JP4215596B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP4215596B2
JP4215596B2 JP2003298105A JP2003298105A JP4215596B2 JP 4215596 B2 JP4215596 B2 JP 4215596B2 JP 2003298105 A JP2003298105 A JP 2003298105A JP 2003298105 A JP2003298105 A JP 2003298105A JP 4215596 B2 JP4215596 B2 JP 4215596B2
Authority
JP
Japan
Prior art keywords
conductivity type
well
type
semiconductor substrate
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003298105A
Other languages
Japanese (ja)
Other versions
JP2004040126A (en
Inventor
英夫 千ヶ崎
俊文 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003298105A priority Critical patent/JP4215596B2/en
Publication of JP2004040126A publication Critical patent/JP2004040126A/en
Application granted granted Critical
Publication of JP4215596B2 publication Critical patent/JP4215596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は固体撮像装置の小型化に際し高感度な信号出力を得るための固体撮像装置に関する。   The present invention relates to a solid-state imaging device for obtaining a highly sensitive signal output when the solid-state imaging device is miniaturized.

従来、固体撮像素子は、図5に示すインターライン転送方式のCCD型固体撮像素子が広く用いられている。図5中、103はホトダイオード、104は読み出しゲート、105は垂直電荷転送素子、102は水平電荷転送素子、101は出力回路である。ホトダイオード103で光電変換された信号電荷は所定の期間蓄積された後、読み出しゲート104をオンして、全画素同時に垂直電荷転送素子105に読み出される。ついで垂直電荷転送素子105と、水平電荷転送素子102の中を転送され、出力回路101により電圧に変換されて読み出される。   Conventionally, as a solid-state image sensor, an interline transfer type CCD solid-state image sensor shown in FIG. 5 has been widely used. In FIG. 5, 103 is a photodiode, 104 is a readout gate, 105 is a vertical charge transfer element, 102 is a horizontal charge transfer element, and 101 is an output circuit. After the signal charge photoelectrically converted by the photodiode 103 is accumulated for a predetermined period, the readout gate 104 is turned on and is read out to the vertical charge transfer element 105 at the same time for all pixels. Next, it is transferred through the vertical charge transfer element 105 and the horizontal charge transfer element 102, converted into a voltage by the output circuit 101, and read out.

一般にこのようなCCD型固体撮像装置の出力回路は、水平電荷転送素子から送られてくる信号電荷を浮遊拡散層に入力してその電圧変化を検出する、いわゆる、浮遊拡散層型出力回路が広く用いられている。このような浮遊拡散層型出力回路の一従来例を図6,図7に示す。図6は平面図、図7は図6中の線C−C′の断面図である。図7中の1は低濃度n型シリコン基板、2は低濃度p型ウエル
、3は垂直電荷転送素子に混入するスメアを低減するためのp型第二ウエル、4は電荷転送素子の埋め込みチャネルとなるn型層、5は高濃度n型浮遊拡散層、6はチャネルストッパ、7は絶縁膜、8は局所酸化膜、9はフィールドプレート電極、10は出力障壁電極、11は転送電極、12は出力トランジスタのゲート電極も兼ねるポリシリコン配線、13はAl配線、14は高濃度n型浮遊拡散層5とAl配線13を接続するコンタクト、15はポリシリコン配線12とAl配線13を接続するコンタクトである。また、図6中の16は信号電荷の排出のための高濃度n型拡散層からなるリセットドレイン拡散層、17はリセット電極である。
In general, the output circuit of such a CCD type solid-state imaging device has a wide range of so-called floating diffusion layer type output circuits in which a signal charge sent from a horizontal charge transfer element is inputted to the floating diffusion layer and its voltage change is detected. It is used. One conventional example of such a floating diffusion layer type output circuit is shown in FIGS. 6 is a plan view, and FIG. 7 is a sectional view taken along line CC ′ in FIG. In FIG. 7, 1 is a low-concentration n-type silicon substrate, 2 is a low-concentration p-type well, 3 is a p-type second well for reducing smear mixed in the vertical charge transfer element, and 4 is a buried channel of the charge transfer element. N-type layer, 5 is a high-concentration n-type floating diffusion layer, 6 is a channel stopper, 7 is an insulating film, 8 is a local oxide film, 9 is a field plate electrode, 10 is an output barrier electrode, 11 is a transfer electrode, 12 Is a polysilicon wiring also serving as the gate electrode of the output transistor, 13 is an Al wiring, 14 is a contact connecting the high-concentration n-type floating diffusion layer 5 and the Al wiring 13, and 15 is a contact connecting the polysilicon wiring 12 and the Al wiring 13. It is. In FIG. 6, 16 is a reset drain diffusion layer made of a high concentration n-type diffusion layer for discharging signal charges, and 17 is a reset electrode.

この浮遊拡散層型出力回路は以下の動作により信号電荷を検出する。まず、リセット電極17にリセットパルスを印加し浮遊拡散層5の電圧をリセットドレイン拡散層16に印加されている所定の直流電圧(リセット電圧)と等しい値に設定する。続いて転送電極11にクロックパルスを印加すると水平電荷転送素子
102内を順次転送された信号電荷は、所定の直流電圧が印加された出力障壁電極10を越えて浮遊拡散層5内に流れ込む。この結果、浮遊拡散層5の電圧は信号電荷の流入によって先の基準電圧よりも△Vだけ低下する。この信号電荷による電圧変化はAl配線13を介して接続された出力トランジスタのゲート電極も兼ねるポリシリコン配線12の電圧変化として検出される。なお、通例、ホトダイオードで発生する過剰電荷を基板に逃がすために、n型シリコン基板1にはp型ウエル2に対して逆バイアスが印加される。
This floating diffusion layer type output circuit detects signal charges by the following operation. First, a reset pulse is applied to the reset electrode 17 to set the voltage of the floating diffusion layer 5 equal to a predetermined DC voltage (reset voltage) applied to the reset drain diffusion layer 16. Subsequently, when a clock pulse is applied to the transfer electrode 11, the horizontal charge transfer element
The signal charges sequentially transferred in the 102 flow into the floating diffusion layer 5 over the output barrier electrode 10 to which a predetermined DC voltage is applied. As a result, the voltage of the floating diffusion layer 5 is lowered by ΔV from the previous reference voltage due to the inflow of signal charges. This voltage change due to the signal charge is detected as a voltage change in the polysilicon wiring 12 which also serves as the gate electrode of the output transistor connected via the Al wiring 13. In general, a reverse bias is applied to the n-type silicon substrate 1 with respect to the p-type well 2 in order to release excess charges generated in the photodiode to the substrate.

さて、このような浮遊拡散層型出力回路における検出感度ηはη=δVS
δQS=1/CDで表せる。ここで、δVSは出力電圧の変化量、δQSは信号電荷
の変化量、CD は検出容量である。従って、検出感度ηを大きくするには検出容量CD を小さくしなければならない。図6及び図7に示す浮遊拡散層型出力回路の検出容量CD は構成要素に分別すると、図8の等価回路で表せる。図8中の
J は浮遊拡散層5とp型第二ウエル3間の接合容量、COGは浮遊拡散層5と出
力障壁電極10間の静電容量、CRSは浮遊拡散層5とリセット電極17間の静電容量、CL はAl配線13とフィールドプレート電極9間、或いはp型第二ウエル3間の静電容量、およびポリシリコン配線12とフィールドプレート電極9との静電容量、CDGは出力回路部101におけるポリシリコン配線12とp型第二ウエル3との静電容量でる。これらの成分のうちCOGとCRSの低減法については
、特公昭61−25224 号公報に高濃度n型浮遊拡散層5を出力障壁電極10,リセット電極17より隔てて配置する方法が述べられている。一方、CJ の低減法については、特開昭59−65470号,特開昭62−33463号公報に浮遊拡散層5直下のp型ウエル2を完全に空乏化する方法が述べられている。
Now, the detection sensitivity η in such a floating diffusion layer type output circuit is η = δV S /
It can be expressed by δQ S = 1 / C D. Here, the amount of change .DELTA.V S is the output voltage, .delta.Q S change amount of the signal charge, C D is the detection capacity. Therefore, in order to increase the detection sensitivity η must reduce the detected capacitance C D. Detected capacitance C D of the floating diffusion layer-type output circuit shown in FIG. 6 and 7 when fractionated components, expressed by the equivalent circuit of FIG. In FIG.
C J is the junction capacitance between the floating diffusion layer 5 and the p-type second well 3, C OG is the capacitance between the floating diffusion layer 5 and the output barrier electrode 10, and C RS is between the floating diffusion layer 5 and the reset electrode 17. capacitance, C L is the capacitance between the Al wiring 13 and the field plate electrode 9, or the capacitance between the p-type second well 3, and a polysilicon wiring 12 and the field plate electrode 9, C DG output This is the capacitance between the polysilicon wiring 12 and the p-type second well 3 in the circuit unit 101. The reduction method C OG and C RS of these components, a high concentration n-type floating diffusion layer 5 outputs the guard electrode 10, a method of spaced than the reset electrode 17 described in JP-B-61-25224 ing. On the other hand, as a method for reducing C J , JP-A-59-65470 and JP-A-62-33463 describe a method of completely depleting the p-type well 2 immediately below the floating diffusion layer 5.

しかし、以下の理由により従来の浮遊拡散層型出力回路の検出容量CDの低減はいまだに不十分である。 However, it is still insufficient reduction in the detected capacitance C D of the conventional floating diffusion type output circuit for the following reasons.

従来技術では、CL の低減方法については何ら考慮されていない。従って、本発明の目的はCLを低減することにある。 In the prior art, no consideration for the method of reducing C L. Accordingly, an object of the present invention is to reduce the C L.

本発明の目的を達成するための手段として、フィールドプレート電極9を取り去り、かつ、局所酸化膜8直下のチャネルストッパ6とp型ウエル2を空乏化した。   As means for achieving the object of the present invention, the field plate electrode 9 was removed, and the channel stopper 6 and the p-type well 2 immediately below the local oxide film 8 were depleted.

本発明の目的を達成するための手段により、ポリシリコン配線12のチャネルストッパ6上の寄生容量をなくすことができる。   By means for achieving the object of the present invention, the parasitic capacitance on the channel stopper 6 of the polysilicon wiring 12 can be eliminated.

本発明によれば、従来は局所酸化膜8の上に有ったフィールドプレート電極9を取り去って、局所酸化膜8直下のp型ウエルをポリシリコン配線12に加わるリセット電圧と基板電圧により空乏化することでポリシリコン配線12とAl配線13の寄生容量をなくすことができる。この結果、検出容量CD を大幅に減少させ検出感度の向上が可能となる。 According to the present invention, traditional is removed the field plate electrode 9 there was on the local oxide film 8, the depletion by the reset voltage and the substrate voltage applied to the p-type well immediately below the local oxide film 8 to the polysilicon wiring 12 Therefore, the parasitic capacitance of the polysilicon wiring 12 and the Al wiring 13 can be eliminated. As a result, the detection capacity CD can be greatly reduced, and the detection sensitivity can be improved.

<実施例1>
以下、本発明の第一の実施例を図1から図4により説明する。図1は本発明の第一の実施例の電荷検出部周辺の平面図、図2は図1中のA−A′の断面図、図3は図1中のB−B′の断面図である。図1中、23は垂直電荷転送素子に混入するスメアを低減するためのp型第二ウエル、24はp型第二ウエル23内に設けられた電荷転送素子の埋め込みチャネルとなるn型層、25はポリシリコン配線12とAl配線13を接続するコンタクトである。図3中の26は動作時には空乏化するチャネルストッパ層である。
<Example 1>
A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a plan view of the periphery of a charge detection unit according to the first embodiment of the present invention, FIG. 2 is a sectional view taken along line AA 'in FIG. 1, and FIG. 3 is a sectional view taken along line BB' in FIG. is there. In FIG. 1, 23 is a p-type second well for reducing smear mixed in the vertical charge transfer element, 24 is an n-type layer serving as a buried channel of the charge transfer element provided in the p-type second well 23, Reference numeral 25 denotes a contact for connecting the polysilicon wiring 12 and the Al wiring 13. 3 in FIG. 3 is a channel stopper layer that is depleted during operation.

本浮遊拡散層型出力回路は従来例と同様の動作によって信号電荷を検出する。   This floating diffusion layer type output circuit detects signal charges by the same operation as in the conventional example.

本実施例の構造は以下の製造方法により作成される。すなわち、低濃度n型シリコン基板1上に低濃度p型ウエル2をイオン打ち込みと熱拡散により形成する
。次に、局所酸化膜形成領域以外を窒化膜Aで覆い、ボロンイオン打ち込みによりチャネルストッパ26を形成し、表面酸化により局所酸化膜8を形成する。先の窒化膜Aを除去した後、新たな窒化膜Bをp型第二ウエル23形成領域以外の部分に形成しイオン打ち込みによりp型第二ウエル23を形成する。このとき、局所酸化膜8が在る領域にはイオン打ち込みはなされない。ついで、先の窒化膜Bを残したまま、n型層24の形成領域以外を新たなホトレジストで覆いn型層24をイオン打ち込みにより形成する。この形成法により、p型第二ウエル23とn型層24は、窒化膜Bもしくは局所酸化膜をマスクとして自己整合的に形成される。
The structure of the present embodiment is created by the following manufacturing method. That is, the low concentration p-type well 2 is formed on the low concentration n-type silicon substrate 1 by ion implantation and thermal diffusion. Next, the region other than the local oxide film formation region is covered with the nitride film A, the channel stopper 26 is formed by implanting boron ions, and the local oxide film 8 is formed by surface oxidation. After removing the previous nitride film A, a new nitride film B is formed in a portion other than the region where the p-type second well 23 is formed, and the p-type second well 23 is formed by ion implantation. At this time, no ion implantation is performed in the region where the local oxide film 8 is present. Next, the n-type layer 24 is formed by ion implantation while covering the region other than the formation region of the n-type layer 24 with a new photoresist while leaving the previous nitride film B. By this formation method, the p-type second well 23 and the n-type layer 24 are formed in a self-aligned manner using the nitride film B or the local oxide film as a mask.

次に、全領域をゲート酸化して絶縁膜7を形成した後第一層目のポリシコンを堆積し、パターニングを行って出力障壁電極10,ポリシリコン配線12を形成する。ついで、第二層のポリシコンを堆積とパターニングにより転送電極11を形成する。この後、浮遊拡散層5を設ける領域外をホトレジストで覆いイオン打ち込みにより浮遊拡散層5を形成する。さらに、りんガラス膜を堆積した後、浮遊拡散層5とAl配線13を接続するコンタクト14と、ポリシリコン配線12とAl配線13を接続するコンタクト25を設ける領域外をホトレジストで覆いエッチングにより形成する。次に、Alを堆積してAl配線13を形成する。   Next, the entire region is gate-oxidized to form the insulating film 7, and then the first layer of polysilicon is deposited and patterned to form the output barrier electrode 10 and the polysilicon wiring 12. Next, a transfer electrode 11 is formed by depositing and patterning a second layer of polysilicon. Thereafter, the outside of the region where the floating diffusion layer 5 is provided is covered with a photoresist, and the floating diffusion layer 5 is formed by ion implantation. Further, after depositing the phosphor glass film, a region outside the region where the contact 14 for connecting the floating diffusion layer 5 and the Al wiring 13 and the contact 25 for connecting the polysilicon wiring 12 and the Al wiring 13 are provided is covered with a photoresist and etched. . Next, Al is deposited to form an Al wiring 13.

本実施例によれば以下の効果がある。第一に、図2に示すようにp型第二ウエル23とn型層24は自己整合で形成される。これにより、p型第二ウエル23はn型浮遊拡散層5に印加されるリセット電圧により拡散層24の周辺で完全に空乏化し、接合周辺部分の寄生容量をなくすことができる。   According to the present embodiment, there are the following effects. First, as shown in FIG. 2, the p-type second well 23 and the n-type layer 24 are formed in a self-aligned manner. As a result, the p-type second well 23 is completely depleted around the diffusion layer 24 by the reset voltage applied to the n-type floating diffusion layer 5, and the parasitic capacitance in the peripheral portion of the junction can be eliminated.

第二に、図3に示すようにポリシリコン配線12とAl配線13を接続するコンタクト25をn型層24上に形成した。これにより、フィールドプレート電極9上のポリシリコン配線12の面積を低減しAl配線13とフィールドプレート電極9間、或いはp型第二ウエル23間の静電容量をなくすことができるので
L を減少できる。一方、本発明の構造によれば浮遊拡散層5と同電位のn型層24の面積は増加するが、n型層24直下のp型第二ウエル23とp型ウエル2を完全に空乏化することにより容量の増加はわずかにできる。従って、検出容量CD を低減できる。
Second, a contact 25 for connecting the polysilicon wiring 12 and the Al wiring 13 was formed on the n-type layer 24 as shown in FIG. Thereby, the area of the polysilicon wiring 12 on the field plate electrode 9 can be reduced, and the capacitance between the Al wiring 13 and the field plate electrode 9 or between the p-type second well 23 can be eliminated.
C L can be reduced. On the other hand, according to the structure of the present invention, the area of the n-type layer 24 having the same potential as that of the floating diffusion layer 5 is increased, but the p-type second well 23 and the p-type well 2 immediately below the n-type layer 24 are completely depleted. By doing so, the capacity can be increased slightly. Therefore, it is possible to reduce the detected capacitance C D.

なお、n型層24直下のp型第二ウエル23,p型ウエル2は特開平3−
289173号公報に述べられているような方法でp型第二ウエル23を0.8μm 程度の深さまで浅くすれば、n型基板1に印加される電圧とn型浮遊拡散層5に印加されるリセット電圧により容易に空乏化が可能である。
The p-type second well 23 and the p-type well 2 immediately below the n-type layer 24 are disclosed in
If the p-type second well 23 is shallowed to a depth of about 0.8 μm by the method described in Japanese Patent No. 289173, the voltage applied to the n-type substrate 1 and the n-type floating diffusion layer 5 are applied. It can be easily depleted by the reset voltage.

第三に、従来構造のフィールドプレート電極9を取り去って、かつ、局所酸化膜8直下のチャネルストッパ26とp型ウエル2を空乏化した。図4を用いこの点について更に詳しく説明する。図4は図3中に示す局所酸化膜8直下のp型ウエル2内部最低電位の局所酸化膜8の幅依存性のシミュレーション結果の一例である。図に示すように、例えば、局所酸化膜8の幅を1.8μm 以下とすれば、浮遊拡散層5とポリシリコン配線12に印加されるリセット電圧とn型基板1に印加される逆バイアス電圧により、局所酸化膜8直下のp型ウエル2内部電位は0Vより大きくなり空乏化することが分かる。従って、ポリシリコン配線12とp型ウエル2間の静電容量をなくすことができる。なお、ポリシリコン配線12をゲートとして持つトランジスタのチャネルと拡散層24間の耐圧劣化が生じないようにするためには、素子分離部の最低電位が上記トランジスタのチャネル電圧より低くなるように設定すればよい。
<実施例2>
本発明の第二の実施例を図9ないし図11を参照して説明する。図9は本発明の第二の実施例の電荷検出部周辺の平面図、図10は図9中のE−E′の断面図
、図11は図9中のF−F′の断面図である。図9,図10の中で91はフィールドプレート電極、92は水平電荷転送素子のp型ウエル2の空乏化を容易にするn型ウエルである。
Third, the field plate electrode 9 having a conventional structure was removed, and the channel stopper 26 and the p-type well 2 immediately below the local oxide film 8 were depleted. This point will be described in more detail with reference to FIG. FIG. 4 is an example of a simulation result of the width dependence of the local oxide film 8 at the lowest potential inside the p-type well 2 immediately below the local oxide film 8 shown in FIG. As shown in the figure, for example, if the width of the local oxide film 8 is 1.8 μm or less, the reset voltage applied to the floating diffusion layer 5 and the polysilicon wiring 12 and the reverse bias voltage applied to the n-type substrate 1 are shown. Thus, it can be seen that the internal potential of the p-type well 2 immediately below the local oxide film 8 becomes larger than 0 V and is depleted. Accordingly, the capacitance between the polysilicon wiring 12 and the p-type well 2 can be eliminated. In order to prevent the breakdown voltage degradation between the channel of the transistor having the polysilicon wiring 12 as a gate and the diffusion layer 24, the minimum potential of the element isolation portion is set to be lower than the channel voltage of the transistor. That's fine.
<Example 2>
A second embodiment of the present invention will be described with reference to FIGS. 9 is a plan view of the periphery of the charge detection portion of the second embodiment of the present invention, FIG. 10 is a cross-sectional view taken along line EE ′ in FIG. 9, and FIG. 11 is a cross-sectional view taken along line FF ′ in FIG. is there. 9 and 10, reference numeral 91 is a field plate electrode, and 92 is an n-type well that facilitates depletion of the p-type well 2 of the horizontal charge transfer element.

本実施例は第一の実施例に水平電荷転送素子の空乏化を容易とし転送効率を上げるためのn型ウエル92を設けたものである。しかし、この結果、n型層24とn型シリコン基板1間のパンチスルー耐圧がn型層の周辺で劣化するという弊害が生じる。そこで、フィールドプレート電極91をn型層24の周辺に設けてアイソレーション性能の向上を図った。なお、n型層24から所定の距離を隔ててフィールドプレート電極9を配置すればn型層24から伸びる空乏層を十分に伸ばすことができるためn型層24周辺の寄生容量は生じない。従って、本実施例によれば検出容量CD の低減効果は第一の実施例とほぼ同程度にでき、水平電荷転送素子の転送効率向上との両立ができる。
<実施例3>
本発明の第三の実施例を図12により説明する。本図は第一の実施例の図1のB−B′に対応する部分の断面図である。126は素子分離のためのp型拡散層
、その他の符号は第一の実施例と同様である。本実施例では第一の実施例の局所酸化膜8を取り去り、かつ、p型第二ウエル23より濃度の濃いp型拡散層126だけで素子分離を行うものである。従って、本実施例の動作は第一の実施例と同じである。本実施例によれば局所酸化膜の形成工程をなくすことができる。
In this embodiment, an n-type well 92 is provided in order to facilitate the depletion of the horizontal charge transfer element and increase the transfer efficiency in the first embodiment. However, as a result, there arises an adverse effect that the punch-through breakdown voltage between the n-type layer 24 and the n-type silicon substrate 1 deteriorates around the n-type layer. Therefore, the field plate electrode 91 is provided around the n-type layer 24 to improve the isolation performance. If the field plate electrode 9 is arranged at a predetermined distance from the n-type layer 24, the depletion layer extending from the n-type layer 24 can be sufficiently extended, so that no parasitic capacitance around the n-type layer 24 is generated. Therefore, the effect of reducing the detected capacitance C D according to the present embodiment can nearly equalized in the first embodiment, it is compatible with the transfer efficiency of the horizontal charge transfer device.
<Example 3>
A third embodiment of the present invention will be described with reference to FIG. This figure is a sectional view of a portion corresponding to BB 'in FIG. 1 of the first embodiment. Reference numeral 126 denotes a p-type diffusion layer for element isolation, and the other symbols are the same as those in the first embodiment. In this embodiment, the local oxide film 8 of the first embodiment is removed, and element isolation is performed only by the p-type diffusion layer 126 having a concentration higher than that of the p-type second well 23. Therefore, the operation of this embodiment is the same as that of the first embodiment. According to this embodiment, the step of forming the local oxide film can be eliminated.

さて、以上の実施例ではCCD型撮像素子の浮遊拡散層型出力回路の検出感度向上のために、寄生容量を低減する三つの方法について述べた。一方、寄生容量は、全ての集積回路で動作速度や検出感度を制限する原因である。既述した三つの方法は、全ての集積回路の寄生容量低減効果があることは言うまでもない。特に、配線層下のウエルを空乏化する第三の方法は、広く適応が可能である。以下
、CCD型撮像素子の配線遅延、MOS型撮像素子の配線遅延と感度向上のために本発明の第三の手段を適応した例を述べる。
<実施例4>
本発明の第四の実施例を図13により説明する。図13は図5のD−D′の断面図である。図13中、19はn型光電変換層、20は高濃度p型暗電流抑圧層
、21は垂直電荷転送素子の下層ポリシリコン配線、22は垂直電荷転送素子の上層ポリシリコン配線、93は画素部全領域に設けられn型光電変換層19からn型基板1への過剰電荷の掃きだしを低い印加電圧で行うための第一のn型ウエル、94は二つのn型光電変換層の分離を可能とするための第二のn型ウエルである。
In the above embodiment, three methods for reducing the parasitic capacitance have been described in order to improve the detection sensitivity of the floating diffusion layer type output circuit of the CCD type image pickup device. On the other hand, parasitic capacitance is a cause of limiting the operation speed and detection sensitivity in all integrated circuits. Needless to say, the three methods described above have the effect of reducing the parasitic capacitance of all integrated circuits. In particular, the third method for depleting the well under the wiring layer can be widely applied. An example in which the third means of the present invention is applied to improve the wiring delay of the CCD image sensor, the wiring delay of the MOS image sensor, and the sensitivity will be described below.
<Example 4>
A fourth embodiment of the present invention will be described with reference to FIG. 13 is a cross-sectional view taken along the line DD ′ of FIG. In FIG. 13, 19 is an n-type photoelectric conversion layer, 20 is a high-concentration p-type dark current suppression layer, 21 is a lower polysilicon wiring of the vertical charge transfer element, 22 is an upper polysilicon wiring of the vertical charge transfer element, and 93 is a pixel. The first n-type well 94 is provided in the entire region for sweeping excess charges from the n-type photoelectric conversion layer 19 to the n-type substrate 1 with a low applied voltage, and 94 separates the two n-type photoelectric conversion layers. A second n-type well to enable.

本構造は以下の製造方法により作成される。低濃度n型シリコン基板1上に低濃度p型ウエル2と第一のn型ウエル93をイオン打ち込みと熱拡散により形成する。次に、局所酸化膜の形成領域をホトレジストで覆い、イオン打ち込みと熱拡散により第二のn型ウエル94を形成する。ついで、局所酸化膜の形成領域以外を窒化膜Aで覆い、まず、ボロンイオン打ち込みによりチャネルストッパ6を形成し、続けて表面酸化により局所酸化膜を形成する。先の窒化膜Aを除去した後、新たな窒化膜Bをパターニングし局所酸化膜の形成領域から所定の距離を離してn型光電変換層19をイオン打ち込みと熱拡散により形成する。次に、全領域をゲート酸化して絶縁膜7を形成した後、第一層目のポリシコンを堆積し、パターニングを行って垂直電荷転送素子の下層ポリシリコン配線21を形成する。ついで、全領域を再びゲート酸化して絶縁膜7を形成した後、第二層目のポリシコンを堆積し、前記と同様に上層ポリシリコン配線22を形成する。最後に、先に形成された下層ポリシリコン配線21をマスクにして高濃度p型暗電流抑圧層20をイオン打ち込みと熱拡散により形成する。 This structure is created by the following manufacturing method. A low-concentration p-type well 2 and a first n-type well 93 are formed on the low-concentration n-type silicon substrate 1 by ion implantation and thermal diffusion. Next, the formation area of local oxide film 8 covered with a photoresist to form the second n-type well 94 by ion implantation and thermal diffusion. Next, the region other than the region where the local oxide film 8 is formed is covered with the nitride film A. First, the channel stopper 6 is formed by boron ion implantation, and then the local oxide film 8 is formed by surface oxidation. After the previous nitride film A is removed, a new nitride film B is patterned , and an n-type photoelectric conversion layer 19 is formed by ion implantation and thermal diffusion at a predetermined distance from the local oxide film formation region. Next, the entire region is gate-oxidized to form the insulating film 7, and then the first-layer polysilicon is deposited and patterned to form the lower polysilicon wiring 21 of the vertical charge transfer element. Next, the entire region is gate-oxidized again to form the insulating film 7, and then the second-layer polysilicon is deposited, and the upper polysilicon wiring 22 is formed in the same manner as described above. Finally, the high-concentration p-type dark current suppression layer 20 is formed by ion implantation and thermal diffusion using the previously formed lower polysilicon wiring 21 as a mask.

本実施例では、第一のn型ウエル93がn型シリコン基板1側から表面に空乏層が伸びるのを容易にしている。また、第二のn型ウエル94が横方向に拡散しチャネルストッパ6のp型層の濃度を打ち消し、局所酸化膜8下の表面はn型化している。この結果、下層ポリシリコン配線21に加わえられる駆動時のパルス電圧が通例負値の低電圧VL よりもわずかに高い電圧で局所酸化膜下のp型反転層がなくなりn型シリコン基板1まで全半導体領域が空乏化し、下層ポリシリコン配線21のp型ウエル2に対する静電容量をなくすことができる。これにより、垂直転送素子の時定数が減少し駆動が容易となり高速駆動が可能となる。 In this embodiment, the first n-type well 93 makes it easy for the depletion layer to extend from the n-type silicon substrate 1 side to the surface. Further, the second n-type well 94 diffuses in the lateral direction to cancel the concentration of the p-type layer of the channel stopper 6 and the surface under the local oxide film 8 is made n-type. As a result, the p-type inversion layer under the local oxide film 8 disappears when the pulse voltage at the time of driving applied to the lower polysilicon wiring 21 is slightly higher than the low voltage V L which is usually a negative value. Thus, the entire semiconductor region is depleted, and the capacitance of the lower polysilicon wiring 21 to the p-type well 2 can be eliminated. As a result, the time constant of the vertical transfer element is reduced, driving becomes easy, and high-speed driving is possible.

なお、n型光電変換層19より広く高濃度なp型暗電流抑圧層20を形成することにより、図中X点の電位障壁の高さをY点の電位障壁の高さより高くでき、過剰な信号電荷は直ちにn型シリコン基板1に排出され隣接画素に流れ込むことはない。さらに、第二のn型ウエル94を形成するためのイオン打ち込みを局所酸化膜18の形成領域には行わないことにより上述した隣接画素間の分離は更に強化される。   In addition, by forming the p-type dark current suppressing layer 20 wider and higher in concentration than the n-type photoelectric conversion layer 19, the height of the potential barrier at the point X in the figure can be made higher than the height of the potential barrier at the point Y. The signal charge is immediately discharged to the n-type silicon substrate 1 and does not flow into adjacent pixels. Further, the above-described separation between adjacent pixels is further strengthened by not performing ion implantation for forming the second n-type well 94 in the region where the local oxide film 18 is formed.

さらに、本発明はMOS型固体撮像装置の配線遅延低減や感度向上にも有効である。以下、図14から図16を用いて説明する。図14はMOS型撮像素子の回路構成を示す一例、図15は図14のH−H′部の断面図、図16はG−G′部の断面図である。図14中の201は垂直シフトレジスタ、202は水平シフトレジスタ、203は水平信号線、204は水平スイッチ、205は垂直ゲート線、206は垂直スイッチ、207はホトダイオード、208はAl垂直信号線である。本素子では垂直シフトレジスタ201で選択された垂直ゲート線205に接続されている垂直スイッチ206がオンしてホトダイオード207に蓄積されている信号電荷をAl垂直信号線208に読み出す。ついで、水平シフトレジスタ202選択信号により水平スイッチ204が順次オン・オフして垂直信号線208の信号電荷を順次水平信号線203に読み出す。   Furthermore, the present invention is effective for reducing wiring delay and improving sensitivity of the MOS type solid-state imaging device. Hereinafter, description will be made with reference to FIGS. FIG. 14 is an example showing the circuit configuration of the MOS type image pickup device, FIG. 15 is a cross-sectional view taken along the line H-H 'in FIG. 14, and FIG. 16 is a cross-sectional view taken along the line GG'. 14, 201 is a vertical shift register, 202 is a horizontal shift register, 203 is a horizontal signal line, 204 is a horizontal switch, 205 is a vertical gate line, 206 is a vertical switch, 207 is a photodiode, and 208 is an Al vertical signal line. . In this element, the vertical switch 206 connected to the vertical gate line 205 selected by the vertical shift register 201 is turned on, and the signal charge accumulated in the photodiode 207 is read to the Al vertical signal line 208. Next, the horizontal switch 204 is sequentially turned on / off by the horizontal shift register 202 selection signal, and the signal charges on the vertical signal lines 208 are sequentially read out to the horizontal signal lines 203.

このようなMOS型固体撮像装置における第一の課題はAl垂直信号線208とウエル間の寄生容量により信号が大きく減少し、SNが劣化することである。
<実施例5>
図15はこの課題を解決する本発明の第五の実施例である。図15中の51はn型基板、52はp型ウエル、53はn型受光層、54は高濃度p型暗電流抑圧層、55は絶縁膜、56は局所酸化膜、57はn型ウエル、208はAl垂直信号線である。Al垂直信号線208は正電圧にバイアスされ、n型受光層53のリセット時n型層はAl垂直信号線208のバイアス電圧に等しい。
The first problem in such a MOS type solid-state imaging device is that the signal is greatly reduced due to the parasitic capacitance between the Al vertical signal line 208 and the well, and the SN is deteriorated.
<Example 5>
FIG. 15 shows a fifth embodiment of the present invention for solving this problem. 15, 51 is an n-type substrate, 52 is a p-type well, 53 is an n-type light-receiving layer, 54 is a high-concentration p-type dark current suppressing layer, 55 is an insulating film, 56 is a local oxide film, and 57 is an n-type well. 208 are Al vertical signal lines. The Al vertical signal line 208 is biased to a positive voltage, and when the n-type light receiving layer 53 is reset, the n-type layer is equal to the bias voltage of the Al vertical signal line 208.

本実施例ではn型ウエル57を設けることにより、n型シリコン基板51に印加する正電圧とAl垂直信号線208に印加される正バイアスによって、Al垂直信号線208下からn型シリコン基板51までの半導体領域は空乏化する。この結果、垂直信号線208のp型ウエル52に対する静電容量がなくなり、垂直信号線208の寄生容量が減少するため出力電圧の増大が可能となる。なお、第四の実施例で述べたと同様に、n型受光層53より広く高濃度p型暗電流抑圧層54を形成することにより、過剰な信号電荷が画素部に流れ込むことがない。さらに、この構造により形成される図中Z点の電位障壁によりAl垂直信号線208下に発生する暗電流はn型受光層53に流れ込むことなくn型シリコン基板51に排出されるので空乏化に伴う暗電流の増加を防ぐことができる。
<実施例6>
また、MOS型素子でもCCD型撮像素子の垂直電荷転送素子の場合と同様に配線遅延が問題となる。この問題を解決する第六の実施例を図16により説明する図16中の205は垂直ゲート線である。ホトダイオード207から信号を読み出すときに垂直ゲート線205は正電圧にバイアスされる。n型受光層53のリセット時n型層はAl垂直信号線208のバイアス電圧に等しい。本実施例ではn型ウエル57を設けることにより、n型シリコン基板51に印加する正電圧と垂直ゲート線205に印加される正バイアスによって、垂直ゲート線205下からn型基板51までの半導体領域は空乏化する。この結果、垂直ゲート線205のp型ウエル52に対する静電容量をなくすことができる。これにより、垂直ゲート線205の時定数が減少し高速駆動が可能となり、垂直シフトレジスタ201のドライバ回路の負担が軽減される効果がある。さらに、本発明を水平信号線203下の構造に適応した場合、水平信号線203の寄生容量が減少して出力電圧の増大が可能となる。
In this embodiment, by providing the n-type well 57, from the bottom of the Al vertical signal line 208 to the n-type silicon substrate 51 by the positive voltage applied to the n-type silicon substrate 51 and the positive bias applied to the Al vertical signal line 208. The semiconductor region is depleted. As a result, the capacitance of the vertical signal line 208 with respect to the p-type well 52 is eliminated, and the parasitic capacitance of the vertical signal line 208 is reduced, so that the output voltage can be increased. As described in the fourth embodiment, by forming the high-concentration p-type dark current suppression layer 54 wider than the n-type light receiving layer 53, excessive signal charges do not flow into the pixel portion. Further, the dark current generated under the Al vertical signal line 208 is discharged to the n-type silicon substrate 51 without flowing into the n-type light-receiving layer 53 due to the potential barrier at the point Z in the figure formed by this structure. The accompanying increase in dark current can be prevented.
<Example 6>
Further, in the MOS type element, wiring delay becomes a problem as in the case of the vertical charge transfer element of the CCD type image pickup element. A sixth embodiment for solving this problem will be described with reference to FIG. 16. In FIG. 16, reference numeral 205 denotes a vertical gate line. When reading a signal from the photodiode 207, the vertical gate line 205 is biased to a positive voltage. When the n-type light receiving layer 53 is reset, the n-type layer is equal to the bias voltage of the Al vertical signal line 208. In this embodiment, by providing the n-type well 57, the semiconductor region from the bottom of the vertical gate line 205 to the n-type substrate 51 by the positive voltage applied to the n-type silicon substrate 51 and the positive bias applied to the vertical gate line 205. Is depleted. As a result, the electrostatic capacitance with respect to the p-type well 52 of the vertical gate line 205 can be eliminated. As a result, the time constant of the vertical gate line 205 is reduced, high speed driving is possible, and the burden on the driver circuit of the vertical shift register 201 is reduced. Furthermore, when the present invention is applied to the structure under the horizontal signal line 203, the parasitic capacitance of the horizontal signal line 203 is reduced, and the output voltage can be increased.

なお、第五,第六の実施例で、第四の実施例と同様にチヤネルストッパと第二のn型ウェルを形成し素子分離をより確実にすることもできる。   In the fifth and sixth embodiments, a channel stopper and a second n-type well can be formed similarly to the fourth embodiment to further ensure element isolation.

本発明の第一の実施例を示す固体撮像装置における電荷検出部周辺の平面図。1 is a plan view around a charge detection unit in a solid-state imaging device showing a first embodiment of the present invention. 図1中のA−A′の断面図。Sectional drawing of AA 'in FIG. 図1中のB−B′の断面図。Sectional drawing of BB 'in FIG. 局所酸化膜直下のp型ウエル内部電位の局所酸化膜の幅W依存性の電位解析の一例の説明図。Explanatory drawing of an example of the electric potential analysis of the width W dependence of the local oxide film of the p-type well internal potential directly under a local oxide film. インターライン転送方式のCCD型固体撮像装置のブロック図。1 is a block diagram of an interline transfer type CCD solid-state imaging device. FIG. 従来の固体撮像装置における電荷検出部周辺の平面図。The top view of the electric charge detection part periphery in the conventional solid-state imaging device. 図6中のC−C′の断面図。Sectional drawing of CC 'in FIG. 電荷検出部の対地静電容量を示す等価回路図。FIG. 6 is an equivalent circuit diagram illustrating a ground capacitance of the charge detection unit. 本発明の第二の実施例を示す固体撮像装置における電荷検出部周辺の平面図。The top view of the electric charge detection part periphery in the solid-state imaging device which shows the 2nd Example of this invention. 図9のE−E′の断面図。Sectional drawing of EE 'of FIG. 図9のF−F′の断面図。Sectional drawing of FF 'of FIG. 本発明の第三の実施例を示す固体撮像装置における電荷検出部周辺の断面図。Sectional drawing of the charge detection part periphery in the solid-state imaging device which shows the 3rd Example of this invention. 本発明の第四の実施例を示す図5中の垂直転送レジスタ配線D−D´の断面図。Sectional drawing of the vertical transfer register wiring DD 'in FIG. 5 which shows the 4th Example of this invention. MOS型固体撮像装置のブロック図。The block diagram of a MOS type solid-state imaging device. 本発明の第五の実施例を示す図14中のH−H´部の断面図。Sectional drawing of the HH 'part in FIG. 14 which shows the 5th Example of this invention. 本発明の第六の実施例を示す図14中のG−G´部の断面図。Sectional drawing of the GG 'part in FIG. 14 which shows the 6th Example of this invention.

符号の説明Explanation of symbols

1、51・・n型基板2、52・・p型ウエル、5・・高濃度n型浮遊拡散層、6、26・・チャネルストッパ、126・・素子分離のためのp型拡散層、7、55・・絶縁膜、8、18、56・・局所酸化膜、10・・出力障壁電極、12、21・・ポリシリコン配線、16・・垂直ゲート線、13、208・・Al配線、14、25・・コンタクト、16・・高濃度n型リセットドレイン拡散層、17・・リセット電極、23・・p型第二ウエル、24・・n型層、57、93・・n型ウエル、94・・第二のn型ウエル。
1, 51... N-type substrate , 2 , 52... P-type well, 5... High-concentration n-type floating diffusion layer, 6 , 26. 7, 55, ... Insulating film, 8, 18 , 56 ... Local oxide film, 10 ... Output barrier electrode, 12, 21 ... Polysilicon wiring, 16 ... Vertical gate line , 13, 208 ... Al wiring, 14 , 25 ... Contact, 16... High concentration n-type reset drain diffusion layer, 17... Reset electrode, 23... P-type second well, 24... N-type layer, 57 , 93. 94 .. Second n-type well.

Claims (3)

第1導電型の半導体基板と、該第一導電型の半導体基板上に設けられた第二導電型のウエルと、該第二導電型のウエル上に設けられた絶縁膜を半導体表面に有する素子分離部と、該素子分離部の該絶縁膜上に選択回路により選択され、信号電荷の読み出される配線を具備した固体撮像装置において、前記素子分離部の該絶縁膜下の前記第二導電型のウエル表面に第一導電型のウエルが形成され、前記第二導電型のウエルに対し前記第一導電型の半導体基板にはホトダイオードで発生する過剰電荷排出のための逆バイアスが印加され、前記配線に前記逆バイアスと同極性の電圧が印加され、該配線直下の該素子分離部の該絶縁膜と前記第一導電型の半導体基板間における前記第二導電型のウエルを含む半導体領域が空乏化することを特徴とする固体撮像装置。   An element having a semiconductor substrate having a first conductivity type semiconductor substrate, a second conductivity type well provided on the first conductivity type semiconductor substrate, and an insulating film provided on the second conductivity type well. In a solid-state imaging device including a separation unit and a wiring on which the signal charge is read out and selected by the selection circuit on the insulating film of the element separation unit, the second conductivity type below the insulation film of the element separation unit A well of a first conductivity type is formed on the surface of the well, and a reverse bias is applied to the semiconductor substrate of the first conductivity type with respect to the second conductivity type well to discharge excess charges generated by a photodiode, A voltage having the same polarity as the reverse bias is applied to the semiconductor region including the second conductivity type well between the insulating film of the element isolation portion and the first conductivity type semiconductor substrate immediately below the wiring. It is characterized by Body imaging apparatus. 前記素子分離部は半導体表面にチャネルストッパを備え、該チャネルストッパ下に横方向拡散により形成された第一導電型の第二のnウエルを有することを特徴とする請求項1に記載の固体撮像装置。 2. The solid-state imaging according to claim 1 , wherein the element isolation part includes a channel stopper on a semiconductor surface, and has a second n-well of the first conductivity type formed by lateral diffusion under the channel stopper. apparatus. 第1導電型の半導体基板と、該第一導電型の半導体基板上に設けられた第二導電型のウエルと、該第二導電型のウエル上に設けられた絶縁膜を半導体表面に有する素子分離部と、該素子分離部の該絶縁膜上に電荷転送素子を駆動するための配線を具備した固体撮像装置において、前記素子分離部の該絶縁膜下の前記第二導電型のウエル表面に第一導電型のウエルが形成され、前記素子分離部は半導体表面にチャネルストッパを備え、該チャネルストッパ下に横方向拡散により形成された第一導電型の第二のnウエルを有し、前記第二導電型のウエルに対し前記第一導電型の半導体基板にはホトダイオードで発生する過剰電荷排出のための逆バイアスが印加され、前記配線には前記分離部表面に第二導電型層が形成されない駆動パルス電圧が印加され、前記配線直下の該素子分離部の該絶縁膜と前記第一導電型の半導体基板間における前記第二導電型のウエルを含む半導体領域が空乏化することを特徴とする固体撮像装置。   An element having a semiconductor substrate having a first conductivity type semiconductor substrate, a second conductivity type well provided on the first conductivity type semiconductor substrate, and an insulating film provided on the second conductivity type well. In a solid-state imaging device having an isolation portion and a wiring for driving a charge transfer element on the insulating film of the element isolation portion, the surface of the second conductivity type well under the insulating film of the element isolation portion A well of a first conductivity type is formed, the element isolation portion includes a channel stopper on a semiconductor surface, and has a second n well of the first conductivity type formed by lateral diffusion under the channel stopper; A reverse bias is applied to the semiconductor substrate of the first conductivity type for discharging the excess charge generated by the photodiode with respect to the well of the second conductivity type, and a second conductivity type layer is formed on the surface of the separation portion of the wiring. Drive pulse voltage that is not Is, the solid-state imaging apparatus characterized by depleted semiconductor region including the second conductivity type well between the semiconductor substrate of the device separation section the insulating film and the first conductivity type directly under the wiring.
JP2003298105A 2003-08-22 2003-08-22 Solid-state imaging device Expired - Fee Related JP4215596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298105A JP4215596B2 (en) 2003-08-22 2003-08-22 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298105A JP4215596B2 (en) 2003-08-22 2003-08-22 Solid-state imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04525595A Division JP3648518B2 (en) 1995-03-06 1995-03-06 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2004040126A JP2004040126A (en) 2004-02-05
JP4215596B2 true JP4215596B2 (en) 2009-01-28

Family

ID=31712629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298105A Expired - Fee Related JP4215596B2 (en) 2003-08-22 2003-08-22 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4215596B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584159B2 (en) 2006-02-24 2010-11-17 セイコーインスツル株式会社 Semiconductor device and manufacturing method of semiconductor device
JP5349372B2 (en) * 2010-03-09 2013-11-20 シャープ株式会社 Solid-state imaging device, manufacturing method thereof, and electronic information device

Also Published As

Publication number Publication date
JP2004040126A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4224036B2 (en) Image sensor with embedded photodiode region and method of manufacturing the same
JP4739324B2 (en) Image sensor with embedded photodiode region and method of manufacturing the same
US7402450B2 (en) Solid-state image pickup device
US9559242B2 (en) Back-illuminated type solid-state imaging device
US10249659B2 (en) Solid-state image pickup device
JP5089090B2 (en) CMOS image sensor and manufacturing method thereof
KR101159032B1 (en) Solid-state imaging device
US11600644B2 (en) Photo diode with dual backside deep trench isolation depth
JP5243983B2 (en) Solid-state image sensor with built-in electron multiplication function
JP4215596B2 (en) Solid-state imaging device
JP3648518B2 (en) Solid-state imaging device
JP2008066742A (en) Solid-state imaging device
KR100461971B1 (en) CMOS image sensor with protecting heavy metal ions for reducing dark current
JP2007036119A (en) Solid-state image pickup device, manufacturing method thereof and camera
JPH04299862A (en) Solid-state image sensor
JPH02288266A (en) Solid state image sensor
JPS63194357A (en) Manufacture of solid-state image sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees