JP4219194B2 - Pressure vessel - Google Patents

Pressure vessel Download PDF

Info

Publication number
JP4219194B2
JP4219194B2 JP2003064633A JP2003064633A JP4219194B2 JP 4219194 B2 JP4219194 B2 JP 4219194B2 JP 2003064633 A JP2003064633 A JP 2003064633A JP 2003064633 A JP2003064633 A JP 2003064633A JP 4219194 B2 JP4219194 B2 JP 4219194B2
Authority
JP
Japan
Prior art keywords
liner
hydrogen
opening
reinforcing
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003064633A
Other languages
Japanese (ja)
Other versions
JP2004270861A (en
Inventor
明子 熊野
秀人 久保
敬司 藤
誠 都築
大五郎 森
雅彦 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2003064633A priority Critical patent/JP4219194B2/en
Priority to KR1020040004171A priority patent/KR100589450B1/en
Priority to US10/762,886 priority patent/US7169214B2/en
Priority to DE102004003319A priority patent/DE102004003319B4/en
Publication of JP2004270861A publication Critical patent/JP2004270861A/en
Application granted granted Critical
Publication of JP4219194B2 publication Critical patent/JP4219194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧力容器に係り、詳しくは中空状のライナと、ライナの外面を覆う繊維強化樹脂層とを備え、内部に組立品が収容されている圧力容器に関する。
【0002】
【従来の技術】
近年、地球温暖化を抑制する意識が高まってきており、特に車両から排出される二酸化炭素の低減を目的として燃料電池電気自動車や水素自動車等の開発が盛んである。これら自動車では水素と酸素とを電気化学的に反応させて電力を起こし、その電気をモータに供給して駆動力を発生させている。この種の水素供給源としては水素タンクが用いられ、水素タンクには高い圧力で水素が充填されている。
【0003】
図6は、特許文献1に開示された水素タンクの断面図である。水素タンク51は中空状(樽状)をなすライナ52を有し、ライナ52は気密性を確保可能な材質(例えば高密度ポリエチレン等)からなる。ライナ52の前端及び後端には熱伝導が良好なアルミニウム等を材質としたトップボス53とエンドボス54とが各々固着されている。トップボス53及びエンドボス54は一部分が外部に露出した状態で組み付けられ、タンク内部の発熱及び吸熱をタンク外部に導く働きをする。
【0004】
ライナ52の外周面全域にはシェル55が被覆され、シェル55は耐圧性を確保可能な材質、例えば、FRP(Fiber Reinforced Plastics :繊維強化樹脂)からなる。ライナ52の内部には複数のフィン56とフィン56を支持する軸材57とからなるフィンアセンブリ58が収容され、軸材57の各端部がトップボス53及びエンドボス54に各々固着されている。フィンアセンブリ58は熱伝導が良好なアルミニウム等を材質とし、タンク内部の発熱及び吸熱をトップボス53及びエンドボス54を介してタンク外部に放出している。
【0005】
ところで、フィンアセンブリ58等の内容物を収容したライナを一体型のアルミニウム製のライナで製造する場合、この種のライナはフィンアセンブリ58との接合部分を真空ろう付けしてスピニング加工することによって製造される。しかし、スピニング加工により製造するとライナに熱が加わるので、強度が下がり割れ易くなることから、例えば500度程度でライナを再熱処理する必要がある。しかし、再熱処理を行うと、ろう付け部分が剥がれたり、局所的に配置されたシールの材質がもたない問題が生じるので、内容物を組み込む場合にはライナを分割式にせざるをえない現状がある。
【0006】
図7は分割式のライナ52を用いた水素タンク51の一部(端部)を模式的に示す部分断面図である。ライナ52はドーム部において分割され、略筒状の本体部59と本体部59の開口部を覆う蓋部60とを備えている。本体部59と蓋部60との間のシール構造として、本体部59と蓋部60との接合面のうちライナ52の軸方向に延びるシール面61にOリング62が配置された軸シールが設けられる。ライナ52の外側はシェル(図示せず)で覆われている。
【0007】
【特許文献1】
特開2002−181295号公報(明細書の段落[0030]〜[0039]、図2)
【0008】
【発明が解決しようとする課題】
ところで、内部が高圧の水素タンク51ではガス圧によりライナ52が外側に膨らむ作用が生じる。このため、図7に示す軸シールの場合、内部のガス圧によって本体部59が径方向外側に膨らんだ状態(二点鎖線で示す状態)となり、Oリング62のシール代がなくなってガスリークが発生する問題がある。
【0009】
薄肉回転対称体形状の圧力容器の主応力方向は軸方向及び径方向で、シェル55を構成する繊維強化樹脂においては繊維を主応力方向に配列するのが最適な繊維配列である。そして、軸方向と径方向との力の割合は径方向2に対して軸方向1である。従って、強化繊維は軸方向と平行な方向と、周方向に配列するのが最も効率がよい。しかし、軸方向と平行な方向に配列するのは難しいため、従来、圧力容器のドーム部に対してはインプレーン巻(平面巻)又はヘリカル巻が行われ、円筒部(胴部)に対してはインプレーン巻又はヘリカル巻とフープ巻の組合せで繊維が配列されて圧力容器が製造されている。これは、ドーム部においてはフープ巻を重ねて行うことが難しいため、ヘリカル巻により径方向の力を担うようにしている。ところが、フープ巻に比較してヘリカル巻では径方向への力に対抗する強度が小さいため、前記の膨張を抑制してガスリークを防止するためにはヘリカル巻層を厚くする必要があり、圧力容器が大型化するという問題がある。
【0010】
本発明は前記の問題点に鑑みてなされたものであって、その目的は、ライナを分割式とした場合に、圧力容器を大型化せずに分割部分のシール性を確保できる圧力容器を提供することにある。
【0011】
【課題を解決するための手段】
前記の目的を達成するため請求項1に記載の発明は、中空状のライナと、前記ライナの外面を覆う繊維強化樹脂層とを備え、前記ライナの内部に組立品が収容されている圧力容器である。そして、少なくとも前記ライナの一端側が、前記組立品を挿入可能であって前記ライナの本体部に設けられている開口部と、その開口部を覆う蓋部とに分割されている。前記蓋部は前記開口部に嵌挿される凸部と、前記凸部より大径のフランジ部とを備え、前記凸部の周面と該凸部の周面に対向する前記開口部の周面との間にシール部材が介装されている。また、前記本体部の開口部が設けられている部分の外周面に前記本体部の周方向に沿って環状の凹部若しくは切り欠き部が設けられているか、又は前記フランジ部に対向する前記本体部の端面に前記本体部の周方向に沿って環状の凹部若しくは切り欠き部が設けられている。そして、前記凹部若しくは前記切り欠き部には前記開口部の拡がり防止用の環状の補強部が設けられている。
【0012】
ライナの内部が高圧になったとき、ライナの開口部が外側に向かって膨張しようとする。このとき、その膨張をライナ外面を覆う繊維強化樹脂層のみで抑制するには、繊維強化樹脂層を厚くする必要がある。しかし、この発明では、本体部の開口部が設けられている部分の外周面、又はフランジ部に対向する本体部の端面に設けられた補強部の存在により、開口部の膨張が抑制される。その結果、ライナの内部と外部とをシールするシール部材が介装されている部分の隙間が拡がるのが抑制されてシール部材によるシール代が確保され、圧力容器のシール性が確保される。従って、ライナの内部に組立品を収容するためにライナを分割式として開口部を広くした構成としても、例えばスピニング加工によって製造する場合と比較して簡単な構成で組立品をライナ内部に収容可能となり、かつ圧力容器を大型化せずに分割部分のシール性を確保できる。
【0013】
請求項2に記載の発明は、請求項1に記載の発明において、前記本体部の開口部が設けられている部分の外周面に前記凹部若しくは切り欠き部としての溝が形成され、前記補強部は環状に巻かれた繊維束を強化繊維とした繊維強化樹脂で構成されている。この発明では、補強部はフープ巻層を本体部の開口部が設けられている部分の外周面において増やしたのと同等の効果が得られる。また、ライナの外面を覆う繊維強化樹脂層をフィラメントワインディングにより形成するのに先だって、同じフィラメントワインディング装置を使用して溝内に樹脂含浸繊維束を巻き付けることにより、補強部を形成することが可能になる。
【0014】
請求項3に記載の発明は、請求項1に記載の発明において、前記フランジ部に対向する前記本体部の端面に前記凹部若しくは切り欠き部が設けられており、前記補強部が前記凹部若しくは切り欠き部にライナの軸方向から嵌合された構造である。請求項2に記載の発明では、補強部を収容する凹部若しくは切り欠き部は、本体部の開口部が設けられている部分の外周面に形成されているため、溝の底面の径と同じ内径を有する環状の補強部を設けるには、樹脂含浸繊維束を巻き付けた後に硬化させるか、繊維束を巻き付けた後、樹脂を充填して硬化させるか、金属線を巻き付ける必要がある。即ち、補強部をワンタッチで組み付けることはできず、繊維束あるいは線材の巻き付け作業が必要となる。しかし、この発明では、予め形成された環状の補強部を、ライナの軸方向からワンタッチで組み付けることができる。また、補強部として線材を巻いて形成されたものに限らず、所定の断面形状の金属リングも使用できる。
【0015】
請求項4に記載の発明では、請求項1〜請求項3のいずれか一項に記載の発明において、前記補強部は前記ライナの外面を覆う繊維強化樹脂層の強化繊維束より高強度の繊維束が強化繊維として使用された繊維強化樹脂で構成されている。この発明では、補強部を構成する繊維束が、ライナの外面を覆う繊維強化樹脂層の強化繊維束と同じ強度の場合に比較して、繊維束の巻数を少なくしても同じ強度が得られ、開口部の膨張を抑制するのに必要な繊維束の量を少なくできる。
【0016】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明を圧力容器としての水素貯蔵タンク(以下、単に水素タンクと称す)に具体化した第1の実施の形態を図1及び図2に従って説明する。図1は、水素タンクの模式断面図、図2はその部分拡大図である。
【0017】
図1に示すように、水素タンク11は、細長い中空状のライナ12と、ライナ12の外面の略全域を覆う繊維強化樹脂層13とを備え、ライナ12の内部の収容室14に熱交換機能を有する組立品としての水素吸蔵用ユニット15が収容されている。
【0018】
繊維強化樹脂層13は、この実施の形態では炭素繊維を強化繊維としたCFRP(Carbon Fiber Reinforced Plastics)で構成され、水素タンク11の耐圧性(機械的強度)を確保している。繊維強化樹脂層13は、樹脂(例えば不飽和ポリエステル樹脂、エポキシ樹脂等)が含浸された炭素繊維束を、ヘリカル巻層及びフープ巻層を有するようにライナ12に巻き付け、樹脂を熱硬化することによって形成されている。
【0019】
ライナ12は例えばアルミニウム合金を材質とし、水素タンク11の気密性を確保している。ライナ12は両端が分割式となっており、略筒状の本体部16と、本体部16の一端側の開口部16aを覆う蓋部17と、本体部16の他端側の開口部16bを覆う蓋部18とを備えている。開口部16aは断面が円形で、その口径が水素吸蔵用ユニット15が通過可能、即ち水素吸蔵用ユニット15を挿入可能な大きさに形成されている。
【0020】
水素吸蔵用ユニット15は、水素タンク11の軸方向(図1の左右方向)に延び、先端側で折り返されたパイプからなる熱媒管19を備えている。熱媒管19には略円板状のフィン20が軸方向に等間隔に複数固着されている。フィン20の間には粉末状の水素吸蔵合金(MH粉末)がフィン20と接触する状態で収容されている。水素吸蔵合金は水素タンク11内の水素の充填量を多くする機能があり、大気中に比べて数百〜1000倍の水素充填を可能にする。フィン20の径方向端部には全てのフィン20を覆う状態で、水素吸蔵合金の通過を阻止し水素を透過可能なフィルタ15a(破線で図示)が設けられている。水素吸蔵用ユニット15はその外周面と、ライナ12の内周面との間に空間が存在するように外径が設定されている。そして、収容室14に高圧状態で水素が充填されている。収容室14を高圧にするのは、水素吸蔵用ユニット15が占める以外の部分における水素の充填量を多くするためであり、例えば収容室14内の圧力を25MPaとした場合には、収容室14内が大気圧の場合と比較して約250倍の水素が充填可能となる。
【0021】
一端側の蓋部17には熱媒管19の各端部が連通される通路17a,17bが形成されている。通路17a,17bは図示しない熱媒供給部に管路を介して連通され、熱媒管19には熱媒供給部から熱媒としての水(冷水又は加熱水)が流れる。この実施の形態では通路17aが上流側、通路17bが下流側となっている。従って、熱媒管19から加熱水が供給されると水素吸蔵用ユニット15を構成する水素吸蔵合金が加熱され、熱媒管19から冷水が供給されると水素吸蔵合金が冷却される。
【0022】
他端側の蓋部18には、その中心部に収容室14と外部とを連通する通気路18aがライナ12の軸線に沿って延びるように形成され、通気路18aの端部にはバルブ21が取り付けられている。このバルブ21のポート切り換えによって水素タンク11の使用状態が水素放出状態と水素充填状態とに切換可能となっている。水素放出状態とは、水素タンク11内の水素がバルブ21を介して外部へ放出可能かつ外部から水素タンク11内への水素の供給が不能な状態を意味する。また、水素充填状態とは、水素タンク11内の水素をバルブ21を介して外部へ放出不能、かつ外部から水素タンク11内への水素の供給が可能な状態を意味する。
【0023】
図1及び図2に示すように、蓋部17は開口部16aに嵌挿される凸部22と、凸部22より大径のフランジ部23とを備えている。凸部22は円柱状に形成され、その周面と、開口部16aの周面との間にシール部材24が介装されている。シール部材24としてOリングが使用され、シール部材24は凸部22の周面に形成された環状の収容溝22aに収容されている。シール部材24は一部が収容溝22aから突出した状態で収容溝22a内に収容され、収容溝22aの底面と、開口部16aの周面とによって押圧されて変形された状態で、本体部16と蓋部17との間、即ちライナ12の分割部分のシール性(気密性)を確保している。
【0024】
なお、凸部22の収容室14側端面には凹部22bが形成され、水素吸蔵用ユニット15は基端が凹部22bに嵌合され、先端側が開口部16bによって支持された状態で収容室14に収容されている。
【0025】
蓋部17のフランジ部23にはボルト25を挿通するための挿通孔26が複数形成され、本体部16には挿通孔26と対応する位置に雌ねじ部27が複数形成されている。蓋部17はボルト25をフランジ部23の挿通孔26に挿通した状態で、ボルト25の雄ねじ部を雌ねじ部27に螺着することによって本体部16に固定されている。
【0026】
開口部16aと対応するライナ12の外面には、環状の凹部としての溝28が周方向に沿って設けられている。溝28は本体部16の径方向に開放された状態に形成されている。溝28は雌ねじ部27の形成位置より径方向において外側に形成されている。溝28内には開口部16aの拡がり防止用の環状の補強部29が設けられている。補強部29は環状に巻かれた繊維束を強化繊維とした繊維強化樹脂で構成されている。補強部29はライナ12の外面を覆う繊維強化樹脂層13の強化繊維束と同じ繊維束が強化繊維として使用された繊維強化樹脂で構成されている。溝28の深さ及び幅は、水素タンク11の内圧が最高の状態において、開口部16aの膨張(拡がり)を、シール部材24のシール代が確保される範囲内に抑制することができる繊維強化樹脂を収容可能な値に設定されている。
【0027】
蓋部18も蓋部17と基本的に同じに形成されている。但し、凸部22に形成された凹部22bは、水素吸蔵用ユニット15の先端を係合しない状態で収容可能な大きさに形成されている点が異なっている。そして、開口部16bと対応するライナ12の外面にも、開口部16a側と同様に環状の溝28が設けられ、溝28内には開口部16bの拡がり防止用の環状の補強部29が設けられている。溝28の深さ及び幅は、水素タンク11の内圧が最高の状態において、開口部16bの膨張(拡がり)を、シール部材24のシール代が確保される範囲内に抑制することができる繊維強化樹脂を収容可能な値に設定されている。
【0028】
次に前記のように構成された水素タンク11の製造方法を説明する。水素タンク11を製造する際は、先ず、蓋部17に水素吸蔵用ユニット15を組み付け、その蓋部17を本体部16の一端側の開口部16aを塞ぐようにボルト25により組み付ける。次に蓋部18を他端側の開口部16bを塞ぐようにボルト25により組み付けて、内部に水素吸蔵用ユニット15が収容された状態のライナ12を準備する。このライナをフィラメントワインディング装置にセットして、先ず両溝28の部分に樹脂含浸繊維束を予め設定された量、巻き付ける。この巻付け量は溝28内に収容可能な量である。溝28内に巻き付けられた樹脂含浸繊維束は後の加熱硬化により、補強部29を構成する。
【0029】
両溝28への樹脂含浸繊維束の巻き付け終了後、引き続きフィラメントワインディング装置により、フィラメントワインディングを行い、ライナ12の外面に樹脂含浸繊維束をヘリカル巻層及びフープ巻層が所定層数形成されるまで巻き付ける。フープ巻層は主にライナ12の筒状部(胴部)に形成される。次に、樹脂含浸繊維束が巻き付けられたライナ12をフィラメントワインディング装置から取り外し、加熱炉に入れて、樹脂を加熱硬化させる。次にバリ等の除去を行った後、蓋部18側にバルブ21を組み付けることにより、水素タンク11が完成する。
【0030】
次に、前記のように構成された水素タンク11の作用を、燃料電池搭載電気自動車に使用する場合を例に説明する。
バルブ21が水素放出状態に保持された状態において燃料極で水素ガスが使用されると、バルブ21を介して水素タンク11から水素ガスが放出されて燃料極に供給される。水素タンク11内から水素ガスが放出されると、水素吸蔵合金の水素吸蔵・放出反応が放出側へ移動して水素吸蔵合金から水素ガスが放出される。水素の放出は吸熱反応であるので、水素の放出に必要な熱が熱媒により供給されないと、水素吸蔵合金は自身の顕熱を消費して水素を放出するためその温度が低下する。水素吸蔵合金の温度が低下すると水素放出の反応速度が低下する。しかし、水素放出時には通路17a,17bを介して熱媒管19に加熱水が流れ、この加熱水によって熱媒管19及びフィン20を介して水素吸蔵合金の温度降下が抑制され、水素放出の反応が円滑に進行する。水素吸蔵合金から放出された水素はバルブ21を経て水素タンク11の外部へ放出され、燃料極へと供給される。
【0031】
水素が放出された水素タンク11に再び水素ガスを充填、即ち水素吸蔵合金に水素ガスを吸蔵させる場合は、バルブ21を水素充填状態に切り換えてバルブ21から水素タンク11に水素ガスを供給する。水素タンク11内に供給された水素ガスは、水素吸蔵合金と反応して水素化物となって水素吸蔵合金に吸蔵される。水素の吸蔵反応は発熱反応であるので、水素の吸蔵反応で発生した熱を除去しないと吸蔵反応が円滑に進行しない。しかし、水素ガスを充填する際は、通路17a,17bを介して熱媒管19に冷水が流れ、この冷水によって熱媒管19及びフィン20を介して水素吸蔵合金の温度上昇が抑制され、水素ガスの吸蔵が効率よく行われる。
【0032】
水素タンク11内の圧力が外部の圧力より高い場合には、ライナ12の内面にライナ12を膨張させる圧力が加わる。そして、水素ガスの充填あるいは再充填直後においては水素タンク11の内圧が高く、本体部16には開口部16a,16bの径を拡げるように、即ち開口部16a,16bを膨張させるように力が作用する。この力に繊維強化樹脂層13のみで対抗しようとしても、繊維強化樹脂層13の開口部16a,16bと対応する部分にはフープ巻層が少ないため、膨張を抑制することは難しい。その結果、蓋部17,18の凸部22周面と、開口部16a,16b周面との隙間が拡がり、シール部材24によるシール代が確保できなくなって水素ガスがリークする。しかし、開口部16a,16bと対応する位置に補強部29が存在することにより、開口部16a,16bの膨張が抑制され、蓋部17,18の凸部22周面と、開口部16a,16b周面との間に介在されたシール部材24のシール代が確保され、収容室14の気密性が確保される。
【0033】
この実施の形態では以下の効果を有する。
(1) 水素タンク11のライナ12の一端側が、組立品(水素吸蔵用ユニット15)を挿入可能な開口部16aと、開口部16aを覆う蓋部17とに分割され、蓋部17の凸部22の周面と開口部16aの周面との間にシール部材24が介装されている。そして、開口部16aと対応するライナ12の外面に開口部16aの拡がり防止用の環状の補強部29が設けられている。ライナ12の他端側もほぼ同様に構成されている。従って、ライナ12の内部が高圧状態になっても、開口部16a,16bの膨張が補強部29により抑制され、ライナ12の内部と外部とをシールするシール部材24のシール代が確保され、水素タンク11のシール性が確保される。その結果、ライナ12の内部に水素吸蔵用ユニット15を収容するためにライナ12を分割式として開口部16aを広くしても、スピニング加工によって製造する場合と比較して簡単に水素吸蔵用ユニット15をライナ12内部に収容可能となり、かつ水素タンク11を大型化せずにシール性を確保できる。
【0034】
(2) 補強部29がライナ12の外面に設けられた環状の凹部(溝28)内に設けられている。従って、補強部29はライナ12のドーム部から突出せず、補強部29を設けても繊維強化樹脂層13を構成する繊維束の配列に悪影響を与えることがなく、繊維強化樹脂層13の強度が低下することはない。
【0035】
(3) 溝28は径方向に開放された形状に形成され、補強部29は環状に巻かれた繊維束を強化繊維とした繊維強化樹脂で構成されている。従って、補強部29を設けることにより、フープ巻層を開口部16a,16bと対応する部分において増やしたのと同等の効果が得られる。また、ライナ12の外面を覆う繊維強化樹脂層13をフィラメントワインディングにより形成するのに先だって、同じフィラメントワインディング装置を使用して溝28内に樹脂含浸繊維束を巻き付けることにより、補強部29を形成することが可能になる。
【0036】
(4) 補強部29はライナ12の外面を覆う繊維強化樹脂層13の強化繊維束と同じ繊維束が強化繊維として使用された繊維強化樹脂で構成されている。従って、組立品(水素吸蔵用ユニット15)が収容されたライナ12の外面に繊維強化樹脂層13を形成する樹脂含浸繊維束をフィラメントワインディング装置で巻き付ける際、繊維強化樹脂層13の巻付けに先立って同じ樹脂含浸繊維束を溝28に巻き付けることにより形成できる。その結果、繊維強化樹脂層13の強化繊維束と別の繊維束を強化繊維として使用する場合に比較して、補強部29の形成が簡単になる。
【0037】
(5) 水素吸蔵用ユニット15は基端側がライナ12の一端側に設けられた蓋部17に嵌合固定され、先端側がライナ12の他端側の開口部16bに係合された状態で支持されている。従って、水素タンク11が振動しても収容室14内で水素吸蔵用ユニット15がライナ12に対して振動したり位置ずれし難くなる。
【0038】
(6) ライナ12の両端部が開口部16a,16bと蓋部17,18とに分割されている。一端側のみを開口部16aと蓋部17とに分割した構成では、ライナ12の他端側に水素吸蔵用ユニット15の先端を支持する支持部の加工を、一端側に形成された開口部16aから挿入された切削工具で行う必要があり、作業性が悪い。しかし、ライナ12の両端部に開口部16a,16bを設けることにより、本体部16の端部の加工作業が行い易くなる。
【0039】
(7) 水素タンク11は水素吸蔵用ユニット15を内蔵しているので、水素吸蔵合金を使用せずに単に水素ガスを加圧状態で貯蔵する場合に比較して、収容室14が同じ容積及び圧力において、より多くの水素を水素タンク11内に貯蔵できる。
【0040】
(第2実施の形態)
次に第2の実施の形態を図3に従って説明する。この実施の形態では、補強部29をライナ12の軸方向から嵌合可能に構成されている点が第1の実施の形態と大きく異なっており、その他の構成は第1の実施の形態と同様である。第1の実施の形態と同様な部分は同一符号を付して詳しい説明を省略する。図3は水素タンク11の一端側の模式部分断面図である。
【0041】
図3に示すように、本体部16の端面16cには、環状の凹部としての溝30が周方向に沿って形成されている。溝30は雌ねじ部27の形成位置より径方向において外側に形成されている。溝30内には補強部29が設けられている。補強部29は剛性がライナ12の材料より高い材料で形成され、この実施の形態ではステンレス鋼が使用されている。補強部29はステンレス鋼の板材をプレス加工で打ち抜いて形成されている。補強部29の厚さ及び断面積は、水素タンク11の内圧が最高の状態において、補強部29が開口部16aの膨張(拡がり)を、シール部材24のシール代が確保される範囲内に抑制することができる強度を有する値に設定されている。溝30の深さ及び幅は前記補強部29を収容可能な値に設定されている。補強部29は内周面が溝30に嵌合する状態で溝30に収容されている。溝30は蓋部17のフランジ部23により覆われている。
【0042】
本体部16の蓋部18と対応する側の端部にも蓋部17側と同様に溝30が形成され、溝30内には補強部29が、内周面が溝30に嵌合する状態で収容されている。
【0043】
この水素タンク11を製造する場合は、蓋部17,18を本体部16に固定する前に、補強部29を溝30に収容する。そして、水素吸蔵用ユニット15を内部に収容したライナ12に、フィラメントワインディング装置により樹脂含浸繊維束を巻き付けた後、加熱炉で樹脂を硬化させて繊維強化樹脂層13を形成し、その後、バルブ21を組み付ける。
【0044】
第1の実施の形態のように、ライナ12の径方向に開放された形状の溝28内に補強部29を設ける場合は、樹脂含浸繊維束を巻き付けた後に硬化させるか、繊維束を巻き付けた後、樹脂を充填して硬化させるか、金属線を巻き付けて補強部29を形成する必要がある。即ち、線材の巻き付け作業が必要となる。従って、補強部29をワンタッチでライナ12に組み付けることはできない。しかし、この実施の形態では補強部29をライナ12の軸方向からワンタッチで組み付けることができる。
【0045】
また、この実施の形態の水素タンク11においても、ライナ12の内部が高圧状態になっても、開口部16a,16bの膨張が補強部29により抑制される。
この実施の形態では第1の実施の形態の(1),(2),(5)〜(7)と同様な効果を有する他に、次の効果を有する。
【0046】
(8) 補強部29が凹部(溝30)にライナ12の軸方向から嵌合された構造である。従って、第1の実施の形態のようにライナ12の径方向に開放された形状の溝28を設けた場合と異なり、補強部29を溝30にワンタッチで組み付けることが可能になる。
【0047】
(9) 補強部29は金属板をプレス加工で打ち抜いて形成されているため、補強繊維として繊維束を環状に巻いた繊維強化樹脂製のものに比較して、製造が簡単である。
【0048】
(10) 補強部29の材質としてステンレス鋼が使用されているため、ライナ12をアルミニウム合金製とした場合、銅や鋼等の他の金属で補強部29を形成した場合と異なり、防錆処理が不要となる。
【0049】
なお、実施の形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 第1の実施の形態において、補強部29をライナ12の外面を覆う繊維強化樹脂層13の強化繊維束より高強度の繊維束が強化繊維として使用された繊維強化樹脂で構成する。この場合、補強部29を構成する繊維束が、ライナ12の外面を覆う繊維強化樹脂層13の強化繊維束と同じ強度の場合に比較して、繊維束の巻数を少なくしても同じ強度が得られ、開口部16a,16bの膨張を抑制するのに必要な繊維束の量を少なくできる。従って、蓋部17,18と開口部16a,16bとを連結するボルト25を螺着させる雌ねじ部27を形成するスペースを確保し易くなる。
【0050】
○ 溝28の形状は両側壁面がライナ12の軸方向と直交する方向に延び、底面が軸方向と平行に延び、深さの値が幅の値より大きな形状に限らず、例えば、深さの値が幅の値より小さな形状や、底面が溝28の開放端と平行な形状や、V溝状やU溝状であってもよい。
【0051】
○ 溝28内全体に補強部29を構成する樹脂含浸繊維束が充填されている必要はなく、樹脂含浸繊維束が溝28の底部側に充填されるとともに溝28の開放側に空間が設けられたり、樹脂が充填された構成としてもよい。
【0052】
○ 補強部29は、繊維強化樹脂層13を形成する直前にフィラメントワインディング装置で巻き付けて形成する方法に限らず、予め補強部29が溝28内に形成された本体部16を製造して、保管しておいてもよい。特に、補強部29を構成する繊維束と、繊維強化樹脂層13を構成する繊維束とが異なる場合は、予め補強部29を形成しておくのが好ましい。
【0053】
○ 溝28内に収容される補強部29は繊維強化樹脂製に限らない。例えば、金属の線材を巻き付けて補強部29を形成してもよい。金属の線材の両端を互いに連結して、巻付け状態が弛み難くするのが好ましい。
【0054】
○ 補強部29を繊維強化樹脂層13の形成に先立ってフィラメントワインディング装置で巻き付ける場合、図4(a)に示すように、溝28の一方の側壁を蓋部17のフランジ部23で構成してもよい。この場合、本体部16の形状が同じで大きさも同じであっても、溝28の幅を大きくとることができる。
【0055】
○ 第2の実施の形態において、補強部29を溝30に収容する代わりに、図4(b)に示すように、本体部16の端部に切り欠き部としての切り欠き31を設け、切り欠き31の部分に補強部29を収容してもよい。この場合、補強部29の外周面の形状はドーム部の曲面に沿った曲面と成るように形成するのが好ましい。このような形状とすることにより、切り欠き31を設けても、繊維強化樹脂層13を構成する樹脂含浸繊維束がドーム部の曲面に沿った状態に確実に配列される。
【0056】
○ 第2の実施の形態又は前記実施の形態のように、補強部29がライナ12の軸方向から溝30又は切り欠き31に嵌合された構造において、補強部29はステンレス鋼に限らず、ステンレス鋼以外の金属製としてもよい。また、金属製に限らず、繊維強化樹脂製、MMC(Metal Matrix Composite:金属基複合材)製としてもよい。アルミニウム合金をマトリックスとし、炭化ケイ素を強化材としたMMCを使用すれば、アルミニウム合金と同程度の重さで剛性が鋳鉄以上となる。
【0057】
○ ライナ12は両側が分割式であることに限定されない。例えば、図5に示すようにライナ12の一端側を分割式とし、他端側は一体型としてもよい。ライナ12の他端側には、その中心部に収容室14と外部とを連通する通気路32がライナ12の軸線に沿って延びるように形成され、通気路32の端部にはバルブ21(図示せず)が取り付けられる。この場合、ライナ12の製造が簡単になるとともに、ライナ12を組み立てるときにボルト25を螺着する組付行程が少なくなり、組付作業が楽になる。
【0058】
○ 水素タンク11の水素ガスの通路を、熱媒管19が固定される側の蓋部17に設けてもよい。この場合、ライナ12の他端側に水素ガスの通路を設ける必要がなく、ライナ12の製造がより簡単になる。
【0059】
○ 水素吸蔵用ユニット15は両端部においてライナ12に支持された構成に限らず、基端側において片持ち状態で支持された構成であってもよい。
○ 開口部16a,16bの周面と、蓋部17,18の凸部22の周面との間に介装されるシール部材24の個数は1つに限らず、複数個でもよい。
【0060】
○ シール部材24を凸部22の収容溝22aに収容する構成に代えて、収容溝を開口部16a,16bの周面に形成してもよい。
○ シール部材24を収容する溝を凸部22又は開口部16a,16bの周面に形成する代わりに、開口部16a,16bの蓋部17,18側端部周縁に面取り部又は切り欠きを設ける。そして、前記面取り部又は切り欠きと、蓋部17,18のフランジ部23の端面と、凸部22の基端周面とで囲まれる空間にシール部材24を配置してもよい。この場合も開口部16a,16bによってシール部材24が押圧されることにより、開口部16a,16bと蓋部17,17とのシール性が確保される。
【0061】
○ 熱媒管19はU字状ではなく複数回屈曲された形状でもよい。また、熱媒管がライナ12を貫通し、一端側から熱媒が供給され、他端側から排出される構成としてもよい。
【0062】
○ 繊維強化樹脂の強化繊維は炭素繊維に限らず、ガラス繊維や炭化ケイ素系セラミック繊維やアラミド繊維等の一般に高弾性・高強度といわれるその他の繊維を強化繊維として使用してもよい。
【0063】
○ ライナ12の材質はアルミニウム合金に限らず、気密性を確保可能でアルミニウムと同程度の比重の金属や、金属に限らずポリアミド、高密度ポリエチレン等の合成樹脂であってもよい。
【0064】
○ シール部材24はOリングに限らず、シール位置に嵌合されない状態における断面形状が円形に限らず、他の形状のものを使用してもよい。また、シール部材24の材質はゴムに限らず、金属シール等の他の部材を使用してもよい。
【0065】
○ 蓋部17,18の凸部22は、ライナ12の軸方向に延びる円柱状に限らず、例えば、先端側に向かって縮径となる円錐台状であってもよい。この場合、開口部16a,16bも同様な形状となる。
【0066】
○ 水素タンク11は熱交換機能を有する組立品として水素吸蔵用ユニット15を内蔵する構成に限らず、例えば特許文献1に記載された水素タンクのように、水素吸蔵合金を内蔵せずに水素を加圧状態で貯蔵(充填)し、内部に充填された水素との熱の授受を行う熱交換フィン組立体を内臓してもよい。熱交換フィン組立体の構成は特許文献1に記載された構成に限らず、例えば、前記実施の形態の水素吸蔵用ユニット15のように熱媒管19に複数のフィン20が設けられた構成としてもよい。また、組立品として水素吸蔵合金を保持する機能は有するが、熱媒を流す機能を備えていない保持部材を水素タンク11内に収容してもよい。
【0067】
○ 水素タンク11は燃料電池電気自動車や水素自動車に水素源として搭載されて使用するものに限らず、例えば、家庭用電源の燃料電池の水素源として使用される水素タンクとして使用してもよい。
【0068】
○ 圧力容器として水素を貯蔵する水素タンクに限らず、例えば窒素、圧縮天然ガス等の他のガスを貯蔵する圧力容器に適用してもよい。
以下の技術的思想(発明)は前記実施の形態から把握できる。
【0069】
(1) 請求項1〜請求項4のいずれか一項に記載の発明において、前記ライナは両側が開口部と蓋部とに分割されている。
(2) 請求項1〜請求項4のいずれか一項に記載の発明において、前記ライナは一端が開口部と蓋部とに分割されている。
【0070】
(3) 請求項3に記載の発明において、前記ライナはアルミニウム又はアルミニウム合金製で、前記補強部はステンレス製のリングである。
(4) 中空状のライナと、前記ライナの外面を覆う繊維強化樹脂層とを備え、前記ライナの内部に熱交換機能を有する組立品が収容され、少なくとも前記ライナの一端側が、前記組立品を挿入可能な開口部と、その開口部を覆う蓋部とに分割された圧力容器の製造方法であって、
前記組立品を前記ライナの内部に収容して、前記蓋部に形成された凸部の周面と、前記開口部周面との隙間にシール部材を介装した状態で蓋部を組み付け、前記開口部と対応するライナの外周面に設けられた環状の凹部に樹脂含浸繊維束を巻き付けた後、前記ライナの外面にフィラメントワインディングにより樹脂含浸繊維束を巻き付け、その後、樹脂硬化を行うことにより繊維強化樹脂層をライナの外面に形成する圧力容器の製造方法。
【0071】
(5) 請求項1〜請求項4及び前記技術的思想(1)〜(4)のいずれか一項に記載の発明において、前記組立品はガス吸蔵用ユニットである。
(6) 前記技術的思想(5)に記載の発明において、前記ガス吸蔵用ユニットは水素吸蔵合金が充填された水素吸蔵用ユニットである。
【0072】
【発明の効果】
以上、詳述したように、請求項1〜請求項4に記載の発明によれば、ライナを分割式とした場合に、圧力容器を大型化せずに分割部分のシール性を確保できる。
【図面の簡単な説明】
【図1】 第1の実施の形態の水素タンクの模式断面図。
【図2】 図1の部分拡大図。
【図3】 第2の実施の形態の水素タンクの模式部分断面図。
【図4】 (a),(b)はそれぞれ別の実施の形態の水素タンクの部分断面図。
【図5】 別の実施の形態の水素タンクの模式断面図。
【図6】 従来の水素タンクの模式断面図。
【図7】 軸シールとしたときの接合部分の模式部分断面図。
【符号の説明】
11…圧力容器としての水素タンク、12…ライナ、13…繊維強化樹脂層、15…水素吸蔵用ユニット、16a,16b…開口部、17,18…蓋部、22…凸部、22b…凹部、23…フランジ部、24…シール部材、28,30…凹部としての溝、29…補強部、31…切り欠き部としての切り欠き。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure vessel, and more particularly, to a pressure vessel that includes a hollow liner and a fiber reinforced resin layer that covers the outer surface of the liner, and in which an assembly is accommodated.
[0002]
[Prior art]
In recent years, awareness of suppressing global warming has increased, and development of fuel cell electric vehicles, hydrogen vehicles, and the like is particularly active for the purpose of reducing carbon dioxide emitted from vehicles. In these automobiles, hydrogen and oxygen are electrochemically reacted to generate electric power, and the electricity is supplied to a motor to generate driving force. A hydrogen tank is used as this type of hydrogen supply source, and the hydrogen tank is filled with hydrogen at a high pressure.
[0003]
FIG. 6 is a cross-sectional view of the hydrogen tank disclosed in Patent Document 1. The hydrogen tank 51 has a hollow (barrel-shaped) liner 52, and the liner 52 is made of a material (for example, high-density polyethylene) that can ensure airtightness. A top boss 53 and an end boss 54 made of aluminum or the like having good thermal conductivity are fixed to the front end and the rear end of the liner 52, respectively. The top boss 53 and the end boss 54 are assembled in a state where a part thereof is exposed to the outside, and serves to guide heat generation and heat absorption inside the tank to the outside of the tank.
[0004]
The entire outer peripheral surface of the liner 52 is covered with a shell 55, and the shell 55 is made of a material capable of ensuring pressure resistance, for example, FRP (Fiber Reinforced Plastics). A fin assembly 58 including a plurality of fins 56 and a shaft member 57 that supports the fins 56 is accommodated in the liner 52, and each end portion of the shaft member 57 is fixed to the top boss 53 and the end boss 54. The fin assembly 58 is made of aluminum or the like having good heat conduction, and releases heat and heat absorption inside the tank to the outside of the tank through the top boss 53 and the end boss 54.
[0005]
By the way, when the liner containing the contents such as the fin assembly 58 is manufactured by an integral aluminum liner, this type of liner is manufactured by vacuum brazing and spinning the joint portion with the fin assembly 58. Is done. However, since heat is applied to the liner when it is manufactured by spinning, the strength is reduced and cracking tends to occur. Therefore, it is necessary to reheat the liner at, for example, about 500 degrees. However, when re-heat treatment is performed, the brazed part may peel off, or there will be a problem that the material of the locally placed seal does not exist, so when incorporating the contents, the liner must be divided. There is.
[0006]
FIG. 7 is a partial cross-sectional view schematically showing a part (end portion) of the hydrogen tank 51 using the split liner 52. The liner 52 is divided at the dome, and includes a substantially cylindrical main body 59 and a lid 60 that covers the opening of the main body 59. As a seal structure between the main body 59 and the lid 60, a shaft seal in which an O-ring 62 is disposed on a seal surface 61 extending in the axial direction of the liner 52 among the joint surfaces of the main body 59 and the lid 60 is provided. It is done. The outer side of the liner 52 is covered with a shell (not shown).
[0007]
[Patent Document 1]
JP 2002-181295 A (paragraphs [0030] to [0039] in FIG. 2, FIG. 2)
[0008]
[Problems to be solved by the invention]
By the way, in the hydrogen tank 51 having a high internal pressure, the gas pressure causes the liner 52 to expand outward. For this reason, in the case of the shaft seal shown in FIG. 7, the main body 59 is expanded radially outward by the internal gas pressure (the state indicated by the two-dot chain line), and the seal allowance for the O-ring 62 is eliminated, causing gas leakage. There is a problem to do.
[0009]
The main stress directions of the thin-walled rotationally symmetric pressure vessel are the axial direction and the radial direction. In the fiber reinforced resin constituting the shell 55, it is optimal to arrange the fibers in the main stress direction. The ratio of the force between the axial direction and the radial direction is 1 in the axial direction with respect to 2 in the radial direction. Therefore, it is most efficient to arrange the reinforcing fibers in the direction parallel to the axial direction and in the circumferential direction. However, since it is difficult to arrange in a direction parallel to the axial direction, conventionally, in-plane winding (plane winding) or helical winding is performed on the dome portion of the pressure vessel, and on the cylindrical portion (body portion). The pressure vessel is manufactured by arranging fibers by in-plane winding or a combination of helical winding and hoop winding. This is because it is difficult to perform the hoop winding in the dome portion, so that a radial force is carried by the helical winding. However, since the helical winding has less strength against the radial force than the hoop winding, it is necessary to increase the thickness of the helical winding layer in order to suppress the expansion and prevent gas leakage. There is a problem of increasing the size.
[0010]
The present invention has been made in view of the above-described problems, and an object thereof is to provide a pressure vessel that can ensure the sealing performance of the divided portion without increasing the size of the pressure vessel when the liner is divided. There is to do.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is a pressure vessel comprising a hollow liner and a fiber reinforced resin layer covering an outer surface of the liner, and an assembly is accommodated in the liner. It is. And at least one end of the liner can insert the assembly. And provided in the main body of the liner. It is divided into an opening and a lid that covers the opening. The lid portion includes a convex portion that is inserted into the opening portion, and a flange portion that has a larger diameter than the convex portion, and a peripheral surface of the convex portion. Opposite the peripheral surface of the convex part A seal member is interposed between the opening and the peripheral surface. Also, An end surface of the main body portion that is provided with an annular concave portion or a notch portion along the circumferential direction of the main body portion on the outer peripheral surface of the portion where the opening portion of the main body portion is provided, or facing the flange portion An annular recess or notch is provided along the circumferential direction of the main body. And in the said recessed part or the said notch part An annular reinforcing portion for preventing the opening from expanding is provided.
[0012]
When the inside of the liner becomes high pressure, the liner opening tends to expand outward. At this time, in order to suppress the expansion only by the fiber reinforced resin layer covering the outer surface of the liner, the fiber reinforced resin layer needs to be thickened. However, in this invention, The outer peripheral surface of the portion where the opening of the main body is provided, Or facing the flange End face of main unit The expansion of the opening is suppressed by the presence of the reinforcing portion provided in the opening. As a result, the gap between the portions where the seal member that seals the inside and the outside of the liner is interposed is prevented from being widened, the seal margin by the seal member is secured, and the sealing performance of the pressure vessel is secured. Therefore, even if the liner is divided and the opening is widened to accommodate the assembly inside the liner, the assembly can be accommodated inside the liner with a simpler structure than when manufactured by spinning, for example. In addition, it is possible to ensure the sealing performance of the divided portion without increasing the size of the pressure vessel.
[0013]
According to a second aspect of the present invention, in the first aspect of the present invention, the concave portion or the notch portion is formed on an outer peripheral surface of a portion where the opening of the main body portion is provided As A groove is formed, and the reinforcing portion is made of a fiber reinforced resin using a fiber bundle wound in an annular shape as a reinforcing fiber. In the present invention, the reinforcing portion can obtain the same effect as that obtained by increasing the hoop winding layer on the outer peripheral surface of the portion where the opening of the main body portion is provided. In addition, before the fiber reinforced resin layer covering the outer surface of the liner is formed by filament winding, it is possible to form a reinforcing portion by winding the resin-impregnated fiber bundle in the groove using the same filament winding apparatus. Become.
[0014]
The invention according to claim 3 is the invention according to claim 1, The recess or notch is provided on the end surface of the main body facing the flange, The reinforcing portion is a structure in which the concave portion or the cutout portion is fitted from the axial direction of the liner. In the invention according to claim 2, since the recess or the notch for accommodating the reinforcing portion is formed on the outer peripheral surface of the portion where the opening of the main body is provided, the inner diameter is the same as the diameter of the bottom surface of the groove. In order to provide an annular reinforcing portion having the above, it is necessary to cure after winding the resin-impregnated fiber bundle, to wind the fiber bundle and then to fill and cure the resin, or to wind a metal wire. That is, the reinforcing portion cannot be assembled with one touch, and a fiber bundle or wire winding work is required. However, in the present invention, the previously formed annular reinforcing portion can be assembled with one touch from the axial direction of the liner. In addition, the reinforcing part is not limited to one formed by winding a wire, and a metal ring having a predetermined cross-sectional shape can also be used.
[0015]
In the invention according to claim 4, in the invention according to any one of claims 1 to 3, the reinforcing portion is a fiber having higher strength than a reinforcing fiber bundle of a fiber reinforced resin layer covering an outer surface of the liner. The bundle is composed of a fiber reinforced resin used as a reinforcing fiber. In this invention, the same strength can be obtained even if the number of turns of the fiber bundle is reduced, compared to the case where the fiber bundle constituting the reinforcing portion has the same strength as the reinforcing fiber bundle of the fiber reinforced resin layer covering the outer surface of the liner. The amount of fiber bundles required to suppress the expansion of the opening can be reduced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Hereinafter, a first embodiment in which the present invention is embodied in a hydrogen storage tank (hereinafter simply referred to as a hydrogen tank) as a pressure vessel will be described with reference to FIGS. FIG. 1 is a schematic sectional view of a hydrogen tank, and FIG. 2 is a partially enlarged view thereof.
[0017]
As shown in FIG. 1, the hydrogen tank 11 includes an elongated hollow liner 12 and a fiber reinforced resin layer 13 covering almost the entire outer surface of the liner 12, and a heat exchange function is provided in the accommodation chamber 14 inside the liner 12. A hydrogen storage unit 15 is housed as an assembly having the following.
[0018]
In this embodiment, the fiber reinforced resin layer 13 is made of CFRP (Carbon Fiber Reinforced Plastics) using carbon fibers as reinforcing fibers, and ensures the pressure resistance (mechanical strength) of the hydrogen tank 11. The fiber reinforced resin layer 13 is obtained by winding a carbon fiber bundle impregnated with a resin (for example, unsaturated polyester resin, epoxy resin, etc.) around the liner 12 so as to have a helical winding layer and a hoop winding layer, and thermosetting the resin. Is formed by.
[0019]
The liner 12 is made of, for example, an aluminum alloy, and ensures the airtightness of the hydrogen tank 11. The liner 12 is divided at both ends, and includes a substantially cylindrical main body portion 16, a lid portion 17 covering the opening portion 16 a on one end side of the main body portion 16, and an opening portion 16 b on the other end side of the main body portion 16. And a cover 18 for covering. The opening 16a has a circular cross section, and has a diameter that allows the hydrogen storage unit 15 to pass therethrough, that is, a size that allows the hydrogen storage unit 15 to be inserted.
[0020]
The hydrogen storage unit 15 includes a heat transfer medium pipe 19 that extends in the axial direction of the hydrogen tank 11 (left-right direction in FIG. 1) and is a pipe that is folded back on the tip side. A plurality of substantially disk-shaped fins 20 are fixed to the heat medium pipe 19 at equal intervals in the axial direction. A powdered hydrogen storage alloy (MH powder) is accommodated between the fins 20 in contact with the fins 20. The hydrogen storage alloy has a function of increasing the filling amount of hydrogen in the hydrogen tank 11, and enables hydrogen filling several hundred to 1000 times that in the atmosphere. A filter 15a (illustrated by a broken line) is provided at the radial end of the fin 20 so as to cover all the fins 20 and prevent the hydrogen storage alloy from passing therethrough and allow hydrogen to pass therethrough. The outer diameter of the hydrogen storage unit 15 is set so that a space exists between the outer peripheral surface of the hydrogen storage unit 15 and the inner peripheral surface of the liner 12. The storage chamber 14 is filled with hydrogen in a high pressure state. The reason why the storage chamber 14 is set to a high pressure is to increase the filling amount of hydrogen in a portion other than that occupied by the hydrogen storage unit 15. For example, when the pressure in the storage chamber 14 is 25 MPa, the storage chamber 14 About 250 times as much hydrogen can be filled as compared with the case where the inside is atmospheric pressure.
[0021]
The lid portion 17 on one end side is formed with passages 17a and 17b through which the end portions of the heat medium pipe 19 communicate. The passages 17a and 17b communicate with a heating medium supply unit (not shown) through a pipe line, and water (cold water or heating water) as a heating medium flows from the heating medium supply unit to the heating medium pipe 19. In this embodiment, the passage 17a is on the upstream side and the passage 17b is on the downstream side. Therefore, when heated water is supplied from the heat medium pipe 19, the hydrogen storage alloy constituting the hydrogen storage unit 15 is heated, and when cold water is supplied from the heat medium pipe 19, the hydrogen storage alloy is cooled.
[0022]
The lid 18 on the other end side is formed with a vent path 18a communicating with the housing chamber 14 and the outside at the center thereof so as to extend along the axis of the liner 12, and a valve 21 is provided at the end of the vent path 18a. Is attached. By switching the port of the valve 21, the use state of the hydrogen tank 11 can be switched between a hydrogen release state and a hydrogen filling state. The hydrogen releasing state means a state in which hydrogen in the hydrogen tank 11 can be discharged to the outside through the valve 21 and hydrogen cannot be supplied into the hydrogen tank 11 from the outside. Further, the hydrogen filling state means a state in which hydrogen in the hydrogen tank 11 cannot be discharged to the outside through the valve 21 and hydrogen can be supplied into the hydrogen tank 11 from the outside.
[0023]
As shown in FIGS. 1 and 2, the lid portion 17 includes a convex portion 22 that is inserted into the opening 16 a and a flange portion 23 that has a larger diameter than the convex portion 22. The convex portion 22 is formed in a cylindrical shape, and a seal member 24 is interposed between the peripheral surface of the convex portion 22 and the peripheral surface of the opening 16a. An O-ring is used as the seal member 24, and the seal member 24 is accommodated in an annular accommodation groove 22 a formed on the peripheral surface of the convex portion 22. The seal member 24 is housed in the housing groove 22a in a state in which a part thereof protrudes from the housing groove 22a, and is pressed and deformed by the bottom surface of the housing groove 22a and the peripheral surface of the opening 16a. And the lid portion 17, that is, the sealing property (airtightness) of the divided portion of the liner 12 is ensured.
[0024]
A concave portion 22b is formed on the end surface of the convex portion 22 on the side of the accommodation chamber 14, and the hydrogen storage unit 15 is fitted into the concave portion 22b, and the distal end side is supported by the opening portion 16b in the accommodation chamber 14 in a state where it is supported. Contained.
[0025]
A plurality of insertion holes 26 for inserting the bolts 25 are formed in the flange portion 23 of the lid portion 17, and a plurality of female screw portions 27 are formed in the main body portion 16 at positions corresponding to the insertion holes 26. The lid portion 17 is fixed to the main body portion 16 by screwing the male screw portion of the bolt 25 to the female screw portion 27 in a state where the bolt 25 is inserted into the insertion hole 26 of the flange portion 23.
[0026]
A groove 28 as an annular recess is provided along the circumferential direction on the outer surface of the liner 12 corresponding to the opening 16a. The groove 28 is formed in a state opened in the radial direction of the main body portion 16. The groove 28 is formed on the outer side in the radial direction from the formation position of the female screw portion 27. An annular reinforcing portion 29 for preventing the opening 16a from expanding is provided in the groove 28. The reinforcement part 29 is comprised with the fiber reinforced resin which used the fiber bundle wound circularly as the reinforced fiber. The reinforcing portion 29 is made of a fiber reinforced resin in which the same fiber bundle as the reinforcing fiber bundle of the fiber reinforced resin layer 13 covering the outer surface of the liner 12 is used as the reinforcing fiber. The depth and width of the groove 28 are fiber reinforced capable of suppressing the expansion (expansion) of the opening 16a within a range in which the seal margin of the seal member 24 is ensured when the internal pressure of the hydrogen tank 11 is the highest. It is set to a value that can accommodate resin.
[0027]
The lid 18 is basically formed in the same manner as the lid 17. However, the concave portion 22b formed in the convex portion 22 is different in that it is formed in a size that can be accommodated without engaging the tip of the hydrogen storage unit 15. An annular groove 28 is also provided on the outer surface of the liner 12 corresponding to the opening 16b, similarly to the opening 16a side, and an annular reinforcing part 29 for preventing the opening 16b from expanding is provided in the groove 28. It has been. The depth and width of the groove 28 are fiber reinforced that can suppress the expansion (expansion) of the opening 16b within a range in which the seal margin of the seal member 24 is ensured when the internal pressure of the hydrogen tank 11 is the highest. It is set to a value that can accommodate resin.
[0028]
Next, a method for manufacturing the hydrogen tank 11 configured as described above will be described. When manufacturing the hydrogen tank 11, first, the hydrogen storage unit 15 is assembled to the lid portion 17, and the lid portion 17 is assembled with the bolt 25 so as to close the opening portion 16 a on one end side of the main body portion 16. Next, the lid 18 is assembled with a bolt 25 so as to close the opening 16b on the other end side, and the liner 12 in a state in which the hydrogen storage unit 15 is accommodated therein is prepared. This liner is set in a filament winding apparatus, and a resin-impregnated fiber bundle is first wound around the portions of both grooves 28 by a predetermined amount. This winding amount is an amount that can be accommodated in the groove 28. The resin-impregnated fiber bundle wound in the groove 28 constitutes a reinforcing portion 29 by subsequent heat curing.
[0029]
After the winding of the resin-impregnated fiber bundles around the grooves 28 is completed, filament winding is continuously performed by the filament winding device until the resin-impregnated fiber bundles are formed on the outer surface of the liner 12 with a predetermined number of helical winding layers and hoop winding layers. Wrap. The hoop winding layer is mainly formed on the cylindrical portion (body portion) of the liner 12. Next, the liner 12 around which the resin-impregnated fiber bundle is wound is removed from the filament winding apparatus, and placed in a heating furnace to heat and cure the resin. Next, after removing burrs or the like, the hydrogen tank 11 is completed by assembling the valve 21 on the lid 18 side.
[0030]
Next, the case where the operation of the hydrogen tank 11 configured as described above is used in an electric vehicle equipped with a fuel cell will be described as an example.
When hydrogen gas is used at the fuel electrode while the valve 21 is held in the hydrogen releasing state, the hydrogen gas is released from the hydrogen tank 11 via the valve 21 and supplied to the fuel electrode. When hydrogen gas is released from the hydrogen tank 11, the hydrogen storage / release reaction of the hydrogen storage alloy moves to the release side, and the hydrogen gas is released from the hydrogen storage alloy. Since the release of hydrogen is an endothermic reaction, if the heat necessary for the release of hydrogen is not supplied by the heat medium, the hydrogen storage alloy consumes its own sensible heat and releases the hydrogen, so the temperature decreases. When the temperature of the hydrogen storage alloy decreases, the reaction rate of hydrogen release decreases. However, when hydrogen is released, heated water flows into the heat medium pipe 19 through the passages 17a and 17b, and the temperature drop of the hydrogen storage alloy is suppressed by the heated water through the heat medium pipe 19 and the fins 20, and the reaction of hydrogen release. Proceeds smoothly. Hydrogen released from the hydrogen storage alloy is released to the outside of the hydrogen tank 11 through the valve 21 and supplied to the fuel electrode.
[0031]
When the hydrogen tank 11 from which hydrogen has been released is refilled with hydrogen gas, that is, when hydrogen gas is stored in the hydrogen storage alloy, the valve 21 is switched to a hydrogen-filled state and the hydrogen gas is supplied from the valve 21 to the hydrogen tank 11. The hydrogen gas supplied into the hydrogen tank 11 reacts with the hydrogen storage alloy to become a hydride and is stored in the hydrogen storage alloy. Since the occlusion reaction of hydrogen is an exothermic reaction, the occlusion reaction does not proceed smoothly unless the heat generated by the occlusion reaction of hydrogen is removed. However, when filling with hydrogen gas, cold water flows into the heat medium pipe 19 through the passages 17a and 17b, and this cold water suppresses the temperature rise of the hydrogen storage alloy through the heat medium pipe 19 and the fins 20, and hydrogen Gas is occluded efficiently.
[0032]
When the pressure in the hydrogen tank 11 is higher than the external pressure, a pressure for expanding the liner 12 is applied to the inner surface of the liner 12. Immediately after filling or refilling with hydrogen gas, the internal pressure of the hydrogen tank 11 is high, and a force is applied to the main body 16 so as to expand the diameters of the openings 16a and 16b, that is, to expand the openings 16a and 16b. Works. Even if only the fiber reinforced resin layer 13 is used to counter this force, it is difficult to suppress the expansion because the portion corresponding to the openings 16a and 16b of the fiber reinforced resin layer 13 has few hoop winding layers. As a result, the clearance between the peripheral surface of the convex portion 22 of the lid portions 17 and 18 and the peripheral surface of the openings 16a and 16b is widened, so that the seal margin by the seal member 24 cannot be secured, and hydrogen gas leaks. However, the presence of the reinforcing portion 29 at a position corresponding to the openings 16a and 16b suppresses expansion of the openings 16a and 16b, and the peripheral surfaces of the convex portions 22 of the lid portions 17 and 18 and the openings 16a and 16b. The sealing margin of the sealing member 24 interposed between the peripheral surface and the airtightness of the storage chamber 14 is ensured.
[0033]
This embodiment has the following effects.
(1) One end side of the liner 12 of the hydrogen tank 11 is divided into an opening portion 16a into which an assembly (hydrogen storage unit 15) can be inserted and a lid portion 17 covering the opening portion 16a. A seal member 24 is interposed between the peripheral surface of 22 and the peripheral surface of the opening 16a. An annular reinforcing portion 29 for preventing the opening 16a from spreading is provided on the outer surface of the liner 12 corresponding to the opening 16a. The other end side of the liner 12 is configured in substantially the same manner. Therefore, even if the inside of the liner 12 is in a high pressure state, the expansion of the openings 16a and 16b is suppressed by the reinforcing portion 29, and the seal margin of the seal member 24 that seals the inside and the outside of the liner 12 is secured. The sealing property of the tank 11 is ensured. As a result, even if the liner 12 is divided and the opening 16a is widened in order to accommodate the hydrogen storage unit 15 in the liner 12, the hydrogen storage unit 15 can be easily compared with the case of manufacturing by spinning. Can be accommodated in the liner 12, and the sealing performance can be secured without increasing the size of the hydrogen tank 11.
[0034]
(2) The reinforcing portion 29 is provided in an annular recess (groove 28) provided on the outer surface of the liner 12. Therefore, the reinforcing portion 29 does not protrude from the dome portion of the liner 12, and even if the reinforcing portion 29 is provided, the arrangement of the fiber bundles constituting the fiber reinforced resin layer 13 is not adversely affected, and the strength of the fiber reinforced resin layer 13 is increased. Will not drop.
[0035]
(3) The groove 28 is formed in a shape opened in the radial direction, and the reinforcing portion 29 is made of a fiber reinforced resin using a fiber bundle wound in an annular shape as a reinforcing fiber. Therefore, by providing the reinforcing portion 29, an effect equivalent to that obtained by increasing the hoop winding layer in the portions corresponding to the openings 16a and 16b can be obtained. Further, prior to forming the fiber reinforced resin layer 13 covering the outer surface of the liner 12 by filament winding, the reinforcing portion 29 is formed by winding the resin-impregnated fiber bundle in the groove 28 using the same filament winding apparatus. It becomes possible.
[0036]
(4) The reinforcing portion 29 is made of a fiber reinforced resin in which the same fiber bundle as the reinforcing fiber bundle of the fiber reinforced resin layer 13 covering the outer surface of the liner 12 is used as the reinforcing fiber. Therefore, when the resin-impregnated fiber bundle forming the fiber reinforced resin layer 13 is wound around the outer surface of the liner 12 in which the assembly (hydrogen storage unit 15) is accommodated by the filament winding apparatus, the fiber reinforced resin layer 13 is wound prior to winding. The same resin-impregnated fiber bundle can be wound around the groove 28. As a result, the reinforcing portion 29 can be formed more easily than when a reinforcing fiber bundle of the fiber reinforced resin layer 13 and another fiber bundle are used as reinforcing fibers.
[0037]
(5) The hydrogen storage unit 15 is supported in a state in which the proximal end side is fitted and fixed to the lid portion 17 provided on one end side of the liner 12 and the distal end side is engaged with the opening portion 16 b on the other end side of the liner 12. Has been. Therefore, even if the hydrogen tank 11 vibrates, the hydrogen storage unit 15 is less likely to vibrate relative to the liner 12 or to be displaced in the accommodation chamber 14.
[0038]
(6) Both ends of the liner 12 are divided into openings 16a and 16b and lids 17 and 18. In the configuration in which only one end side is divided into the opening portion 16a and the lid portion 17, the processing of the support portion that supports the tip of the hydrogen storage unit 15 on the other end side of the liner 12 is performed, and the opening portion 16a formed on the one end side. Therefore, the workability is poor. However, by providing the openings 16 a and 16 b at both ends of the liner 12, the end portion of the main body portion 16 can be easily processed.
[0039]
(7) Since the hydrogen tank 11 has a built-in hydrogen storage unit 15, the storage chamber 14 has the same volume and capacity as compared with a case where hydrogen gas is simply stored in a pressurized state without using a hydrogen storage alloy. More hydrogen can be stored in the hydrogen tank 11 at pressure.
[0040]
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. This embodiment is greatly different from the first embodiment in that the reinforcing portion 29 is configured to be fitted from the liner 12 in the axial direction, and other configurations are the same as those of the first embodiment. It is. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 3 is a schematic partial sectional view of one end side of the hydrogen tank 11.
[0041]
As shown in FIG. 3, a groove 30 as an annular recess is formed in the end surface 16 c of the main body 16 along the circumferential direction. The groove 30 is formed on the outer side in the radial direction from the formation position of the female screw portion 27. A reinforcing portion 29 is provided in the groove 30. The reinforcing portion 29 is formed of a material whose rigidity is higher than that of the liner 12, and stainless steel is used in this embodiment. The reinforcing portion 29 is formed by punching a stainless steel plate material by pressing. The thickness and the cross-sectional area of the reinforcing portion 29 are such that the reinforcing portion 29 suppresses the expansion (expansion) of the opening 16a within a range in which the seal margin of the sealing member 24 is ensured when the internal pressure of the hydrogen tank 11 is the highest. It is set to a value having a strength that can be. The depth and width of the groove 30 are set to values that can accommodate the reinforcing portion 29. The reinforcing portion 29 is accommodated in the groove 30 with the inner peripheral surface fitted into the groove 30. The groove 30 is covered with the flange portion 23 of the lid portion 17.
[0042]
A groove 30 is formed at the end of the main body 16 on the side corresponding to the lid 18 as well as the lid 17, and the reinforcing portion 29 is fitted in the groove 30 and the inner peripheral surface is fitted in the groove 30. Is housed in.
[0043]
When the hydrogen tank 11 is manufactured, the reinforcing portion 29 is accommodated in the groove 30 before the lid portions 17 and 18 are fixed to the main body portion 16. Then, the resin impregnated fiber bundle is wound around the liner 12 containing the hydrogen storage unit 15 by a filament winding apparatus, and then the resin is cured in a heating furnace to form the fiber reinforced resin layer 13. Assemble.
[0044]
When the reinforcing portion 29 is provided in the groove 28 having a shape opened in the radial direction of the liner 12 as in the first embodiment, the resin-impregnated fiber bundle is wound and then cured, or the fiber bundle is wound. Thereafter, it is necessary to form the reinforcing portion 29 by filling the resin and curing it, or winding a metal wire. That is, wire winding work is required. Accordingly, the reinforcing portion 29 cannot be assembled to the liner 12 with one touch. However, in this embodiment, the reinforcing portion 29 can be assembled with one touch from the axial direction of the liner 12.
[0045]
Also in the hydrogen tank 11 of this embodiment, the expansion of the openings 16a and 16b is suppressed by the reinforcing portion 29 even when the inside of the liner 12 is in a high pressure state.
This embodiment has the following effects in addition to the same effects as (1), (2), (5) to (7) of the first embodiment.
[0046]
(8) The reinforcing portion 29 is structured to be fitted into the concave portion (groove 30) from the liner 12 in the axial direction. Therefore, unlike the case where the groove 28 having a shape opened in the radial direction of the liner 12 is provided as in the first embodiment, the reinforcing portion 29 can be assembled to the groove 30 with one touch.
[0047]
(9) Since the reinforcing part 29 is formed by stamping a metal plate by press working, the manufacturing is simpler than that made of a fiber reinforced resin in which a fiber bundle is wound annularly as a reinforcing fiber.
[0048]
(10) Since stainless steel is used as the material of the reinforcing portion 29, when the liner 12 is made of an aluminum alloy, unlike the case where the reinforcing portion 29 is formed of other metal such as copper or steel, rust prevention treatment is performed. Is no longer necessary.
[0049]
The embodiment is not limited to the above, and may be embodied as follows, for example.
In the first embodiment, the reinforcing portion 29 is made of a fiber reinforced resin in which a fiber bundle having a strength higher than that of the fiber reinforced resin layer 13 covering the outer surface of the liner 12 is used as the reinforced fiber. In this case, even if the number of turns of the fiber bundle is reduced, the fiber bundle constituting the reinforcing portion 29 has the same strength as the reinforcing fiber bundle of the fiber reinforced resin layer 13 covering the outer surface of the liner 12. As a result, the amount of fiber bundles required to suppress the expansion of the openings 16a and 16b can be reduced. Accordingly, it is easy to secure a space for forming the female screw portion 27 into which the bolt 25 connecting the lid portions 17 and 18 and the openings 16a and 16b is screwed.
[0050]
The shape of the groove 28 is not limited to a shape in which both side wall surfaces extend in a direction perpendicular to the axial direction of the liner 12, the bottom surface extends in parallel with the axial direction, and the depth value is larger than the width value. A shape whose value is smaller than a width value, a shape whose bottom surface is parallel to the open end of the groove 28, a V-groove shape or a U-groove shape may be used.
[0051]
The resin-impregnated fiber bundle constituting the reinforcing portion 29 does not need to be filled in the entire groove 28, and the resin-impregnated fiber bundle is filled on the bottom side of the groove 28 and a space is provided on the open side of the groove 28. Or a structure filled with resin.
[0052]
○ The reinforcing part 29 is not limited to a method of winding with a filament winding device immediately before forming the fiber reinforced resin layer 13, and the main body part 16 in which the reinforcing part 29 is formed in the groove 28 is manufactured and stored in advance. You may keep it. In particular, when the fiber bundle constituting the reinforcing portion 29 and the fiber bundle constituting the fiber reinforced resin layer 13 are different, it is preferable to form the reinforcing portion 29 in advance.
[0053]
O The reinforcement part 29 accommodated in the groove | channel 28 is not restricted to the product made from fiber reinforced resin. For example, the reinforcing portion 29 may be formed by winding a metal wire. It is preferable that both ends of the metal wire are connected to each other so that the winding state is not easily loosened.
[0054]
○ When the reinforcing portion 29 is wound with a filament winding device prior to the formation of the fiber reinforced resin layer 13, one side wall of the groove 28 is constituted by the flange portion 23 of the lid portion 17 as shown in FIG. Also good. In this case, even if the main body portion 16 has the same shape and the same size, the width of the groove 28 can be increased.
[0055]
○ In the second embodiment, instead of accommodating the reinforcing portion 29 in the groove 30, as shown in FIG. 4 (b), a notch 31 as a notch portion is provided at the end of the main body portion 16, The reinforcing portion 29 may be accommodated in the portion of the notch 31. In this case, it is preferable to form the outer peripheral surface of the reinforcing portion 29 so as to be a curved surface along the curved surface of the dome portion. By setting it as such a shape, even if the notch 31 is provided, the resin impregnation fiber bundle which comprises the fiber reinforced resin layer 13 is reliably arranged in the state along the curved surface of the dome part.
[0056]
○ In the structure in which the reinforcing portion 29 is fitted into the groove 30 or the notch 31 from the axial direction of the liner 12 as in the second embodiment or the previous embodiment, the reinforcing portion 29 is not limited to stainless steel, It may be made of metal other than stainless steel. Moreover, it is good also as a product made from fiber reinforced resin and MMC (Metal Matrix Composite: metal matrix composite material) not only metal. If an MMC using an aluminum alloy as a matrix and silicon carbide as a reinforcing material is used, the rigidity is equal to or higher than that of cast iron with the same weight as the aluminum alloy.
[0057]
○ The liner 12 is not limited to being divided on both sides. For example, as shown in FIG. 5, one end side of the liner 12 may be divided, and the other end side may be integrated. On the other end side of the liner 12, an air passage 32 that communicates between the housing chamber 14 and the outside is formed at the center thereof so as to extend along the axis of the liner 12, and a valve 21 ( (Not shown) is attached. In this case, the production of the liner 12 is simplified, and the assembling process for screwing the bolts 25 when the liner 12 is assembled is reduced, and the assembling work is facilitated.
[0058]
A passage of hydrogen gas in the hydrogen tank 11 may be provided in the lid portion 17 on the side where the heat medium pipe 19 is fixed. In this case, it is not necessary to provide a hydrogen gas passage on the other end side of the liner 12, and the liner 12 can be manufactured more easily.
[0059]
The hydrogen storage unit 15 is not limited to the configuration supported by the liner 12 at both ends, but may be configured to be supported in a cantilevered state at the base end side.
The number of sealing members 24 interposed between the peripheral surfaces of the openings 16a and 16b and the peripheral surfaces of the convex portions 22 of the lid portions 17 and 18 is not limited to one, and may be plural.
[0060]
O Instead of the configuration in which the seal member 24 is accommodated in the accommodating groove 22a of the convex portion 22, the accommodating grooves may be formed on the peripheral surfaces of the openings 16a and 16b.
○ Instead of forming the groove for accommodating the seal member 24 on the peripheral surface of the convex portion 22 or the openings 16a and 16b, chamfered portions or notches are provided on the peripheral edges of the lid portions 17 and 18 of the openings 16a and 16b. . The sealing member 24 may be disposed in a space surrounded by the chamfered portion or notch, the end surface of the flange portion 23 of the lid portions 17 and 18, and the proximal end peripheral surface of the convex portion 22. Also in this case, the sealing member 24 is pressed by the openings 16a and 16b, so that the sealability between the openings 16a and 16b and the lids 17 and 17 is ensured.
[0061]
The heat medium pipe 19 may not be U-shaped but may be bent several times. Alternatively, the heat medium pipe may penetrate the liner 12, the heat medium may be supplied from one end side, and discharged from the other end side.
[0062]
The reinforcing fiber of the fiber reinforced resin is not limited to the carbon fiber, and other fibers generally called high elasticity and high strength such as glass fiber, silicon carbide ceramic fiber, and aramid fiber may be used as the reinforcing fiber.
[0063]
The material of the liner 12 is not limited to an aluminum alloy, but may be a metal having a specific gravity similar to that of aluminum, which can ensure airtightness, or a synthetic resin such as polyamide or high-density polyethylene.
[0064]
O The seal member 24 is not limited to an O-ring, and the cross-sectional shape in a state where the seal member 24 is not fitted at the seal position is not limited to a circle, but may have other shapes. The material of the seal member 24 is not limited to rubber, and other members such as a metal seal may be used.
[0065]
O The convex part 22 of the cover parts 17 and 18 is not restricted to the column shape extended in the axial direction of the liner 12, For example, the truncated cone shape which becomes a diameter reduction toward the front end side may be sufficient. In this case, the openings 16a and 16b have the same shape.
[0066]
○ The hydrogen tank 11 is not limited to a structure having a built-in hydrogen storage unit 15 as an assembly having a heat exchange function. For example, a hydrogen tank 11 does not have a built-in hydrogen storage alloy as in the hydrogen tank described in Patent Document 1. A heat exchange fin assembly that stores (fills) under pressure and transfers heat with hydrogen filled therein may be incorporated. The configuration of the heat exchange fin assembly is not limited to the configuration described in Patent Document 1, for example, as a configuration in which a plurality of fins 20 are provided in the heat medium pipe 19 as in the hydrogen storage unit 15 of the above embodiment. Also good. Further, a holding member that has a function of holding the hydrogen storage alloy as an assembly but does not have a function of flowing a heat medium may be accommodated in the hydrogen tank 11.
[0067]
The hydrogen tank 11 is not limited to being used as a hydrogen source mounted on a fuel cell electric vehicle or a hydrogen vehicle, and may be used as a hydrogen tank used as a hydrogen source for a fuel cell of a household power source, for example.
[0068]
O It may apply not only to the hydrogen tank which stores hydrogen as a pressure vessel but to a pressure vessel which stores other gas, such as nitrogen and compressed natural gas, for example.
The following technical idea (invention) can be understood from the embodiment.
[0069]
(1) In the invention according to any one of claims 1 to 4, both sides of the liner are divided into an opening and a lid.
(2) In the invention according to any one of claims 1 to 4, one end of the liner is divided into an opening and a lid.
[0070]
(3) In the invention according to claim 3, the liner is made of aluminum or an aluminum alloy, and the reinforcing portion is a stainless steel ring.
(4) A hollow liner and a fiber reinforced resin layer covering an outer surface of the liner, and an assembly having a heat exchange function is accommodated in the liner, and at least one end side of the liner has the assembly A method of manufacturing a pressure vessel divided into an insertable opening and a lid covering the opening,
The assembly is housed inside the liner, and the lid is assembled in a state where a seal member is interposed in the gap between the circumferential surface of the convex portion formed on the lid and the circumferential surface of the opening, After the resin-impregnated fiber bundle is wound around the annular recess provided on the outer peripheral surface of the liner corresponding to the opening, the resin-impregnated fiber bundle is wound around the outer surface of the liner by filament winding, and then the resin is cured to obtain fibers. A method for manufacturing a pressure vessel, wherein a reinforced resin layer is formed on an outer surface of a liner.
[0071]
(5) In the invention according to any one of claims 1 to 4 and the technical ideas (1) to (4), the assembly is a gas storage unit.
(6) In the invention described in the technical idea (5), the gas storage unit is a hydrogen storage unit filled with a hydrogen storage alloy.
[0072]
【The invention's effect】
As described above in detail, according to the invention described in claims 1 to 4, when the liner is divided, the sealing performance of the divided portion can be ensured without increasing the size of the pressure vessel.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a hydrogen tank according to a first embodiment.
FIG. 2 is a partially enlarged view of FIG.
FIG. 3 is a schematic partial cross-sectional view of a hydrogen tank according to a second embodiment.
4A and 4B are partial cross-sectional views of hydrogen tanks according to different embodiments, respectively.
FIG. 5 is a schematic cross-sectional view of a hydrogen tank according to another embodiment.
FIG. 6 is a schematic cross-sectional view of a conventional hydrogen tank.
FIG. 7 is a schematic partial cross-sectional view of a joint when a shaft seal is used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Hydrogen tank as a pressure vessel, 12 ... Liner, 13 ... Fiber reinforced resin layer, 15 ... Unit for hydrogen occlusion, 16a, 16b ... Opening part, 17, 18 ... Cover part, 22 ... Convex part, 22b ... Concave part, 23 ... Flange part, 24 ... Seal member, 28, 30 ... Groove as a concave part, 29 ... Reinforcing part, 31 ... Notch as a notch part.

Claims (4)

中空状のライナと、前記ライナの外面を覆う繊維強化樹脂層とを備え、前記ライナの内部に組立品が収容されている圧力容器であって、
少なくとも前記ライナの一端側が、前記組立品を挿入可能であって前記ライナの本体部に設けられている開口部と、その開口部を覆う蓋部とに分割され、前記蓋部は前記開口部に嵌挿される凸部と、前記凸部より大径のフランジ部とを備え、前記凸部の周面と該凸部の周面に対向する前記開口部の周面との間にシール部材が介装され、
前記本体部の開口部が設けられている部分の外周面に前記本体部の周方向に沿って環状の凹部若しくは切り欠き部が設けられているか、又は前記フランジ部に対向する前記本体部の端面に前記本体部の周方向に沿って環状の凹部若しくは切り欠き部が設けられており、前記凹部若しくは切り欠き部には前記開口部の拡がり防止用の環状の補強部が設けられている圧力容器。
A pressure vessel comprising a hollow liner and a fiber reinforced resin layer covering an outer surface of the liner, wherein an assembly is housed in the liner,
At least one end of the liner is divided into an opening into which the assembly can be inserted and provided in the main body of the liner, and a lid that covers the opening, and the lid is formed in the opening. A seal member interposed between a peripheral surface of the convex portion and a peripheral surface of the opening facing the peripheral surface of the convex portion. Dressed,
An end surface of the main body portion that is provided with an annular concave portion or a notch portion along the circumferential direction of the main body portion on the outer peripheral surface of the portion where the opening portion of the main body portion is provided, or facing the flange portion An annular recess or notch is provided along the circumferential direction of the main body, and the recess or notch is provided with an annular reinforcement for preventing the opening from expanding. .
前記本体部の開口部が設けられている部分の外周面に前記凹部若しくは切り欠き部としての溝が形成され、前記補強部は環状に巻かれた繊維束を強化繊維とした繊維強化樹脂で構成されている請求項1に記載の圧力容器。 A groove as the recess or notch is formed on the outer peripheral surface of the portion where the opening of the main body is provided, and the reinforcing portion is made of a fiber reinforced resin using a fiber bundle wound in an annular shape as a reinforcing fiber. The pressure vessel according to claim 1. 前記フランジ部に対向する前記本体部の端面に前記凹部若しくは切り欠き部が設けられており、前記補強部が前記凹部若しくは切り欠き部にライナの軸方向から嵌合された構造である請求項1に記載の圧力容器。 2. The structure is such that the recess or notch is provided on an end surface of the main body portion facing the flange portion, and the reinforcing portion is fitted into the recess or notch from the axial direction of the liner. A pressure vessel according to 1. 前記補強部は前記ライナの外面を覆う繊維強化樹脂層の強化繊維束より高強度の繊維束が強化繊維として使用された繊維強化樹脂で構成されている請求項1〜請求項3のいずれか一項に記載の圧力容器。  The reinforcing portion is made of a fiber reinforced resin in which a fiber bundle having a strength higher than that of the reinforcing fiber bundle of the fiber reinforced resin layer covering the outer surface of the liner is used as the reinforcing fiber. The pressure vessel according to item.
JP2003064633A 2003-01-24 2003-03-11 Pressure vessel Expired - Fee Related JP4219194B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003064633A JP4219194B2 (en) 2003-03-11 2003-03-11 Pressure vessel
KR1020040004171A KR100589450B1 (en) 2003-01-24 2004-01-20 High-pressure tank
US10/762,886 US7169214B2 (en) 2003-01-24 2004-01-21 High pressure tank
DE102004003319A DE102004003319B4 (en) 2003-01-24 2004-01-22 High pressure tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064633A JP4219194B2 (en) 2003-03-11 2003-03-11 Pressure vessel

Publications (2)

Publication Number Publication Date
JP2004270861A JP2004270861A (en) 2004-09-30
JP4219194B2 true JP4219194B2 (en) 2009-02-04

Family

ID=33125876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064633A Expired - Fee Related JP4219194B2 (en) 2003-01-24 2003-03-11 Pressure vessel

Country Status (1)

Country Link
JP (1) JP4219194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603344B2 (en) 2005-10-31 2013-12-10 Sumitomo Osaka Cement Co., Ltd. Method and apparatus for removing metal from waste water

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4741718B2 (en) * 2004-10-20 2011-08-10 株式会社豊田自動織機 How to replace the open / close valve
JP2006177480A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Seal device and method of manufacturing the same
JP4935117B2 (en) * 2005-11-08 2012-05-23 トヨタ自動車株式会社 tank
JP4898412B2 (en) * 2006-12-15 2012-03-14 サムテック株式会社 Hydrogen storage tank and manufacturing method thereof
JP5018100B2 (en) * 2007-01-22 2012-09-05 トヨタ自動車株式会社 Pressure vessel and pressure vessel manufacturing method
JP5467766B2 (en) * 2008-12-24 2014-04-09 株式会社神戸製鋼所 High pressure processing equipment
KR102153024B1 (en) * 2014-09-03 2020-09-07 현대자동차주식회사 Pressure vessel for cng and manufacturing method thereof
JP7020734B1 (en) 2020-09-04 2022-02-16 株式会社富田化成 Method for manufacturing a tank split made of fiber reinforced plastic, a tank made of fiber reinforced plastic, and a tank split made of fiber reinforced plastic.
FR3120678B1 (en) * 2021-03-10 2023-12-08 Faurecia Systemes Dechappement High pressure gas tank
CN114953645A (en) * 2022-05-16 2022-08-30 北京海神动力科技有限公司 Three-dimensional weaving vehicle-mounted gas hydrogen bottle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240400A (en) * 1992-02-24 1993-09-17 I Pii D:Kk Tank for compressed natural gas
JPH0996399A (en) * 1995-07-25 1997-04-08 Toyoda Gosei Co Ltd Pressure container
US6833118B2 (en) * 2000-12-20 2004-12-21 Texaco Ovonic Hydrogen Systems Llc Hydrogen storage bed system including an integrated thermal management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603344B2 (en) 2005-10-31 2013-12-10 Sumitomo Osaka Cement Co., Ltd. Method and apparatus for removing metal from waste water

Also Published As

Publication number Publication date
JP2004270861A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US7169214B2 (en) High pressure tank
US7322398B2 (en) Pressure tank
JP4167607B2 (en) Hydrogen storage tank
EP1803992B1 (en) Hydrogen storage tank and replacement method for on-off valve
US8051977B2 (en) Hydrogen storage tank
JP4219194B2 (en) Pressure vessel
US8141739B2 (en) Hydrogen storage tank and manufacturing method for the same
KR20040084683A (en) Gas storage tank and its manufacturing method
JPH01188402A (en) Pressure container for storing hydrogen in hydride form
JP4575107B2 (en) Pressure vessel
JP4370115B2 (en) Hydrogen storage tank and manufacturing method thereof
JP4213512B2 (en) Pressure vessel
JP2004225852A (en) High pressure tank
JP2004286178A (en) Gas storage tank
JP4199155B2 (en) Method for supporting built-in object of pressure vessel and pressure vessel
JP4511851B2 (en) High pressure tank and manufacturing method thereof
JP2008196575A (en) Hydrogen storage tank
JP2003083500A (en) Gas tank
JP4675619B2 (en) Pressure vessel
JP4604442B2 (en) High pressure fuel gas storage container
JP2023072536A (en) high pressure tank
JP2008095730A (en) Gas storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees