic acid biosynthesis genes and cyanobacteria producing icosapentaenoic acid

Country Status (1)

Country Link
JP (1) JP4221476B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807849B2 (en) 2004-04-22 2010-10-05 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
CA2563875C (en) 2004-04-22 2015-06-30 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
WO2008025068A1 (en) 2006-08-29 2008-03-06 Commonwealth Scientific And Industrial Research Organisation Synthesis of fatty acids
BR122021003835B1 (en) 2008-11-18 2022-02-08 Grains Research And Development Corporation ISOLATED AND/OR EXOGENOUS POLYNUCLEOTIDE THAT DOES NOT OCCUR IN A NATURAL WAY, VECTOR COMPRISING SUCH POLYNUCLEOTIDE AND PRODUCTION METHOD OF OIL CONTAINING UNSATURATED FATTY ACIDS
SG11201408362SA (en) 2012-06-15 2015-01-29 Commw Scient Ind Res Org Production of long chain polyunsaturated fatty acids in plant cells
CN111154724B (en) 2013-12-18 2024-02-06 联邦科学技术研究组织 Extracted plant lipids comprising docosahexaenoic acid
WO2015196250A1 (en) 2014-06-27 2015-12-30 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid

Also Published As

Publication number Publication date
JP2001145490A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
JPH07503605A (en) Production of gamma-linolenic acid by Δ6-desaturase
US11345937B2 (en) Construction of Mucor circinelloides cell factory for producing stearidonic acid and fermentation technology thereof
CN103014053B (en) Synechocystis efficient double homologous recombinant vector as well as construction method and application thereof
CN110157654B (en) Bacillus natto recombinant strain and construction method and application thereof
CN112210519A (en) Genetically engineered bacterium for secreting acetaldehyde dehydrogenase by using edible fungi
KR20030052242A (en) Rhodococcus Cloning and Expression Vectors
JPH08501694A (en) Biotechnology manufacturing method of biotin
JP4221476B2 (en) Plasmid cloned icosapentaenoic acid biosynthesis genes and cyanobacteria producing icosapentaenoic acid
JPS6024192A (en) Production of phenylalanine
KR102473375B1 (en) Recombinant microorganisms, their preparation methods and their use in the production of coenzyme Q10
US9574215B2 (en) Production of fatty acids by heterologous expression of gene clusters from myxobacteria
CN105683368A (en) Omega 3 unsaturated fatty acid enzyme and method for producing eicosapentaenoic acid
CN112175890A (en) Genetically engineered bacterium for secreting alcohol dehydrogenase by using edible fungi
FR2780733A1 (en) POLYNUCLEOTIDE, VECTOR AND HOST CELL CONTAINING SAME, CORRESPONDING POLYPEPTIDE, PROCESS FOR PRODUCTION THEREOF AND USE THEREOF
KR102286087B1 (en) Chlamydomonas mutants and use thereof
CN113122461A (en) Single cell protein producing strain and its application
CN109628473A (en) It is a kind of for improve volume branch Mucor oil production four dicarboxyl acid transporter of carbon
JP5110511B2 (en) Method for producing highly unsaturated fatty acids and highly unsaturated lipids using microorganisms
CN112048460B (en) Engineering Sphingomonas and application thereof in production of GLA
KR102442480B1 (en) Composition for culturing chlamydomonas mutants and culture method thereof
CN113604486B (en) Quorum sensing signal molecule DSF degradation gene fadT, encoded degradation enzyme FadT and application thereof
CN107365733A (en) Odd number chain fatty acid derivative is prepared in recombinant microorganism cell
JP4505620B2 (en) Microorganism producing icosapentaenoic acid and method for producing icosapentaenoic acid
CN100400663C (en) Delta 6-fatty acid dehydrogenase promoter sequence of Thamnidium elegans and its application
CN110499300B (en) Beta-isopropylmalate dehydrogenase and application thereof in lipid synthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4221476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term