JP4216739B2 - Electrical property value measuring method and measuring jig - Google Patents

Electrical property value measuring method and measuring jig Download PDF

Info

Publication number
JP4216739B2
JP4216739B2 JP2004022192A JP2004022192A JP4216739B2 JP 4216739 B2 JP4216739 B2 JP 4216739B2 JP 2004022192 A JP2004022192 A JP 2004022192A JP 2004022192 A JP2004022192 A JP 2004022192A JP 4216739 B2 JP4216739 B2 JP 4216739B2
Authority
JP
Japan
Prior art keywords
dielectric substrate
resonance frequency
exposed area
property value
electrical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004022192A
Other languages
Japanese (ja)
Other versions
JP2005214810A (en
Inventor
博道 吉川
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004022192A priority Critical patent/JP4216739B2/en
Publication of JP2005214810A publication Critical patent/JP2005214810A/en
Application granted granted Critical
Publication of JP4216739B2 publication Critical patent/JP4216739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は誘電体材料の電気的物性値の測定方法及び測定用冶具に関するものであり、特にミリ波領域で電子部品又は回路基板として使用する誘電体材料の誘電率、誘電正接などを測定するための電気的物性値測定方法及び測定用冶具に関するものである。   The present invention relates to a method for measuring electrical properties of a dielectric material and a measuring jig, and in particular for measuring the dielectric constant, dielectric loss tangent, etc. of a dielectric material used as an electronic component or circuit board in the millimeter wave region. The electrical property value measuring method and the measuring jig are described.

従来から、30GHz以上のミリ波帯における誘電体基板の誘電定数測定法としてはファブリぺロ共振器法が知られている。このファブリぺロ共振器法では、試料の形状として1辺75mm以上の角板、或いは直径75mm以上の円板が望ましく、このため大型の試料が必要となるので、電子部品や回路基板に用いる誘電体基板にこの方法を適用することは困難であった。   Conventionally, the Fabry-Perot resonator method is known as a method for measuring the dielectric constant of a dielectric substrate in a millimeter wave band of 30 GHz or higher. In this Fabry-Perot resonator method, a square plate with a side of 75 mm or more or a disk with a diameter of 75 mm or more is desirable as the shape of the sample. For this reason, a large sample is required, so that the dielectric used for electronic components and circuit boards is used. It has been difficult to apply this method to a body substrate.

これに対して、近年、ミリ波帯における誘電体基板の誘電定数測定法として、遮断円筒導波管法が提案されている。
この方法は、2個の円筒導波管の間に誘電体基板を配置して共振器構造を構成し、TE0m1(m=1、2・・・)モードの共振周波数と無負荷Qを測定し、該共振周波数と無負荷Qから誘電体基板の誘電率と誘電正接を計算する方法である。
On the other hand, in recent years, a blocking cylindrical waveguide method has been proposed as a method for measuring the dielectric constant of a dielectric substrate in the millimeter wave band.
In this method, a dielectric substrate is arranged between two cylindrical waveguides to form a resonator structure, and the resonance frequency and unloaded Q of the TE 0m1 (m = 1, 2,...) Mode are measured. In this method, the dielectric constant and dielectric loss tangent of the dielectric substrate are calculated from the resonance frequency and no load Q.

また、誘電正接の計算のために必要な遮断円筒内壁の比導電率測定は、試料を挟まない状態で行われ、遮断円筒の両端に短絡導体板を配置して構成した空洞共振器のTE0m1(m=1、2・・・)モードの共振周波数と無負荷Qの測定から比導電率が決定される。なお通常、空洞共振器の共振周波数が測定したい周波数帯になるように共振器寸法を設計する。 Further, the specific conductivity measurement of the inner wall of the cutoff cylinder necessary for calculation of the dielectric loss tangent is performed without sandwiching the sample, and TE 0m1 of the cavity resonator configured by arranging the short-circuit conductor plates at both ends of the cutoff cylinder. The specific conductivity is determined from the measurement of the resonance frequency of the (m = 1, 2,...) Mode and the no-load Q. Normally, the resonator dimensions are designed so that the resonance frequency of the cavity resonator is in the frequency band to be measured.

このような遮断円筒導波管法では、比較的作製が容易な1辺30mm以下の角板形状、あるいは直径30mm以下の円板形状の試料を用いて測定できるため、ミリ波帯における誘電定数測定法として用いられている。
針谷、清水、小林「遮断円筒導波管法によるミリ波複素誘電率の測定結果に関する検討」電子情報通信学会、信学技法MW2001-137(2001-12)
In such a cut-off cylindrical waveguide method, measurement can be performed using a sample having a square plate shape with a side of 30 mm or less or a disk shape with a diameter of 30 mm or less, which is relatively easy to manufacture. It is used as a law.
Hariya, Shimizu, Kobayashi "Study on measurement results of millimeter-wave complex permittivity by the cut-off cylindrical waveguide method" IEICE, IEICE Technical MW2001-137 (2001-12)

しかしながら、遮断円筒導波管法では、測定試料である誘電体基板の誘電率や厚さによってTE0m1(m=1、2・・・)モードの共振周波数が、試料を挟まないときの空洞共振器の共振周波数に対して大きく低下する。その結果、測定したい周波数で測定を行うためには、試料の誘電率が高いほど試料の厚さを薄くする必要がある。加工が可能な、ある程度の厚みを持った試料では所望の周波数で誘電定数を測定することが困難になるという問題があった。 However, in the cut-off cylindrical waveguide method, the resonance frequency of the TE 0m1 (m = 1, 2,...) Mode depends on the dielectric constant and thickness of the dielectric substrate that is the measurement sample, and the cavity resonance occurs when the sample is not sandwiched. Greatly decreases with respect to the resonance frequency of the vessel. As a result, in order to perform measurement at the frequency to be measured, it is necessary to reduce the thickness of the sample as the dielectric constant of the sample increases. There is a problem that it is difficult to measure the dielectric constant at a desired frequency in a sample that can be processed and has a certain thickness.

また、誘電正接の解析をするときに用いる円筒内壁の比導電率は、試料を挟まない状態で測定される。この測定周波数と試料を挟んだときの周波数の差があまりに大きいと比導電率の値に不確かさが生じる。これはミリ波帯では、微小ながらも比導電率に周波数依存性があるためである。その結果、誘電体基板の誘電定数測定の測定精度が低下することも課題である。   Further, the specific conductivity of the inner wall of the cylinder used when analyzing the dielectric loss tangent is measured in a state where no sample is sandwiched. If the difference between the measurement frequency and the frequency when the sample is sandwiched is too large, the specific conductivity value is uncertain. This is because in the millimeter wave band, the specific conductivity is frequency-dependent although it is minute. As a result, the measurement accuracy of dielectric constant measurement of the dielectric substrate is also a problem.

例えば、前記非特許文献1では、直径7.0mm、長さ26.1mmを有する遮断円筒の比導電率測定の周波数は53GHzであるのに対し、誘電体基板の比誘電率が2.1と低い場合では、厚さ0.2mmの誘電体基板(四フッ化エチレン樹脂試料)の測定周波数は52GHzであり、両周波数は近いため、四フッ化エチレン樹脂試料の誘電正接の測定精度は良好である。ところが同じ遮断円筒を用いて比誘電率が高い9.4のサファイア試料を測定すると、四フッ化エチレン樹脂と同じ厚さ0.2mmの場合、測定周波数は42GHzとなり、厚さ0.5mmの場合、測定周波数は32GHzとなる。このように、サファイア試料の厚みにより測定周波数は大きく低下する。   For example, in Non-Patent Document 1, the relative conductivity measurement frequency of a cutoff cylinder having a diameter of 7.0 mm and a length of 26.1 mm is 53 GHz, whereas the dielectric substrate has a relative dielectric constant of 2.1. In the low case, the measurement frequency of the dielectric substrate (tetrafluoroethylene resin sample) with a thickness of 0.2 mm is 52 GHz, and both frequencies are close, so the measurement accuracy of the dielectric loss tangent of the tetrafluoroethylene resin sample is good. is there. However, when a 9.4 sapphire sample with a high relative dielectric constant is measured using the same blocking cylinder, the measurement frequency is 42 GHz when the thickness is 0.2 mm, which is the same as that of the tetrafluoroethylene resin, and the thickness is 0.5 mm. The measurement frequency is 32 GHz. Thus, the measurement frequency is greatly reduced by the thickness of the sapphire sample.

このように誘電率が高く厚い材料では、測定したい周波数帯で測定できない。測定しても、遮断円筒の比導電率測定の周波数と大きく異なり、電気的物性値の測定誤差が大きくなるという問題があった。
本発明は、誘電率の高い試料や厚い試料を共振器に挿入したときの共振周波数が、試料を挿入しないときの空洞共振器の共振周波数に対して、あまり低下せず、測定したい周波数帯で測定でき、誘電体基板の電気的物性値の測定精度を大きく向上できる電気的物性値測定方法及び測定用冶具を提供することを目的とする。
Such a thick material with a high dielectric constant cannot be measured in the desired frequency band. Even when the measurement was performed, there was a problem that the measurement error of the electrical property value was greatly different from the frequency of the specific conductivity measurement of the cutoff cylinder.
In the present invention, the resonance frequency when a sample having a high dielectric constant or a thick sample is inserted into the resonator does not drop much compared to the resonance frequency of the cavity resonator when the sample is not inserted, and in the frequency band to be measured. An object of the present invention is to provide an electrical property value measurement method and a measurement jig that can be measured and can greatly improve the measurement accuracy of the electrical property value of a dielectric substrate.

本発明者は、上記課題に対して検討を重ねた結果、導体板上に誘電体基板を配置し、該誘電体基板上に誘電体基板が円筒空洞内に露出する面積を狭める露出面積制御導体を載置し、有底筒状導体を、その開口部を下に向けて配置して、円筒空洞共振器を構成した。該円筒空洞共振器のTEモード、特にTE011モードの共振周波数と無負荷Qを測定し、該共振周波数と無負荷Qから、誘電体基板の電気的物性値を求める。つまり、共振器の構造において電界強度が弱い場所に試料を配置し、さらに電界の侵入を制限することにより誘電体基板への電界の集中を緩和し共振周波数の低下を防いでいる。この結果、誘電体基板の電気的物性値を所望の測定周波数で測定するとともに、測定周波数が誘電体基板の誘電率と厚さに大きく依存しないようにすることができ、測定周波数が30GHz以上のミリ波帯における誘電率や誘電損失等の電気的物性値を測定できることを見出した。 As a result of studying the above problems, the present inventor has arranged a dielectric substrate on a conductor plate, and an exposed area control conductor that narrows the area of the dielectric substrate exposed in the cylindrical cavity on the dielectric substrate. Was placed, and the bottomed cylindrical conductor was placed with its opening facing downward to constitute a cylindrical cavity resonator. The resonance frequency and no-load Q of the TE mode, particularly the TE 011 mode, of the cylindrical cavity resonator are measured, and the electrical property value of the dielectric substrate is obtained from the resonance frequency and the no-load Q. In other words, the sample is placed in a place where the electric field strength is weak in the resonator structure, and further, by restricting the penetration of the electric field, the concentration of the electric field on the dielectric substrate is alleviated and the resonance frequency is prevented from being lowered. As a result, the electrical property value of the dielectric substrate can be measured at a desired measurement frequency, and the measurement frequency can be made independent of the dielectric constant and thickness of the dielectric substrate, and the measurement frequency can be 30 GHz or more. We have found that electrical properties such as dielectric constant and dielectric loss in the millimeter wave band can be measured.

本発明の誘電体基板の電気的物性値測定方法は、導体板上に誘電体基板を配置し、前記誘電体基板上に誘電体基板の露出面積を設定するための開口部を有する露出面積制御導体を配置し、前記露出面積制御導体上に、有底筒状導体を、その開口端面が該露出面積制御導体に接するように載置して、誘電体を装荷した空洞共振器を構成し、前記空洞共振器の共振周波数と無負荷Qを測定し、測定された共振周波数と無負荷Qとから、誘電体基板の電気的物性値を求める方法である。   An electrical property value measuring method for a dielectric substrate according to the present invention includes: a dielectric substrate disposed on a conductor plate; and an exposed area control having an opening for setting an exposed area of the dielectric substrate on the dielectric substrate. A conductor is disposed, and on the exposed area control conductor, a bottomed cylindrical conductor is placed so that an opening end surface thereof is in contact with the exposed area control conductor, thereby forming a cavity resonator loaded with a dielectric, In this method, the resonance frequency and no-load Q of the cavity resonator are measured, and the electrical property value of the dielectric substrate is obtained from the measured resonance frequency and no-load Q.

この電気的物性値測定方法によって、測定周波数を、誘電体基板の誘電率と厚さに大きく依存させずに、30GHz以上のミリ波帯における誘電定数を測定できる理由を説明する。
図4(a)は通常の円筒空洞共振器の縦断面図、図4(b)はこの円筒空洞共振器のTE011モードの電界強度の分布を示す図であり、この円筒空洞共振器のTE011モードの電界強度は空洞共振器の高さ方向の中心面で最大になり、両端でゼロになる。
The reason why the dielectric constant in the millimeter wave band of 30 GHz or higher can be measured by this electrical property value measurement method without greatly depending on the measurement frequency on the dielectric constant and thickness of the dielectric substrate will be described.
FIG. 4A is a longitudinal sectional view of a normal cylindrical cavity resonator, and FIG. 4B is a diagram showing a distribution of the electric field strength of the TE 011 mode of the cylindrical cavity resonator. The electric field strength of the 011 mode is maximum at the center plane in the height direction of the cavity resonator, and is zero at both ends.

従来、10GHz前後で誘電体基板の誘電定数を測定する場合、図5(a)に示すように、空洞共振器の中央に誘電体基板1を配置する方法がJIS R 1641:2002として規定されている。この場合、この円筒空洞共振器のTE011モードの電界強度の分布は図5(b)のようになる。
しかしながら、この方法を30GHz以上のミリ波帯域に拡張した場合、図6(a)に示すように、空洞共振器の寸法が周波数に比例して小型になるのに対して、誘電体基板1の厚さtは、割れない程度の厚みまでしか薄くできない。この結果、マイクロ波の場合(図5)に比べて共振器の寸法に対する基板の厚みtが相対的に大きくなるため、誘電体基板1に蓄積されるTE011モードの電界エネルギーが大きくなる。この状態では、試料を挿入していない状態の空洞共振器のTE011モードの共振周波数に対して、誘電体基板1を挿入した空洞共振器の共振周波数、すなわち誘電体基板1の電気的物性値の測定周波数が大きく低下する。つまり、上記図6の円筒空洞共振器の測定周波数は、誘電体基板1の誘電率と厚さに大きく依存するようになる。
Conventionally, when measuring the dielectric constant of a dielectric substrate at around 10 GHz, as shown in FIG. 5A, a method of disposing the dielectric substrate 1 in the center of the cavity resonator is defined as JIS R 1641: 2002. Yes. In this case, the distribution of the electric field intensity in the TE 011 mode of this cylindrical cavity resonator is as shown in FIG.
However, when this method is extended to a millimeter wave band of 30 GHz or more, the size of the cavity resonator is reduced in proportion to the frequency as shown in FIG. The thickness t can only be reduced to a thickness that does not break. As a result, the substrate thickness t with respect to the dimensions of the resonator is relatively larger than in the case of the microwave (FIG. 5), and therefore the electric field energy of the TE 011 mode accumulated in the dielectric substrate 1 is increased. In this state, the resonance frequency of the cavity resonator in which the dielectric substrate 1 is inserted, that is, the electrical property value of the dielectric substrate 1 with respect to the resonance frequency of the TE 011 mode of the cavity resonator in which no sample is inserted. The measurement frequency greatly decreases. That is, the measurement frequency of the cylindrical cavity resonator of FIG. 6 greatly depends on the dielectric constant and thickness of the dielectric substrate 1.

これに対して、本発明の電気的物性値測定方法では、図1に示すように、誘電体基板1を端面の導体板36に接して配置するため、円筒空洞共振器本来のTEモードの電界強度の小さな位置に誘電体基板1を配置することになる。さらに露出面積制御導体33により電界の侵入を制限させる結果、誘電体基板1の中に蓄積される電界エネルギーが制限され、TEモードの共振周波数の低下、すなわち誘電定数の測定周波数の低下が緩和される。   On the other hand, in the electrical property value measuring method of the present invention, as shown in FIG. 1, the dielectric substrate 1 is disposed in contact with the conductor plate 36 at the end face, so that the electric field in the TE mode inherent to the cylindrical cavity resonator is obtained. The dielectric substrate 1 is disposed at a position having a low strength. Further, as a result of limiting the penetration of the electric field by the exposed area control conductor 33, the electric field energy accumulated in the dielectric substrate 1 is limited, and the decrease in the resonance frequency of the TE mode, that is, the decrease in the measurement frequency of the dielectric constant is alleviated. The

本発明において、誘電率および誘電正接等の電気的物性値は、有限要素法等の数値解析を行い、計算できる。軸対称の有限要素法を用いると本発明で使用するような軸対称形状の共振器に対して,寸法、形状、誘電率、誘電正接から共振電磁界分布、共振周波数、無負荷Qを精度よく短時間で計算できる。従って、これを応用すれば共振周波数や無負荷Qから試料の誘電率や誘電正接を求めることができる。   In the present invention, electrical property values such as dielectric constant and dielectric loss tangent can be calculated by performing numerical analysis such as a finite element method. When the axially symmetric finite element method is used, the resonant electromagnetic field distribution, resonant frequency, and no-load Q are accurately calculated from the size, shape, dielectric constant, and dielectric loss tangent to the axially symmetric resonator used in the present invention. It can be calculated in a short time. Therefore, if this is applied, the dielectric constant and dielectric loss tangent of the sample can be obtained from the resonance frequency and no load Q.

なお、共振器として動作させるためには、前記導体板と露出面積制御導体で挟まれた誘電体基板の領域で、前記空洞共振器の共振周波数と同じ周波数を有する高周波信号が伝搬して逃げていかないようにする必要がある。このため、伝搬方向には遮断モードとなるように、誘電体基板の厚みの範囲に制限がかかる。
さらに、本発明の電気的物性値測定方法は、円筒空洞共振器の温度を変化させ、該円筒空洞共振器の共振周波数と無負荷Qの温度依存性を測定し、誘電体基板の電気的物性値の温度依存性を求める。このような電気的物性値測定方法では、より簡単に誘電体基板の電気的物性値の温度依存性を求めることができる。
In order to operate as a resonator, a high-frequency signal having the same frequency as the resonance frequency of the cavity resonator propagates and escapes in a region of the dielectric substrate sandwiched between the conductor plate and the exposed area control conductor. It is necessary to avoid. For this reason, the range of the thickness of the dielectric substrate is limited so as to be in the blocking mode in the propagation direction.
Further, according to the electrical property value measuring method of the present invention, the temperature of the cylindrical cavity resonator is changed, the temperature dependency of the resonance frequency of the cylindrical cavity resonator and the unloaded Q is measured, and the electrical property of the dielectric substrate is measured. Find the temperature dependence of the value. In such an electrical property value measuring method, the temperature dependence of the electrical property value of the dielectric substrate can be obtained more easily.

また、本発明の電気的物性値測定方法を実施する前段階として、導体板上に、誘電体基板のない状態で露出面積を設定するための開口部を有する露出面積制御導体を配置し、前記露出面積制御導体上に、有底筒状導体を、その開口端面が該露出面積制御導体に接するように載置して空洞共振器を構成し、前記空洞共振器の共振周波数と無負荷Qを測定し、該共振周波数と無負荷Qから、前記露出面積制御導体の比導電率及び寸法を求めることが好ましい。この方法により、誘電体基板の測定周波数と大きく変わらない周波数で、露出面積制御導体の比導電率及び寸法を求めることができるので、誘電体基板の電気的物性値、特に誘電正接の測定精度を向上させることができる。   Further, as a pre-stage for carrying out the electrical property value measuring method of the present invention, an exposed area control conductor having an opening for setting an exposed area without a dielectric substrate is disposed on the conductor plate, A hollow resonator is configured by placing a bottomed cylindrical conductor on the exposed area control conductor so that the opening end face thereof is in contact with the exposed area control conductor, and the resonance frequency and no-load Q of the cavity resonator are set. It is preferable to measure and obtain the specific conductivity and dimension of the exposed area control conductor from the resonance frequency and no load Q. By this method, the specific conductivity and dimensions of the exposed area control conductor can be obtained at a frequency that does not greatly differ from the measurement frequency of the dielectric substrate, so that the measurement of the electrical property value of the dielectric substrate, particularly the dielectric loss tangent Can be improved.

また、本発明の誘電体基板の電気的物性値測定用冶具は、導体板と、誘電体基板の露出面積を設定するための開口部を有する露出面積制御導体と、前記露出面積制御導体上に、その開口端面が該露出面積制御導体に接するように載置される有底筒状導体とを備えることを特徴とする。このような測定冶具を用いることにより、より簡単な構成で容易に誘電体基板の電気的物性値を求めることができる。   The jig for measuring an electrical property value of a dielectric substrate according to the present invention includes a conductor plate, an exposed area control conductor having an opening for setting an exposed area of the dielectric substrate, and the exposed area control conductor. And a bottomed cylindrical conductor mounted so that the opening end face thereof is in contact with the exposed area control conductor. By using such a measuring jig, the electrical property value of the dielectric substrate can be easily obtained with a simpler configuration.

本発明によれば、30GHz以上のミリ波帯においても、空洞共振器の本来のTEモードの共振周波数と誘電体基板挿入後のTEモードの共振周波数の変化が小さいため、所望の周波数で誘電定数等の電気的物性値を測定できる。
さらに、空洞共振器の実効比導電率の測定周波数と誘電定数の測定周波数が近いため、誘電正接の測定精度を上げることができる。
According to the present invention, even in a millimeter wave band of 30 GHz or higher, the change in the resonance frequency of the original TE mode of the cavity resonator and the resonance frequency of the TE mode after insertion of the dielectric substrate is small. It is possible to measure electrical property values such as
Furthermore, since the measurement frequency of the effective specific conductivity of the cavity resonator and the measurement frequency of the dielectric constant are close, the measurement accuracy of the dielectric loss tangent can be increased.

以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
図2は、円筒空洞共振器に測定試料である誘電体基板1を配置した実施形態を示す縦断面図である。この図2において、円筒空洞共振器は、導体板36上に誘電体基板1を配置し、該誘電体基板1上に、円筒空洞内に露出する誘電体基板面積を設定するための開口部を有する露出面積制御導体33を配置し、有底筒状導体32を、その開口部が前記露出面積制御導体33に接するように載置した構造となっている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 2 is a longitudinal sectional view showing an embodiment in which a dielectric substrate 1 as a measurement sample is arranged in a cylindrical cavity resonator. In this cylindrical cavity resonator, the dielectric substrate 1 is disposed on the conductor plate 36, and an opening for setting the dielectric substrate area exposed in the cylindrical cavity is formed on the dielectric substrate 1. The exposed area control conductor 33 is disposed, and the bottomed cylindrical conductor 32 is placed so that the opening thereof is in contact with the exposed area control conductor 33.

有底筒状導体32の側壁には貫通孔が2つ形成され、外部から空洞内部に向けて同軸ケーブル34a、34bが挿通しており、その内部側の先端にはループアンテナ35a、35bが形成されている。ループアンテナ35a、35bの空洞共振器への挿入深さはTE011モードの共振周波数における挿入損失が30dB程度になるように設定される。
図3は、図2の円筒空洞共振器の導体板36上の試料誘電体基板1を取り除き、露出面積制御導体33を導体板36に直接接触させた円筒空洞共振器を示している。この図3の円筒空洞共振器は、有底筒状導体32の比導電率や露出面積制御導体33の開口部の寸法を該円筒空洞共振器の共振周波数と無負荷Qを測定することにより、予め決定しておくために用いる。
Two through-holes are formed in the side wall of the bottomed cylindrical conductor 32, coaxial cables 34a and 34b are inserted from the outside into the cavity, and loop antennas 35a and 35b are formed at the ends on the inner side. Has been. The insertion depth of the loop antennas 35a and 35b into the cavity resonator is set so that the insertion loss at the resonance frequency of the TE 011 mode is about 30 dB.
FIG. 3 shows a cylindrical cavity resonator in which the sample dielectric substrate 1 on the conductor plate 36 of the cylindrical cavity resonator of FIG. 2 is removed and the exposed area control conductor 33 is in direct contact with the conductor plate 36. The cylindrical cavity resonator of FIG. 3 measures the specific conductivity of the bottomed cylindrical conductor 32 and the dimension of the opening of the exposed area control conductor 33 by measuring the resonance frequency and no-load Q of the cylindrical cavity resonator. Used to determine in advance.

したがって、この図3の予備測定は一度行えばよく、複数の誘電体基板1を測定する場合でも、各誘電体基板1を測定するたびに毎回行う必要はない。
本発明の電気的物性値測定方法は、特にミリ波帯において最も効果があり、有機系材料および無機系誘電体基板の測定に好適に用いることができ、特に比誘電率が2以上20以下の誘電体基板の測定に好適である。
Therefore, the preliminary measurement of FIG. 3 only needs to be performed once, and even when a plurality of dielectric substrates 1 are measured, it is not necessary to perform the measurement every time each dielectric substrate 1 is measured.
The electrical property value measuring method of the present invention is most effective particularly in the millimeter wave band, and can be suitably used for measuring organic materials and inorganic dielectric substrates, and particularly has a relative dielectric constant of 2 or more and 20 or less. Suitable for measurement of dielectric substrate.

また、本発明では、誘電体基板の厚みを厚くしても、共振周波数が殆ど変化しないため所望の周波数で測定可能である。したがって、誘電体基板を極端に薄くする必要がなく、測定試料である誘電体基板の破損を防止でき、より高周波での測定が可能となる。
以上で、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定されるものではなく、本発明の範囲内で種々の変更を施すことが可能である。
Further, in the present invention, even if the thickness of the dielectric substrate is increased, the resonance frequency hardly changes, so that measurement can be performed at a desired frequency. Therefore, it is not necessary to make the dielectric substrate extremely thin, damage to the dielectric substrate as a measurement sample can be prevented, and measurement at a higher frequency is possible.
Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.

空洞共振器に誘電体基板1を挿入する前に、測定に使用する空洞共振器を構成する有底筒状導体32の比導電率や寸法の評価をする必要がある。そこで、誘電体基板や露出面積制御導体を配置しない空洞共振器の寸法及び比導電率を評価する。
図4に、誘電体基板や露出面積制御導体のない空洞共振器の縦断面図(a)、平面断面図(b)及び垂直方向zに沿った電界強度Eのグラフ(c)を示す。この空洞共振器の空洞直径をD、高さをHで表している。この空洞共振器の評価方法はすでにJISR1641:2002で確立されており、その方法に従った。
Before inserting the dielectric substrate 1 into the cavity resonator, it is necessary to evaluate the specific conductivity and dimensions of the bottomed cylindrical conductor 32 constituting the cavity resonator used for measurement. Therefore, the dimensions and specific conductivity of the cavity resonator in which the dielectric substrate and the exposed area control conductor are not arranged are evaluated.
FIG. 4 shows a longitudinal sectional view (a), a planar sectional view (b), and a graph (c) of the electric field strength E along the vertical direction z of a cavity resonator without a dielectric substrate or an exposed area control conductor. The cavity diameter of this cavity resonator is represented by D and the height is represented by H. The evaluation method of this cavity resonator has already been established in JISR1641: 2002, and the method was followed.

測定に用いた空洞共振器は2種類、1つの空洞共振器は、空洞直径Dが11.864mm、空洞の高さHが6.565mm、空洞の比導電率が85.0(%)であり、他の空洞共振器は、空洞直径Dは35.001mm、空洞の高さHは25.190mm、空洞の比導電率は73.5(%)であった(表1参照)。測定した周波数は40GHzと10GHzである。空洞共振器のTE011モードの共振周波数と寸法の関係は、(f/c)2=(r′01/2pD)2+(1/2H)2から求められる。ただし、r′01は、0次のベッセル関数を微分したものの1番目の解である。 Two types of cavity resonators were used for measurement. One cavity resonator had a cavity diameter D of 11.864 mm, a cavity height H of 6.565 mm, and a cavity specific conductivity of 85.0 (%). The resonator had a cavity diameter D of 35.001 mm, a cavity height H of 25.190 mm, and a cavity specific conductivity of 73.5 (%) (see Table 1). The measured frequencies are 40 GHz and 10 GHz. The relationship between the resonance frequency of the TE 011 mode and the size of the cavity resonator can be obtained from (f / c) 2 = (r ′ 01 / 2pD) 2 + (1 / 2H) 2 . However, r ′ 01 is the first solution obtained by differentiating the 0th order Bessel function.

その後、図3に示す露出面積制御導体33を配置した空洞共振器の共振周波数と無負荷Qを測定した。測定に用いた周波数は、40GHzである。この共振周波数と無負荷Qに基づいて露出面積制御導体33の寸法及び比導電率を計算により求めた。この結果を表1にまとめる。   Thereafter, the resonance frequency and no-load Q of the cavity resonator in which the exposed area control conductor 33 shown in FIG. The frequency used for the measurement is 40 GHz. Based on this resonance frequency and no load Q, the size and specific conductivity of the exposed area control conductor 33 were obtained by calculation. The results are summarized in Table 1.

Figure 0004216739
Figure 0004216739

表1によれば、周波数40GHzにおいて、露出面積制御導体33の開口部の高さgは1.016mm,開口部の直径Dsは8.006mm、開口部の比導電率D#σrは22.7%であった。比導電率は、万国標準軟銅の導電率を100%としたときの値(%)である。
次に、測定された空洞共振器に誘電体基板を装荷して誘電体基板の比誘電率、誘電正接の測定を行った。本測定に用いた誘電体基板(試料)は、厚さが1.006mmのC面サファイア基板である。
According to Table 1, at a frequency of 40 GHz, the height g of the opening of the exposed area control conductor 33 is 1.016 mm, the diameter Ds of the opening is 8.006 mm, and the specific conductivity D # σr of the opening is 22.7. %Met. The specific conductivity is a value (%) when the conductivity of universal standard annealed copper is 100%.
Next, a dielectric substrate was loaded on the measured cavity resonator, and the dielectric constant and dielectric loss tangent of the dielectric substrate were measured. The dielectric substrate (sample) used for this measurement is a C-plane sapphire substrate having a thickness of 1.006 mm.

周波数40GHzでネットワークアナライザを用いて共振周波数および無負荷Qの測定を行い、サファイア基板の比誘電率、誘電正接を計算した結果を表2の上段に示す。また、同じサファイア基板の測定を10GHzにても行った。この結果も表2の下段に示す。   The resonance frequency and unloaded Q are measured using a network analyzer at a frequency of 40 GHz, and the results of calculating the relative dielectric constant and dielectric loss tangent of the sapphire substrate are shown in the upper part of Table 2. The same sapphire substrate was measured at 10 GHz. The results are also shown in the lower part of Table 2.

Figure 0004216739
Figure 0004216739

空洞共振器にサファイア基板を挿入したときの共振周波数を予め計算しておき、横軸比誘電率、縦軸共振周波数のチャートを作成することで測定すべき共振ピークの判別を行うことができる。
表1、表2より、本発明の電気的物性値測定方法においては、空洞共振器本来のTE011モードの共振周波数(40GHz付近)と、サファイア基板を空洞共振器内に配置した後の共振周波数(32Hz付近)との変化が少ないことがわかる。すなわち、1mmの厚みを持つ厚いサファイア試料を、共振周波数を低下させることなく、表2の上段にあるように32GHzで測定可能にした。
The resonance frequency when the sapphire substrate is inserted into the cavity resonator is calculated in advance, and the resonance peak to be measured can be determined by creating a chart of the relative dielectric constant on the horizontal axis and the chart on the vertical axis resonance frequency.
From Tables 1 and 2, in the electrical property value measuring method of the present invention, the resonance frequency of the TE 011 mode inherent to the cavity resonator (around 40 GHz) and the resonance frequency after the sapphire substrate is placed in the cavity resonator. It can be seen that there is little change from (around 32Hz). That is, a thick sapphire sample having a thickness of 1 mm can be measured at 32 GHz as shown in the upper part of Table 2 without reducing the resonance frequency.

サファイアの比誘電率は9.4であることが知られており、本測定結果はこれらと良く一致する。また、サファイア基板の、周波数(GHz)/誘電正接の値が1×106であることが報告されているが、これによると今回の35GHz付近の表2の誘電正接は4.85×10-5となり、これに近い値になっていることが判る。
また、本発明の電気的物性値測定方法によって得た誘電体基板の誘電率と誘電正接より、誘電体基板の抵抗率を計算することができるので、本発明は誘電体基板の抵抗率測定法としても機能する。
It is known that the relative dielectric constant of sapphire is 9.4, and this measurement result agrees well with these. Further, it has been reported that the frequency (GHz) / dielectric loss tangent value of the sapphire substrate is 1 × 10 6 , and according to this, the dielectric loss tangent in Table 2 near 35 GHz is 4.85 × 10 −. It can be seen that the value is close to 5 .
Further, since the resistivity of the dielectric substrate can be calculated from the dielectric constant and dielectric loss tangent of the dielectric substrate obtained by the electrical property value measuring method of the present invention, the present invention is a method for measuring the resistivity of the dielectric substrate. Also works.

本発明の電気的物性値測定方法に用いられる円筒空洞共振器の構造を示す縦断面図(a)、及び電界強度分布図(b)である。It is the longitudinal cross-sectional view (a) which shows the structure of the cylindrical cavity resonator used for the electrical property value measuring method of this invention, and an electric field strength distribution diagram (b). 本発明の誘電体基板の電気的物性値測定方法に用いられる円筒空洞共振器の励振方法の一例を示す説明図である。It is explanatory drawing which shows an example of the excitation method of the cylindrical cavity resonator used for the electrical property value measuring method of the dielectric substrate of this invention. 本発明の露出面積制御導体の比導電率及び寸法を求める方法に用いられる円筒空洞共振器の励振方法の一例を示す説明図である。It is explanatory drawing which shows an example of the excitation method of the cylindrical cavity resonator used for the method of calculating | requiring the specific conductivity and dimension of the exposed area control conductor of this invention. 従来の円筒空洞共振器の構造を示す縦断面図(a)、TE011モードの電界強度分布を示すグラフ(b)、及び平面断面図(c)である。FIG. 4 is a longitudinal sectional view (a) showing a structure of a conventional cylindrical cavity resonator, a graph (b) showing an electric field intensity distribution of a TE 011 mode, and a plan sectional view (c). 中央に誘電体基板を配置した従来の円筒空洞共振器の構造を示す縦断面図(a)、及び電界強度分布図(b)である。It is the longitudinal cross-sectional view (a) which shows the structure of the conventional cylindrical cavity resonator which has arrange | positioned the dielectric substrate in the center, and electric field strength distribution figure (b). 中央に誘電体基板を配置した従来の円筒空洞共振器の構造を示す縦断面図(a)、及びミリ波帯における電界強度分布図(b)である。They are a longitudinal cross-sectional view (a) which shows the structure of the conventional cylindrical cavity resonator which has arrange | positioned the dielectric substrate in the center, and the electric field strength distribution figure (b) in a millimeter wave band.

符号の説明Explanation of symbols

1 誘電体基板(試料)
2a、2b 円筒空洞
32,32a、32b 有底筒状導体
33 露出面積制御導体
34a,34b 同軸ケーブル
35a,35b ループアンテナ
36 導体板
1 Dielectric substrate (sample)
2a, 2b Cylindrical cavity 32, 32a, 32b Bottomed cylindrical conductor 33 Exposed area control conductors 34a, 34b Coaxial cables 35a, 35b Loop antenna 36 Conductor plate

Claims (10)

導体板上に誘電体基板を配置し、
前記誘電体基板上に誘電体基板の露出面積を設定するための開口部を有する露出面積制御導体を配置し、
前記露出面積制御導体上に、有底筒状導体を、その開口端面が該露出面積制御導体に接するように載置して、誘電体を装荷した空洞共振器を構成し、
前記空洞共振器の共振周波数と無負荷Qを測定し、測定された共振周波数と無負荷Qとから、誘電体基板の電気的物性値を求めることを特徴とする誘電体基板の電気的物性値測定方法。
Place a dielectric substrate on the conductor plate,
An exposed area control conductor having an opening for setting the exposed area of the dielectric substrate is disposed on the dielectric substrate,
On the exposed area control conductor, a bottomed cylindrical conductor is placed so that an opening end face thereof is in contact with the exposed area control conductor, and a cavity resonator loaded with a dielectric is configured,
An electrical property value of the dielectric substrate, wherein a resonance frequency and no-load Q of the cavity resonator are measured, and an electrical property value of the dielectric substrate is obtained from the measured resonance frequency and no-load Q Measuring method.
前記測定される共振周波数と無負荷Qは、空洞共振器のTEモードの共振周波数と無負荷Qである請求項1記載の誘電体基板の電気的物性値測定方法。   2. The method for measuring an electrical property value of a dielectric substrate according to claim 1, wherein the measured resonance frequency and no-load Q are the resonance frequency and no-load Q of the TE mode of the cavity resonator. 前記導体板と露出面積制御導体で挟まれた誘電体基板の領域では、前記空洞共振器の共振周波数と同じ周波数を有する高周波信号の伝搬を減衰させるように誘電体基板の厚みが選ばれている請求項1又は請求項2記載の誘電体基板の電気的物性値測定方法。   In the region of the dielectric substrate sandwiched between the conductor plate and the exposed area control conductor, the thickness of the dielectric substrate is selected so as to attenuate the propagation of a high-frequency signal having the same frequency as the resonance frequency of the cavity resonator. 3. A method for measuring an electrical property value of a dielectric substrate according to claim 1 or 2. 前記円筒空洞共振器の温度を変化させ、共振周波数と無負荷Qの温度依存性を測定し、誘電体基板の電気的物性値の温度依存性を求める請求項1から請求項3のいずれかに記載の誘電体基板の電気的物性値測定方法。   The temperature of the cylindrical cavity resonator is changed, the temperature dependence of the resonance frequency and the no-load Q is measured, and the temperature dependence of the electrical property value of the dielectric substrate is obtained. A method for measuring an electrical property value of the dielectric substrate as described. 前記誘電体基板の電気的物性値は、誘電体基板の誘電率及び誘電正接である請求項1から請求項4のいずれかに記載の誘電体基板の電気的物性値測定方法。   The method for measuring an electrical property value of a dielectric substrate according to any one of claims 1 to 4, wherein the electrical property value of the dielectric substrate is a dielectric constant and a dielectric loss tangent of the dielectric substrate. 導体板上に、誘電体基板のない状態で、露出面積を設定するための開口部を有する露出面積制御導体を配置し、
前記露出面積制御導体上に、有底筒状導体を、その開口端面が該露出面積制御導体に接するように載置して空洞共振器を構成し、
前記空洞共振器の共振周波数と無負荷Qを測定し、該共振周波数と無負荷Qから、前記露出面積制御導体の比導電率及び寸法を求め、
前記導体板と前記露出面積制御導体の間に誘電体基板を挟み、
この誘電体基板が装荷された空洞共振器の共振周波数と無負荷Qを測定し、測定された共振周波数と無負荷Q及び前記寸法と比導電率の値から、誘電体基板の電気的物性値を求めることを特徴とする誘電体基板の電気的物性値測定方法。
On the conductor plate, an exposed area control conductor having an opening for setting the exposed area without a dielectric substrate is disposed,
On the exposed area control conductor, a bottomed cylindrical conductor is placed so that the opening end surface thereof is in contact with the exposed area control conductor to form a cavity resonator,
Measure the resonance frequency and no-load Q of the cavity resonator, determine the specific conductivity and dimensions of the exposed area control conductor from the resonance frequency and no-load Q,
Sandwiching a dielectric substrate between the conductor plate and the exposed area control conductor;
The resonance frequency and no-load Q of the cavity resonator loaded with the dielectric substrate are measured, and the electrical property value of the dielectric substrate is determined from the measured resonance frequency, no-load Q, the dimension, and the specific conductivity. A method for measuring an electrical property value of a dielectric substrate.
前記導体板上に露出面積制御導体を直接配置して測定される空洞共振器の共振周波数と無負荷Qは、該空洞共振器のTEモードの共振周波数と無負荷Qである請求項6記載の誘電体基板の電気的物性値測定方法。   The resonance frequency and no-load Q of the cavity resonator measured by directly arranging the exposed area control conductor on the conductor plate are the TE-mode resonance frequency and no-load Q of the cavity resonator, respectively. A method for measuring electrical properties of a dielectric substrate. 前記誘電体基板が装荷された状態で測定される空洞共振器の共振周波数と無負荷Qは、該空洞共振器のTEモードの共振周波数と無負荷Qである請求項6記載の誘電体基板の電気的物性値測定方法。   7. The dielectric substrate according to claim 6, wherein the resonance frequency and no-load Q of the cavity resonator measured with the dielectric substrate loaded are the TE-mode resonance frequency and the no-load Q of the cavity resonator. Electrical property value measurement method. 前記誘電体基板が装荷された空洞共振器の温度を変化させ、共振周波数と無負荷Qの温度依存性を測定し、誘電体基板の電気的物性値の温度依存性を求める請求項6から請求項8のいずれかに記載の誘電体基板の電気的物性値測定方法。   7. The temperature dependency of the electrical physical property value of the dielectric substrate is obtained by changing the temperature of the cavity resonator loaded with the dielectric substrate, measuring the temperature dependency of the resonance frequency and no load Q, and determining the temperature dependency of the electrical property value of the dielectric substrate. Item 9. A method for measuring an electrical property value of a dielectric substrate according to any one of Items 8 to 10. 導体板と、
測定試料となる誘電基板の露出面積を設定するための開口部を有する露出面積制御導体と、
前記露出面積制御導体上に、その開口端面が該露出面積制御導体に接するように載置される有底筒状導体とを備えることを特徴とする誘電体基板の電気的物性値測定用治具。
A conductor plate;
An exposed area control conductor having an opening for setting an exposed area of a dielectric substrate to be a measurement sample;
A jig for measuring an electrical property value of a dielectric substrate, comprising: a bottomed cylindrical conductor placed on the exposed area control conductor so that an opening end surface thereof is in contact with the exposed area control conductor .
JP2004022192A 2004-01-29 2004-01-29 Electrical property value measuring method and measuring jig Expired - Fee Related JP4216739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022192A JP4216739B2 (en) 2004-01-29 2004-01-29 Electrical property value measuring method and measuring jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022192A JP4216739B2 (en) 2004-01-29 2004-01-29 Electrical property value measuring method and measuring jig

Publications (2)

Publication Number Publication Date
JP2005214810A JP2005214810A (en) 2005-08-11
JP4216739B2 true JP4216739B2 (en) 2009-01-28

Family

ID=34905608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022192A Expired - Fee Related JP4216739B2 (en) 2004-01-29 2004-01-29 Electrical property value measuring method and measuring jig

Country Status (1)

Country Link
JP (1) JP4216739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009116301A1 (en) * 2008-03-19 2011-07-21 国立大学法人北海道大学 Complex permittivity measuring apparatus, complex permittivity measuring method and program
JP5451509B2 (en) * 2010-04-27 2014-03-26 京セラ株式会社 Thickness measurement method

Also Published As

Publication number Publication date
JP2005214810A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
Cheng et al. W-band characterizations of printed circuit board based on substrate integrated waveguide multi-resonator method
Costa et al. Waveguide dielectric permittivity measurement technique based on resonant FSS filters
Zhu et al. Accurate characterization of attenuation constants of substrate integrated waveguide using resonator method
Raveendran et al. Complex permittivity extraction of planar dielectrics using a noninvasive microwave transmission line resonant technique
Mohd Bahar et al. Microfluidic biochemical sensor based on circular SIW‐DMS approach for dielectric characterization application
JP4628116B2 (en) Conductivity measurement method
JP4726395B2 (en) Electrical property value measurement method
JP4216739B2 (en) Electrical property value measuring method and measuring jig
JP4247992B2 (en) Semi-coaxial resonator type measuring jig and method for measuring electrical properties of dielectric thin film
JP4530907B2 (en) Method for measuring dielectric properties of dielectric thin films
CN106684520A (en) Multimode substrate integrated waveguide resonator for measuring electrical characteristic of PCB substrate and measurement method for resonator
JP4035024B2 (en) Dielectric constant measurement method
JP3532069B2 (en) How to measure surface resistance
JP4485985B2 (en) Dielectric property measuring method and conductivity measuring method
JP4417736B2 (en) Method for measuring electrical property value of dielectric substrate and jig for measurement
CN114594312A (en) Liquid complex dielectric constant sensor of mutual coupling annular gap resonance structure and measuring method
Kazemi et al. Employing higher order modes in a broadband SIW sensor for permittivity measurement of medium loss materials
JP4373857B2 (en) Electrical property measurement method
CN114660365A (en) 5G dual-band dielectric constant nondestructive measurement method of surface sensor based on double complementary open loops
JP4530951B2 (en) Dielectric constant measurement method and open-ended half-wavelength coplanar line resonator
Han et al. CSRR Metamaterial Microwave Sensor for Measuring Dielectric Constants of Solids and Liquids
Haq et al. Novel Complementary Resonator for Dielectric Characterization of Substrates Based on Permittivity and Thickness
Nazarat et al. Frequency Dependence Measurements of Complex Permittivity of Dielectric Plates Using TE 0m1 Modes in a Circular Cavity
JP5451509B2 (en) Thickness measurement method
Karacan et al. Effects of position and gap orientation of the split ring resonator structure excited by microstrip transmission line on the transmission characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Ref document number: 4216739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees