JP4217847B2 - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP4217847B2
JP4217847B2 JP03810199A JP3810199A JP4217847B2 JP 4217847 B2 JP4217847 B2 JP 4217847B2 JP 03810199 A JP03810199 A JP 03810199A JP 3810199 A JP3810199 A JP 3810199A JP 4217847 B2 JP4217847 B2 JP 4217847B2
Authority
JP
Japan
Prior art keywords
water
slab
air
temperature
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03810199A
Other languages
Japanese (ja)
Other versions
JP2000237858A (en
Inventor
徹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP03810199A priority Critical patent/JP4217847B2/en
Publication of JP2000237858A publication Critical patent/JP2000237858A/en
Application granted granted Critical
Publication of JP4217847B2 publication Critical patent/JP4217847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋳型から引き抜かれた鋳片を気水ミストにより二次冷却する鋼の連続鋳造方法に関する。
【0002】
【従来の技術】
近年、厚板製品などにおいて、機械的性質上の要求からNb、V、Ni、Cuなどの合金元素を含有させた低合金鋼が多く用いられている。これら低合金鋼を湾曲型や垂直曲げ型の連続鋳造機を用いて鋳造する場合には、鋳片表面に横割れ、横ひび割れと呼ばれる割れが発生しやすい。鋳片が矯正されるとき、鋳片表面に働く矯正応力が、これら低合金鋼に固有の限界応力を超えるために、鋳片表面に横割れや横ひび割れが発生する。
【0003】
Nb、V、Ni、Cuなどの合金元素を含有する低合金鋼の鋳片が横割れなどを発生しやすい理由をさらに説明すると、次のとおりである。すなわち、 これら低合金鋼の鋳片の熱間延性が、鋳片の凝固組織がγ相からα相に変態するA3 変態点の温度近傍、すなわち、約600〜850℃程度の温度領域で、著しく低下する。さらに、これら低合金鋼の鋳片では、鋳型から引き抜かれた後の二次冷却過程で、AlNやNbCなどがγ相粒界に析出しやすい。AlNやNbCなどが析出したγ相粒界は割れやすい。したがって、上記のような温度領域で低合金鋼の鋳片が矯正されると、矯正応力によりγ相粒界が割れやすく、そのため鋳片表面に横割れや横ひび割れなどが発生するのである。
【0004】
そこで、これら低合金鋼の鋳片を矯正する際に、上記のA3 変態点の温度近傍、いわゆる脆化温度域よりも、さらに低温の温度領域で鋳片を矯正する試みがあるが、上述したようにAlNやNbCなどがすでにγ相粒界に析出しているために、鋳片の割れ感受性が高く、単に脆化温度域より低温の温度領域で矯正するだけでは、横割れなどの発生を防止できない。
【0005】
また、鋳片が鋳型から引き抜かれて矯正されるまでの間に、鋳片表面の凝固組織がγ相からα相に変態しないよう、鋳片表面の温度をA3 変態点より高温に保持し、脆化温度域よりも高温の温度領域で、鋳片を矯正する試みがある。しかし、この場合も横割れなどが発生しやすい。鋳片表面の凝固組織のγ相が変態していないので、γ相の結晶粒は大きい。したがって、鋳片表面が矯正応力によって割れやすい。
【0006】
特開平9−47854号公報では、鋳型から引き抜かれた直後の鋳片を気水ミストノズルを用いて強冷却し、鋳片表面の温度をいったんA3 変態点以下の850℃程度の温度に冷却し、その後、鋳片を矯正するまでに、鋳片表面の温度をA3 変態点を超えて900℃程度に復熱させる方法が開示されている。
【0007】
この方法では、鋳片表面の凝固組織が、いったんγ相からα相に変態し、その後、復熱によりγ相に変態する。そのため、鋳片が矯正されるときの鋳片表面のγ相の結晶粒は小さくなっており、また、A3 変態点以上の高温で鋳片が矯正されるので、鋳片表面に横割れなどが発生しにくい。
【0008】
しかし、前述の特開平9−47854号公報で提案されているような鋳片の凝固組織をγ相からα相にいったん変態させる気水ミストノズルを備えた連続鋳造機において、割れ感受性の低い一般的な炭素鋼を鋳造する場合に、鋳片表面の温度をA3 変態点より低下させないような冷却を行うと、鋳片表面に横割れではなくて、縦割れが発生する場合がある。このような気水ミストノズルを用いて、鋳片表面の温度をA3 変態点より低下させないようにすると、鋳片の幅方向での水量分布が不均一になるため、鋳片表面の温度が幅方向で不均一になる。そのため、割れ感受性の低い鋼でも鋳片表面に縦割れが発生しやすくなる。鋳片表面の温度をA3 変態点より低下させない理由は、近年多く用いられているように連続鋳造機の後段に配置された熱間圧延設備に、できるだけ高温状態の鋳片を供給し、鋼製品製造の際のエネルギーの節減を図るためである。
【0009】
【発明が解決しようとする課題】
前述したように、従来用いられているような、鋳片表面の温度をいったんA 態点未満の温度に冷却し、その後鋳片を矯正するまでに、鋳片表面の温度をA変態点以上の温度に復熱させるための気水ミストノズルでは、低合金鋼の横割れや横ひび割れの発生の防止には効果があるが、次にまとめて示すような問題点がある。すなわち、
(1) このような気水ミストノズルを用いた場合に、同一の気水ミストノズルでは、冷却水の量を減らすことが困難で、たとえ量を減らしても、鋳片の幅方向での水量分布が不均一になる。
(2) したがって、上記と同一の気水ミストノズルを用いて、割れ感受性の低い一般的な炭素鋼を鋳造し、できるだけ高温状態の鋳片を得ようとする場合に、鋳片表面に縦割れが発生する場合がある。冷却水量を減らしたときに、鋳片の幅方向での水量分布が不均一になるためである。
【0010】
本発明は、鋼種の違いによって二次冷却条件の変更を伴う鋼の連続鋳造方法であって、鋳型から引き抜かれた鋳片を同一の気水ミストノズルを用いて二次冷却する際に、鋳片表面の温度を、いったんA変態点未満の温度に低下させ、その後、A変態点以上に復熱させる二次冷却と、A変態点未満の温度に低下させないような二次冷却のいずれもが可能な鋼の連続鋳造方法の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明の要旨は、
鋼種の違いによって二次冷却条件の変更を伴う鋼の連続鋳造方法であって、鋳型から引き抜かれた鋳片を同一の気水ミストノズルを用いて二次冷却する際に、ノズル内の水と空気の混合部からノズルの先端までの長さを100〜300mmとし、
(a) 鋳型出口から鋳片の矯正位置までの間で、鋳片表面の温度をいったんA変態点未満に低下させた後、A変態点以上に復熱させる場合には、A変態点未満までの冷却条件を、常温常圧における水Wと空気Aの混合比A/W(体積割合)を5〜15、水量密度を0.03〜0.09リットル/cm・分とし、そして、
(b) 鋳型出口から鋳片の矯正位置までの間で、鋳片表面の温度をA変態点未満に低下させない場合には、前記A変態点未満までの冷却させるゾーンにおける常温常圧における水Wと空気Aの混合比A/W(体積割合)を50〜200、水量密度を0.005〜0.015リットル/cm・分とする
ことを特徴とする鋼の連続鋳造方法。」
にある。
【0012】
本発明の方法が対象とする連続鋳造機は、鋳造された湾曲状の鋳片が矯正される湾曲型または垂直曲げ型の連続鋳造機である。また、Nb、V、Ni、Cuなどの合金元素を含む割れ感受性の高い低合金鋼と上記のような合金元素を含まず割れ感受性の低い炭素鋼等とが、同じ連続鋳造機により、同一の気水ミストノズルを用いて鋳造されるような操業を行う連続鋳造機を対象とする。
【0013】
本発明者は、前述した従来の気水ミストノズルの問題点を次のようにして解決した。すなわち、
本発明の方法では、水と空気の混合部からノズルの先端までの長さを100〜300mmとする気水ミストノズルを用いる。さらに水Wと空気Aの混合比A/Wを適正に選択することにより、同一の気水ミストノズルを用いて、鋳片表面の温度をいったんA3 変態点未満の温度に低下させるように冷却水量を多くしても、逆に、鋳片を矯正するまでに鋳片表面の温度をA3 変態点未満の温度に低下させないように冷却水量を低減しても、いずれの場合にも、鋳片の幅方向での均一な水量分布、均一な鋳片表面の温度分布が得られる。したがって、低合金鋼の鋳片の横割れの発生を防止でき、また、同一の気水ミストノズルを用いて、炭素鋼の鋳片の縦割れなどの発生を防止でき、かつ高温の鋳片を得ることができる。
【0014】
本発明の方法でいう鋳片表面の温度とは、たとえば、放射温度計により測定することのできる温度であり、鋳片の表面から表皮直下までの温度を意味する。また、この鋳片表面の温度は、凝固伝熱解析による計算によっても求めることができる。すなわち、鋼の種類、鋳片のサイズ、鋳造速度、鋳片の二次冷却条件などの条件が決まれば、溶鋼メニスカスからの距離に応じた鋳片表面の温度を計算で求めることができる。また、表面熱伝達係数を適切に選択することにより、この計算で求めた鋳片表面の温度は実測の温度を良く一致する。鋳片の横割れや縦割れは、鋳片表面および表皮直下に発生するので、鋳片表面の温度を管理することにより、鋳片の割れを抑制できる。
【0015】
【発明の実施の形態】
図1は、本発明の方法に用いる気水ミストノズルの構造の例を概念的に示す図である。気水ミストノズル1は、水と空気の混合部2−1または2−2および気水ミストを鋳片に噴霧するノズル先端部3と、混合部2−1または2−2に水を送り込む管5(この管への配管は図示していない)と、空気を送り込む管6(この管への配管は図示していない)とで構成される。また、ノズル先端部3の先端には、ノズルチップ7を備える。
【0016】
本発明の方法で規定する水と空気の混合部からノズルの先端までの長さとは、図1(a)に示す例のように、水と空気を混合する混合部2−1の形状が、その他の部分より大きい場合には、その混合部2−1とノズル先端部3の境界からノズルチップの先端4までの長さh−1である。図1(b)に示す例のように、水と空気を混合する混合部2−2がノズル先端部3とほぼ同じ大きさの場合には、水を送り込む管5または空気を送り込む管6の内、ノズル先端部3に近い方の管のノズル先端部側の端から、ノズルチップの先端4までの長さh−2である。
【0017】
ノズルチップには、通常用いられる気水ミストノズル用のノズルチップを用いることができる。また、冷却する鋳片の表面に対する気水ミストノズルの配置方法、たとえば、鋳片の幅方向で配置する間隔、鋳造方向で配置する間隔と配置する位置の範囲、鋳片表面とノズル先端との距離などは、連続鋳造機のロール配置などの構造、鋳片の最大幅、ノズルチップの種類、最大の鋳造速度等により決めればよい。
【0018】
たとえば、最大の鋳片幅2300mm、最大の鋳造速度2m/分の鋳造条件の場合では、鋳型出口から鋳造方向の2〜3m先までの間に、200〜300mm程度の間隔の位置に相当するロールとロールの間の位置に、鋳片の冷却面とノズル先端との距離を80〜200mmとし、鋳片幅方向に120〜300mmの間隔で、気水ミストノズルを配置するのがよい。この程度に気水ミストノズルを配置することにより、鋳片表面の温度をいったんA3 変態点未満の温度に低下させることができ、また、これらの気水ミストノズルの位置よりも鋳造方向で下流側の二次冷却条件の冷却水量を、上記気水ミストノズルの冷却水量よりも減らすことにより、鋳片が矯正される前に、鋳片表面の温度をA3 変態点以上に復熱させることもできる。
【0019】
鋳片の冷却面とノズル先端との距離を80mm未満とすると、気水ミストが広角に広がるノズルが必要となり、このときには水量分布が不均一になりやすい。また、この距離が200mmを超えると、隣接するノズルの気水ミストの水量分布と重複しやすく、水量分布が不均一になりやすい。鋳片幅方向のノズル間隔を120mm未満にすると、ノズルの本数が増加し、設備費および保守費用が増加する。また、この間隔が300mmを超えると、鋳片幅方向で水量分布が不均一になりやすい。
【0020】
本発明の方法では、水と空気の混合部からノズルの先端までの長さが100〜300mmとする気水ミストノズルを用いる。以下に、その理由を説明する。 図2は、水量分布の幅方向均一度(%)に及ぼす水と空気の混合部からノズルの先端までの長さの影響を示す図である。水量分布の幅方向均一度(%)は、次のようにして調査した。すなわち、幅方向に150mmの間隔で3本の気水ミストノズルを水槽の上部150mmの高さの位置に設置し、同一の気水ミストノズルを用いて、0.008リットル/cm2 ・分および0.05リットル/cm2 ・分の水量密度で気水ミストを噴霧する。水量密度が0.008リットル/cm2 ・分のときの常温常圧における水Wと空気Aの混合比A/W(体積割合)を10、水量密度が0.05リットル/cm2 ・分のときの常温常圧における水Wと空気Aの混合比A/W(体積割合)を100とした。
【0021】
水槽は縦300mm、横、すなわち幅方向500mm、深さ500mmの大きさの水槽で、幅方向に20mm間隔に仕切り板を入れ、噴霧時間1分間に、それぞれの仕切り板間の部分に貯まった水量を調査する。このとき、仕切り板間の部分に貯まった水量の内、最大量となった部分の水量に対する最小量となった部分の水量の割合を気水ミストノズルの水量分布の幅方向均一度(%)として評価した。一般的に、均一な幅方向の水量分布のときの水量分布の幅方向均一度(%)は80%以上である。なお、0.008リットル/cm2 ・分の水量密度とは、鋳片表面の温度が、鋳片の矯正位置までの間でA3 変態点未満の温度に低下しない程度の弱い冷却に相当し、また、0.05リットル/cm2 ・分の水量密度とは、鋳片表面を強く冷却し、鋳片表面の温度をA3 変態点未満の温度に急冷することができるような場合の冷却に相当する。
【0022】
図2に示すように、水と空気の混合部からノズルの先端までの長さが100mm未満の場合には、0.05リットル/cm2 ・分の水量密度で噴霧する際の水量分布の幅方向均一度(%)は80%以上となり、均一な水量分布になるが、0.008リットル/cm2 ・分の水量密度で噴霧する際には、水量分布の幅方向均一度(%)は80%より小さく、水量分布の均一性が悪い。一方、水と空気の混合部からノズルの先端までの長さが100mm以上の場合には、水量密度が0.05および0.008リットル/cm2 ・分の両方ともに、均一な水量分布になる。150mm以上にするのがより望ましい。しかし、水と空気の混合部からノズルの先端までの長さが300mmを超えると、気水ミストノズルが長くなって、ノズル設備全体が長くなり、鋳片を支えるロール設備から突出するようになり、設備上不利である。さらに、気水ミストの液滴が粗大化し、水量分布が不均一になりやすい。したがって、水と空気の混合部からノズルの先端までの長さは100〜300mmとする。150〜300がより望ましい。
【0023】
本発明の方法では、鋳片表面の温度をいったんA3 変態点未満の温度に低下させる場合には、常温常圧における水Wと空気Aの混合比A/W(体積割合)を5〜15、水量密度を0.03〜0.09リットル/cm2 ・分とする。
図3は、水量分布の幅方向均一度(%)に及ぼす常温常圧における水Wと空気Aの混合比A/W(体積割合)および水量密度の影響を示す図である。水と空気の混合部からノズルの先端までの長さを150mmとした気水ミストノズルを、150mmの間隔に3本設置して、水Wと空気Aの混合比A/W(体積割合)および水量密度を変更し、水量分布の幅方向均一度(%)を前述した方法で調査した。
【0024】
図3に斜線部の領域1として示すように、常温常圧における水Wと空気Aの混合比A/W(体積割合)が5〜15で、水量密度が0.03〜0.09リットル/cm2 ・分の場合には、水量分布の幅方向均一度(%)が80%以上となり、ほぼ均一な水量分布が得られる。水Wと空気Aの混合比A/W(体積割合)が5〜15であっても、水量密度が0.03リットル/cm2 ・分未満の場合には、水量分布の幅方向均一度(%)が80%未満になる。また、水Wと空気Aの混合比A/W(体積割合)が5〜15であっても、水量密度が0.09リットル/cm2 ・分を超えると、水量密度が大きすぎて、鋳片を矯正する位置までに、鋳片表面の温度がγ相に変態するA3 変態点以上にまで復熱できない。また、水量密度が0.03〜0.09リットル/cm2 ・分であっても、水Wと空気Aの混合比A/W(体積割合)が5未満では、水量分布の幅方向均一度(%)が80%未満になる場合があり、また、この混合比A/W(体積割合)が15を超えると、水量分布の幅方向均一度(%)に対する効果が飽和する。したがって、鋳片表面の温度をいったんA3 変態点未満に低下させる場合には、常温常圧における水Wと空気Aの混合比A/W(体積割合)で5〜15、水量密度を0.03〜0.09リットル/cm2 ・分とする。
【0025】
また、本発明の方法では、鋳片表面の温度をA3 変態点未満の温度に低下させない場合には、常温常圧における水Wと空気Aの混合比A/W(体積割合)を50〜200、水量密度を0.005〜0.015リットル/cm2 ・分とする。 図3に斜線部の領域2として示すように、常温常圧における水Wと空気Aの混合比A/W(体積割合)が50〜200、水量密度が0.005〜0.015リットル/cm2 ・分の場合には、水量分布の幅方向均一度(%)が80%以上となり、ほぼ均一な水量分布が得られる。水Wと空気Aの混合比A/W(体積割合)が50〜200であっても、水量密度が0.005リットル/cm2 ・分未満の場合には、水量分布の幅方向均一度(%)が80%未満になる場合があり、水量密度が0.015リットル/cm2 ・分を超えると、水量分布の幅方向均一度(%)に対する効果が飽和することに加えて、鋳片表面の温度がA3 変態点未満の温度に低下する場合がある。水量密度が0.005〜0.015リットル/cm2 ・分であっても、水Wと空気Aの混合比A/W(体積割合)が50未満では、水量分布の幅方向均一度(%)が80%未満になる場合があり、この混合比A/Wが200を超えると、水量分布の幅方向均一度(%)に対する効果が飽和する。したがって、鋳片表面の温度をA3 変態点未満の温度に低下させない場合には、常温常圧における水Wと空気Aの混合比A/W(体積割合)を50〜200、水量密度を0.005〜0.015リットル/cm2 ・分とする。
【0026】
【実施例】
湾曲部の曲率半径10mの湾曲型で機長23mの連続鋳造機を用いて、断面形状が、厚み235mm、幅2300mmの鋳片を、速度0.75〜1.1m/分で鋳造した。気水ミストノズルを、鋳型出口から鋳造方向の1.2m先までの間に、200〜250mm程度の間隔の位置に相当するロールとロールの間の位置に、鋳片との距離を約150mmとして、鋳片幅方向に約300mm間隔で配置した。気水ミストノズルの水と空気の混合部からノズルの先端までの長さと、常温常圧における水と空気の混合比の体積割合および水量密度を変化させて試験した。表1に、用いた鋼を示す。鋼Aは、Cu、NiおよびNbを含む低合金鋼であり、とくに鋳片の矯正時に横割れの発生しやすい鋼である。鋼Bは、一般的な炭素鋼であり、横割れや横ひび割れの割れ感受性は小さい。ただし、鋳片表面の幅方向の冷却が不均一な場合には、縦割れが発生することがある。
【0027】
【表1】

Figure 0004217847
【0028】
各鋳造試験では、鋼Aに続けて鋼Bを鋳造した。このとき、鋼Aの鋳造では、鋳片表面の温度をいったんA3 変態点未満の850℃程度の温度に冷却し、850℃程度になった鋳片以降の位置では、二次冷却条件の冷却水量を減らし、鋳片表面の温度を復熱させ、矯正時点での鋳片表面の温度をA3 変態点以上の900℃程度とした。引き続き、鋼Bの鋳造では、鋳型出口から矯正位置まで、鋳片表面の温度をA3 変態点以上の900℃以上に保持して、鋳片を矯正した。鋳片表面の温度は、鋳型出口の直下および矯正位置近傍で、それぞれ放射温度計で測定し、上記の範囲の温度になっていることを確認した。
【0029】
得られた鋳片の表面を目視で観察し、鋳片表面の割れの発生状況を調査した。試験条件と試験結果を表2に示す。
【0030】
【表2】
Figure 0004217847
【0031】
本発明例の試験No.1およびNo.2では、本発明で規定する条件を満足する水と空気の混合部からノズルの先端までの長さ150mm、常温常圧における水Wと空気Aの混合比A/W(体積割合)、すなわち鋼Aでは、10〜12の範囲、鋼Bでは、125〜150の範囲、さらに、水量密度、すなわち、鋼Aでは、0.05〜0.08リットル/cm2 ・分、鋼Bでは、0.008〜0.010リットル/cm2 ・分の各条件で試験した。上述したように、鋼Aの鋳片表面の温度は、A3 変態点未満の850℃程度に冷却し、その後、A3 変態点以上の900℃以上に復熱させて鋳片を矯正した。鋼Bの鋳片表面の温度は、矯正位置までA3 変態点以上の900℃以上に保持して、そのまま鋳片を矯正した。得られた鋼Aおよび鋼Bの鋳片では、鋳片表面に割れの発生は認められなかった。
【0032】
比較例の試験No.3では、本発明で規定する水と空気の混合部からノズルの先端までの長さの下限を外れる条件の80mmの長さで試験した。常温常圧における水Wと空気Aの混合比A/W(体積割合)および水量密度については、本発明で規定する条件を満足する範囲で試験した。鋼Aの鋳片には、割れは発生しなかったが、鋼Bの鋳片には、著しい縦割れが発生した。鋳片表面の手入れをしてから熱間圧延する必要がある程度の縦割れであった。水と空気の混合部からノズルの先端までの長さが短いため、とくに、水量密度が0.008リットル/cm2 ・分と少ない場合に、気水ミストの幅方向の均一性が悪くなった。したがって、鋼Bの場合のみ、鋳片の幅方向での水量分布が不均一になり、鋳片に縦割れが発生した。
【0033】
比較例の試験No.4では、本発明で規定する水と空気の混合部からノズルの先端までの長さの150mmで試験し、鋼Aでは、常温常圧における水Wと空気Aの混合比A/W(体積割合)および水量密度については、本発明で規定する条件を満足する範囲で試験し、鋼Bでは、これらを本発明で規定する条件の下限を外れる条件で試験した。鋼Aの鋳片には、割れは発生しなかったが、鋼Bの鋳片には、著しい縦割れが発生した。鋼Bの試験では、水Wと空気Aの混合比A/W(体積割合)が30と小さく、かつ、水量密度が0.002リットル/cm2 ・分と少ないために、鋳片の幅方向での水量分布の均一性が悪くなり、鋳片に縦割れが発生した。
【0034】
比較例の試験No.5では、本発明で規定する水と空気の混合部からノズルの先端までの長さの150mmで試験し、鋼Bでは、常温常圧における水Wと空気Aの混合比A/W(体積割合)および水量密度については、本発明で規定する条件を満足する範囲で試験し、鋼Aでは、これらを本発明で規定する条件の下限を外れる条件で試験した。鋼Bの鋳片には、割れは発生しなかったが、鋼Aの鋳片には、著しい横割れが鋳片表面に部分的に発生した。鋳片表面の手入れをしてから熱間圧延する必要がある程度の横割れであった。鋼Aの試験では、水Wと空気Aの混合比A/W(体積割合)が3と小さく、かつ、水量密度が0.02リットル/cm2 ・分と少ないために、鋳片の幅方向での水量分布の均一性が悪くなり、鋳型出口の直下での鋳片表面の温度にばらつきが見られ、A3 変態点未満の温度に低下しない鋳片表面の部分が存在した。したがって、部分的に鋳片表面に横割れが発生した。
【0035】
【発明の効果】
本発明より、鋼種の違いによって二次冷却条件の変更を伴う鋼の連続鋳造方法に関して、鋳型から引き抜かれた鋳片を同一の気水ミストノズルを用いて二次冷却する際に、鋳片表面の温度を、いったんA変態点未満の温度に低下させ、その後、A変態点以上に復熱させる二次冷却と、A変態点未満の温度に低下させないような二次冷却のいずれもが可能となる。これにより、鋼の連続鋳造方法において、同一の気水ミストノズルを用いて、Nb、V、Ni、Cuなどの合金元素を含有する低合金鋼の鋳片の横割れや炭素鋼などの縦割れなどの発生を防止できる。
【図面の簡単な説明】
【図1】本発明の方法の気水ミストノズルの構造の例を概念的に示す図である。
【図2】水量分布の幅方向均一度(%)に及ぼす混合部からノズルの先端までの長さの影響を示す図である。
【図3】水量分布の幅方向均一度(%)に及ぼす常温常圧における水に対する空気の混合体積割合および水量密度の影響を示す図である。
【符号の説明】
1:気水ミストノズル 2−1、2−2:混合部
3:ノズル先端部 4:ノズルチップの先端
5:水を送り込む管 6:空気を送り込む管
7:ノズルチップ
h−1、h−2:混合部からノズルの先端までの長さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting method of steel in which a slab drawn from a mold is secondarily cooled by air-water mist.
[0002]
[Prior art]
In recent years, low-alloy steels containing alloy elements such as Nb, V, Ni, and Cu are often used in thick plate products and the like due to demands on mechanical properties. When casting these low alloy steels using a curved or vertical bending type continuous casting machine, cracks called lateral cracks and lateral cracks are likely to occur on the surface of the slab. When the slab is straightened, the straightening stress acting on the surface of the slab exceeds the limit stress inherent to these low alloy steels, so that transverse cracks and lateral cracks occur on the slab surface.
[0003]
The reason why the slab of low alloy steel containing alloy elements such as Nb, V, Ni, and Cu is liable to generate transverse cracks will be described as follows. That is, the hot ductility of cast piece of low-alloy steel, the temperature near the A 3 transformation point of solidification structure of the slab is transformed to α-phase from γ phase, i.e., at a temperature range of about 600 to 850 ° C., It drops significantly. Furthermore, in these low alloy steel slabs, AlN, NbC and the like are likely to precipitate at the γ-phase grain boundaries in the secondary cooling process after being drawn from the mold. The γ-phase grain boundaries where AlN, NbC, etc. are precipitated are easily cracked. Therefore, when a slab of low alloy steel is straightened in the temperature range as described above, the γ phase grain boundary is easily cracked by the straightening stress, and therefore, lateral cracks, lateral cracks, etc. occur on the slab surface.
[0004]
Therefore, when correcting the slab of low alloy steel, the temperature near the above A 3 transformation point, than the so-called brittle temperature range, but still there is an attempt to correct the cast piece at low temperature region, above As described above, AlN, NbC, etc. are already precipitated at the γ-phase grain boundaries, so the slab is highly susceptible to cracking, and simply by correcting in a temperature range lower than the embrittlement temperature range, transverse cracking, etc. occurs. Cannot be prevented.
[0005]
Moreover, until the slab is corrected withdrawn from the mold, so that the solidification structure of the slab surface is not transformed into α phase from γ phase, keeping the temperature of the slab surface to a temperature higher than A 3 transformation point There is an attempt to correct the slab in a temperature range higher than the embrittlement temperature range. In this case, however, transverse cracks and the like are likely to occur. Since the γ phase of the solidified structure of the slab surface is not transformed, the crystal grains of the γ phase are large. Therefore, the slab surface is easily cracked by the straightening stress.
[0006]
In Japanese Patent Laid-Open No. 9-47854, the slab immediately after being pulled out from the mold is strongly cooled using an air-water mist nozzle, and the temperature of the slab surface is once cooled to a temperature of about 850 ° C. below the A 3 transformation point. Then, a method is disclosed in which the temperature of the slab surface is reheated to about 900 ° C. beyond the A 3 transformation point before the slab is corrected.
[0007]
In this method, the solidified structure of the slab surface is once transformed from the γ phase to the α phase, and then transformed into the γ phase by recuperation. Therefore, crystal grains of the γ-phase of the slab surface when the slab is corrected is reduced. In addition, since pieces cast at a high temperature of at least A 3 transformation point is corrected, transverse cracks on the cast slab surface, etc. Is unlikely to occur.
[0008]
However, in a continuous casting machine provided with an air-water mist nozzle that once transforms the solidified structure of a slab from a γ phase to an α phase as proposed in the above-mentioned JP-A-9-47854, when casting a specific carbon steel, when the cooling that the temperature of the slab surface not lower than a 3 transformation point, rather than transverse cracks on the cast slab surface, there are cases where vertical cracks occur. Using such steam-water mist nozzles, when the temperature of the slab surface so as not to lower than A 3 transformation point, because the water content distribution in the width direction of the slab is not uniform, the temperature of the slab surface Uneven in the width direction. Therefore, vertical cracks are likely to occur on the surface of the slab even with steel having low crack sensitivity. Reason for the temperature of the slab surface not lower than A 3 transformation point, recently many used are hot-rolling equipment in which is disposed downstream of the continuous casting machine as, as much as possible supply slab of high temperature, steel This is to save energy when manufacturing the product.
[0009]
[Problems to be solved by the invention]
As described above, as conventionally used, once it cooled to a temperature below A 3-varying state point temperature of the slab surface, before correcting the subsequently cast piece, A 3 transformation temperature of the slab surface The air-water mist nozzle for reheating to a temperature above the point is effective in preventing the occurrence of transverse cracks and cracks in the low alloy steel, but has the following problems. That is,
(1) When such an air-water mist nozzle is used, it is difficult to reduce the amount of cooling water with the same air-water mist nozzle, even if the amount is reduced, the amount of water in the width direction of the slab Distribution becomes uneven.
(2) Therefore, when using the same air-water mist nozzle as described above to cast general carbon steel with low cracking susceptibility and obtaining a slab that is as hot as possible, vertical cracking occurs on the surface of the slab. May occur. This is because when the amount of cooling water is reduced, the water amount distribution in the width direction of the slab becomes non-uniform.
[0010]
The present invention is a continuous casting method of steel that involves a change in secondary cooling conditions depending on the steel type, and is used when a slab drawn from a mold is subjected to secondary cooling using the same air-water mist nozzle. the temperature of one surface, once lowered to a temperature lower than a 3 transformation point, then, a 3 and secondary cooling to recuperation than transformation point, a 3 of the secondary cooling so as not to lower the temperature below the transformation point It aims at providing the continuous casting method of steel in which both are possible.
[0011]
[Means for Solving the Problems]
The gist of the present invention is as follows.
“A steel continuous casting method that involves changing the secondary cooling conditions depending on the steel type, and when the slab drawn from the mold is subjected to secondary cooling using the same air-water mist nozzle, The length from the mixing part of the air to the tip of the nozzle is 100 to 300 mm,
(a) between the mold exit to a correction position of the slab, after lowering once A less than 3 transformation point temperature of the slab surface, in the case of recuperation or more A 3 transformation point, A 3 transformation Cooling conditions to below the point, the mixing ratio A / W (volume ratio) of water W and air A at room temperature and normal pressure is 5 to 15, the water density is 0.03 to 0.09 liter / cm 2 · min, And
(b) between the mold exit to a correction position of the slab, the temperature of the slab surface when not drop below A 3 transformation point, in normal temperature and pressure in the zone to be cooled to less than the A 3 transformation point A continuous casting method of steel, wherein the mixing ratio A / W (volume ratio) of water W and air A is 50 to 200, and the water density is 0.005 to 0.015 liter / cm 2 · min. "
It is in.
[0012]
The continuous casting machine targeted by the method of the present invention is a curved or vertical bending type continuous casting machine in which a cast curved slab is corrected. In addition, the same continuous casting machine makes it possible to use the same continuous casting machine for the low-alloy steel with high cracking sensitivity containing alloy elements such as Nb, V, Ni, and Cu and the carbon steel with low cracking sensitivity not containing the above alloy elements. The target is a continuous casting machine that performs operations such as casting using an air-water mist nozzle.
[0013]
The present inventor has solved the above-described problems of the conventional air / water mist nozzle as follows. That is,
In the method of the present invention, an air / water mist nozzle having a length from the mixing portion of water and air to the tip of the nozzle of 100 to 300 mm is used. Furthermore, by properly selecting the mixing ratio A / W of water W and the air A, cooling using the same air-water mist nozzles, once to reduce the temperature below A 3 transformation point temperature of the slab surface even by increasing the amount of water, on the contrary, even if reduced amount of cooling water to the temperature of the slab surface not lowered to a temperature lower than a 3 transformation point before correcting slab, in any case, cast A uniform water amount distribution in the width direction of the piece and a uniform temperature distribution on the surface of the slab are obtained. Therefore, it is possible to prevent the occurrence of transverse cracks in low alloy steel slabs, and to prevent the occurrence of vertical cracks in carbon steel slabs using the same air-water mist nozzle. Obtainable.
[0014]
The temperature of the slab surface referred to in the method of the present invention is a temperature that can be measured by, for example, a radiation thermometer, and means a temperature from the surface of the slab to just below the skin. The temperature of the slab surface can also be obtained by calculation by solidification heat transfer analysis. That is, if conditions such as the type of steel, the size of the slab, the casting speed, and the secondary cooling condition of the slab are determined, the temperature of the slab surface according to the distance from the molten steel meniscus can be obtained by calculation. Further, by appropriately selecting the surface heat transfer coefficient, the temperature of the slab surface obtained by this calculation matches the measured temperature well. Since lateral cracks and vertical cracks of the slab are generated on the surface of the slab and directly under the skin, the crack of the slab can be suppressed by controlling the temperature of the surface of the slab.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram conceptually showing an example of the structure of an air / water mist nozzle used in the method of the present invention. The air / water mist nozzle 1 includes a water / air mixing part 2-1 or 2-2, a nozzle tip 3 for spraying the air / water mist onto a cast piece, and a pipe for feeding water into the mixing part 2-1 or 2-2. 5 (the pipe to this pipe is not shown) and the pipe 6 for feeding air (the pipe to this pipe is not shown). A nozzle tip 7 is provided at the tip of the nozzle tip 3.
[0016]
The length from the mixing part of water and air to the tip of the nozzle defined by the method of the present invention is the shape of the mixing part 2-1 for mixing water and air, as in the example shown in FIG. When it is larger than the other part, it is the length h-1 from the boundary between the mixing part 2-1 and the nozzle tip part 3 to the tip 4 of the nozzle tip. When the mixing unit 2-2 for mixing water and air is approximately the same size as the nozzle tip 3 as in the example shown in FIG. 1B, the pipe 5 for feeding water or the pipe 6 for feeding air is used. The length h-2 from the end on the nozzle tip side of the tube closer to the nozzle tip 3 to the tip 4 of the nozzle tip.
[0017]
As the nozzle tip, a commonly used nozzle tip for an air / water mist nozzle can be used. Also, the arrangement method of the air / water mist nozzle with respect to the surface of the slab to be cooled, for example, the interval in the width direction of the slab, the interval in the casting direction and the range of the location, the slab surface and the nozzle tip The distance and the like may be determined by the structure such as the roll arrangement of the continuous casting machine, the maximum width of the slab, the type of nozzle tip, the maximum casting speed, and the like.
[0018]
For example, in the case of casting conditions with a maximum slab width of 2300 mm and a maximum casting speed of 2 m / min, a roll corresponding to a position having an interval of about 200 to 300 mm between the mold outlet and 2-3 m ahead in the casting direction. The distance between the cooling surface of the slab and the tip of the nozzle is 80 to 200 mm, and the air / water mist nozzles are preferably arranged at intervals of 120 to 300 mm in the slab width direction. By arranging the air-water mist nozzles to the extent it is possible to reduce the temperature of the once A less than 3 transformation point temperature of the slab surface and, downstream in the casting direction than the position of these gas-water mist nozzles the amount of cooling water of the secondary cooling conditions sides, by reducing of the cooling water of the steam-water mist nozzle, before the slab is corrected, thereby recuperation temperature of the slab surface than a 3 transformation point You can also.
[0019]
If the distance between the cooling surface of the slab and the tip of the nozzle is less than 80 mm, a nozzle in which the air / water mist spreads in a wide angle is required. Moreover, when this distance exceeds 200 mm, it is easy to overlap with the water amount distribution of the air-water mist of an adjacent nozzle, and water amount distribution tends to become non-uniform | heterogenous. When the nozzle interval in the slab width direction is less than 120 mm, the number of nozzles increases, and the equipment cost and maintenance cost increase. Moreover, when this space | interval exceeds 300 mm, water volume distribution will become non-uniform | heterogenous easily in the slab width direction.
[0020]
In the method of the present invention, an air / water mist nozzle having a length from the mixing portion of water and air to the tip of the nozzle of 100 to 300 mm is used. The reason will be described below. FIG. 2 is a diagram showing the influence of the length from the water / air mixing portion to the tip of the nozzle on the width direction uniformity (%) of the water amount distribution. The uniformity (%) in the width direction of the water amount distribution was investigated as follows. That is, three air-water mist nozzles are installed at a height of 150 mm in the upper part of the water tank at intervals of 150 mm in the width direction, and 0.008 liter / cm 2 · min and The air mist is sprayed at a water density of 0.05 liter / cm 2 · min. When the water density is 0.008 liter / cm 2 · min, the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure is 10, and the water density is 0.05 liter / cm 2 · min. The mixing ratio A / W (volume ratio) of water W and air A at room temperature and normal pressure was 100.
[0021]
The water tank is 300 mm long, horizontal, that is, 500 mm wide and 500 mm deep. A partition plate is inserted at intervals of 20 mm in the width direction, and the amount of water accumulated in the portion between each partition plate during a spraying time of 1 minute. To investigate the. At this time, the ratio of the amount of water in the portion that became the minimum amount to the amount of water in the portion that became the maximum amount among the amount of water stored in the part between the partition plates was the uniformity in the width direction of the water amount distribution of the air mist nozzle (%) As evaluated. Generally, the uniformity (%) in the width direction of the water amount distribution when the water amount distribution is uniform in the width direction is 80% or more. The water density of 0.008 liter / cm 2 · min corresponds to weak cooling so that the temperature of the slab surface does not drop to a temperature below the A 3 transformation point until the slab correction position. In addition, the water density of 0.05 liter / cm 2 · min is the cooling when the slab surface can be cooled strongly and the slab surface temperature can be rapidly cooled to a temperature below the A 3 transformation point. It corresponds to.
[0022]
As shown in FIG. 2, when the length from the mixing part of water and air to the tip of the nozzle is less than 100 mm, the width of the water amount distribution when spraying at a water amount density of 0.05 liter / cm 2 · min Uniformity in direction (%) is 80% or more, resulting in a uniform water volume distribution. When spraying at a water volume density of 0.008 liter / cm 2 · min, the uniformity in the width direction (%) of the water volume distribution is It is smaller than 80%, and the uniformity of water distribution is poor. On the other hand, when the length from the water / air mixing part to the tip of the nozzle is 100 mm or more, the water density is 0.05 and 0.008 liters / cm 2 · min. . It is more desirable to make it 150 mm or more. However, if the length from the water / air mixing part to the tip of the nozzle exceeds 300 mm, the air / water mist nozzle becomes longer, the entire nozzle equipment becomes longer, and it comes to protrude from the roll equipment that supports the slab. The equipment is disadvantageous. Furthermore, the droplets of the air-water mist become coarse and the water amount distribution tends to be non-uniform. Therefore, the length from the mixing part of water and air to the tip of the nozzle is 100 to 300 mm. 150-300 is more desirable.
[0023]
In the method of the present invention, when lowering the temperature once A less than 3 transformation point temperature of the slab surface, the mixing ratio A / W of water W and the air A in the normal temperature and pressure (volume ratio) 5-15 The water density is 0.03 to 0.09 liter / cm 2 · min.
FIG. 3 is a diagram showing the influence of the mixing ratio A / W (volume ratio) of water W and air A at a normal temperature and normal pressure and the water amount density on the uniformity (%) in the width direction of the water amount distribution. Three air / water mist nozzles with a length of 150 mm from the water / air mixing part to the tip of the nozzle were installed at intervals of 150 mm, and the mixing ratio A / W (volume ratio) of water W and air A and The water density was changed and the uniformity (%) in the width direction of the water distribution was investigated by the method described above.
[0024]
As indicated by hatched area 1 in FIG. 3, the mixing ratio A / W (volume ratio) of water W and air A at room temperature and normal pressure is 5 to 15, and the water density is 0.03 to 0.09 liter / In the case of cm 2 · min, the uniformity (%) in the width direction of the water amount distribution is 80% or more, and a substantially uniform water amount distribution is obtained. Even if the mixing ratio A / W (volume ratio) of water W and air A is 5 to 15, if the water density is less than 0.03 liter / cm 2 · min, the uniformity in the width direction of the water distribution ( %) Is less than 80%. Further, even if the mixing ratio A / W (volume ratio) of water W and air A is 5 to 15, if the water density exceeds 0.09 liter / cm 2 · min, the water density is too large, and the casting until a position of correcting the strip, can not recuperator to more than a 3 transformation point temperature of the cast slab surface is transformed into γ phase. Further, even if the water density is 0.03 to 0.09 liter / cm 2 · min, if the mixing ratio A / W (volume ratio) of the water W and the air A is less than 5, the uniformity of the water quantity distribution in the width direction (%) May be less than 80%, and when the mixing ratio A / W (volume ratio) exceeds 15, the effect on the uniformity (%) in the width direction of the water amount distribution is saturated. Thus, when lowered to temporarily A less than 3 transformation point temperature of the slab surface is 5 to 15 in a mixing ratio A / W of water W and the air A in the normal temperature and pressure (volume ratio), the water density 0. 03 to 0.09 liter / cm 2 · min.
[0025]
In the method of the present invention, if not to lower the temperature of the slab surface at a temperature below A 3 transformation point, 50 a mixing ratio A / W of water W and the air A in the normal temperature and pressure (volume ratio) 200, the water density is 0.005 to 0.015 liter / cm 2 · min. As shown by the shaded area 2 in FIG. 3, the mixing ratio A / W (volume ratio) of water W and air A at room temperature and normal pressure is 50 to 200, and the water density is 0.005 to 0.015 liter / cm. In the case of 2 minutes, the uniformity (%) in the width direction of the water amount distribution is 80% or more, and a substantially uniform water amount distribution is obtained. Even if the mixing ratio A / W (volume ratio) of water W and air A is 50 to 200, if the water density is less than 0.005 liter / cm 2 · min, the uniformity in the width direction of the water distribution ( %) May be less than 80%, and if the water density exceeds 0.015 liter / cm 2 · min, the effect on the uniformity (%) in the width direction of the water distribution is saturated, and the slab the temperature of the surface may be lowered to a temperature lower than a 3 transformation point. Even if the water density is 0.005 to 0.015 liter / cm 2 · min, if the mixing ratio A / W (volume ratio) of water W and air A is less than 50, the uniformity in the width direction of water distribution (%) ) May be less than 80%. When the mixing ratio A / W exceeds 200, the effect on the uniformity (%) in the width direction of the water amount distribution is saturated. Therefore, if not to lower the temperature of the slab surface at a temperature below A 3 transformation point, the mixing ratio A / W (volume ratio) of 50 to 200 of the water W and the air A in the normal temperature and pressure, the water density 0 0.005 to 0.015 liter / cm 2 · min.
[0026]
【Example】
A slab having a cross section of 235 mm in thickness and 2300 mm in width was cast at a speed of 0.75 to 1.1 m / min using a continuous casting machine having a curvature radius of 10 m and a machine length of 23 m. The distance between the air mist nozzle and the slab is about 150 mm at a position between the rolls corresponding to a distance of about 200 to 250 mm between the mold outlet and 1.2 m ahead in the casting direction. In the slab width direction, they were arranged at intervals of about 300 mm. The test was performed by changing the length from the water / air mixing part of the air / water mist nozzle to the tip of the nozzle, the volume ratio of the mixing ratio of water and air at normal temperature and pressure, and the water density. Table 1 shows the steel used. Steel A is a low alloy steel containing Cu, Ni, and Nb, and is particularly steel that is prone to transverse cracks when straightening a slab. Steel B is a general carbon steel, and has low cracking susceptibility to lateral cracks and lateral cracks. However, when the cooling in the width direction of the slab surface is not uniform, vertical cracks may occur.
[0027]
[Table 1]
Figure 0004217847
[0028]
In each casting test, steel B was cast after steel A. At this time, in the casting of Steel A, the temperature of the slab surface is once cooled to a temperature of about 850 ° C. below the A 3 transformation point, and at the position after the slab where the temperature has reached about 850 ° C., cooling under the secondary cooling condition is performed. The amount of water was reduced, the temperature of the slab surface was reheated, and the temperature of the slab surface at the time of straightening was set to about 900 ° C. above the A 3 transformation point. Subsequently, in the casting of steel B, the slab surface was corrected from the mold exit to the correction position by maintaining the temperature of the slab surface at 900 ° C. or more above the A 3 transformation point. The slab surface temperature was measured with a radiation thermometer immediately below the mold outlet and in the vicinity of the correction position, and it was confirmed that the temperature was within the above range.
[0029]
The surface of the obtained slab was visually observed to investigate the occurrence of cracks on the slab surface. Table 2 shows the test conditions and test results.
[0030]
[Table 2]
Figure 0004217847
[0031]
Test no. 1 and no. 2, the length from the water / air mixing part to the tip of the nozzle that satisfies the conditions specified in the present invention is 150 mm, the mixing ratio A / W (volume ratio) of water W and air A at room temperature and normal pressure, that is, steel. A is in the range of 10-12, Steel B is in the range of 125-150, and the water density is 0.05 to 0.08 liters / cm 2 · min. The test was conducted under each condition of 008 to 0.010 liter / cm 2 · min. As described above, the temperature of the slab surface of steel A was cooled to about 850 ° C. below the A 3 transformation point, and then reheated to 900 ° C. or more above the A 3 transformation point to correct the slab. The temperature of the surface of the slab of Steel B was maintained at 900 ° C. or higher up to the correction position and above the A 3 transformation point, and the slab was corrected as it was. In the obtained steel A and steel B slabs, no cracks were observed on the slab surface.
[0032]
Test No. of the comparative example. In No. 3, the test was performed at a length of 80 mm under a condition that deviated from the lower limit of the length from the water / air mixing portion defined in the present invention to the tip of the nozzle. The mixing ratio A / W (volume ratio) of water W and air A at normal temperature and pressure and the water density were tested in a range satisfying the conditions defined in the present invention. No cracks occurred in the steel A slab, but significant vertical cracks occurred in the steel B slab. There was some vertical cracking that required hot rolling after the slab surface was cleaned. Due to the short length from the water / air mixing part to the tip of the nozzle, the uniformity in the width direction of the air / water mist deteriorated, especially when the water density was as low as 0.008 liter / cm 2 · min. . Therefore, only in the case of steel B, the water amount distribution in the width direction of the slab became non-uniform, and vertical cracks occurred in the slab.
[0033]
Test No. of the comparative example. No. 4 was tested at a length of 150 mm from the water / air mixing part to the tip of the nozzle defined in the present invention. In Steel A, the mixing ratio A / W (volume ratio of water W and air A at normal temperature and normal pressure) ) And water density were tested within a range satisfying the conditions specified in the present invention, and Steel B was tested under conditions that deviated from the lower limit of the conditions specified in the present invention. No cracks occurred in the steel A slab, but significant vertical cracks occurred in the steel B slab. In the test of steel B, the mixing ratio A / W (volume ratio) of water W and air A is as small as 30 and the water density is as low as 0.002 liter / cm 2 · min. As a result, the uniformity of the water distribution in the slab deteriorated and vertical cracks occurred in the slab.
[0034]
Test No. of the comparative example. No. 5 was tested at a length of 150 mm from the water / air mixing part to the tip of the nozzle defined in the present invention. In Steel B, the mixing ratio A / W (volume ratio of water W and air A at normal temperature and normal pressure) ) And the water density were tested in a range satisfying the conditions defined in the present invention, and Steel A was tested under conditions that deviated from the lower limit of the conditions defined in the present invention. No cracks occurred in the slab of Steel B, but significant lateral cracks occurred partially on the slab surface of the slab of Steel A. There was a certain degree of transverse cracking that required hot rolling after the slab surface was cleaned. In the test of Steel A, the mixing ratio A / W (volume ratio) of water W and air A is as small as 3 and the water density is as low as 0.02 liter / cm 2 · min. uniformity of water distribution is deteriorated in, variation was observed in the temperature of the slab surface at just under the mold exit, the portion of the slab surface not lowered to a temperature lower than a 3 transformation point was present. Therefore, a lateral crack partially occurred on the slab surface.
[0035]
【The invention's effect】
More present invention, the steel types differences with respect to the continuous casting method of steel involving a change of the secondary cooling conditions, when the secondary cooling using the same air-water mist nozzle slab that was withdrawn from the mold, the slab the temperature of the surface, once lowered to a temperature lower than a 3 transformation point, then, a 3 and secondary cooling to recuperation than transformation point, any of a 3 two so as not to lower the temperature below the transformation point primary cooling Is also possible. Thereby, in the continuous casting method of steel, using the same air-water mist nozzle, transverse cracks of slabs of low alloy steel containing alloy elements such as Nb, V, Ni, Cu, and vertical cracks of carbon steel, etc. Can be prevented.
[Brief description of the drawings]
FIG. 1 is a diagram conceptually showing an example of the structure of an air / water mist nozzle according to the method of the present invention.
FIG. 2 is a diagram showing the influence of the length from the mixing portion to the tip of the nozzle on the uniformity (%) in the width direction of the water amount distribution.
FIG. 3 is a diagram showing the influence of the mixing volume ratio of air to water at normal temperature and pressure and the water amount density on the uniformity (%) in the width direction of the water amount distribution.
[Explanation of symbols]
1: Air / water mist nozzle 2-1 and 2-2: Mixing unit 3: Nozzle tip 4: Nozzle tip 5: Pipe for feeding water 6: Pipe for feeding air 7: Nozzle tips h-1, h-2 : Length from mixing section to nozzle tip

Claims (1)

鋼種の違いによって二次冷却条件の変更を伴う鋼の連続鋳造方法であって、鋳型から引き抜かれた鋳片を同一の気水ミストノズルを用いて二次冷却する際に、ノズル内の水と空気の混合部からノズルの先端までの長さを100〜300mmとし、
(a) 鋳型出口から鋳片の矯正位置までの間で、鋳片表面の温度をいったんA変態点未満に低下させた後、A変態点以上に復熱させる場合には、A変態点未満までの冷却条件を、常温常圧における水Wと空気Aの混合比A/W(体積割合)を5〜15、水量密度を0.03〜0.09リットル/cm・分とし、そして、
(b) 鋳型出口から鋳片の矯正位置までの間で、鋳片表面の温度をA変態点未満に低下させない場合には、前記A変態点未満までの冷却させるゾーンにおける常温常圧における水Wと空気Aの混合比A/W(体積割合)を50〜200、水量密度を0.005〜0.015リットル/cm・分とする
ことを特徴とする鋼の連続鋳造方法。
This is a continuous casting method of steel that involves changing the secondary cooling conditions depending on the steel type, and when the slab drawn from the mold is subjected to secondary cooling using the same air-water mist nozzle, the water in the nozzle The length from the air mixing part to the tip of the nozzle is 100 to 300 mm,
(a) between the mold exit to a correction position of the slab, after lowering once A less than 3 transformation point temperature of the slab surface, in the case of recuperation or more A 3 transformation point, A 3 transformation Cooling conditions to below the point, the mixing ratio A / W (volume ratio) of water W and air A at room temperature and normal pressure is 5 to 15, the water density is 0.03 to 0.09 liter / cm 2 · min, And
(b) between the mold exit to a correction position of the slab, the temperature of the slab surface when not drop below A 3 transformation point, in normal temperature and pressure in the zone to be cooled to less than the A 3 transformation point A continuous casting method of steel, wherein the mixing ratio A / W (volume ratio) of water W and air A is 50 to 200, and the water density is 0.005 to 0.015 liter / cm 2 · min.
JP03810199A 1999-02-17 1999-02-17 Continuous casting method Expired - Fee Related JP4217847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03810199A JP4217847B2 (en) 1999-02-17 1999-02-17 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03810199A JP4217847B2 (en) 1999-02-17 1999-02-17 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2000237858A JP2000237858A (en) 2000-09-05
JP4217847B2 true JP4217847B2 (en) 2009-02-04

Family

ID=12516094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03810199A Expired - Fee Related JP4217847B2 (en) 1999-02-17 1999-02-17 Continuous casting method

Country Status (1)

Country Link
JP (1) JP4217847B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015155B (en) 2008-03-19 2013-11-27 纽科尔公司 Strip casting apparatus with casting roll positioning
US20090236068A1 (en) 2008-03-19 2009-09-24 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US20090288798A1 (en) * 2008-05-23 2009-11-26 Nucor Corporation Method and apparatus for controlling temperature of thin cast strip
JP5769645B2 (en) * 2012-02-06 2015-08-26 株式会社神戸製鋼所 Continuous casting method
JP6589096B2 (en) * 2015-07-07 2019-10-16 日本製鉄株式会社 Continuous casting method of Ni-containing steel
TW202033292A (en) * 2018-12-10 2020-09-16 日商日本製鐵股份有限公司 Continuous casting method for steel
CN113458352B (en) * 2020-03-30 2023-11-24 日本碍子株式会社 Method for producing Cu-Ni-Sn alloy and cooler for use in same
CN113198987A (en) * 2021-05-13 2021-08-03 铜陵有色兴铜机电制造有限公司 Copper alloy casting crystallization device

Also Published As

Publication number Publication date
JP2000237858A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP5218435B2 (en) Controlled cooling method for thick steel plate
EP2450117B9 (en) Use of a cooling device, manufacturing device, and manufacturing method for hot-rolled steel sheet
US20090095438A1 (en) Method and Apparatus for Continuous Casting
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP4217847B2 (en) Continuous casting method
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP3622687B2 (en) Steel continuous casting method
JP5577655B2 (en) Hot-rolled steel sheet cooling equipment and cooling method
JP4055440B2 (en) Direct-rolling method for continuous cast slabs
JP2000042700A (en) Method and basin for water-cooling steel slab
JP3802830B2 (en) Steel sheet descaling method and equipment
JP5742550B2 (en) Method and apparatus for producing slab by continuous casting
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP2001138019A (en) Continuous casting method
JP2008254062A (en) Secondary cooling device for continuous casting machine, and secondary cooling method therefor
CN101351285B (en) Method and apparatus for continuous casting
JP3994582B2 (en) Steel sheet descaling method
JP2018099704A (en) Continuous casting method for steel
JP5094154B2 (en) Slab cooling method in continuous casting machine
JP3463550B2 (en) Method of preventing surface cracks in continuous cast slab
JP3779194B2 (en) Secondary cooling method in continuous casting
JP3412418B2 (en) Slab secondary cooling device
JP7355285B1 (en) Continuous steel casting method
JP2012035310A (en) Method and equipment for manufacturing hot rolled steel plates
TW202033292A (en) Continuous casting method for steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees