JP4215438B2 - Electric clock - Google Patents

Electric clock Download PDF

Info

Publication number
JP4215438B2
JP4215438B2 JP2002056936A JP2002056936A JP4215438B2 JP 4215438 B2 JP4215438 B2 JP 4215438B2 JP 2002056936 A JP2002056936 A JP 2002056936A JP 2002056936 A JP2002056936 A JP 2002056936A JP 4215438 B2 JP4215438 B2 JP 4215438B2
Authority
JP
Japan
Prior art keywords
signal
detection
phase
transmission
modulation member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002056936A
Other languages
Japanese (ja)
Other versions
JP2003255061A (en
Inventor
滋 諸川
正己 福田
伸一 小峰
良樹 岩倉
清貴 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2002056936A priority Critical patent/JP4215438B2/en
Priority to DE60318689T priority patent/DE60318689T2/en
Priority to PCT/JP2003/002493 priority patent/WO2003074976A1/en
Priority to EP03743595A priority patent/EP1482282B1/en
Priority to US10/493,898 priority patent/US7436737B2/en
Publication of JP2003255061A publication Critical patent/JP2003255061A/en
Application granted granted Critical
Publication of JP4215438B2 publication Critical patent/JP4215438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Electromechanical Clocks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は時刻やカレンダ情報を機械的に表示する水晶発振式の電気時計において、輪列等の角度回転位置を電場検出により検出し、電子回路で構成された電気計時機構による電気的保持時刻で制御する構造に関する。
【0002】
【従来の技術】
従来、低電力動作の水晶時計の機構が確立され、小容量の1次電池式時計の他、ソーラーセルと2次電池の組合せによる光発電式水晶腕時計、あるいは機械回転錘発電機構と2次電池による機械式発電腕時計等、時計の周囲環境からエネルギを採取した僅かなエネルギで作動する、環境発電式水晶腕時計が実用化されている。1年〜3年間にわたり正確に時刻を刻む水晶腕時計は、携帯の簡便さと安価な価格のために広く世界に普及したが、1次電池の使い捨ては多大な資源消耗になるという欠点があった。
【0003】
また、周囲環境エネルギの採取と蓄積による発電式電気時計は、資源消耗を防ぐ利点があるが、採取エネルギに余裕がなく、蓄電エネルギの欠乏は時刻保持に対する信頼性を損なうという潜在的問題があった。特に、指針式の腕時計においては、エネルギ消費を出来るだけ少なくするため、最小限の駆動トルクで輪列車を駆動している。そのため、衝撃や磁力などの外乱を受けて変換機の駆動ミスが発生し、指針表示時刻にズレが発生してしまう恐れがあり、また指針表示時刻のズレを防止するため、指針の大きさに制限があるという欠点があった。
【0004】
また、機械的指針で時刻を表示する水晶時計のカレンダ表示機構においては、日付表示部の月末処理が問題であった。ほぼ2ヶ月毎に日付を手動で修正して用いる事は実用的でなく、かといって日付部のみ電気光学的表示にすると、時刻表示面のデザイン上の違和感が生じるという欠点があった。これを複雑な機械機構で解決する事は出来るが、組立コストが高く、また機械機構が複雑なため、長期間安定動作における動作信頼性が低下する。また、消費電力は増加し、環境採集エネルギ無停止動作させる事が困難になるという欠点があった。
【0005】
上記欠点を解決する為には、指針式表示時刻やカレンダ表示の機械的基準位置を検出する機能が必要である。従来行なわれてきた構造としては、回転輪列の一部に機械的接触スイッチ機構をもったものや、発光素子と受光素子を、穴を有した回転輪列を挟んで配置して、回転時の穴の有無を光学的センサによって検出する手段を採用した腕時計等が実現化されている。また、指針や輪列等と位置検出部材との間の静電容量値や磁力の絶対量が、回転駆動によって変化する値を読み取る構成等も、いくつか考案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、今まで製品化されたり考案されたりした位置検出機構にはそれぞれ多大な問題点を有していた。
前記機械的接触スイッチを利用した位置検出機構は、輪列等の回転駆動部材に接触して位置を検出するため、駆動エネルギに対して負荷がかかる構造であり、モータの駆動力をぎりぎりまで削減している電子腕時計には向かない。特にエネルギ収支に余裕の少ない充電式時計には問題があり、位置検出を行なうためにかえって位置ズレ発生の原因にもなりかねず、また、接触式のスイッチ機構は接触部材の磨耗劣化の恐れがあり、信頼性が低いという欠点があった。
【0007】
また、光学式スイッチを利用した構造においては、発光素子と受光素子を回転駆動する部材の上下面に配置する必要があるので、時計の厚みが増してしまうという欠点があった。この為、機能時計マニア向けの厚みのある電波修正腕時計や置き時計や掛け時計等への適用実績があるが、通常の薄型腕時計への適用は不可能で合った。また発光ダイオードなどの光学素子を作用させる為にはかなりの消費電力が必要となり、そのため一日に一回程度の検出頻度しか応用できない。さらに発光の為にはある一定以上の駆動電圧が必要なため、電源電圧の変動の大きい充電式時計には適合しづらいという欠点があった。
【0008】
また、指針や輪列等と位置検出部材との間の静電容量値や磁力の絶対量の変化を検出する構成については、腕時計サイズの位置検出部品から検出される容量等の変化量は微小であり、構成部品の携帯姿勢による位置変化や、外部環境からの影響を受けやすく、位置検出の信頼性は極めて低いという欠点があり、現実的には実用化されていない。
【0009】
本発明の目的は、機械的計時機構の動作の高信頼性化のための、薄型構造で輪列歯車あるいは指針位置の検出を実現する無接点式の機械的位置検出機構の実現で、接点式検出機構持つの経時変化による接点不良問題を回避し、従来の機械式計時機構の水晶時計の限界を越える高信頼性を確保することにある。また発光素子と受光素子による無接点検出機構に比較して薄型の機構とし、更にコスト的に安価にし、また検出機構の発光素子が必要とする閾値電圧による回路構成部品に要求する高電圧制約条件を解除して蓄電素子の電圧で直接時計システムを駆動出来るようにすることを目的とする。また、機械的保持時刻と電気的保持時刻との時刻差異の検出を確実にし、秒針制御の精密な位置検出から日板検出の誤差を許容する検出まで多数点の位置検出を包含する、高信頼性の安価な位置検出機構を実現することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するための本発明の要旨は、回転体の角度回転位置の検出機構を有する電気時計において、電場をキャリアとする複数の送信信号を整形する送信回路機構と、該送信回路機構により成形された前記送信信号を出力する送信電極と、該送信電極と非接触に近接配置され、回転または往復運動により前記複数の送信信号に変調を与える信号変調部材と、該信号変調部材と非接触に近接配置され、該信号変調部材によって変調された前記複数の送信信号を受信する受信電極と、該受信電極に受信した受信信号を入力する受信回路機構と、該受信回路機構に受信した前記受信信号の電場伝搬特性により、前記信号変調部材の機械的位置情報を検出する検波回路機構とを備え、前記検波回路機構は、位相基準信号に対して前記信号変調部材によって変調された受信信号との位相差をパルス幅とするパルス信号を出力するパルス発生手段と、位相基準信号に対して前記受信信号の位相の遅れ進みを検出して出力する遅れ進み検出手段と、該遅れ進み検出手段の出力により、前記パルス信号のパルス幅に比例した電荷量のコンデンサへの充電あるいは放電を切り替える、充放電切り替え手段と、前記コンデンサの端子電圧を予め設定された電圧と比較し出力する電圧検出手段と、を有する事を特徴とする。
【0011】
前記検波回路機構は位相検波回路機構であり、前記変調部材によって変調された受信信号の位相情報から前記信号変調部材の機械的位置情報を検出することを特徴とする。
【0012】
前記検波回路機構は振幅検波回路機構であり、前記変調部材によって変調された受信信号の相対的強度情報から前記信号変調部材の機械的位置情報を検出することを特徴とする。
【0013】
前記検波回路機構は位相検波回路機構と振幅検波回路機構とを共に備え、前記信号変調部材によって変調された受信信号の相対強度情報から前記変調部材の機械的位置情報の検出範囲を概略定め、前記信号変調部材によって変調された受信信号の位相情報から前記信号変調部材の位置情報を検出することを特徴とする。
【0014】
前記複数の送信信号は、位相の異なる同一周波数信号である事を特徴とする。
【0015】
前記複数の送信信号は、周波数の異なる同期関係にある信号である事を特徴とする。
【0016】
前記複数の送信信号は、正弦波または正弦波と近似形状の波形である事を特徴とする。
【0017】
前記位相検波回路機構は位相検波の基準となる位相基準信号に対して、前記変調部材によって変調された受信信号の位相が進んでいるか、あるいは遅れているかによって位相検波の出力の電圧を変化させる事を特徴とする。
【0019】
前記信号変調部材は、形状もしくは構成部材の一部を電気伝導度あるいは誘電率が他の部分と異なる構造とした事を特徴とする。
【0020】
前記信号変調部材は、導電性の金属材料から成り、その一部に穴または切欠または凹凸形状を有する構造とした事を特徴とする。
【0021】
前記信号変調部材は、プラスチック等の非導電性部材と、導電性の金属材料から成り、該金属材料の一部に穴または切欠または凹凸形状を有する構造とした事を特徴とする。
【0022】
前記信号変調部材は、プラスチック等の非導電性部材から成り、該非導電性部材の一部に、金属メッキを施した事を特徴とする。
【0023】
前記信号変調部材は、電気機械変換機によって駆動される回転運動を指針表示まで伝達する輪列の一部で構成され、前記信号変調部材の機械的位置情報によって、前記輪列の基準位置を検出する機構を有する事を特徴とする。
【0024】
前記信号変調部材は、電気機械変換機によって駆動される回転運動を日付表示まで伝達する輪列の一部または日付表示板で構成され、前記信号変調部材の機械的位置情報によって、日表示板の基準位置を検出し、時計回路に保持された電気的カレンダ情報によって、小の月の月末非存日を自動的に排除する月末自動修正機能を有する事を特徴とする。
【0025】
【発明の実施の形態】
まず、図1から図5によって、本発明の基本動作について説明する。
図1は本発明の信号変調構造の概略を示す略平面図であり、図2は図1の略断面図である。図1および図2において、送信電極1と2は信号変調部材である回転体3を挟んで受信電極4と対向配置しており、送信電極1、2と回転体3、及び回転体3と受信電極4はそれぞれ非接触に近接配置されている。そして送信電極1,2の送信信号は穴5を通じて電気力線が送信電極1と2の両方から受信電極4まで届くように構成されている。回転体3は例えば腕時計輪列の歯車のような物であり、金属あるいはプラスチックに金属被膜をつけた材質から成り、導電性を有する。回転体3は、図示されていない軸またはその他の部分で電気的接地をとっている。
【0026】
6は電場をキャリアとする複数の送信信号を整形する送信回路機構を示す送信回路で、該送信回路6によって2種類の、例えば位相の異なる同一周波数の正弦波の送信信号φA、φBを成形し、送信電極1からは送信信号φAを、送信電極2からは送信信号φBを出力する。前記送信信号φA、φBは、送信信号φA、φBに変調を与える回転体3を介することにより受信電極4で受信信号φCとして受信される。
【0027】
受信信号φCは、振幅において送信信号φA、φBより大幅に低下するものの、送信信号φAとφBの合成電場から誘導される電位であるために、送信信号φAとφBが等しい周波数ならば受信信号φCの周波数も等しく、送信信号φAとφBの間に位相差があると受信信号φCはその間の位相をとる。回転体3の回転移動と共に穴5が移動し、送信電極1と送信電極2と受信電極4の空間的な相対位置関係が変化し、受信電極4近傍の電場の重ね合わせにより、誘起される受信電極4の交流信号の振幅と位相が変化する。つまり回転体3の穴5の位置が回転体5の回転角度θに応じて、送信電極1及び2と受信電極4との空間的関係が変化する事により、受信信号φCの位相及び振幅は空間位置θの関数として変化する。
【0028】
受信信号φCを受信回路機構7で増幅すると、正弦波信号の振幅の大きな所が飽和して台形波状になり、さらに増幅すると矩形波状の検出信号Pcになる。この場合でも位相情報は保存されるので、同期検波により位相情報を容易に抽出出来る。この手法は高音質のFM放送の仕組みと同等である。異なる所は、放送局が送信時に既に周波数変調あるいは位相変調と変調済で送信するのに対し、本発明の構成は受信信号の位相変調が、送信電極と受信電極の間の伝送路の電磁的構造である回転体の機械的変化により行われる所である。時計機構内部の雑音や回路雑音による擾乱が位相検波手段により効率的に除去される所はFM放送と同様である。
【0029】
検出信号Pcは検波回路機構8に入力し、受信した受信信号φCの電場伝搬特性により回転体3の機械的位置情報を得る。該検波回路機構8は、位相情報を検波する位相検波回路機構でも良いし、振幅情報を検波する振幅検波回路機構でも良い。また、受信信号の相対強度情報を振幅検波回路機構によって検出して機械的位置情報を概略定め、受信信号の位相情報を位相検波回路機構によって検出して機械的位置情報を決定する方式でも良い。
【0030】
図3は図1および図2に示す実施の形態による、受信信号φCの変調経過を示す波形図である。穴5の位置が送信電極1および2から離れている時は、送信電極1に印加される送信信号φAの対接地電圧と、送信電極2に印加される送信信号φBの対接地電圧とが発生する電気力線が、導電性の回転体3で遮蔽される。この状態では、受信電極4に誘起される対接地電圧は、図3(a)に示すように極めて小さい振幅の信号となる。この状態では残留位相情報も無意味な雑音成分が大部分を占めている。
【0031】
その後回転体3が回転して、穴5が図2に示す如く送信電極1と受信電極4の間に位置した時は、受信電極4には送信電極1の対接地電圧は伝達するが、送信電極2の対接地電圧は回転体3に遮蔽されて伝達しない。つまり受信信号φCは図3(b)に示す如く振幅は小さいが送信信号φAとほぼ同位相の信号となる。
【0032】
さらに回転体3の回転が進み穴5が図2の矢印の方向に移動して、図1の様に送信電極1と送信電極2の中間に位置した場合は、受信電極4には送信信号φAと送信信号φBが合成された信号が伝達するため、図3(c)に示すように、受信信号φCは、送信信号φAと送信信号φBの中間位相の信号となる。
【0033】
さらに続けて回転体3が回転して穴5が送信電極2と受信電極4の間に位置した時は、送信信号φBだけが受信電極4に伝達するので、受信信号φCは図3(d)に示すように送信信号φBとほぼ同位相の信号となる。
【0034】
つまり回転体3の穴5が送信電極1、2の近傍から離れている時は受信信号φCは殆ど振幅の無い状態であり、回転体3が回転を続け送信電極1、2を通過する時は、受信信号φCは振幅をもった信号を伝達し、受信信号φCの位相は送信信号φAの位相から送信信号φBの位相へ除除に変化していく。この受信信号φCの位相変化、または振幅変化、さらにその両方を検波する事によって、回転体5の基準位置を検出する事ができる。
【0035】
図1および図2の構造では、穴5の近接を受信信号φCの振幅で検出し、一定以上の振幅の場合受信信号φCの位相検波情報を正当なものとする判断して回転体3の位置検出を行なう事が容易に出来る。受信信号φCが一定以下の振幅では公知のスケルチ回路を働かせて穴位置検出回路動作を停止する。導電性の回転体3を用いる場合、受信信号φCに対する送信信号φAおよびφBの遮蔽効果は大きいので、上記スケルチ動作を利用し易い。なお、スケルチ回路の具体的構成は後で詳述する。
【0036】
前述のように受信信号φCの位相は、送信信号φAとφBの間の値をとり、同振幅も回転体3の機械的位置の関数として変化する。これは電場を表現する三角関数の合成公式から簡単に導出される。以降、交流信号φAとφBを特に時刻tを変数とする角速度ωの時間の周期関数として表現する場合にはφA(ωt)あるいはφB(ωt)の如くし、略記する場合にはφAとφBの如くして用いる事とする。また、位相の異なる二つの送信信号による基準位置検出について説明したが、周波数の異なる信号による位置検出も可能である。
【0037】
次に受信信号φCの、振幅と位相の関係について図4によりさらに説明を続ける。図4(a)および図4(b)に、送信信号φA、φBが同一周波数で異なる位相の場合の、受信信号φCの位相と振幅の関係を示す。図4(a)は、受信信号φCを、Cos(ωt)をx軸に、Sin(ωt)をy軸にベクトル表示した図である。
【0038】
図4(a)において、穴5が送信信号φAを送信する送信電極1の真下に位置した時の受信信号φCをPs(a)、送信信号φBを送信する送信電極2の真下に位置した時の受信信号φCをPs(b)、送信電極1と送信電極2の中間位置にある時の受信信号φCをPs(m)として表している(s=1、2、3)。
【0039】
P1(a)→P1(m)→P1(b)の径路31は、送信信号φAとφBの位相差がπ/2の場合のベクトル軌跡を示し、同様にP2(a)→P2(m)→P2(b)の径路32は、送信信号φAとφBの位相差が3π/4の場合のベクトル軌跡を示し、P3(a)→P3(m)→P3(b)の径路33は、送信信号φAとφBの位相差がπに近接した場合のベクトル軌跡を示し、各径路途中の点をPs(x)であらわす。
【0040】
各経路上の点Ps(x)での検出電圧の振幅は、点O→点Ps(x)のベクトルの長さが示している。但し受信信号φCの振幅に関しては、相対値で表現している。また、各経路上の点Ps(x)での検出電圧の位相は、x軸への投影長さの成分で示している。例えば送信信号φAとφBの位相差がπである径路33では、π/2位相が進み、振幅は円の半径rと等しいP3(a)の状態からスタートし、P3(m)で位相0、振幅小の状態を通過して、P3(b)のπ/2位相が遅れ、振幅は円の半径rに等しい位置まで移動する。
【0041】
図4(b)は上述の位相と振幅の関係を、回転体3の回転角度の関数として、それぞれ個別に表した図である。図4(b)において、横軸は回転体3の穴5の移動距離、縦軸は振幅および位相を表している。送信信号φAとφBの位相差が、π/2、3π/4、約πの時、振幅の径路はそれぞれ34、35,36、位相の径路はそれぞれ37、38、39の線で示す。
【0042】
図4(b)に示すように、送信信号φAとφBの位相差がπ/2を越えてπまで増加するにつれて振幅変動が大になり変調位相差も大になる。
送信信号φAとφBの位相差がπに近づくと、受信信号φCの振幅は双峰特性を示し、峰と峰の中間の振幅が低下して位相情報検出に支障が生じるので、位相差がπよりある程度小に設定するほうが良い。実際上、受信振幅が大きくなる回転角度位置での受信信号位相情報のみを抽出して用いる工夫が必要である。但し、振幅変動は、振幅が極端に小にならない限り飽和増幅により問題なく補って一定にする事が可能である。
【0043】
また、位相検出ではなく振幅の変化を位置検出に用いる場合には、送信信号φAとφBの位相差をπに近づける事で穴中心位置付近での受信信号φCの振幅関数の急峻性を利用する事ができる。つまり回転体3の回転が進むにつれ、振幅の大きい位置を検出した後、急激に振幅が減少し、また急激に振幅が増大する変化を検出すれば、基準位置の検出を行うことができる。
【0044】
複数送信信号の満たすべき要件の一つは、直交関係にある複数の交流ベクトル信号成分を含み、受信電極のベクトル和の振幅が常に0にならない事である。一つの電極にSin(ωt)を印加する場合、他の電極にはこの信号に直交するCos(ωt)成分あるいはその高調波成分が含まれている必要がある。従って2つの送信電極を用い、
φA=Sin(ωt−α/2)
φB=Cos(ωt+α/2) ;(ωとαは定数、tは時間)
として位相差αを設定する場合には、α>πとする必要がある。
【0045】
両信号は必ずしも直交関係になくとも良いが、直交ベクトル成分を含む必要がある。直交成分が周波数を異なるもの、例えば
φA=Sin(ωt+β)
φB=Sin(n×ωt+γ);(n=2、3、4・・・;βとγは定数)
とした場合に、送信信号φAとφBの検出に両信号を作成する基になった共通の信号を位相基準に用いた同期検波回路を行い、差動増幅回路を用いて両同期検波出力信号の差から位置検出信号を抽出する。
【0046】
次に、複数の送受信信号の各種の伝達経路構造について、図5を用いて説明する。図5は、位置情報検出信号の伝達径路についての説明図であり、図5(a)〜図5(d)まで5種類の実施の形態を示す。
【0047】
図5(a)は、複数の送信電極51、52と、単一の受信電極55からなる構造の説明図である。送信電極51、52から位相または周波数の異なる送信信号53、54を回転体500の穴を通過して受信電極55へ合成して伝達する。つまり同一周波数で異なる位相の信号、あるいは異なる周波数の信号を複数の送信電極51、52からそれぞれ送信し、受信電極側では単独の受信電極55により受信し、該複数伝送経路間の伝送特性の差異を比較し、機械的な回転体500の位置の関数として差異を抽出する。特に、位相復調の送受システムにより外乱電場雑音の影響を抑圧して正確な輪列位置測定が出来る。これは音質が良好で雑音電波に強いFM(周波数変調=等価的に位相変調)放送システムに対応している。
【0048】
図5(a)の構造は本発明の位置検出機構の、適合性の高い第一候補である。位相差のある複数交流電場を同時送信して受信電極近傍電場の位相差の変化を検出する構成は、以下に述べるように検出感度と信頼性が高い。送信電極51、52からは数kHzの周波数で数十度〜百数十度の位相オフセットの複数の正弦波信号を電場として送信し、受信電極55では位相と振幅が回転体で変調された信号を受信し、検波し分析する。
【0049】
送受信をタイミングをずらせて行い、受信情報を記憶回路に記憶し、後から受信した複数データを比較する手法も可能であるが、回路雑音と演算誤差から、異伝送路の信号差分演算は伝送路空間内で同時に済ませ、同差分を検出する方法の方が優れている。同時送信の場合は伝送路の重なりと受信電極共通化のために干渉電場を発生でき、受信電極55上では送信信号53、54の重ね合わせ干渉の結果、位相と振幅が変調された信号が得られる。この電磁波の干渉による差分は電磁気の重ね合わせの原理で行われるので雑音発生がなく、S/N(=信号対雑音比)劣化問題が生じない優れた方法である。このように、回転体500を電磁波の鋭敏な位相変調機構として用いる所は本発明の特徴である。
【0050】
複数送信を互いに異なるタイミングで送信する方式も考えられる。この場合の受信電極55には単独の正弦波信号が受信されるだけであるが、同一時計システム内部であるので送信元の信号を基準に用いて伝達された受信信号の精密な位相測定を行う事が可能であり、時間軸上の異なるタイミングで受信された異なる送信電極からの信号の位相の精密測定が出来る。しかし、微小信号の位相及び振幅の差分を取る回路的処理を受信回路経由後に行う事になるので、S/N(=信号対雑音比)の点では、伝送路上で重ね合わせの原理を利用して直接差分処理が出来る、同時送信同時受信の構成に対比して劣るものになる。
【0051】
図5(b)は、複数の送信電極56、57と、複数の受信電極60、61からなる構造の説明図である。送信電極56、57から位相または周波数の異なる信号58、59をそれぞれ送信し、回転体500の穴を通過して受信電極60、61へ別々に伝達する。
【0052】
つまりこれは複数の受信電極56、57から、複数伝送経路間の伝送特性の差異を比較し、測定分析する方式である。単一送信電極と単一受信電極の伝送路の測定では、輪列の機械的ながたつきによる誤差がそのまま検出されるために検出誤差が大きく、測定結果の信頼性がかなり低下する。検出は振幅変調でも位相変調でも可能であるが、受信信号の差分作成と比較を、受信電極60、61の後の回路処理で行うために、回路の内部雑音の影響を受けやすく、図5(a)で前述した、空間からいきなり差分信号を抽出する複数電極同時送信で単一受信電極同時検出する機構に比較すると、位置検出の感度が低下する傾向がある。
【0053】
図5(c)は、単一の送信電極62と、複数の受信電極65、66からなる構造の説明図である。送信電極62から複数の信号63、64を送信し、回転体500の穴を通過して受信電極65、66へ伝達する。
【0054】
つまり、単1送信電極62に対して複数の受信電極65、66を備え、該複数受信電極65、66に誘起される複数信号の相互比較を行う構成である。受信のタイミング及び比較のタイミングは複数受信電極65、66について同時である必要はない。周波数が等しく位相はほぼ等しい信号であるから、雑音除去のために送信信号基準で同期検波してフィルタリングするホモダイン検波手法がとられる。電極数が減らないわりに検出精度が低くなるので利点は少ない。
【0055】
しかし複数の送信信号63、64を作る回路的複雑さは減る。また複数の受信電極65、66による複数の輪列部材の位置検出を行う場合には、時分割して、順次送信電極62と受信電極65、66を群に分類して時分割切替を行う構成が実現でき、このような場合には、単1送信電極62で複数受信電極65、66とする構成も日板位置検出など誤差許容範囲の大きい検出部分には充分成り立つ。
【0056】
図5(d)は、単一の送信電極69と、単一の受信電極70からなる構造の説明図である。単一の送信電極69から周波数の異なる同期関係にある信号68、67を送信し、回転体500の穴を通過して受信電極70へ伝達する。
【0057】
つまり、一対の送信及び受信電極を回転体500近傍に配置し、異なる周波数のキャリア電波を該送信電極69から送信して受信電極70で同時あるいは時間的に近接した別時刻に受信し、各周波数に対応する伝送特性データを同一回転体の位置で相互比較して伝送特性の差異の変化を輪列回転位置の関数として採取し、回転体500の位置を推定する方式が可能である。電極の数が2で済む利点がある。
【0058】
図5(e)は、送信電極と受信電極を同一電極とした構造の説明図である。送受信電極71から周波数の異なる信号72、73を送信し、その信号は回転体500の近傍を経由して再び送受信電極71で受信する。
【0059】
つまり、送信電極と受信電極を兼用して一つだけ用意し、高出力インピーダンス素子を介して定電圧駆動回路により該電極を複数の異なる周波数の交流電源で駆動し、回転体に近接した送受信兼用電極71の電極電圧と位相を基の定電圧駆動回路の電圧及び位相と比較する。駆動集積回路の出入力端子と該集積回路内部の定電圧駆動回路とで変化を検出する。あるいは異なる周波数で同時にあるいは時間的に近接して間欠的に複数回測定し、送受信電極の電磁的負荷特性の周波数依存性から回転体500の機械的位置情報を採集する。
【0060】
検出感度は低いが、検出のための電極数が一つで良いために小型化の利点がある。高インピーダンス素子は、時計用集積回路内に形成した高抵抗を用い、集積回路外部の湿度や電磁場の影響を押さえる。検出感度低下及び輪列のがたつきの影響は免れないが、掛け時計や置き時計など、体積的に余裕がある場合には十分利用可能である。
【0061】
上記説明したいくつかの輪列位置検出構造を総括して整理すると、輪列近傍に配置した電極により、複数伝送経路経由で検出される異なる電磁波成分の差異の変化を機械的輪列の回転移動位置の関数として検出して輪列の位置情報を得る。要点は輪列位置を空間的あるいは時間的に異なる伝送路で、複数種の交流電場をキャリヤ信号として送信し、少なくとも一部共通の検出部材で該電場を変調させ、伝送特性の差異を伝送空間中で発現させて空間から直接差異を検出する。実際の時計の機構では、機構の簡素化と体積縮小と厚み圧縮と組立調整コスト低下と部材費用圧縮と駆動検出集積回路コスト圧縮の要請があり、これらの制約下で最適化を図る。このために複雑な構造は許されず、また測定精度及び信頼性の低下も許されない。
【0062】
続いて、本発明を腕時計の秒針の針位置検出機構に用いた場合の実施の形態について説明する。図6は、秒針の位置検出機構を有する輪列部分の斜視図である。図6において、46は電気機械変換機構のロータの回転を減速伝達する五番車である。五番車46は、四番車47および信号変調部材である検出車43に同減速比の回転を伝える。四番車47には秒針48が固定され、秒情報の表示を行なう。四番車47と検出車43は、1回転を60ステップ、つまり1ステップ6度毎の、同期したステップ運針をおこなう。
【0063】
検出車43は導電性を有する金属部材からなり、図示していないが軸受部分で接地している。また、検出車43の歯車部には穴45を有している。検出車43は回転方向に対して、穴45によって電気伝導度あるいは誘電率が他の部分と異なる構造となっている。また、検出車43の穴45は、穴形状で無くても、回転によって歯車上下面の電極との距離が変化する構造であれば、切欠け形状でも良いし、歯車の断面方向の凹凸でも良い。検出車43の歯車の上側には送信電極41、42、下側には受信電極44が対向して非接触に近接配置している。
【0064】
検出車43が1ステップづつ回転する度に送信電極41、42から位相の異なる正弦波信号を送信する。信号波形は完全な正弦波形状でなくても、近似形状の波形でも良い。例えばある基準信号に対して送信電極41は45度位相の進んだ正弦波信号φAを、送信電極42は45度位相の遅れた正弦波信号φBを送信する。
【0065】
送受信電極付近に穴45が無い状態では、電気的に接地された検出車43によって遮蔽されどちらの信号も伝達しないが、検出車43が回転して穴45が送信電極41の位置にくると、送信電極41と受信電極44の間で正弦波信号φAの電圧変化が静電容量の変化として受信電極44に伝達される。検出車43の回転が進み穴45が送信電極41と送信電極42の間にくると、両方の送信信号が合成された信号が受信電極44に伝達される。さらに回転が進み穴45が送信電極42の位置にくると送信電極42の送信信号φBだけが伝達される。
【0066】
このように検出車43の回転により、受信電極44で受信される信号φCは+45度から−45度まで位相が変化するので、位相0度の基準信号に対して受信信号φCの位相が0度をよぎる時を検出車43の基準位置として検出する事ができる。よって検出車43と同期関係にある秒針48の基準位置を検出する事ができる。
【0067】
次に本実施の形態を用いた時計の動作制御について説明する。本実施の形態では、時分秒を三針表示する時計とし、秒針を一つのモータで駆動し、以下説明を省略するが分針と時針は別のモータで駆動する構造とする。また付加機能を有した時計に応用した場合は、秒針は秒表示を行なうだけでなく、日月うるう年等のカレンダ情報を切替表示したり、ストップウオッチやタイマ針等に切替使用する事も出来る。
【0068】
まず、組立時の秒針の取付方法を説明する。最初に図示されていないリューズの首引き操作を行ないリセット状態にする。この時、電気機械変換機から変換機駆動信号が出力され、秒輪列は1秒毎の早送り運針を行なう。秒輪列を駆動させた後、送信電極41、42から送信信号φA、φBを運針がおこなわれる度に出力し、受信電極44で受信信号φCを受信する。受信した受信信号φCの位相を検波して、基準信号に対して位相が遅れた状態から進んだ状態に変化した瞬間を検出車43の基準位置として検出して早送り運針を停止する。検出車43と四番車47は同期回転しているので、検出車43の基準位置を四番車47の基準位置とする事が出来るので、この状態で四番車47に秒針48を正秒の位置に合せて取りつける。
【0069】
秒針48を取りつけた後リューズを0段位置に戻すと、変換機駆動信号を毎秒1パルスづつ出力して、秒針48は1秒毎に運針を開始し現在時刻の秒表示を行なう。時計システム全体を制御するICは変換機駆動信号を出力するとともに電気的計数機構で計数を行ない、電気的時刻を保持する。電気的保持時刻は秒針48の基準位置を検出した状態から計数を開始して、60回の計数でリセットを行なう。検出車43が回転駆動する度に送信電極41及び送信電極42から検出信号を送信し、受信電極44で受信を行なう。もし検出車43がICの駆動信号によって正確に回転駆動していれば、60秒すなわち1分毎にもとの位置に戻り、基準位置が検出される。つまり、60秒毎に秒針48の基準位置と電気的保持時刻の0位置が一致する。
【0070】
しかし検出車43が、衝撃や外部磁場などの影響によって正常に回転駆動しなかったり、外力によって強制的に回転してしまった時は、秒針48の基準位置と電気的保持時刻にズレが生じる。ズレが検出された場合は、変換機駆動信号および針位置検出信号の出力を続けて行ない、基準位置を検出するまで検出車43を正転で早送り駆動させて、電気的保持時刻の0位置とのズレを補正する。本実施の形態では秒針48を駆動する変換機と、図示されていない時分針を駆動する変換機を分けた構造としたので、秒針48と同時に駆動する検出車43を正転早送り駆動させても、時分の時刻情報がずれる事は無い。
【0071】
以上のように、完成時計に衝撃や磁場などの外的要因がかかって一時的に秒針48の基準位置がずれても、1分毎に針位置の補正がおこなわれ、表示精度の高い時計を実現する事ができる。また、指針位置がずれても1分毎に補正されるのであれば、衝撃によるずれが懸念される大型の表示針を用いる事も可能となる。
【0072】
前述した実施の形態では、金属部材からなる検出車43に穴45を設ける構造としたが、図7に示すようなプラスチチック製の歯車と金属板からなる構造を用いる事も可能である。図7において検出車49はプラスチック材により射出成形されており、導電性を有しない。検出車49の歯車上面に金属性の検出板50が配置され、検出車49の軸に圧入固定されている。検出車49が回転して検出板50が送受信電極の近傍にきた時、送受信電極との間の静電容量に変化が生じるため、位置情報の検出を行なう事ができる。この構造は検出車49をプラスチック化する事により、製造コストの低減を図る事ができる。
【0073】
また、より簡素化した構造としてプラスチック製の検出車の歯車面の一部に金属メッキを施すか、逆に歯車面の一部以外の全面に金属メッキを施して、検出車の回転によって送受信信号に変調を起こす構造も可能である。プラスチック材によるコスト低減に加え、薄型化の効果が期待できる。
【0074】
次に本実施の形態の、時計システム全体のブロック構造を図8を用いて説明する。
図8において、光発電素子22と2次電池23を含む光充電電源を備えている。時計の時間の最小単位時間を作成するために、水晶振動子を含む水晶発振器からなる時間基準信号発生機構11を備え、この時間基準信号を分周して時計の時刻保持の最小刻み時間である計時時間単位信号を分周回路12で作成する。21は時計システム全体の動作を制御するシステム制御機構である。分周回路12で作成した計時単位時間信号は、システム制御機構21の制御により、電気機械変換機構15の備えるパルスモータを駆動するためのモータ駆動回路14に入力し、これと並行して、計時時間信号を計数して電気的時刻を保持する電気的計数回路13にも入力する。該電気機械変換機構15のパルスモータに連結した輪列機構16によって機械的時刻情報は保持される。輪列機構16に保持された機械的時刻情報は、機械的表示機構17の指針により表示する。
【0075】
システム制御機構21の制御によって送信回路機構203で位相の異なる正弦波信号を作成し、輪列機構16の近傍に配置した送信電極18、19から出力する。送信信号18、19は輪列機構16により特定の変調を与えられた後、合成されて受信電極20に伝達され受信回路機構200で受信信号を検出する。検出された受信信号は、検波回路機構202において、送信回路機構203で作成された基準信号と位相比較を行ない、その結果から輪列機構16の保持する機械的時刻情報を検出する。システム制御機構21は、検波回路機構202から得た機械的時刻情報と、電気的計数回路13に保持された電気的時刻情報により、時刻同期あるいは誤動作補正あるいは時刻設定の制御を行なう。尚、図示していないが、システム制御機構21には外部から時刻情報を入力する外部操作機構からの制御情報も入力され、輪列機構16を直接機械的に操作して機械的な時刻設定も行う事が出来る。
【0076】
続いて送信回路機構203、受信回路機構200、検波回路機構202の具体的構成を順番に説明していく。
図9は、送信信号を作成する送信回路機構203のシステム構成の例を示す。71は水晶振動子であり、72は時計の保持時刻の刻みを作成するための正確な周波数の水晶発振回路である。発振周波数は2の15乗の周波数である。79は電気時計構成のための集積回路である。73は集積回路79内に含まれる1/4分周回路であり、本実施の形態では2の13乗の周波数のパルス信号PaとPbを出力する。両信号はπ/2だけ位相が異なる。74と76は2の13乗の周波数の信号のみを増幅する帯域通過型増幅回路である。回路構成は抵抗とコンデンサからなる通過帯域阻止フィルタ回路を反転増幅回路75、77と組合せ、さらに抵抗式分圧回路で分圧減衰させてあり、このために、特定周波数以外の信号は減衰し、特性周波数のみが増幅される。この特定周波数増幅回路と組み合わせる事により、デジタル回路で作成されたパルス信号PaとPbから安定した振幅と位相差の定まった正弦波信号φAとφBが作成される。
【0077】
次に図10は本発明の機構で用いられる、輪列による変調機構の等価回路と検出用の前置増幅回路からなる受信回路機構の例である。送信電極41と42から異なる送信信号φA、φBが送信される。送信信号φA、φBは検出車43を通過する伝送路86により位相及び振幅が変調され、受信電極44に受信信号φCが受信される。受信電極44の誘起信号φCの電圧は、伝送路86のコンデンサからなる容量ブリッジによる電位配分から対接地電位と位相が与えられる。受信信号φCはその後増幅回路87により増幅される。位相検波する場合、増幅器は位相情報だけがあれば良いので飽和増幅されてパルス信号Pcとなる。
【0078】
図11は各回路機構における信号波形を示す。各波形の相対的位相関係も維持されて表示されている。φ15は図9における水晶発振回路72の水晶振動子71の端子の対接地電圧波形である。P15は水晶振動子の正弦波信号を整形して得られる2の15乗Hzすなわち32768Hzのパルス信号であり、本発明の電気時計の論理回路を動かす位相の刻みを定めるクロック信号としても用いられている。P15を基に図9に示されるパルス信号PaとPbが作成され、帯域通過増幅回路を介して位相がπ/2づつ異なる2の13乗Hzすなわち8192Hzの正弦波信号φA、φBが作成される。なお周波数自体は任意選択出来る。通常の時計では量産効果を上げるために業界の共通仕様として2のべき乗の周波数の水晶振動子が用いられている。
【0079】
正弦波信号φA、φBは、検出車43の回転位置によって変調され、受信電極44には送信信号φAとφBの間の位相をとる受信信号φC(x)(x=1、2、・・・)が伝達する。受信信号φCは、検出車43が図6の矢印の方向に回転して、穴45が送信電極41付近にある時は、送信信号φAに位相が近い受信信号φC(1)、穴45が送信電極43付近にきた時は、送信信号φBに位相が近い受信信号φC(2)のような波形となり、位相が変化する。また、検出車43の穴45が送受信電極付近にない時は送信信号φA、φBは検出車43に遮蔽されて受信電極44には伝達されず、受信信号φC(3)は、ノイズ成分だけしか含まない振幅のほとんど無い波形となる。
【0080】
この時の受信信号φC(3)は位置検出に必要な位相成分が無いノイズ信号のため、後で詳述するスケルチ回路でカットする。位相情報を含む受信信号φC(x)は電極間の静電容量の変化によって伝達されるため、微小振幅の信号であるが、位相情報は保持されている。受信信号φC(x)は図10に示す増幅回路87で飽和増幅され、矩形の検出信号Pc(x)(x=1、2、・・・)となる。
【0081】
次に、受信信号の検波方式について説明を進める。
図12は受信信号の位相検波を行なう検波回路機構を示す回路図であり、図13は検波結果の出力である検波結果信号の波形図である。図12に示す検波回路機構は、位相検波の基準となる位相基準信号に対して、検出車43によって変調された受信信号の位相が進んでいるか、あるいは遅れているかによって位相検波の出力の電圧を変化させる構造である。
【0082】
図12において、データ入力フリップフロップ216のクロックに、基準信号として図11に示す信号Paと信号Pbの丁度中間位相であるパルス信号Pabを入力する。基準信号Pabは、送信信号作成の基とする信号から論理回路とクロック信号により容易に正確な位相オフセットで作成される。一方、受信信号φc(x)を飽和増幅して整形した検出信号Pc(x)をフリップフロップ216のデータ信号として入力する。フリップフロップ216はクロック信号Pabの立ち上りをトリガとして、検波結果信号Sens−Outを出力する。
【0083】
検出信号Pc(x)が図11に示す信号Pc(1)の如く、位相が基準信号Pabより進んでいる時は、検波結果信号Sens−Out=”1”のHレベルを出力し、検出車43の回転が進んで受信信号Pc(x)が変調され、受信信号Pc(2)の如く位相が基準信号Pabより遅れた時は、検波結果信号Sens−Out=”0”のLレベルへ切り替わる。そして検波結果信号Sens−OutがHレベルからLレベルへ切り替わるタイミングを検出車43の基準位置として検出する事ができる。
【0084】
続いて上述した構造とは別の位相検波方式について説明する。
検出信号Pc(1)、Pc(2)と基準信号Pabから、図11に示すような充電指示信号Pcrgと放電指示信号Pdcrgを、パルス発生手段である論理回路で作成する。受信信号Pc(1)の位相はPabよりも進んでおり、受信信号Pc(2)の位相はPabよりも遅れているので、

Figure 0004215438
となる。
【0085】
送信信号周波数は2の13乗Hzすなわち約8kHzであり、Pcrg=”1”のHレベルでは小容量の蓄積コンデンサを抵抗を介して+側に充電し、Pdcrg=”1”のHレベルではコンデンサを−側に抵抗を介して放電する。該コンデンサの充放電時定数を8kHzの周期よりも1桁以上大にし、送信信号に対する受信信号の位相情報を上記コンデンサの電圧として得る。
【0086】
Pcの位相がPabよりも進んでいれば、信号Pcrg=”1”が得られ、そのパルス幅は位相差に比例して大になり、コンデンサの電圧は+側に飽和する。逆に遅れている場合は遅れ位相に比例したパルス幅の信号Pdcrg=”1”が得られ、上記コンデンサの電荷は−側に放電して上記コンデンサの電圧は0になる。このようにして、検出信号の位相変化をコンデンサの電圧変化に変換して読み取り、基準位置の検出をおこなう。
【0087】
図15に前述の蓄電コンデンサを用いた位相検波機構の、具体的な回路例を示す。
図15においてゲート91は電荷蓄積用のコンデンサ92を抵抗93を通じて+側に充電する。充電条件を行うスイッチ素子94をONにする条件は、
{検出出力:Pc=H} &
{位相基準信号:Pab=L}&
{非スケルチ:/Scl−out=H}
=H
で、ゲート91の論理レベルがLになり、PチャネルFET94(電界効果トランジスタ)がONとなり、抵抗93を介してコンデンサ92が充電される。上記論理積の内容を説明すると、非スケルチ:/Scl−out=Hにより穴位置が検出電極近傍に存在している事を示し、位相基準信号:Pab(ωt)=L、かつ検出出力:Pc=Hにより、位相基準信号よりも検出出力の位相が進んだ状態である事を示す。つまり図6において送信電極41に穴45が近い事を意味する。
【0088】
同様に、コンデンサ92の放電条件は、放電スイッチ素子がNチャネルトランジスタ96であり、放電すべき条件で該Nチャネルトランジスタ96のゲート電位をHレベルにする。ゲート95出力がHレベルになる条件は、
{検出出力:Pc=L} &
{位相基準信号:Pab=H}&
{非スケルチ:/Scl−out=H}
=H
である。FETスイッチ96がONになると、抵抗97を通じて放電が行われる。この時の条件は、穴位置が検出電極近傍に存在し、かつ位相基準信号よりも検出出力の位相が遅れた状態である事を示す。つまり図6において検出車43の回転が続き、送信電極42に穴45が近い事を意味する。
【0089】
ゲート91、96は検出信号Pcの振幅がある一定レベルである事を検出すると共に、位相基準信号Pabに対して受信信号Pcの位相の遅れ進みを検出して出力する、遅れ進み検出手段である。またFETスイッチ94、96は、遅れ進み検出手段であるゲート91、96の出力によって充放電を切り替える、充放電切り替え手段である。
【0090】
また実際の構成では、抵抗93とスイッチ素子94を兼用させ、スイッチ素子94であるFETのON抵抗を適正値に設計して用い、わざわざ抵抗93を付加する事はない。同様に抵抗97の機能はスイッチ素子96である放電用FETのON抵抗に含ませた設計を行う。電荷蓄積コンデンサ92の対接地電位Vcrgと、電源電圧を抵抗98と99で分圧した基準電圧Vrefとを電圧検出手段である比較器101で比較し、Vcrg≧Vrefの条件の時、シュミット回路100を介して論理出力として、検波結果信号Senc_outのHレベルを出力する。
【0091】
図14には電荷蓄積コンデンサ92の対接地電圧Vcrgの回転角度に対する関数形を示す。検出車43の回転が進み穴45が送信電極42に近接した時、電荷蓄積コンデンサは充電され、対接地電圧Vcrgはは比較基準電圧111に対し”L”の状態から”H”の状態に変化し、その後送信電極41と送信電極42の中間を通過すると電荷蓄積コンデンサ92は放電され、再び”L”の状態まで変化する。
【0092】
時計の輪列は機械寸法の全てに誤差が含まれているので、歯車の軸の上下方向にも回転方向にも動作のクリアランスが存在するので、パルスモータ駆動のバックラッシュの影響や時計の向きに応じて、検出電圧Vcrgの電圧は大幅に変化し、位相も少し変化する。例として112は時計上向き時の対接地電圧を示し、113は時計下向き時の対接地電圧を示す。
【0093】
位相検出情報は、検出電圧Vcrgが小の状態では雑音の影響を受けて誤り信号が発生する。つまり、コンデンサ92が充電され、比較基準電圧111に対しLからHに移るタイミングはズレを生じる危険性が大きい。しかし、検出電圧Vcrgが大の状態では確度が高い。従って、検出電圧Vcrgが大の状態である穴中心近傍で検出電圧VcrgがHからLに至る範囲では雑音の影響を受け難く正確な位置情報が得られる。よってVcrgが”H”の状態から”L”に変化する点114は時計の姿勢差等によっての変化を受けにくいので、このタイミングを基準位置として読み取る事が有効である。
【0094】
FM放送では、遠方の放送局の微弱電波になって位相雑音が目立ってくると、受信機の検波回路が過大な雑音を発生し、障害となる。これを防ぐために、フル装備のFM受信機では受信信号の受信信号レベルに閾値を設け、閾値以下の受信信号に対しては検波出力を抑圧するスケルチ回路を用意している。本発明は時計内部の近距離の電極間の信号の送受であるが、同様なスケルチ回路導入により、検出電極が検出用パタン穴の周辺及び同穴以外の場所に対して雑音抑圧する効果が得られる。
【0095】
スケルチ回路を受信信号の振幅の大きさで識別して作成する他に、確実に補足された穴位置検出信号のタイミングを基準として次に穴位置が検出される時刻を予測し、それまでの期間の入力信号をマスクするタイムゲートによるスケルチも有効である。
【0096】
本発明の構成において、位相測定結果の情報は被測定輪列歯車の穴位置を示し、通常、輪列を駆動するパルスモータが駆動した後に毎回一度だけ輪列の回転位置を確実に測定できれば良い。常時連続的に測定している必要性はない。本発明の手法で検出する最も簡素化した方式での検出情報は1ビットの情報であり、輪列歯車の穴位置の回転角度が特定時刻に特定角度を越えているか否かである。従って、輪列歯車の角度を確定するには、計数リセットした上で電気的計数回路と輪列駆動のパルスモータを、歯車1周分の数だけ並列駆動し、該電気計数回路計数値をアドレスとして位置検出データを記憶する。その後、番地に対するデータのパタンから結果としての穴位置を決定出来る。
【0097】
上記測定内容を整理すると、検出用のパタン穴が検出電極近傍に存在しない状態から間欠的に位置測定を行う。輪列回転の角度測定の手順を示すと、検出用のパタン穴が検出電極に到達するまでの待機状態情報の検出、検出用のパタン穴の到達から検出用のパタン穴の中心までの間の検出データのLレベルの検出、さらに検出用のパタン穴の中心で検出データがLレベルからHレベルとなる変化の検出、その後の歯車の移動に対するHレベルの維持の確認、検出用のパタン穴が過ぎてから元の回転位置までの待機状態情報の確認検出という順序で測定を行う。
【0098】
穴中心位置の測定を行うためには、穴位置近傍に検出電極がある事の測定と、穴近傍位置における角度位置の精密な測定が必要であり、測定データの全体像から判断するには検出信号の振幅成分から測定データが雑音少なく、位相検波情報が意味を持つ”非待機状態”である事を判定するか、位相検波回路が出力論理値を変えたあとの一定待機時間帯を電気時計による待機時間帯として記憶しておく回路が必要である。この振幅検出信号あるいは電気計時系の時間帯信号から非スケルチ信号{/Scl−out}ゲート信号を作成する。
【0099】
図16(a)は前記非スケルチ信号{/Scl−out}を作成する為の雑音抑圧用の振幅検出回路の一実施例を示す。微小の受信信号φCを受けて、定増幅率の増幅回路132で増幅する。この増幅回路132には負帰還を掛けて増幅率を周囲温度や電源電圧に無関係にK倍となるように抵抗分圧による1/Kの分圧負帰還を掛けている。
【0100】
振幅比較の基準とする閾値は、FET133の閾値とキャリア移動度で定まるほぼFET133の閾値より少し高い値であり、閾値の温度特性と移動度の温度特性が補償し合うように設定する。抵抗134でFET133の充電動作の電流レベルを定め、抵抗135で放電電流レベルを定める。交流入力の受信信号φCの波高値のK倍がFET133の閾値を越えるとコンデンサ136の充電が始まり、放電抵抗135を充分大にしておくと、コンデンサ136にはFET133の閾値を越える波高値に応じて電荷がサンプリング的に充電され、放電時定数程度の時間保持される。
【0101】
このコンデンサ136に蓄積された電荷によるコンデンサ136の電圧Vcrgと、電源電圧を抵抗137と138で分圧した電圧Vsclとが比較回路139で比較され、その結果の論理値がラッチ回路140に送信信号の周期で記憶される。このようにして交流の検出信号の波高値成分の分別と非スケルチ信号(/Scl−out)の作成が実現出来る。FET133のソース側電源電位を、+直流電源電圧の代わりに基準信号Pabのパルス自体あるいはPabの高調波を除去した正弦波電圧を分圧した電圧を印加する事で、周期変動閾値とする事も出来る。高調波除去は、入力分圧回路と選択増幅回路を組み合わせた図9の帯域通過型増幅回路74と同様の回路で実現出来る。
【0102】
図16(a)の構成を機能ブロックで表すと図16(b)の如くなる。図16(b)において、受信信号φCは定増幅率の増幅回路142により一定の倍率で増幅され、検波回路143により振幅成分が抽出され、比較回路144により基準電圧発生機構147で作成された比較基準電圧と比較して設定振幅以上である事を検出してラッチ記憶し、位相検波出力が意味を持つ事を非スケルチ出力の論理信号出力として同期ラッチ回路145でラッチし、非スケルチ信号(/Scl−out)を出力する。
【0103】
図17(a)は前記非スケルチ信号{/Scl−out}を作成する為の振幅検出回路の別の実施例である。微小の受信信号φCを受けて、定増幅率の増幅回路169で増幅する。振幅閾値比較値として基準信号Pabを抵抗151と152で分圧した電位を変動閾値として与えている。やや複雑な回路になるが、Pabから高調波成分を除去した信号に置き換える方式も合理的な閾値になる。変動閾値と入力信号の定数倍の信号電圧を比較増幅回路153で増幅し、ダイオード154で整流し、コンデンサ155と抵抗168で定まる放電時定数を持つ回路で一時的に結果を保持し、ラッチ回路156で論理値として記憶し、信号Pbをクロックとして非スケルチ出力(/Scl−out)を出力する。
【0104】
図17(a)の構成を機能ブロックで表すと図17(b)の如くなる。図17(b)において、受信信号φCをK倍の定倍率増幅率の増幅回路161で増幅したK・φCと基準電圧発生機構164で作成された比較基準電圧Vrefとは、比較増幅回路162に入力されて飽和増幅され、検波回路163で検波し、同期ラッチ回路165で一時記憶し、非スケルチ出力(/Scl−out)として出力する。
【0105】
以上説明した実施例の位置検出方式は、まず受信信号φCの振幅を検出して穴が送受信電極に近い事を検出し、続いて受信信号φCの位相情報によって正確な位置検出を行なう構成としたが、位相の検出または振幅の検出のいづれか一方だけでも位置検出を行なうことは可能である。その場合、雑音等による位置検出の信頼性では劣るが、回路構成を簡略化する事ができる。
【0106】
本発明の構成の要点の一つは、複数の伝送路を用いて差動演算により機械機構のクリアランスの影響を抑圧している点である。
図18(a)は上記視点で、送信信号φA、φBを個々の単独伝送路で伝達した時の受信信号φCの成分を取り出した送信信号φA、φBに対応するφC成分の振幅電圧の組を、{P1,Q1}と{P2,Q2}の如く回転角を横軸とし振幅0の軸に対して上下にあらわしている。歯車の軸方向のクリアランスに起因するがたつきは、例えば腕時計の姿勢差に依存して受信信号の振幅の組は{P1,Q1}と{P2,Q2}の如く差異が出る。従ってこのような単独伝送路で検出電圧を一定のスライスレベルで切り分ける場合、P1とP2の検出角度(=スライスレベルと検出レベルの一致する回転角)は、腕時計の姿勢差で相違した値を示す事になる。
【0107】
図18(a)のグラフの差分を計算したグラフが図18(b)である。図中のD1=P1−Q1であり、D2=P2−Q2である。D1もD2も、差分出力信号が符号を切り換える0クロス点の回転角の角度は等しくなり、差分検出法により輪列のがたつきの影響が軽減される事が判かる。
【0108】
雑音を抑制して位置検出の信頼性を向上させる別の構成を、以下に説明する。受信信号φCを、雑音を抑制せずに飽和増幅した信号は、内部雑音まで飽和レベルまで増幅してしまうのでスパイク状の雑音信号を発生する。 しかし、例えば測定を続けて3回行ない、これら3信号の多数決論理の出力をとれば、スパイク状雑音が除去されたものになる。輪列歯車の測定は時計のモ−タの間欠駆動の後で行えば良いから、実際の位置検出は上記信号を間欠サンプリング検出する事になる。
【0109】
さらに雑音除去の別の構成を説明する。受信信号φCを、雑音を含んだまま増幅した検出信号はスパイク状のノイズを含んだパルス信号となる。このパルス状の検出信号を公知の近似積分回路で構成される低域周波数フィルタを通してスパイク雑音成分を除去してP0(θ)とし、更にラッチ回路を用いて論理的に一定の短時間△tだけ遅延したP△(θ)を作る。
【0110】
P0(θ)とP△(θ)の反転信号の論理積をPdetとすると、
Pdet=P0(θ)・{/P△(θ)}
は、細幅のスパイク雑音を除去した本信号のがLレベルからHベルに変化する立ち上がりに一致したパルス幅△tのパルスとなり、これは穴中心位置の角度を与えるものになる。低域フィルタ回路でスパイク雑音が充分除去出来る場合は、穴位置検出の回路が大幅に簡素化出来る。窓関数作成とスケルチ信号による雑音抑圧を省略出来る。
【0111】
図19は、輪列歯車位置測定のタイミングを説明する図である。時計のパルスモータ駆動の瞬間においては、低消費電力の時計システムの中では平均消費電力の100万倍もの飛び抜けた大きな瞬時電力消費をするため、モータ駆動の間及び駆動直後では、電源の化学電池の電圧の変動が生じる。また、駆動の瞬間には大きな電磁雑音を発生する。従って、本発明の如き微弱電界検出による位置検出の動作は、モータ駆動位相から充分に離し、時間的ゆとりを持たせて実施する必要がある。
【0112】
また、微弱電界測定のために増幅回路の内部雑音による妨害を考慮すると、位置測定そのものも、複数回実施して、結果を多数決論理回路で処理し、最も確からしい値を推定して用いる必要が生じる。図19に示す測定は、モータ駆動の後、一定時間後に奇数回の位置測定を行う場合のタイミングチャートの例を示している。雑音発生範囲を避けたタイミングで奇数回測定した検出結果の多数決によって、検出位置を決定する
【0113】
前述までの実施の形態においては、駆動輪列によって時刻情報の位置検出を行なう構造について説明したが、それ以外の実施の形態として、カレンダの表示位置情報の検出にも応用できる。図20は日表示を行なう日板301の位置検出構造を説明する略平面図である。図20において日板301の表面には1〜31までの日表示印刷がされ、文字板の窓穴302から1つの日表示を行なう。
【0114】
図20においては1日を表示している。日板301は図示していないが電気機械変換機のモータの回転駆動が伝達されて、1日に1表示分回転駆動する。日板301の3と4の印刷位置の上面側に送信電極303、304を、下面側に受信電極305を対向配置している。また、日板301はプラスチック材で成形され、その下面側には金属膜が塗布され時計ムーブに接地しているが、4の印刷位置の下面部分には円形306の非印刷部を有している。
【0115】
図20の状態では送信電極304からの信号だけが受信電極305に伝達し、送信電極303の信号は日板301に遮蔽されて伝達しない。日板301が一日分回転して、窓穴302に2が表示される時は、円形306は送信電極303の位置に移動して、送信電極303からの信号だけが受信電極305に伝達する。受信電極305に伝達された信号の変化を読み取り、日板301の基準位置を検出する事ができる。図示のように日板301の位置検出を窓穴302と異なる日付位置で行なえば、日表示に影響を与える事なく検出を行なう事ができる。
【0116】
腕時計の日板や月板や年板の位置確認が出来ると、月末日付修正を要しない万年暦組込の腕時計が簡単な機構で実現する。検出タイミングは夜中近傍に限定して良い。検出の角度許容誤差も大である。従って、送受信電極が2個ないし1個の振幅検出やインピーダンス検出が利用できる。電波修正腕時計の初期設定では、受信情報に基づいて電気時刻系を瞬時に書き換え、次に機械的時刻を電気時刻に同期させる事が必要になる。
【0117】
年月日時分の修正を秒の早送りで行うと多大の時間が掛かるが、秒と時分と年月日の3ブロックに分けて並列的に修正を行うとすれば画期的に速く初期記憶設定が実現出来る。このような大幅な時刻シフトは電源電池接続直後の様に発生頻度が数年に1回程度と低いため、時分秒を高速駆動しながら輪列送受信電極検出を連続動作させ、歯車に刻み込んだコード穴を光学的に時系列コードとして読み取る簡便手法でも良い。
【0118】
【発明の効果】
以上、実施例に基づいて説明した如く、腕時計の機械位置情報を、非接触、低電流、低電圧、省スペース、低コストで実現でき、更には経時劣化の心配のない高信頼性を有して実現できた。その結果、高信頼保持時刻の腕時計・短時間時刻修正機能付電波修正腕時計・月末自動修正機能付腕時計の実現や、大型指針の使用のために、今まで必要とされながらも実現出来なかった電場検出式薄型輪列位置検出機構が、本発明による輪列通過複数伝送路を用いた差分検出法により、実現可能となった。
【0119】
従来考えられたような単一電場の直接検出の手法では、電場の空間的強度変化を検出する原理を利用となるので、電場の空間依存の強度変化は滑らかであり、輪列の特定点の鋭敏な検出は不可能である。また輪列のクリアランスに起因する電場強度の時計姿勢差依存性が大のために位置検出には使用出来なかった。これらの隘路を、本発明の複数伝送路差分検出方式では解決している。特に位相の差分を利用する事により、位相検波回路と組み合わせて特定点通過で検出信号の振幅あるいは極性が0を横切るように出来、空間位置の鋭敏検出の設計が可能となった。また、差分検出により時計の姿勢差の影響を軽減出来た。
【図面の簡単な説明】
【図1】本発明の信号変調構造の概略を示す略平面図である。
【図2】本発明の信号変調構造の概略を示す図1の略断面図である。
【図3】本発明の信号の変調経過を示す波形図である。
【図4】本発明の検出信号の振幅と位相特性を示す説明図である。
【図5】本発明の各種の信号伝達経路を示す説明図である。
【図6】本発明を時計に応用した実施形態の斜視図である。
【図7】本発明を時計に応用した時の、検出車の別の実施形態を示す斜視図である。
【図8】本発明を時計に応用した実施形態の時計システム全体のブロック図である。
【図9】本発明を時計に応用した実施形態の、送信回路の回路図である。
【図10】本発明を時計に応用した実施形態の、変調機構の等価回路と受信回路の回路図である。
【図11】本発明を時計に応用した実施形態の、各部の信号波形を示す波形図である。
【図12】本発明を時計に応用した実施形態の、受信信号の位相検波を行なう回路図である。
【図13】本発明を時計に応用した実施形態の、検波結果の出力である検出信号の波形図である。
【図14】本発明を時計に応用した実施形態の、別の検波機構に用いる電荷蓄積コンデンサの対接地電圧の出力図である。
【図15】本発明を時計に応用した実施形態の、別の検波機構の回路図である。
【図16】本発明を時計に応用した実施形態の、雑音制御回路の回路図およびブロック図である。
【図17】本発明を時計に応用した実施形態の、別の雑音制御回路の回路図およびブロック図である。
【図18】本発明の複数伝送路の各単独伝送路検出出力と差分出力特性を示す図である。
【図19】本発明の時計のモータ駆動と輪列位置検出のタイミング関係を示す図である
【図20】本発明をカレンダ表示時計に応用した実施の形態の、日板部分を示す平面図である。
【符号の説明】
1 送信電極
2 送信電極
3 回転体
4 受信電極
5 穴
41 送信電極
42 送信電極
43 検出車
44 受信電極
45 穴
47 四番車[0001]
BACKGROUND OF THE INVENTION
In the quartz oscillation type electric timepiece which mechanically displays time and calendar information, the present invention detects an angular rotation position of a train wheel or the like by electric field detection, and is an electric holding time by an electric timing mechanism composed of an electronic circuit. It relates to the structure to be controlled.
[0002]
[Prior art]
Conventionally, a mechanism of a quartz watch with low power operation has been established. In addition to a small-capacity primary battery type watch, a photovoltaic quartz watch using a combination of a solar cell and a secondary battery, or a mechanical rotary weight power generation mechanism and a secondary battery. An energy-powered quartz wristwatch that operates with a small amount of energy extracted from the surrounding environment of the watch, such as a mechanical power-powered wristwatch according to, has been put into practical use. Quartz wristwatches that accurately clock the time for one to three years have spread widely throughout the world due to their ease of carrying and low price, but the primary battery has a disadvantage of being very resource-consuming.
[0003]
In addition, the power generation type electric timepiece that collects and stores environmental energy has the advantage of preventing resource consumption, but there is a potential problem that the collected energy is not sufficient and the lack of stored energy impairs the reliability of time keeping. It was. In particular, in a pointer type wristwatch, a wheel train is driven with a minimum driving torque in order to reduce energy consumption as much as possible. For this reason, there is a risk of driving error of the converter due to disturbances such as impact and magnetic force, which may cause a deviation in the pointer display time, and in order to prevent a deviation in the pointer display time, There was a drawback of limitations.
[0004]
Further, in the calendar display mechanism of the quartz watch that displays the time with the mechanical hands, the month end processing of the date display unit has been a problem. It is not practical to manually correct the date approximately every two months, but if only the date part is electro-optically displayed, there is a drawback that the design of the time display surface is uncomfortable. This can be solved by a complicated mechanical mechanism, but the assembly cost is high and the mechanical mechanism is complicated, so that the operation reliability in a stable operation for a long time is lowered. In addition, there is a drawback that power consumption increases and it is difficult to operate the environment collecting energy without stopping.
[0005]
In order to solve the above-mentioned drawbacks, a function for detecting the pointer-type display time and the mechanical reference position of calendar display is necessary. Conventional structures include a mechanical contact switch mechanism in a part of a rotating train wheel, or a light emitting element and a light receiving element arranged with a rotating train wheel with holes in between. A wristwatch or the like that employs means for detecting the presence or absence of a hole by an optical sensor has been realized. In addition, several configurations have been devised for reading values in which the capacitance value and the absolute amount of magnetic force between the pointer, the train wheel and the like and the position detection member change due to rotational driving.
[0006]
[Problems to be solved by the invention]
However, the position detection mechanisms that have been commercialized or devised so far have had many problems.
The position detection mechanism using the mechanical contact switch detects the position in contact with a rotary drive member such as a train wheel, so it has a structure that places a load on the drive energy and reduces the driving force of the motor to the limit. It is not suitable for an electronic wristwatch. In particular, there is a problem with rechargeable watches with less energy balance, which may cause misalignment to detect the position, and contact type switch mechanisms may cause wear deterioration of the contact members. And there was a drawback of low reliability.
[0007]
Further, in the structure using the optical switch, it is necessary to dispose the light emitting element and the light receiving element on the upper and lower surfaces of the member that rotationally drives, so that the thickness of the timepiece increases. For this reason, it has been applied to thick radio-controlled watches, table clocks, wall clocks, etc. for functional clock enthusiasts, but it was impossible to apply to normal thin watches. In addition, a considerable amount of power is required to operate an optical element such as a light emitting diode, so that only a detection frequency of about once a day can be applied. Furthermore, since a driving voltage of a certain level or more is necessary for light emission, there is a disadvantage that it is difficult to adapt to a rechargeable timepiece having a large fluctuation in power supply voltage.
[0008]
In addition, regarding the configuration for detecting the change in the capacitance value and the absolute amount of the magnetic force between the pointer, the train wheel, etc. and the position detection member, the change amount such as the capacitance detected from the wristwatch size position detection component is very small. However, there is a drawback that the reliability of position detection is extremely low because the position of the component is easily affected by changes in the position of the mobile phone and the external environment, and it has not been put into practical use.
[0009]
An object of the present invention is to realize a contactless mechanical position detection mechanism that realizes detection of a gear wheel or a pointer position with a thin structure for high reliability of operation of a mechanical timing mechanism. The purpose is to avoid the problem of contact failure due to changes over time of the detection mechanism, and to ensure high reliability exceeding the limit of the quartz clock of the conventional mechanical timekeeping mechanism. In addition, a low-profile mechanism compared to a contactless detection mechanism using a light-emitting element and a light-receiving element, further reducing the cost, and high voltage constraints required for circuit components due to the threshold voltage required by the light-emitting element of the detection mechanism An object of the present invention is to enable the timepiece system to be directly driven by the voltage of the power storage element by canceling. In addition, it ensures reliable detection of the time difference between the mechanical holding time and the electrical holding time, and includes high-reliability detection that includes multi-point position detection from precise position detection of second hand control to detection that allows error in date plate detection. The objective is to realize an inexpensive position detection mechanism.
[0010]
[Means for Solving the Problems]
The gist of the present invention for solving the above problems is as follows. Rotating body In an electric timepiece having a mechanism for detecting an angular rotation position of the transmission circuit mechanism, a transmission circuit mechanism for shaping a plurality of transmission signals using an electric field as a carrier, and the transmission circuit mechanism formed by the transmission circuit mechanism Send A transmission electrode that outputs a signal, a signal modulation member that is arranged in close contact with the transmission electrode, and that modulates the plurality of transmission signals by rotation or reciprocation; a signal modulation member that is arranged in close contact with the signal modulation member; A reception electrode that receives the plurality of transmission signals modulated by the signal modulation member, a reception circuit mechanism that inputs the reception signal received by the reception electrode, and an electric field propagation characteristic of the reception signal that is received by the reception circuit mechanism And a detection circuit mechanism for detecting mechanical position information of the signal modulation member. The detection circuit mechanism outputs a pulse signal whose pulse width is a phase difference between the phase reference signal and the reception signal modulated by the signal modulation member; and the reception circuit receives the phase reference signal. A delay / advance detection unit that detects and outputs a delay / advance of the phase of the signal, and a charge / discharge that switches charging or discharging of the capacitor with an amount of charge proportional to the pulse width of the pulse signal by the output of the delay / advance detection unit Switching means, and voltage detection means for comparing and outputting a terminal voltage of the capacitor with a preset voltage. It is characterized by things.
[0011]
The detection circuit mechanism is a phase detection circuit mechanism, and detects mechanical position information of the signal modulation member from phase information of a reception signal modulated by the modulation member.
[0012]
The detection circuit mechanism is an amplitude detection circuit mechanism, and mechanical position information of the signal modulation member is detected from relative intensity information of a reception signal modulated by the modulation member.
[0013]
The detection circuit mechanism includes both a phase detection circuit mechanism and an amplitude detection circuit mechanism, and roughly determines the detection range of the mechanical position information of the modulation member from the relative intensity information of the received signal modulated by the signal modulation member, The position information of the signal modulation member is detected from the phase information of the reception signal modulated by the signal modulation member.
[0014]
The plurality of transmission signals are the same frequency signals having different phases.
[0015]
The plurality of transmission signals are signals having synchronization relationships with different frequencies.
[0016]
The plurality of transmission signals are sine waves or waveforms having a shape approximate to a sine wave.
[0017]
The phase detection circuit mechanism changes the output voltage of the phase detection depending on whether the phase of the reception signal modulated by the modulation member is advanced or delayed with respect to the phase reference signal that is a reference for phase detection. It is characterized by.
[0019]
The signal modulation member is characterized in that a part of a shape or a constituent member has a structure different in electrical conductivity or dielectric constant from other parts.
[0020]
The signal modulation member is made of a conductive metal material and has a structure having a hole, a notch, or an uneven shape in a part thereof.
[0021]
The signal modulation member is made of a non-conductive member such as plastic and a conductive metal material, and has a structure in which a part of the metal material has a hole, a notch, or an uneven shape.
[0022]
The signal modulation member is made of a non-conductive member such as plastic, and metal plating is performed on a part of the non-conductive member.
[0023]
The signal modulation member is composed of a part of a train wheel that transmits a rotational motion driven by an electromechanical converter to a pointer display, and detects a reference position of the train wheel based on mechanical position information of the signal modulation member. It has a mechanism to perform.
[0024]
The signal modulation member is composed of a part of a train wheel or a date display plate that transmits rotational movement driven by an electromechanical converter to date display, and according to mechanical position information of the signal modulation member, It is characterized by having a month end automatic correction function that detects the reference position and automatically excludes the month end non-existent day of the small month based on the electrical calendar information held in the clock circuit.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
First, the basic operation of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic plan view showing an outline of the signal modulation structure of the present invention, and FIG. 2 is a schematic cross-sectional view of FIG. 1 and 2, the transmission electrodes 1 and 2 are disposed opposite to the reception electrode 4 with the rotator 3 serving as a signal modulation member interposed therebetween, and the transmission electrodes 1 and 2 and the rotator 3 and the rotator 3 and the reception are received. The electrodes 4 are arranged close to each other in a non-contact manner. The transmission signals of the transmission electrodes 1 and 2 are configured such that electric lines of force reach the reception electrode 4 from both the transmission electrodes 1 and 2 through the holes 5. The rotating body 3 is, for example, a gear wheel of a wristwatch train wheel, and is made of a material obtained by attaching a metal film to metal or plastic, and has conductivity. The rotating body 3 is electrically grounded at a shaft or other part not shown.
[0026]
6 is a transmission circuit showing a transmission circuit mechanism for shaping a plurality of transmission signals having an electric field as a carrier. The transmission circuit 6 forms two types of sine wave transmission signals φA and φB having the same frequency and different phases, for example. The transmission electrode 1 outputs a transmission signal φA, and the transmission electrode 2 outputs a transmission signal φB. The transmission signals φA and φB are received as a reception signal φC by the reception electrode 4 through the rotating body 3 that modulates the transmission signals φA and φB.
[0027]
Although the reception signal φC is significantly lower in amplitude than the transmission signals φA and φB, it is a potential derived from the combined electric field of the transmission signals φA and φB. Therefore, if the transmission signals φA and φB have the same frequency, the reception signal φC Are equal, and if there is a phase difference between the transmission signals φA and φB, the reception signal φC takes a phase between them. As the rotating body 3 rotates, the hole 5 moves, the spatial relative positional relationship between the transmission electrode 1, the transmission electrode 2, and the reception electrode 4 changes, and reception induced by the superposition of the electric field in the vicinity of the reception electrode 4 occurs. The amplitude and phase of the AC signal of the electrode 4 change. In other words, the phase and amplitude of the received signal φC are spatially changed by changing the spatial relationship between the transmitting electrodes 1 and 2 and the receiving electrode 4 in accordance with the position of the hole 5 of the rotating body 3 according to the rotation angle θ of the rotating body 5. It varies as a function of the position θ.
[0028]
When the reception signal φC is amplified by the reception circuit mechanism 7, a portion where the amplitude of the sine wave signal is large is saturated and becomes trapezoidal, and when further amplified, the detection signal Pc becomes rectangular. Even in this case, since the phase information is stored, the phase information can be easily extracted by synchronous detection. This technique is equivalent to a high-quality FM broadcast mechanism. The difference is that a broadcast station already transmits with frequency modulation or phase modulation at the time of transmission, whereas the configuration of the present invention is such that the phase modulation of the received signal causes the electromagnetic wave of the transmission path between the transmission electrode and the reception electrode to be electromagnetic. This is performed by a mechanical change of the rotating body as a structure. The place where the disturbance due to the noise inside the clock mechanism and the circuit noise is efficiently removed by the phase detection means is the same as in FM broadcasting.
[0029]
The detection signal Pc is input to the detection circuit mechanism 8, and mechanical position information of the rotating body 3 is obtained from the electric field propagation characteristics of the received reception signal φC. The detection circuit mechanism 8 may be a phase detection circuit mechanism that detects phase information or an amplitude detection circuit mechanism that detects amplitude information. Alternatively, the relative position information of the received signal may be detected by the amplitude detection circuit mechanism to roughly determine the mechanical position information, and the phase information of the received signal may be detected by the phase detection circuit mechanism to determine the mechanical position information.
[0030]
FIG. 3 is a waveform diagram showing a modulation process of the received signal φC according to the embodiment shown in FIGS. When the position of the hole 5 is away from the transmission electrodes 1 and 2, a ground voltage of the transmission signal φA applied to the transmission electrode 1 and a ground voltage of the transmission signal φB applied to the transmission electrode 2 are generated. The electric lines of force to be shielded by the conductive rotator 3. In this state, the ground voltage induced in the receiving electrode 4 is a signal having a very small amplitude as shown in FIG. In this state, the residual phase information is mainly composed of meaningless noise components.
[0031]
Thereafter, when the rotating body 3 rotates and the hole 5 is positioned between the transmission electrode 1 and the reception electrode 4 as shown in FIG. 2, the voltage to the ground of the transmission electrode 1 is transmitted to the reception electrode 4, but the transmission The ground voltage of the electrode 2 is shielded by the rotating body 3 and is not transmitted. That is, the reception signal φC has a small amplitude as shown in FIG. 3B, but is substantially in phase with the transmission signal φA.
[0032]
Further, when the rotation of the rotating body 3 advances and the hole 5 moves in the direction of the arrow in FIG. 2 and is positioned in the middle of the transmission electrode 1 and the transmission electrode 2 as shown in FIG. As shown in FIG. 3C, the received signal φC is an intermediate phase signal between the transmitted signal φA and the transmitted signal φB.
[0033]
Further, when the rotating body 3 further rotates and the hole 5 is positioned between the transmission electrode 2 and the reception electrode 4, only the transmission signal φB is transmitted to the reception electrode 4, so that the reception signal φC is shown in FIG. As shown in FIG. 4, the signal is substantially in phase with the transmission signal φB.
[0034]
That is, when the hole 5 of the rotator 3 is away from the vicinity of the transmission electrodes 1 and 2, the reception signal φC is in a state with almost no amplitude, and when the rotator 3 continues to rotate and passes through the transmission electrodes 1 and 2. The reception signal φC transmits a signal having an amplitude, and the phase of the reception signal φC changes from the phase of the transmission signal φA to the phase of the transmission signal φB. The reference position of the rotating body 5 can be detected by detecting the phase change and / or amplitude change of the received signal φC.
[0035]
In the structure of FIGS. 1 and 2, the proximity of the hole 5 is detected by the amplitude of the reception signal φC, and when the amplitude is greater than a certain level, the phase detection information of the reception signal φC is determined to be valid and the position of the rotating body 3 is determined. It is easy to detect. When the reception signal φC is below a certain amplitude, a known squelch circuit is activated to stop the hole position detection circuit operation. When the conductive rotor 3 is used, the squelch operation is easy to use because the shielding effect of the transmission signals φA and φB with respect to the reception signal φC is great. The specific configuration of the squelch circuit will be described in detail later.
[0036]
As described above, the phase of the reception signal φC takes a value between the transmission signals φA and φB, and the amplitude also changes as a function of the mechanical position of the rotating body 3. This is easily derived from a trigonometric formula that expresses the electric field. Thereafter, the AC signals φA and φB are expressed as φA (ωt) or φB (ωt) when expressed as a periodic function of the time of the angular velocity ω with the time t as a variable. I will use it like this. Further, although reference position detection using two transmission signals having different phases has been described, position detection using signals having different frequencies is also possible.
[0037]
Next, the relationship between the amplitude and phase of the received signal φC will be further described with reference to FIG. FIG. 4A and FIG. 4B show the relationship between the phase and amplitude of the reception signal φC when the transmission signals φA and φB have the same frequency and different phases. FIG. 4A is a diagram showing the received signal φC as a vector display with Cos (ωt) on the x-axis and Sin (ωt) on the y-axis.
[0038]
In FIG. 4A, when the hole 5 is positioned directly below the transmission electrode 1 that transmits the transmission signal φA, the reception signal φC is positioned directly below the transmission electrode 2 that transmits the transmission signal φB. The received signal φC is expressed as Ps (b), and the received signal φC at the intermediate position between the transmitting electrode 1 and the transmitting electrode 2 is expressed as Ps (m) (s = 1, 2, 3).
[0039]
A path 31 of P1 (a) → P1 (m) → P1 (b) indicates a vector locus when the phase difference between the transmission signals φA and φB is π / 2, and similarly P2 (a) → P2 (m) The path 32 of P2 (b) shows a vector locus when the phase difference between the transmission signals φA and φB is 3π / 4, and the path 33 of P3 (a) → P3 (m) → P3 (b) A vector locus when the phase difference between the signals φA and φB is close to π is shown, and a point in the middle of each path is represented by Ps (x).
[0040]
The amplitude of the detection voltage at the point Ps (x) on each path is indicated by the length of the vector from the point O to the point Ps (x). However, the amplitude of the reception signal φC is expressed as a relative value. Further, the phase of the detection voltage at the point Ps (x) on each path is indicated by a component of the projection length on the x-axis. For example, in the path 33 in which the phase difference between the transmission signals φA and φB is π, the π / 2 phase is advanced, the amplitude starts from the state of P3 (a) equal to the radius r of the circle, and the phase is 0 at P3 (m). Passing through the state of small amplitude, the π / 2 phase of P3 (b) is delayed, and the amplitude moves to a position equal to the radius r of the circle.
[0041]
FIG. 4B is a diagram individually representing the relationship between the phase and the amplitude as a function of the rotation angle of the rotating body 3. In FIG. 4B, the horizontal axis represents the moving distance of the hole 5 of the rotating body 3, and the vertical axis represents the amplitude and phase. When the phase difference between the transmission signals φA and φB is π / 2, 3π / 4, or approximately π, the amplitude path is indicated by lines 34, 35, and 36, and the phase path is indicated by lines 37, 38, and 39, respectively.
[0042]
As shown in FIG. 4B, the amplitude variation increases and the modulation phase difference also increases as the phase difference between the transmission signals φA and φB exceeds π / 2 and increases to π.
When the phase difference between the transmission signals φA and φB approaches π, the amplitude of the reception signal φC exhibits a bimodal characteristic, and the amplitude between the peaks and the peaks decreases, causing a problem in phase information detection. It is better to set it a little smaller. In practice, it is necessary to devise and use only the received signal phase information at the rotation angle position where the received amplitude becomes large. However, the amplitude fluctuation can be made constant without any problem by saturation amplification unless the amplitude becomes extremely small.
[0043]
Further, when the change in amplitude is used for position detection instead of phase detection, the steepness of the amplitude function of the reception signal φC near the hole center position is utilized by making the phase difference between the transmission signals φA and φB close to π. I can do things. That is, as the rotation of the rotator 3 progresses, the reference position can be detected by detecting the position where the amplitude is suddenly decreased after detecting the position where the amplitude is large and the amplitude rapidly increasing.
[0044]
One of the requirements to be satisfied by the plurality of transmission signals is that the amplitude of the vector sum of the reception electrodes does not always become zero, including a plurality of AC vector signal components in orthogonal relation. When Sin (ωt) is applied to one electrode, the other electrode needs to contain a Cos (ωt) component orthogonal to this signal or its harmonic component. Therefore, using two transmitter electrodes,
φA = Sin (ωt−α / 2)
φB = Cos (ωt + α / 2); (ω and α are constants, t is time)
When the phase difference α is set as follows, it is necessary to satisfy α> π.
[0045]
Both signals do not necessarily have an orthogonal relationship, but need to include an orthogonal vector component. Orthogonal components with different frequencies, for example
φA = Sin (ωt + β)
φB = Sin (n × ωt + γ); (n = 2, 3, 4..., β and γ are constants)
In this case, a synchronous detection circuit using a common signal that is a basis for generating both signals for detection of the transmission signals φA and φB as a phase reference is performed, and a differential amplification circuit is used to generate both synchronous detection output signals. A position detection signal is extracted from the difference.
[0046]
Next, various transmission path structures for a plurality of transmission / reception signals will be described with reference to FIG. FIG. 5 is an explanatory diagram of the transmission path of the position information detection signal, and shows five types of embodiments from FIG. 5 (a) to FIG. 5 (d).
[0047]
FIG. 5A is an explanatory diagram of a structure including a plurality of transmission electrodes 51 and 52 and a single reception electrode 55. Transmission signals 53 and 54 having different phases or frequencies are transmitted from the transmission electrodes 51 and 52 through the holes of the rotating body 500 and transmitted to the reception electrode 55. That is, signals having the same frequency and different phases or signals having different frequencies are transmitted from the plurality of transmission electrodes 51 and 52, respectively, and received by the single reception electrode 55 on the reception electrode side, and the difference in transmission characteristics between the plurality of transmission paths. And extract the difference as a function of the position of the mechanical rotor 500. In particular, the transmission and reception system of phase demodulation can suppress the influence of disturbance electric field noise and perform accurate wheel train position measurement. This corresponds to FM (frequency modulation = equivalently phase modulation) broadcasting system with good sound quality and strong noise radio wave.
[0048]
The structure shown in FIG. 5A is a highly suitable first candidate for the position detection mechanism of the present invention. A configuration in which a plurality of alternating electric fields having a phase difference are simultaneously transmitted to detect a change in the phase difference of the electric field in the vicinity of the receiving electrode has high detection sensitivity and reliability as described below. A plurality of sinusoidal signals having a phase offset of several tens to hundreds of degrees at a frequency of several kHz are transmitted from the transmission electrodes 51 and 52 as an electric field, and the phase and amplitude of the reception electrode 55 are modulated by a rotating body. Is received, detected and analyzed.
[0049]
Although it is possible to perform transmission and reception at different timings, store received information in the storage circuit, and compare multiple data received later, the signal difference calculation of the different transmission path can be calculated from the circuit noise and calculation error. The method of detecting the difference is better when it is done simultaneously in space. In the case of simultaneous transmission, an interference electric field can be generated for overlapping transmission lines and common reception electrodes. As a result of overlap interference of transmission signals 53 and 54 on the reception electrode 55, a signal whose phase and amplitude are modulated is obtained. It is done. Since the difference due to the interference of electromagnetic waves is performed based on the principle of electromagnetic superposition, no noise is generated, and this is an excellent method that does not cause the S / N (= signal to noise ratio) deterioration problem. As described above, the feature of the present invention is that the rotating body 500 is used as a sensitive phase modulation mechanism of electromagnetic waves.
[0050]
A method of transmitting a plurality of transmissions at different timings is also conceivable. In this case, the receiving electrode 55 only receives a single sine wave signal, but since it is inside the same watch system, it performs precise phase measurement of the received signal transmitted using the signal from the transmission source as a reference. It is possible to precisely measure the phase of signals from different transmission electrodes received at different timings on the time axis. However, since the circuit processing for taking the difference between the phase and amplitude of the minute signal is performed after passing through the receiving circuit, in terms of S / N (= signal to noise ratio), the principle of superposition on the transmission line is used. Therefore, it is inferior to the configuration of simultaneous transmission and simultaneous reception where direct difference processing can be performed.
[0051]
FIG. 5B is an explanatory diagram of a structure including a plurality of transmission electrodes 56 and 57 and a plurality of reception electrodes 60 and 61. Signals 58 and 59 having different phases or frequencies are transmitted from the transmitting electrodes 56 and 57, respectively, and transmitted separately to the receiving electrodes 60 and 61 through the holes of the rotating body 500.
[0052]
That is, this is a method of measuring and analyzing a difference in transmission characteristics between a plurality of transmission paths from a plurality of receiving electrodes 56 and 57. In the measurement of the transmission path of the single transmission electrode and the single reception electrode, since the error due to the mechanical rattling of the train wheel is detected as it is, the detection error is large, and the reliability of the measurement result is considerably lowered. Although detection can be performed by amplitude modulation or phase modulation, since the difference creation and comparison of the received signal is performed by circuit processing after the receiving electrodes 60 and 61, it is easily affected by the internal noise of the circuit. Compared to the mechanism that simultaneously detects a single receiving electrode by simultaneous transmission of a plurality of electrodes that extract differential signals suddenly from the space described above in a), the sensitivity of position detection tends to decrease.
[0053]
FIG. 5C is an explanatory diagram of a structure including a single transmission electrode 62 and a plurality of reception electrodes 65 and 66. A plurality of signals 63 and 64 are transmitted from the transmission electrode 62 and transmitted through the holes of the rotator 500 to the reception electrodes 65 and 66.
[0054]
That is, the single transmission electrode 62 includes a plurality of reception electrodes 65 and 66, and a plurality of signals induced in the plurality of reception electrodes 65 and 66 are compared with each other. The reception timing and the comparison timing need not be the same for the plurality of reception electrodes 65 and 66. Since the signals have the same frequency and substantially the same phase, a homodyne detection method is employed in which synchronous detection and filtering are performed on the basis of the transmission signal in order to remove noise. There are few advantages because the detection accuracy is lowered while the number of electrodes is not reduced.
[0055]
However, the circuit complexity of creating a plurality of transmission signals 63, 64 is reduced. In the case of detecting the position of a plurality of train wheel members by a plurality of receiving electrodes 65, 66, a configuration in which time-division switching is performed by sequentially classifying the transmitting electrode 62 and the receiving electrodes 65, 66 into groups. In such a case, the configuration in which the single transmission electrode 62 includes a plurality of reception electrodes 65 and 66 is sufficient for a detection portion having a large error tolerance such as date plate position detection.
[0056]
FIG. 5D is an explanatory diagram of a structure including a single transmission electrode 69 and a single reception electrode 70. Signals 68 and 67 having different synchronization frequencies are transmitted from a single transmission electrode 69 and transmitted to the reception electrode 70 through the hole of the rotator 500.
[0057]
That is, a pair of transmission and reception electrodes are arranged in the vicinity of the rotator 500, and carrier waves of different frequencies are transmitted from the transmission electrode 69 and received at the reception electrode 70 at the same time or at different times close to each other. The transmission characteristic data corresponding to the above can be compared with each other at the position of the same rotator, and the change in the transmission characteristic can be collected as a function of the train wheel rotation position to estimate the position of the rotator 500. There is an advantage that only two electrodes are required.
[0058]
FIG. 5E is an explanatory diagram of a structure in which the transmission electrode and the reception electrode are the same electrode. Signals 72 and 73 having different frequencies are transmitted from the transmission / reception electrode 71, and the signals are received again by the transmission / reception electrode 71 via the vicinity of the rotating body 500.
[0059]
In other words, only one transmitter / receiver electrode is used, and only one transmitter / receiver electrode is prepared, and the electrode is driven by a plurality of AC power sources with different frequencies by a constant voltage drive circuit via a high output impedance element, and is used for both transmission and reception close to the rotating body. The electrode voltage and phase of the electrode 71 are compared with the voltage and phase of the base constant voltage driving circuit. A change is detected by an input / output terminal of the driving integrated circuit and a constant voltage driving circuit in the integrated circuit. Alternatively, the measurement is performed several times at different frequencies simultaneously or close in time, and the mechanical position information of the rotating body 500 is collected from the frequency dependence of the electromagnetic load characteristics of the transmitting and receiving electrodes.
[0060]
Although the detection sensitivity is low, there is an advantage of downsizing because only one electrode is required for detection. The high impedance element uses a high resistance formed in the integrated circuit for a watch and suppresses the influence of humidity and electromagnetic field outside the integrated circuit. Although the influence of a decrease in detection sensitivity and rattling of the train wheel is unavoidable, it can be used sufficiently when there is room in volume, such as a wall clock or table clock.
[0061]
Summarizing some of the train wheel position detection structures described above, the change in the difference between different electromagnetic wave components detected via multiple transmission paths is caused by rotational movement of the mechanical train wheel by the electrodes arranged in the vicinity of the train wheel. The position information of the train wheel is obtained by detecting as a function of the position. The main point is that the transmission positions of the train wheel are spatially or temporally different. A plurality of types of alternating electric fields are transmitted as carrier signals, and the electric fields are modulated by at least a part of the common detection member. Express in and detect differences directly from space. In an actual timepiece mechanism, there is a demand for simplification of the mechanism, volume reduction, thickness compression, reduction of assembly adjustment cost, compression of member cost, and compression of drive detection integrated circuit, and optimization is made under these constraints. For this reason, a complicated structure is not allowed, and a decrease in measurement accuracy and reliability is not allowed.
[0062]
Next, an embodiment in which the present invention is used for a second hand position detection mechanism of a wristwatch will be described. FIG. 6 is a perspective view of a train wheel portion having a second hand position detection mechanism. In FIG. 6, 46 is a fifth wheel which transmits the rotation of the rotor of the electromechanical conversion mechanism at a reduced speed. The fifth wheel & pinion 46 transmits the rotation of the same reduction ratio to the fourth wheel & pinion 47 and the detection wheel 43 which is a signal modulation member. A second hand 48 is fixed to the fourth wheel 47, and second information is displayed. The fourth wheel 47 and the detection wheel 43 perform synchronized step movement every 60 steps, that is, every step 6 degrees.
[0063]
The detection wheel 43 is made of a conductive metal member and is grounded at a bearing portion (not shown). Further, the gear portion of the detection wheel 43 has a hole 45. The detection wheel 43 has a structure in which the electric conductivity or the dielectric constant is different from that of the other portions due to the holes 45 in the rotation direction. Further, the hole 45 of the detection wheel 43 may not be a hole shape but may be a notch shape or an unevenness in the cross-sectional direction of the gear as long as the distance from the electrodes on the upper and lower surfaces of the gear changes by rotation. . Transmitting electrodes 41 and 42 are disposed on the upper side of the gear of the detection wheel 43, and the receiving electrode 44 is disposed on the lower side thereof in close proximity to each other in a non-contact manner.
[0064]
Each time the detection wheel 43 rotates step by step, sine wave signals having different phases are transmitted from the transmission electrodes 41 and 42. The signal waveform may not be a perfect sine wave shape but may be an approximate waveform. For example, with respect to a certain reference signal, the transmission electrode 41 transmits a sine wave signal φA whose phase is advanced by 45 degrees, and the transmission electrode 42 transmits a sine wave signal φB whose phase is delayed by 45 degrees.
[0065]
In the state where there is no hole 45 in the vicinity of the transmission / reception electrode, neither signal is transmitted because it is shielded by the electrically grounded detection wheel 43, but when the detection wheel 43 rotates and the hole 45 comes to the position of the transmission electrode 41, A voltage change of the sine wave signal φA is transmitted between the transmission electrode 41 and the reception electrode 44 to the reception electrode 44 as a change in capacitance. When the rotation of the detection wheel 43 advances and the hole 45 comes between the transmission electrode 41 and the transmission electrode 42, a signal obtained by combining both transmission signals is transmitted to the reception electrode 44. When the rotation further proceeds and the hole 45 comes to the position of the transmission electrode 42, only the transmission signal φB of the transmission electrode 42 is transmitted.
[0066]
As described above, since the phase of the signal φC received by the receiving electrode 44 changes from +45 degrees to −45 degrees due to the rotation of the detection wheel 43, the phase of the received signal φC is 0 degrees with respect to the reference signal having a phase of 0 degrees. It is possible to detect the time of crossing as the reference position of the detection wheel 43. Therefore, the reference position of the second hand 48 in synchronization with the detection wheel 43 can be detected.
[0067]
Next, the operation control of the timepiece using the present embodiment will be described. In the present embodiment, a timepiece that displays three minutes of hour, minute, and second is driven, and the second hand is driven by one motor, and the description is omitted below, but the minute hand and hour hand are driven by different motors. When applied to a clock having an additional function, the second hand not only displays the second, but also displays calendar information such as a leap year or month, or can be switched to a stopwatch or a timer hand.
[0068]
First, a method for attaching the second hand during assembly will be described. First, a crown pulling operation (not shown) is performed to reset the crown. At this time, a converter drive signal is output from the electromechanical converter, and the second wheel train moves fast forward every second. After driving the second wheel train, transmission signals φA and φB are output from the transmission electrodes 41 and 42 every time the hand movement is performed, and the reception signal φC is received by the reception electrode 44. The phase of the received signal φC received is detected, the moment when the phase is changed from the state delayed from the reference signal to the advanced state is detected as the reference position of the detection wheel 43, and fast-forwarding is stopped. Since the detection wheel 43 and the fourth wheel 47 are synchronously rotated, the reference position of the detection wheel 43 can be set as the reference position of the fourth wheel 47. In this state, the second hand 48 is set to the fourth wheel 47 for a second. Install according to the position.
[0069]
When the crown is returned to the 0 stage position after the second hand 48 is attached, the converter drive signal is output one pulse per second, and the second hand 48 starts moving every second and displays the current time in seconds. An IC that controls the entire timepiece system outputs a converter drive signal and counts with an electrical counting mechanism to hold the electrical time. The electric holding time starts counting from the state in which the reference position of the second hand 48 is detected, and is reset by counting 60 times. Each time the detection wheel 43 is driven to rotate, a detection signal is transmitted from the transmission electrode 41 and the transmission electrode 42 and received by the reception electrode 44. If the detection wheel 43 is accurately rotated by the drive signal of the IC, it returns to the original position every 60 seconds, that is, every minute, and the reference position is detected. That is, the reference position of the second hand 48 matches the zero position of the electrical holding time every 60 seconds.
[0070]
However, when the detection wheel 43 does not normally rotate due to an impact or an external magnetic field or is forcibly rotated by an external force, a deviation occurs between the reference position of the second hand 48 and the electrical holding time. If a deviation is detected, the converter drive signal and the needle position detection signal are continuously output, and the detection wheel 43 is driven forward and forward until the reference position is detected. Correct the misalignment. In the present embodiment, the converter for driving the second hand 48 and the converter for driving the hour / minute hand (not shown) are separated from each other. Therefore, even if the detection wheel 43 that is driven simultaneously with the second hand 48 is driven to rotate forward and forward, , Time information does not shift.
[0071]
As described above, even if an external factor such as an impact or a magnetic field is applied to the completed timepiece, and the reference position of the second hand 48 is temporarily shifted, the hand position is corrected every minute, and a timepiece with high display accuracy is obtained. Can be realized. In addition, if the pointer position is deviated every minute, it is possible to use a large display needle that is likely to be deviated due to impact.
[0072]
In the embodiment described above, the hole 45 is provided in the detection wheel 43 made of a metal member. However, a structure made of a plastic gear and a metal plate as shown in FIG. 7 may be used. In FIG. 7, the detection wheel 49 is injection-molded with a plastic material and has no electrical conductivity. A metallic detection plate 50 is disposed on the upper surface of the gear of the detection wheel 49 and is press-fitted and fixed to the shaft of the detection wheel 49. When the detection wheel 49 rotates and the detection plate 50 comes in the vicinity of the transmission / reception electrode, the capacitance between the transmission / reception electrode changes, so that the position information can be detected. This structure can reduce the manufacturing cost by making the detection wheel 49 plastic.
[0073]
In addition, as a simpler structure, metal plating is applied to a part of the gear surface of a plastic detection wheel, or conversely, metal plating is applied to the entire surface other than a part of the gear surface. It is also possible to have a structure that causes modulation. In addition to cost reduction by plastic material, the effect of thinning can be expected.
[0074]
Next, the block structure of the entire watch system according to the present embodiment will be described with reference to FIG.
In FIG. 8, a photovoltaic power source including a photovoltaic element 22 and a secondary battery 23 is provided. In order to create the minimum unit time of the time of the clock, a time reference signal generating mechanism 11 including a crystal oscillator including a crystal resonator is provided, and the time reference signal is divided to be the minimum time for holding the time of the clock. A time counting unit signal is generated by the frequency dividing circuit 12. A system control mechanism 21 controls the operation of the entire timepiece system. The time unit signal generated by the frequency divider 12 is input to the motor drive circuit 14 for driving the pulse motor included in the electromechanical conversion mechanism 15 under the control of the system control mechanism 21, and in parallel with this, the time measurement is performed. The time signal is counted and input to an electrical counting circuit 13 that holds the electrical time. The mechanical time information is held by the gear train mechanism 16 connected to the pulse motor of the electromechanical conversion mechanism 15. The mechanical time information held in the train wheel mechanism 16 is displayed by the hands of the mechanical display mechanism 17.
[0075]
Under the control of the system control mechanism 21, sine wave signals having different phases are generated by the transmission circuit mechanism 203 and output from the transmission electrodes 18 and 19 disposed in the vicinity of the train wheel mechanism 16. The transmission signals 18 and 19 are given specific modulation by the train wheel mechanism 16, and then synthesized and transmitted to the reception electrode 20, and the reception circuit mechanism 200 detects the reception signal. The detected reception signal is subjected to phase comparison with the reference signal created by the transmission circuit mechanism 203 in the detection circuit mechanism 202, and the mechanical time information held by the train wheel mechanism 16 is detected from the result. The system control mechanism 21 controls time synchronization, malfunction correction, or time setting based on the mechanical time information obtained from the detection circuit mechanism 202 and the electrical time information held in the electrical counting circuit 13. Although not shown in the figure, control information from an external operation mechanism that inputs time information from the outside is also input to the system control mechanism 21, and the gear train mechanism 16 is directly mechanically operated to set mechanical time. Can be done.
[0076]
Subsequently, specific configurations of the transmission circuit mechanism 203, the reception circuit mechanism 200, and the detection circuit mechanism 202 will be described in order.
FIG. 9 shows an example of the system configuration of the transmission circuit mechanism 203 that creates a transmission signal. Reference numeral 71 denotes a crystal oscillator, and reference numeral 72 denotes a crystal oscillator circuit having an accurate frequency for creating a time interval of a clock. The oscillation frequency is a frequency of 2 15. Reference numeral 79 denotes an integrated circuit for an electric timepiece structure. Reference numeral 73 denotes a ¼ frequency divider circuit included in the integrated circuit 79, which outputs pulse signals Pa and Pb having a frequency of 2 13 in this embodiment. Both signals differ in phase by π / 2. Reference numerals 74 and 76 denote band-pass amplifier circuits that amplify only a signal having a frequency of 2 13. The circuit configuration is such that a passband rejection filter circuit composed of a resistor and a capacitor is combined with the inverting amplifier circuits 75 and 77, and further divided and attenuated by a resistive voltage divider circuit. For this reason, signals other than a specific frequency are attenuated, Only the characteristic frequency is amplified. By combining with this specific frequency amplifier circuit, sine wave signals φA and φB having a stable amplitude and phase difference are generated from pulse signals Pa and Pb generated by a digital circuit.
[0077]
Next, FIG. 10 shows an example of a receiving circuit mechanism including an equivalent circuit of a modulation mechanism using a train wheel and a preamplifier circuit for detection used in the mechanism of the present invention. Different transmission signals φA and φB are transmitted from the transmission electrodes 41 and 42. The phases and amplitudes of the transmission signals φA and φB are modulated by the transmission path 86 passing through the detection wheel 43, and the reception signal φC is received by the reception electrode 44. The voltage of the induced signal φC of the receiving electrode 44 is given a phase with respect to the ground potential from the potential distribution by the capacitance bridge formed by the capacitor of the transmission path 86. The received signal φC is then amplified by the amplifier circuit 87. In the case of phase detection, the amplifier only needs to have phase information, so that it is saturated and amplified to become a pulse signal Pc.
[0078]
FIG. 11 shows signal waveforms in each circuit mechanism. The relative phase relationship of each waveform is also maintained and displayed. φ15 is a voltage to ground voltage at the terminal of the crystal resonator 71 of the crystal oscillation circuit 72 in FIG. P15 is a 2 15 Hz pulse signal obtained by shaping the sine wave signal of the crystal unit, that is, 32768 Hz, and is also used as a clock signal for determining the phase increment for moving the logic circuit of the electric timepiece of the present invention. Yes. The pulse signals Pa and Pb shown in FIG. 9 are created based on P15, and sine wave signals φA and φB of 2 13 Hz, that is, 8192 Hz, which are different in phase by π / 2, are created via the band-pass amplifier circuit. . The frequency itself can be arbitrarily selected. A normal timepiece uses a crystal unit having a power of 2 as a common specification in the industry to increase the mass production effect.
[0079]
The sine wave signals φA and φB are modulated by the rotational position of the detection wheel 43, and the reception electrode 44 receives a reception signal φC (x) (x = 1, 2,...) Having a phase between the transmission signals φA and φB. ) Communicate. When the detection wheel 43 rotates in the direction of the arrow in FIG. 6 and the hole 45 is in the vicinity of the transmission electrode 41, the reception signal φC is transmitted by the reception signal φC (1) and the hole 45 that are close in phase to the transmission signal φA. When it comes to the vicinity of the electrode 43, it has a waveform like a reception signal φC (2) whose phase is close to that of the transmission signal φB, and the phase changes. Further, when the hole 45 of the detection wheel 43 is not near the transmission / reception electrode, the transmission signals φA and φB are shielded by the detection wheel 43 and are not transmitted to the reception electrode 44, and the reception signal φC (3) has only a noise component. It is a waveform with almost no amplitude.
[0080]
Since the reception signal φC (3) at this time is a noise signal without a phase component necessary for position detection, it is cut by a squelch circuit described in detail later. Since the reception signal φC (x) including phase information is transmitted by a change in capacitance between the electrodes, it is a signal having a very small amplitude, but the phase information is retained. The reception signal φC (x) is saturated and amplified by the amplifier circuit 87 shown in FIG. 10, and becomes a rectangular detection signal Pc (x) (x = 1, 2,...).
[0081]
Next, a description will be given of a received signal detection method.
FIG. 12 is a circuit diagram showing a detection circuit mechanism that performs phase detection of a received signal, and FIG. 13 is a waveform diagram of a detection result signal that is an output of the detection result. The detection circuit mechanism shown in FIG. 12 sets the output voltage of the phase detection depending on whether the phase of the reception signal modulated by the detection wheel 43 is advanced or delayed with respect to the phase reference signal that is a reference for phase detection. It is a structure to change.
[0082]
In FIG. 12, a pulse signal Pab that is just an intermediate phase between the signal Pa and the signal Pb shown in FIG. 11 is input to the clock of the data input flip-flop 216 as a reference signal. The reference signal Pab is easily created with an accurate phase offset from the signal on which the transmission signal is created by a logic circuit and a clock signal. On the other hand, a detection signal Pc (x) shaped by saturation amplification of the reception signal φc (x) is input as a data signal of the flip-flop 216. The flip-flop 216 outputs a detection result signal Sens-Out using the rising edge of the clock signal Pab as a trigger.
[0083]
When the detection signal Pc (x) is ahead of the reference signal Pab as in the signal Pc (1) shown in FIG. 11, an H level of the detection result signal Sens-Out = “1” is output, and the detection vehicle When the rotation of 43 is advanced and the received signal Pc (x) is modulated and the phase is delayed from the reference signal Pab as in the received signal Pc (2), the detection result signal Sens-Out = “0” is switched to the L level. . The timing at which the detection result signal Sens-Out switches from the H level to the L level can be detected as the reference position of the detection wheel 43.
[0084]
Next, a phase detection method different from the structure described above will be described.
From the detection signals Pc (1) and Pc (2) and the reference signal Pab, a charge instruction signal Pcrg and a discharge instruction signal Pdcrg as shown in FIG. 11 are created by a logic circuit which is a pulse generating means. Since the phase of the reception signal Pc (1) is ahead of Pab and the phase of the reception signal Pc (2) is behind the Pab,
Figure 0004215438
It becomes.
[0085]
The transmission signal frequency is 2 13 Hz, that is, about 8 kHz. When the H level of Pcrg = “1”, a small-capacity storage capacitor is charged to the + side through a resistor, and when the H level of Pdcrg = “1”, the capacitor Is discharged to the negative side through a resistor. The charge / discharge time constant of the capacitor is increased by one digit or more than the period of 8 kHz, and the phase information of the reception signal with respect to the transmission signal is obtained as the voltage of the capacitor.
[0086]
If the phase of Pc is ahead of Pab, a signal Pcrg = “1” is obtained, the pulse width increases in proportion to the phase difference, and the capacitor voltage saturates on the + side. On the other hand, if it is delayed, a signal Pdcrg = “1” having a pulse width proportional to the delayed phase is obtained, the charge of the capacitor is discharged to the negative side, and the voltage of the capacitor becomes zero. In this way, the phase change of the detection signal is converted into the voltage change of the capacitor and read, and the reference position is detected.
[0087]
FIG. 15 shows a specific circuit example of the phase detection mechanism using the above-described storage capacitor.
In FIG. 15, the gate 91 charges the charge storage capacitor 92 to the + side through the resistor 93. The condition for turning on the switch element 94 that performs the charging condition is as follows:
{Detection output: Pc = H} &
{Phase reference signal: Pab = L} &
{Non-squelch: / Scl-out = H}
= H
Thus, the logic level of the gate 91 becomes L, the P-channel FET 94 (field effect transistor) is turned ON, and the capacitor 92 is charged through the resistor 93. Explaining the contents of the logical product, non-squelch: / Scl-out = H indicates that the hole position exists in the vicinity of the detection electrode, phase reference signal: Pab (ωt) = L, and detection output: Pc = H indicates that the phase of the detection output is advanced from the phase reference signal. That is, the hole 45 is close to the transmission electrode 41 in FIG.
[0088]
Similarly, the discharge condition of the capacitor 92 is that the discharge switch element is the N-channel transistor 96, and the gate potential of the N-channel transistor 96 is set to the H level under the condition to be discharged. The conditions for the gate 95 output to go high are:
{Detection output: Pc = L} &
{Phase reference signal: Pab = H} &
{Non-squelch: / Scl-out = H}
= H
It is. When the FET switch 96 is turned on, discharging is performed through the resistor 97. The condition at this time indicates that the hole position exists in the vicinity of the detection electrode and the phase of the detection output is delayed from the phase reference signal. That is, it means that the detection wheel 43 continues to rotate in FIG. 6 and the hole 45 is close to the transmission electrode 42.
[0089]
The gates 91 and 96 are delay / advance detection means for detecting that the amplitude of the detection signal Pc is a certain level, and detecting and outputting the delay / advance of the phase of the reception signal Pc with respect to the phase reference signal Pab. . The FET switches 94 and 96 are charge / discharge switching means for switching charge / discharge according to the outputs of the gates 91 and 96 which are delay advance detection means.
[0090]
Further, in the actual configuration, the resistor 93 and the switch element 94 are used together, and the ON resistance of the FET that is the switch element 94 is designed to an appropriate value, and the resistor 93 is not purposely added. Similarly, the function of the resistor 97 is designed to be included in the ON resistance of the discharging FET that is the switch element 96. The ground potential Vcrg of the charge storage capacitor 92 and the reference voltage Vref obtained by dividing the power supply voltage by the resistors 98 and 99 are compared by the comparator 101 which is a voltage detection means. When the condition of Vcrg ≧ Vref is satisfied, the Schmitt circuit 100 is used. As a logic output, the H level of the detection result signal Senc_out is output.
[0091]
FIG. 14 shows a function form of the charge storage capacitor 92 with respect to the rotation angle of the ground voltage Vcrg. When the rotation of the detection wheel 43 advances and the hole 45 comes close to the transmission electrode 42, the charge storage capacitor is charged, and the ground voltage Vcrg changes from the “L” state to the “H” state with respect to the comparison reference voltage 111. After that, when passing between the transmission electrode 41 and the transmission electrode 42, the charge storage capacitor 92 is discharged and changes to the “L” state again.
[0092]
Since the gear train of the watch includes errors in all the machine dimensions, there is an operational clearance in both the vertical and rotational directions of the gear shaft. Accordingly, the voltage of the detection voltage Vcrg changes significantly and the phase also changes slightly. As an example, 112 indicates the ground voltage when the clock is upward, and 113 indicates the ground voltage when the clock is downward.
[0093]
The phase detection information is affected by noise and an error signal is generated when the detection voltage Vcrg is small. That is, the timing at which the capacitor 92 is charged and shifts from L to H with respect to the comparison reference voltage 111 has a high risk of deviation. However, the accuracy is high when the detection voltage Vcrg is large. Therefore, in the vicinity of the hole center where the detection voltage Vcrg is large and the detection voltage Vcrg is in the range from H to L, it is difficult to be affected by noise and accurate position information can be obtained. Therefore, since the point 114 where Vcrg changes from “H” to “L” is not easily changed due to a difference in the position of the watch, it is effective to read this timing as a reference position.
[0094]
In FM broadcasting, when the phase noise becomes conspicuous due to weak radio waves from a distant broadcasting station, the detector circuit of the receiver generates excessive noise and becomes an obstacle. In order to prevent this, a full-featured FM receiver provides a squelch circuit that sets a threshold for the received signal level of the received signal and suppresses the detection output for a received signal that is equal to or lower than the threshold. The present invention is a signal transmission / reception between short-distance electrodes inside the timepiece, but the introduction of a similar squelch circuit has the effect that the detection electrode suppresses noise around the detection pattern hole and at locations other than the hole. It is done.
[0095]
In addition to identifying and creating a squelch circuit based on the amplitude of the received signal, predict the time when the next hole position will be detected based on the timing of the hole position detection signal that has been reliably captured, and the period until that time A squelch by a time gate that masks the input signal is also effective.
[0096]
In the configuration of the present invention, the information of the phase measurement result indicates the hole position of the gear train to be measured, and it is usually only necessary to reliably measure the rotational position of the train wheel once every time after the pulse motor that drives the train wheel is driven. . There is no need for continuous measurement. The detection information in the most simplified method detected by the method of the present invention is 1-bit information, which is whether or not the rotation angle of the hole position of the gear train exceeds a specific angle at a specific time. Therefore, in order to determine the angle of the gear train gear, after resetting the count, the electric count circuit and the pulse motor for driving the gear train are driven in parallel by the number of one gear, and the count value of the electric count circuit is addressed. The position detection data is stored as The resulting hole position can then be determined from the data pattern for the address.
[0097]
When the above measurement contents are arranged, position measurement is intermittently performed from a state in which no detection pattern hole exists near the detection electrode. The procedure for measuring the rotation angle of the train wheel is as follows: detection of standby state information until the detection pattern hole reaches the detection electrode, and the distance between the arrival of the detection pattern hole and the center of the detection pattern hole. Detection of detection data at L level, detection of change in detection data from L level to H level at the center of the detection pattern hole, confirmation of maintenance of H level with respect to subsequent gear movement, detection pattern hole Measurement is performed in the order of confirmation and detection of standby state information from the past to the original rotational position.
[0098]
In order to measure the hole center position, it is necessary to measure that there is a detection electrode near the hole position and to accurately measure the angular position near the hole position. It is determined from the amplitude component of the signal that the measurement data is less noisy and the phase detection information is meaningful “non-standby state”, or a fixed standby time zone after the phase detection circuit changes the output logic value A circuit for storing as a standby time zone is required. A non-squelch signal {/ Scl-out} gate signal is created from the amplitude detection signal or the time zone signal of the electric time system.
[0099]
FIG. 16A shows an embodiment of an amplitude detection circuit for noise suppression for generating the non-squelch signal {/ Scl-out}. A small reception signal φC is received and amplified by the amplification circuit 132 having a constant amplification factor. This amplification circuit 132 is subjected to negative feedback and 1 / K divided negative feedback by resistance voltage division so that the amplification factor becomes K times regardless of the ambient temperature and the power supply voltage.
[0100]
The threshold value used as a reference for amplitude comparison is a value slightly higher than the threshold value of the FET 133 determined by the threshold value of the FET 133 and the carrier mobility, and is set so that the temperature characteristic of the threshold value and the temperature characteristic of the mobility compensate each other. The resistor 134 determines the current level of the charging operation of the FET 133, and the resistor 135 determines the discharge current level. When K times the peak value of the AC input received signal φC exceeds the threshold value of the FET 133, the capacitor 136 starts to be charged. When the discharge resistance 135 is made sufficiently large, the capacitor 136 responds to the peak value exceeding the threshold value of the FET 133. Thus, the charge is charged in a sampling manner and is held for a time equivalent to the discharge time constant.
[0101]
The voltage Vcrg of the capacitor 136 based on the electric charge accumulated in the capacitor 136 and the voltage Vscl obtained by dividing the power supply voltage by the resistors 137 and 138 are compared by the comparison circuit 139, and the logical value of the result is transmitted to the latch circuit 140. It is memorized with the period. In this way, it is possible to separate the peak value component of the AC detection signal and create a non-squelch signal (/ Scl-out). The source-side power supply potential of the FET 133 may be set as a periodic fluctuation threshold by applying a voltage obtained by dividing a pulse of the reference signal Pab itself or a sine wave voltage obtained by removing harmonics of the Pab instead of the + DC power supply voltage. I can do it. The harmonic removal can be realized by a circuit similar to the band-pass amplifier circuit 74 of FIG. 9 that combines an input voltage dividing circuit and a selective amplifier circuit.
[0102]
When the configuration of FIG. 16A is represented by functional blocks, it is as shown in FIG. In FIG. 16B, the received signal φC is amplified at a constant magnification by the amplification circuit 142 having a constant amplification factor, the amplitude component is extracted by the detection circuit 143, and the comparison created by the reference voltage generation mechanism 147 by the comparison circuit 144. It is detected and latched that it is greater than the set amplitude compared with the reference voltage, and the fact that the phase detection output is meaningful is latched by the synchronous latch circuit 145 as a non-squelch output logic signal output, and a non-squelch signal (/ Scl-out) is output.
[0103]
FIG. 17A shows another embodiment of the amplitude detection circuit for generating the non-squelch signal {/ Scl-out}. A small received signal φC is received and amplified by an amplification circuit 169 having a constant amplification factor. A potential obtained by dividing the reference signal Pab by the resistors 151 and 152 is provided as a fluctuation threshold value as an amplitude threshold value comparison value. Although the circuit is somewhat complicated, a method of replacing the signal with a signal obtained by removing harmonic components from the Pab is also a reasonable threshold. A signal voltage that is a constant multiple of the fluctuation threshold value and the input signal is amplified by the comparison amplifier circuit 153, rectified by the diode 154, and the result is temporarily held by a circuit having a discharge time constant determined by the capacitor 155 and the resistor 168. A logic value is stored at 156, and a non-squelch output (/ Scl-out) is output using the signal Pb as a clock.
[0104]
When the configuration of FIG. 17A is represented by functional blocks, it is as shown in FIG. In FIG. 17B, K · φC obtained by amplifying the received signal φC by the amplification circuit 161 having a constant multiplication factor of K and the comparison reference voltage Vref created by the reference voltage generation mechanism 164 are supplied to the comparison amplification circuit 162. Saturated and amplified, detected by the detection circuit 163, temporarily stored in the synchronous latch circuit 165, and output as a non-squelch output (/ Scl-out).
[0105]
In the position detection method of the embodiment described above, first, the amplitude of the reception signal φC is detected to detect that the hole is close to the transmission / reception electrode, and then the accurate position detection is performed based on the phase information of the reception signal φC. However, it is possible to perform position detection only by either phase detection or amplitude detection. In that case, the reliability of position detection due to noise or the like is inferior, but the circuit configuration can be simplified.
[0106]
One of the main points of the configuration of the present invention is that the influence of the clearance of the mechanical mechanism is suppressed by differential calculation using a plurality of transmission lines.
FIG. 18A shows a set of amplitude voltages of φC components corresponding to the transmission signals φA and φB obtained by extracting the components of the reception signal φC when the transmission signals φA and φB are transmitted through the individual transmission lines from the above viewpoint. , {P1, Q1} and {P2, Q2}, the rotation angle is the horizontal axis, and the vertical axis is the vertical axis. The rattling caused by the axial clearance of the gears varies depending on, for example, the position difference of the wristwatch, such as {P1, Q1} and {P2, Q2}. Therefore, when the detection voltage is divided at a certain slice level in such a single transmission line, the detection angles of P1 and P2 (= the rotation angle at which the slice level and the detection level match) show different values depending on the posture difference of the wristwatch. It will be a thing.
[0107]
FIG. 18B is a graph obtained by calculating the difference between the graphs in FIG. In the figure, D1 = P1-Q1 and D2 = P2-Q2. In both D1 and D2, it can be seen that the rotation angle of the zero cross point at which the difference output signal switches the sign is equal, and that the influence of the rattling of the train wheel is reduced by the difference detection method.
[0108]
Another configuration for improving the reliability of position detection by suppressing noise will be described below. A signal obtained by saturation amplification of the reception signal φC without suppressing noise amplifies the internal noise up to a saturation level, and therefore generates a spike-like noise signal. However, if, for example, measurement is performed three times and the majority logic of these three signals is output, spike noise is removed. Since the measurement of the gear train may be performed after intermittent driving of the watch motor, the actual position detection is performed by intermittent sampling detection of the signal.
[0109]
Further, another configuration for noise removal will be described. A detection signal obtained by amplifying the reception signal φC while containing noise becomes a pulse signal containing spike-like noise. This pulse-like detection signal is passed through a low-pass frequency filter composed of a known approximate integration circuit to remove spike noise components to P0 (θ), and further using a latch circuit for a logically constant short time Δt. Create a delayed PΔ (θ).
[0110]
If the logical product of the inverted signals of P0 (θ) and PΔ (θ) is Pdet,
Pdet = P0 (θ) · {/ PΔ (θ)}
Is a pulse having a pulse width Δt that coincides with the rising edge of the main signal from which the narrow spike noise is removed and changes from L level to H bell, and this gives the angle of the hole center position. If spike noise can be removed sufficiently with a low-pass filter circuit, the hole position detection circuit can be greatly simplified. Window function creation and noise suppression by squelch signal can be omitted.
[0111]
FIG. 19 is a diagram for explaining the timing of the gear train position measurement. At the moment of driving the pulse motor of the watch, the low power consumption watch system consumes a large instantaneous power that exceeds 1 million times the average power consumption. Voltage fluctuations occur. In addition, a large electromagnetic noise is generated at the moment of driving. Therefore, it is necessary to carry out the position detection operation by the weak electric field detection as in the present invention with sufficient time separation from the motor drive phase.
[0112]
Also, considering the interference caused by the internal noise of the amplifier circuit for weak electric field measurement, it is necessary to perform the position measurement itself multiple times, process the result with a majority logic circuit, and estimate and use the most probable value. Arise. The measurement shown in FIG. 19 shows an example of a timing chart in the case where the position measurement is performed an odd number of times after a certain time after driving the motor. The detection position is determined by majority of the detection results measured odd times at a timing that avoids the noise generation range.
[0113]
In the embodiments described above, the structure for detecting the position of the time information by the driving wheel train has been described. However, as other embodiments, the present invention can be applied to the detection of calendar display position information. FIG. 20 is a schematic plan view for explaining the position detection structure of the date plate 301 for displaying the date. In FIG. 20, the date display printing of 1-31 is performed on the surface of the date plate 301, and one date display is performed from the window hole 302 of the dial.
[0114]
In FIG. 20, one day is displayed. Although not shown, the date plate 301 is driven to rotate by one display per day when the rotational drive of the motor of the electromechanical converter is transmitted. Transmitting electrodes 303 and 304 are arranged on the upper surface side of the printing positions 3 and 4 of the date plate 301, and a receiving electrode 305 is opposed to the lower surface side. Further, the date plate 301 is formed of a plastic material, and a metal film is applied to the lower surface side of the date plate 301 and is grounded to the watch move, but the lower surface portion of the four printing positions has a non-printing portion of a circle 306. Yes.
[0115]
In the state of FIG. 20, only the signal from the transmission electrode 304 is transmitted to the reception electrode 305, and the signal of the transmission electrode 303 is shielded by the date plate 301 and is not transmitted. When the date plate 301 rotates for one day and 2 is displayed in the window hole 302, the circle 306 moves to the position of the transmission electrode 303, and only the signal from the transmission electrode 303 is transmitted to the reception electrode 305. . The change of the signal transmitted to the receiving electrode 305 can be read and the reference position of the date plate 301 can be detected. If the position of the date plate 301 is detected at a date position different from that of the window hole 302 as shown in the figure, the detection can be performed without affecting the date display.
[0116]
If the position of the watch's date plate, month plate, and year plate can be confirmed, a wristwatch with a built-in perpetual calendar that does not require correction of the month end date can be realized with a simple mechanism. The detection timing may be limited to the vicinity of midnight. The detection angle tolerance is also large. Therefore, amplitude detection or impedance detection with two or one transmission / reception electrode can be used. In the initial setting of the radio-controlled wristwatch, it is necessary to instantaneously rewrite the electrical time system based on the received information and then synchronize the mechanical time with the electrical time.
[0117]
It takes a lot of time to correct the year / month / day / hour / day by fast-forwarding the second, but if you make corrections in 3 blocks in seconds, hours / minutes, and year / month / day in parallel, the initial memory will be dramatically faster. Setting can be realized. Since such a large time shift occurs as low as once every few years, just after the power battery is connected, the train wheel transmission / reception electrode detection is continuously operated while driving the hour / minute / second at high speed, and is engraved in the gear. A simple method of optically reading the code hole as a time series code may be used.
[0118]
【The invention's effect】
As described above based on the embodiments, the wristwatch machine position information can be realized in a non-contact, low current, low voltage, space saving, low cost, and has high reliability without fear of deterioration over time. Was realized. As a result, an electric field that has been necessary but could not be realized due to the realization of a watch with a highly reliable holding time, a radio wave correction watch with a short time correction function, a wristwatch with an automatic correction function at the end of the month, and the use of a large pointer. The detection type thin train wheel position detection mechanism can be realized by the difference detection method using the train wheel passing plural transmission lines according to the present invention.
[0119]
The conventional method of direct detection of a single electric field, which has been considered in the past, uses the principle of detecting the spatial intensity change of the electric field, so that the spatially dependent intensity change of the electric field is smooth, and the specific point of the train wheel Sensitive detection is not possible. In addition, the electric field strength due to the clearance of the train wheel is very dependent on the clock posture difference, so it cannot be used for position detection. These bottlenecks are solved by the multiple transmission path difference detection method of the present invention. In particular, by using the phase difference, the amplitude or polarity of the detection signal crosses 0 when passing through a specific point in combination with the phase detection circuit, and it is possible to design a sensitive detection of the spatial position. In addition, the difference detection can reduce the influence of the watch position difference.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing an outline of a signal modulation structure of the present invention.
FIG. 2 is a schematic cross-sectional view of FIG. 1 showing an outline of the signal modulation structure of the present invention.
FIG. 3 is a waveform diagram showing a modulation process of a signal according to the present invention.
FIG. 4 is an explanatory diagram showing amplitude and phase characteristics of a detection signal according to the present invention.
FIG. 5 is an explanatory diagram showing various signal transmission paths of the present invention.
FIG. 6 is a perspective view of an embodiment in which the present invention is applied to a timepiece.
FIG. 7 is a perspective view showing another embodiment of a detection wheel when the present invention is applied to a timepiece.
FIG. 8 is a block diagram of an entire timepiece system according to an embodiment in which the present invention is applied to a timepiece.
FIG. 9 is a circuit diagram of a transmission circuit according to an embodiment in which the present invention is applied to a timepiece.
FIG. 10 is a circuit diagram of an equivalent circuit and a receiving circuit of a modulation mechanism according to an embodiment in which the present invention is applied to a timepiece.
FIG. 11 is a waveform diagram showing signal waveforms at various parts in an embodiment in which the present invention is applied to a timepiece.
FIG. 12 is a circuit diagram for performing phase detection of a received signal according to an embodiment in which the present invention is applied to a timepiece.
FIG. 13 is a waveform diagram of a detection signal that is an output of a detection result in an embodiment in which the present invention is applied to a timepiece.
FIG. 14 is an output diagram of a voltage to ground of a charge storage capacitor used in another detection mechanism of an embodiment in which the present invention is applied to a timepiece.
FIG. 15 is a circuit diagram of another detection mechanism according to an embodiment in which the present invention is applied to a timepiece.
FIG. 16 is a circuit diagram and a block diagram of a noise control circuit according to an embodiment in which the present invention is applied to a timepiece.
FIG. 17 is a circuit diagram and a block diagram of another noise control circuit according to an embodiment in which the present invention is applied to a timepiece.
FIG. 18 is a diagram illustrating individual transmission path detection output and differential output characteristics of a plurality of transmission paths according to the present invention.
FIG. 19 is a diagram showing a timing relationship between motor drive and train wheel position detection of the timepiece of the invention.
FIG. 20 is a plan view showing a date plate portion in an embodiment in which the present invention is applied to a calendar display timepiece.
[Explanation of symbols]
1 Transmitting electrode
2 Transmitter electrode
3 Rotating body
4 Receiver electrodes
5 holes
41 Transmitting electrode
42 Transmitting electrode
43 Detection vehicle
44 Receiver electrode
45 holes
47 4th car

Claims (14)

回転体の角度回転位置の検出機構を有する電気時計において、電場をキャリアとする複数の送信信号を整形する送信回路機構と、該送信回路機構により成形された前記送信信号を出力する送信電極と、該送信電極と非接触に近接配置され、回転または往復運動により前記複数の送信信号に変調を与える信号変調部材と、該信号変調部材と非接触に近接配置され、該信号変調部材によって変調された前記複数の送信信号を受信する受信電極と、該受信電極に受信した受信信号を入力する受信回路機構と、該受信回路機構に受信した前記受信信号の電場伝搬特性により、前記信号変調部材の機械的位置情報を検出する検波回路機構とを備え
前記検波回路機構は、位相基準信号に対して前記信号変調部材によって変調された受信信号との位相差をパルス幅とするパルス信号を出力するパルス発生手段と、位相基準信号に対して前記受信信号の位相の遅れ進みを検出して出力する遅れ進み検出手段と、該遅れ進み検出手段の出力により、前記パルス信号のパルス幅に比例した電荷量のコンデンサへの充電あるいは放電を切り替える、充放電切り替え手段と、前記コンデンサの端子電圧を予め設定された電圧と比較し出力する電圧検出手段と、を有する
事を特徴とする電気時計。
In the electric timepiece having a detection mechanism for angular rotation position of the rotator, and transmission circuitry for shaping a plurality of transmission signals that an electric field with the carrier, and the transmitting electrode for outputting the transmission signal formed by the transmit circuitry, A signal modulation member that is arranged in close contact with the transmission electrode and that modulates the plurality of transmission signals by rotation or reciprocation, and is arranged in close contact with the signal modulation member and modulated by the signal modulation member A receiving electrode that receives the plurality of transmission signals, a receiving circuit mechanism that inputs the received signal to the receiving electrode, and an electric field propagation characteristic of the received signal that is received by the receiving circuit mechanism. A detection circuit mechanism for detecting the target position information ,
The detection circuit mechanism includes: pulse generation means for outputting a pulse signal whose pulse width is a phase difference between the phase reference signal and the reception signal modulated by the signal modulation member; and the reception signal for the phase reference signal. A delay / advance detection means for detecting and outputting a delay / advance of the phase of the signal, and a charge / discharge switching for switching charging / discharging of the capacitor with a charge amount proportional to the pulse width of the pulse signal by the output of the delay / advance detection means An electric timepiece comprising: means; and voltage detection means for comparing and outputting a terminal voltage of the capacitor with a preset voltage .
前記検波回路機構は位相検波回路機構であり、前記変調部材によって変調された受信信号の位相情報から前記信号変調部材の機械的位置情報を検出することを特徴とする請求項1記載の電気時計。2. The electric timepiece according to claim 1, wherein the detection circuit mechanism is a phase detection circuit mechanism, and detects mechanical position information of the signal modulation member from phase information of a reception signal modulated by the modulation member. 前記検波回路機構は振幅検波回路機構であり、前記変調部材によって変調された受信信号の相対的強度情報から前記信号変調部材の機械的位置情報を検出することを特徴とする請求項1記載の電気時計。2. The electric circuit according to claim 1, wherein the detection circuit mechanism is an amplitude detection circuit mechanism, and mechanical position information of the signal modulation member is detected from relative intensity information of a reception signal modulated by the modulation member. clock. 前記検波回路機構は位相検波回路機構と振幅検波回路機構とを共に備え、前記信号変調部材によって変調された受信信号の相対強度情報から前記変調部材の機械的位置情報の検出範囲を概略定め、前記信号変調部材によって変調された受信信号の位相情報から前記信号変調部材の位置情報を検出することを特徴とする請求項1記載の電気時計。The detection circuit mechanism includes both a phase detection circuit mechanism and an amplitude detection circuit mechanism, and roughly determines the detection range of the mechanical position information of the modulation member from the relative intensity information of the received signal modulated by the signal modulation member, 2. The electric timepiece according to claim 1, wherein position information of the signal modulation member is detected from phase information of the reception signal modulated by the signal modulation member. 前記複数の送信信号は、位相の異なる同一周波数信号である事を特徴とする請求項1記載の電気時計。2. The electric timepiece according to claim 1, wherein the plurality of transmission signals are the same frequency signals having different phases. 前記複数の送信信号は、周波数の異なる同期関係にある信号である事を特徴とする請求項1記載の電気時計。The electric timepiece according to claim 1, wherein the plurality of transmission signals are signals having different synchronization frequencies. 前記複数の送信信号は、正弦波または正弦波と近似形状の波形である事を特徴とする請求項1記載の電気時計。2. The electric timepiece according to claim 1, wherein the plurality of transmission signals are sine waves or waveforms having a shape approximate to a sine wave. 前記位相検波回路機構は位相検波の基準となる位相基準信号に対して、前記変調部材によって変調された受信信号の位相が進んでいるか、あるいは遅れているかによって位相検波の出力の電圧を変化させる事を特徴とする請求項2又は4記載の電気時計。The phase detection circuit mechanism changes the output voltage of the phase detection depending on whether the phase of the reception signal modulated by the modulation member is advanced or delayed with respect to the phase reference signal that is a reference for phase detection. The electric timepiece according to claim 2 or 4 , characterized by the above-mentioned. 前記信号変調部材は、形状もしくは構成部材の一部を電気伝導度あるいは誘電率が他の部分と異なる構造とした事を特徴とする請求項1記載の電気時計。2. The electric timepiece according to claim 1, wherein the signal modulation member has a shape or a part of a constituent member different in electrical conductivity or dielectric constant from another part. 前記信号変調部材は、導電性の金属材料から成り、その一部に穴または切欠または凹凸形状を有する構造とした事を特徴とする請求項1記載の電気時計。The electric timepiece according to claim 1, wherein the signal modulation member is made of a conductive metal material and has a hole, a notch, or an uneven shape in a part thereof. 前記信号変調部材は、プラスチック等の非導電性部材と、導電性の金属材料から成り、該金属材料の一部に穴または切欠または凹凸形状を有する構造とした事を特徴とする請求項1記載の電気時計。2. The signal modulation member is made of a non-conductive member such as plastic and a conductive metal material, and a part of the metal material has a hole, a notch, or an uneven shape. Electric clock. 前記信号変調部材は、プラスチック等の非導電性部材から成り、該非導電性部材の一部に、金属メッキを施した事を特徴とする請求項1記載の電気時計。The electric timepiece according to claim 1, wherein the signal modulation member is made of a non-conductive member such as plastic, and a part of the non-conductive member is plated with metal. 前記信号変調部材は、電気機械変換機によって駆動される回転運動を指針表示まで伝達する輪列の一部で構成され、前記信号変調部材の機械的位置情報によって、前記輪列の基準位置を検出する機構を有する事を特徴とする請求項1記載の電気時計。The signal modulation member is composed of a part of a train wheel that transmits a rotational motion driven by an electromechanical converter to a pointer display, and detects a reference position of the train wheel based on mechanical position information of the signal modulation member. The electric timepiece according to claim 1, further comprising a mechanism for 前記信号変調部材は、電気機械変換機によって駆動される回転運動を日付表示まで伝達する輪列の一部または日付表示板で構成され、前記信号変調部材の機械的位置情報によって、日表示板の基準位置を検出し、時計回路に保持された電気的カレンダ情報によって、小の月の月末非存日を自動的に排除する月末自動修正機能を有する事を特徴とする請求項1記載の電気時計。The signal modulation member is composed of a part of a train wheel or a date display plate that transmits rotational movement driven by an electromechanical converter to date display, and according to mechanical position information of the signal modulation member, 2. An electric timepiece according to claim 1, further comprising a month end automatic correction function for detecting a reference position and automatically excluding a non-existent day of a small month based on electrical calendar information held in the timepiece circuit. .
JP2002056936A 2002-03-04 2002-03-04 Electric clock Expired - Fee Related JP4215438B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002056936A JP4215438B2 (en) 2002-03-04 2002-03-04 Electric clock
DE60318689T DE60318689T2 (en) 2002-03-04 2003-03-04 ELECTRIC CLOCK
PCT/JP2003/002493 WO2003074976A1 (en) 2002-03-04 2003-03-04 Electric timepiece
EP03743595A EP1482282B1 (en) 2002-03-04 2003-03-04 Electric timepiece
US10/493,898 US7436737B2 (en) 2002-03-04 2003-03-04 Electric timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002056936A JP4215438B2 (en) 2002-03-04 2002-03-04 Electric clock

Publications (2)

Publication Number Publication Date
JP2003255061A JP2003255061A (en) 2003-09-10
JP4215438B2 true JP4215438B2 (en) 2009-01-28

Family

ID=28667324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002056936A Expired - Fee Related JP4215438B2 (en) 2002-03-04 2002-03-04 Electric clock

Country Status (1)

Country Link
JP (1) JP4215438B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057935B4 (en) * 2009-12-11 2015-07-09 Ident Technology Ag Device and method for detecting gripping of a handheld device by a hand
JP5623924B2 (en) * 2011-01-28 2014-11-12 シチズンホールディングス株式会社 Clock with pointer position detection function
EP2626752B1 (en) * 2012-02-08 2014-11-19 The Swatch Group Research and Development Ltd. Device for detecting and synchronising the position of a wheel of a clock mechanism
EP3037898B1 (en) * 2014-12-23 2017-06-21 ETA SA Manufacture Horlogère Suisse Electromechanical apparatus comprising a device for capacitive detection of the angular position of a moving element, and method for detecting the angular position of a moving element
EP3438764A1 (en) * 2017-08-04 2019-02-06 ETA SA Manufacture Horlogère Suisse Clock movement comprising a device for detecting an angular position of a wheel
JP7130982B2 (en) 2018-02-27 2022-09-06 セイコーエプソン株式会社 Watch movements and watches
JP7102778B2 (en) * 2018-02-27 2022-07-20 セイコーエプソン株式会社 Watch movements and watches
JP7474184B2 (en) 2020-11-19 2024-04-24 株式会社ミツバ Motor Control Device
JPWO2022186386A1 (en) * 2021-03-05 2022-09-09

Also Published As

Publication number Publication date
JP2003255061A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US9664534B2 (en) Electromechanical apparatus comprising a capacitive device for detection of the angular position of a wheel set, and method for detection of the angular position of a wheel set
US6643223B2 (en) Time keeping apparatus and control method therefor
JP4215438B2 (en) Electric clock
US7102964B2 (en) Time keeping apparatus and control method therefor
US8934321B2 (en) Analog quartz timepiece and method for providing time-correction of the same
US7436737B2 (en) Electric timepiece
WO1999027423A1 (en) Electronic device and method for controlling electronic device
US7079451B2 (en) Time measurement device and method of controlling the time measurement device
JP3440938B2 (en) Electronic device and control method for electronic device
CN102540866A (en) Multimode multi-machine X-channel programmable pulse synchronization control method and device
CN205750317U (en) A kind of Intelligent core, intelligent watch and gear train drive ripple test device
JP2004163128A (en) Position detecting system for electric timepiece
JP4361255B2 (en) Electric clock position detection system
JP2002214367A (en) Clocking device
CN2586995Y (en) Automatic adjusting clock
JP4377111B2 (en) Electric clock position detection system
EP2711789B1 (en) Electronic timepiece
JP2005084038A (en) Electronic watch
JP2001166076A (en) Clocking device and its control method
JP3654055B2 (en) Portable electronic device and method for controlling portable electronic device
JP2008215973A (en) Radio-controlled timepiece
JP2017173237A (en) Electronic timepiece and method for controlling electronic timepiece
JP2003232874A (en) Electronic apparatus and control method for electronic apparatus
JP2004157142A (en) Timepiece device, and control method for the same
JP2016176876A (en) Electronic watch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4215438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees