JP4214287B2 - Preparation method of basement membrane preparation - Google Patents

Preparation method of basement membrane preparation Download PDF

Info

Publication number
JP4214287B2
JP4214287B2 JP2001292676A JP2001292676A JP4214287B2 JP 4214287 B2 JP4214287 B2 JP 4214287B2 JP 2001292676 A JP2001292676 A JP 2001292676A JP 2001292676 A JP2001292676 A JP 2001292676A JP 4214287 B2 JP4214287 B2 JP 4214287B2
Authority
JP
Japan
Prior art keywords
basement membrane
cells
epithelial
cell
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001292676A
Other languages
Japanese (ja)
Other versions
JP2003093053A (en
Inventor
克身 持立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Environmental Studies
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
National Institute for Environmental Studies
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Environmental Studies, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical National Institute for Environmental Studies
Priority to JP2001292676A priority Critical patent/JP4214287B2/en
Priority to PCT/JP2002/009841 priority patent/WO2003026712A1/en
Priority to EP02772905A priority patent/EP1437147B1/en
Publication of JP2003093053A publication Critical patent/JP2003093053A/en
Priority to US10/809,218 priority patent/US7399634B2/en
Priority to US11/599,953 priority patent/US8765473B2/en
Priority to US11/599,974 priority patent/US7972852B2/en
Priority to US11/599,760 priority patent/US7906332B2/en
Application granted granted Critical
Publication of JP4214287B2 publication Critical patent/JP4214287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、細胞の形態、分化、増殖、運動、機能発現などを制御する機能を持った細胞外マトリックスである基底膜の標品を作製する方法や、かかる作製方法により得られる基底膜標品に関する。
【0002】
【従来の技術】
動物の体の内外の表面を覆っている細胞層である表皮、角膜上皮、肺胞上皮、消化器系の粘膜上皮、腎臓子球体上皮、肝実質細胞等の上皮組織は、外界から異物(微生物、アレルゲン、化学物質等)が侵入するのを防いでいる。かかる上皮組織を構成する上皮細胞の外界面は上端面(apical)、内側下面は基底面(basal)と呼ばれ、かかる基底面直下には、蛋白質やプロテオグリカン等の細胞外基質(ECM)から成る(細胞を含まない)基底膜と呼ばれる50〜100nmの薄膜の構造体が存在する。基底膜は、未成熟な上皮細胞が増殖し、成熟した細胞に分化して、本来の形態や、機能を発現するのに必須の構造体と考えられている。即ち、基底膜なしでは上皮組織は自分自身の維持や本来のパフォーマンスが達成できない。多層又は単層の上皮細胞層はバリアーとして外界からの異物の侵入を防いでいるが、基底膜自体も物理的なバリアーとして作用する。このように、上皮組織を構成する上皮細胞と基底膜が協働して、強固なバリアーを形成し、体内の生命活動を保護している。
【0003】
上皮細胞の他、内皮細胞、筋細胞、脂肪細胞、シュワン細胞などの実質細胞と結合組織との界面に形成される細胞外基質の特異な膜状構造物である基底膜は、生体の各組織・臓器に普遍的に見い出される一方で、腎糸球体毛細血管ループや神経シナプス膜など高度に特化したものもある。したがって、細胞を間質に接着させるだけでなく、選択的な物質・細胞透過や細胞分化の誘導等の機能が明らかにされている。腎糸球体では、基底膜の陰性荷電が腎のろ過機能を担っているとみなされ、その陰性荷電は現在パールカンとよばれるヘパラン硫酸プロテオグリカン(HSPG)によることが古典的に知られている。HSPGは腎糸球体基底膜だけでなく、種々の基底膜に、IV型コラーゲン、ラミニン、エンタクチン等と同様に、その基本的構成分子としてひろく分布している。
【0004】
細胞外マトリックス、特に基底膜は、上記のように個体の発生や分化等の生理現象だけでなく、癌の増殖転移や炎症などの病態形成にも深く関与していることが明らかとなりつつあり、その構成タンパク質の機能の解明が重要な課題となってきている。例えば、基底膜の主要糖タンパク質であるラミニンは、α、β、γの3種類のサブユニットからなる複合体で、15種類のアイソフォームが知られており、これらが組織特異的あるいは発生時の各段階で特異的に発現している。ラミニンは様々な生物活性を有し、20種類以上のラミニンレセプターが報告されている分子量90万の複雑な巨大分子である。
【0005】
細胞が接着可能な薄い細胞外マトリックス層である基底膜の構成成分と上皮細胞との相互作用が、移動、増殖及び分化等の細胞機能に影響を及ぼしている(Crouch et al., Basement membrane. .In The Lung(ed .R. G. Crystal and J. B. West), pp53.1-53.23. Philadephia : Lippincott-Raven. 1996)。基底膜の主要成分としては、前記のように、ラミニン、IV型コラーゲン、ヘパラン硫酸プロテオグリカン(HSPG)及びエンタクチンが知られており(Curr. Opin. Cell Biol. 6, 674-681, 1994)、ラミニン及びIV型コラーゲンのアイソフォームを含む基底膜成分の合成には、間充織細胞が重要な役割を担っていると考えられている(Matrix Biol. 14, 209-211, 1994、J. Biol. Chem. 268, 26033-26036, 1993)が、上皮細胞の役割もまた、重要なものである。HSPGは、上皮細胞由来と考えられているが、ラミニン、IV型コラーゲン及びエンタクチンは、上皮細胞及び間充織細胞の双方によって、インビボで合成される(Development 120, 2003-2014, 1994、Gastroenterology 102, 1835-1845, 1992)。連続した緻密層(lamina densa)を示すインビトロでの上皮組織モデルを作製する試みが、今まで数多く行われてきた。腸(J. Cell Biol. 133, 417-430, 1996)及び皮膚(J. Invest. Dermatol. 105, 597-601, 1995、J. Invest. Dermatol. 109, 527-533, 1997、Dev. Dynam. 197, 255-267, 1993)等の組織モデルが研究されており、いくつかの間充織細胞由来基底膜成分が、基底膜形成に重要な役割を果たしていることも見い出されている。
【0006】
従来から、上皮細胞を培養することにより基底膜を構築し、基底面直下に基底膜構造体が存する上皮組織を構築する幾つかの方法が報告されている。例えば、本発明者らは、肺胞上皮細胞と肺線維芽細胞との共培養によりインビトロで基底膜が形成されることを報告した(Cell Struc.Func., 22: 603-614, 1997)。すなわち、肺線維芽細胞をI型コラーゲンゲルに包埋した状態で順化培養すると、肺線維芽細胞によってコラーゲンゲルは収縮し堅さを増し、また分泌された細胞外基質が細胞周囲のコラーゲン線維にまとわりついて沈着し、その形成物はインビボにおける間質と類似することから擬似間質と呼ばれ、この擬似間質化したI型コラーゲン線維上で、II型肺胞上皮細胞株(SV40-T2)を14日間程度培養する(T2-Fgel)と、肺線維芽細胞が分泌する細胞外基質中のIV型コラーゲンやラミニン等の基底膜構成成分が培地中に拡散して、上記II型肺胞上皮細胞株の基底面に到達し、基底膜構築材料として使われる結果、基底膜構造体が形成されることを報告した。
【0007】
また、希薄な中性コラーゲン溶液を、5%CO2中37℃でインキュベートし、コラーゲン線維を形成させた後、無菌状態の中で風を当てて乾燥させた風乾コラーゲン線維基質(fib)を、上記擬似間質の代替物として用い、上記肺胞上皮細胞と肺線維芽細胞との共培養の場合と同様にして、基底膜を形成することも報告されている(Eur. J. Cell Biol., 78: 867-875, 1999, J. Cell Sci., 113: 859-868, 2000)。この方法の場合、コラーゲン溶液の濃度が高いと、形成されたコラーゲン線維に隙間が少なく、あるいはなくなって、基底膜形成のため上皮細胞を長期間培養(10日〜2週間)すると、細胞が剥がれて浮き上がることから(例:Becton Dickinson, Fibrillar collagen coat culture insert)、コラーゲン溶液濃度は、0.3〜0.5mg/mlが最適であるとされている(Eur. J. Cell Biol., 78: 867-875, 1999, J. Cell Sci., 113: 859-868, 2000)。
【0008】
線維芽細胞を包埋したコラーゲンマトリックスを使用する代わりに、マトリゲル(Matrigel;Becton Dickinsonの登録商標)を加えたコラーゲン線維基質上で、II型肺胞上皮細胞株(SV40-T2)を培養した。このときマトリゲルは、基底膜成分の外来性(exogenous)供給源として機能した。マトリゲルは、Engelbreth-Holm-Swarm腫瘍マトリックスから抽出された基底膜調製物であり(J. Exp. Med. 145, 204-220, 1977)、ECM合成に影響を及ぼす可能性のある種々のサイトカインの他に、ラミニン−1、エンタクチン、IV型コラーゲン、パールカンを含んでいる(Exp. Cell Res. 202, 1-8, 1992)。基底膜に取り込まれたマトリゲルの成分を追跡するために、マトリゲルをビオチンで標識し、基底膜成分であるラミニン、エンタクチン、IV型コラーゲン、パールカンの免疫蛍光染色と電子顕微鏡観察により、マトリゲル量に依存して基底膜形成が促進し、点状に分泌された基底膜マトリックスがシート状に沈着して基底膜が発達してゆく過程が観察された。その結果、肺胞上皮細胞の下方にて、安定化した外来性ラミニン−1及びエンタクチンが、インビトロでの上記上皮細胞による基底膜の完全なる発達に大きく関与していることが明らかになっている(J. Cell Sci., 113: 859-868, 2000)。
【0009】
【発明が解決しようとする課題】
本発明者は、線維性コラーゲン基質上に肺胞上皮細胞を培養する際に、線維芽細胞の順化、TGF−β又はマトリゲルの存在下で培養することにより、上皮細胞直下の基質に基底膜構造体を形成させる方法等について研究を進め、II型肺胞上皮細胞の場合、図1に示されるように、II型肺胞上皮細胞を、カルチャーインサートの上部ウェルの肺線維芽細胞マトリックス基層(線維芽細胞を包埋したコラーゲンゲル)上で培養した場合(T2-Fgel)、下部ウェルに肺線維芽細胞マトリックスの共存下、上部ウェルの線維性コラーゲン基層上で培養した場合(T2-fib-Fcm)、下部ウェルにコーティングされたマトリゲルの共存下、上部ウェルの線維性コラーゲン基層上で培養した場合(T2-fib-MG)、上部ウェル及び下部ウェルの成長因子TGF−βの共存下、上部ウェルの線維性コラーゲン基層上で培養した場合(T2-fib-TGFβ)に基底膜が形成されることを確認した。
【0010】
また、内皮細胞の基底面直下に存在する基底膜も、内皮細胞の機能発現と維持に寄与しており、炎症性細胞が血管から組織に侵入する際、あるいはガン細胞が転移する際の障壁の役割を果たしていることから、内皮細胞(EC)による基底膜の構築についても検討したところ、II型肺胞上皮細胞の場合と異なり、図2に示されるように、上部ウェルの線維芽細胞マトリックス基層上で培養した場合(EC-Fgel)、下部ウェルに肺線維芽細胞マトリックスの共存下、上部ウェルの線維性コラーゲン基層上で培養した場合(EC -fib-Fcm)、下部ウェルにコーティングされたマトリゲルの共存下、上部ウェルの線維性コラーゲン基層上で培養した場合(EC-fib-MG)、上部ウェルの線維性コラーゲン基質上で培養した場合(EC -fib)には、(EC-Fgel)の場合を除き基底膜が形成されなかった。
【0011】
ところで、本発明者らは、前記基底膜を形成した肺胞上皮細胞を、0.18Mの過酸化水素水で10分間処理し、1日間培養を継続すると、自動的に上皮細胞を基底膜から剥離させることができることを報告している(Cell Struc.Func., 22, 603-614, 1997)。しかし、かかる方法では、基底膜からの細胞の剥離が不充分であったり、基底膜の一部が損傷を受けたりする場合があり、かかる基底膜上に所定の基底膜形成能を有する同種又は異種の細胞を播種・培養しても、該細胞の機能発現と維持等充分に生理活性を有する人工ヒト組織を調製することができない場合があるという問題があることを見い出した。本発明の課題は、基底膜形成能を有する同種又は異種の所定の細胞を播種・培養した場合に、細胞の形態、分化、増殖、運動、機能発現などを制御する機能を有する基底膜の標品を簡便かつ短期間に提供することにある。
【0012】
【課題を解決するための手段】
本発明者は、上記課題を解決するため鋭意研究し、界面活性剤、例えば0.1%トリトン(Triton)X−100(Calbiochem-Novabiochem Corporation)を用いると、その界面活性作用により細胞の脂質成分が溶解し、アルカリ性溶液、例えば、20〜50mMのNH3を用いると、細胞の基底膜表面に残存する蛋白質が溶解し、蛋白分解酵素阻害剤の混合液(PIC、protease inhibitors cocktail)を用いると、細胞が溶解する際に遊離してくるリソゾーム中の蛋白分解酵素等の内因性プロテアーゼ活性による基底膜の分解が抑制され、基底膜形成能を有する同種又は異種の所望の細胞を播種・培養した場合に、細胞の形態、分化、増殖、運動、機能発現などを制御する機能を有する基底膜の標品を短時間に得ることができることを見い出し、本発明を完成するに至った。
【0013】
すなわち本発明は、基底膜を介して支持体上に接着している基底膜形成能を有する細胞を、該細胞の脂質溶解能を有する界面活性剤とアルカリ溶液とプロテアーゼ阻害剤を添加した等張のリン酸緩衝液を用いて基底膜から除去することを特徴とする基底膜標品の作製方法(請求項1)や、脂質溶解能を有する界面活性剤を用いて脱脂処理をした後、又は脱脂処理と同時にアルカリ溶液を用いて除タンパク・除核処理をすることを特徴とする請求項1記載の基底膜標品の作製方法(請求項2)や、界面活性剤がトリトンX−100(Triton X−100)であることを特徴とする請求項1又は2記載の基底膜標品の作製方法(請求項)や、アルカリ溶液がpH9〜10のアルカリ溶液であることを特徴とする請求項1〜のいずれか記載の基底膜標品の作製方法(請求項)に関する。
【0014】
また本発明は、基底膜が、線維芽細胞を包埋したコラーゲンゲル上で、基底膜形成能を有する細胞を培養することにより調製された基底膜であることを特徴とする請求項1〜のいずれか記載の基底膜標品の作製方法(請求項)や、基底膜が、基底膜形成能を有する細胞の基底面に、基底膜構成成分の集積作用を有するレセプターを局在化させることができるβ−D−グルコピラノース非還元末端又は2−アセトアミド−2−デオキシ−β−D−グルコピラノース非還元末端を有する糖鎖を備えた支持体上で、基底膜形成能を有する細胞を培養することにより調製された基底膜であることを特徴とする請求項1〜のいずれか記載の基底膜標品の作製方法(請求項)や、請求項1〜のいずれか記載の基底膜標品の作製方法により得られることを特徴とする基底膜標品(請求項)や、支持体から遊離状態にあることを特徴とする請求項記載の基底膜標品(請求項)に関する。
【0015】
【発明の実施の形態】
本発明の基底膜標品の作製方法としては、基底膜を介して支持体上に接着している基底膜形成能を有する細胞を、該細胞の脂質溶解能を有する界面活性剤とアルカリ溶液とプロテアーゼ阻害剤を用いて基底膜から除去する方法であれば特に制限されるものではないが、脂質溶解能を有する界面活性剤を用いて脱脂処理をした後、または脱脂処理と同時にアルカリ溶液とプロテアーゼ阻害剤を用いて除タンパク・除核処理をする方法が好ましい。ここで基底膜標品とは、基底膜形成能を有する同種又は異種の所望の細胞を播種・培養した場合に、細胞の形態、分化、増殖、運動、機能発現などを制御する機能を有する基底膜を意味し、上記基底膜形成能を有する細胞としては上皮細胞、内皮細胞、間充織細胞などを挙げることができ、上記上皮細胞としては表皮細胞、角膜上皮細胞、肺胞上皮細胞、消化器系の粘膜上皮細胞、腎臓子球体上皮細胞、肝実質細胞等を、上記内皮細胞としては腎臓子球体毛細血管内皮細胞、肺動脈血管内皮細胞、胎盤静脈血管内皮細胞、大動脈血管内皮細胞等を、間充織細胞としては筋細胞、脂肪細胞、グリア細胞、シュワン細胞等をより具体的に例示することができ、上記基底膜を介して支持体上に接着している基底膜形成能を有する細胞には、通常かかる細胞の集合体である組織、好ましくはヒト等の人工組織が含まれる。かかる人工組織(組織モデル)としては、細胞層とその直下の基底膜を含む組織であればどのようなものでもよいが、例えば、表皮組織モデル、角膜上皮組織モデル、肺胞上皮組織モデル、気道上皮組織モデル、腎糸球体組織モデル、肝実質組織モデル、肺動脈血管内皮組織モデル等を具体的に挙げることができる。
【0016】
上記細胞の脂質溶解能を有する界面活性剤としては、トリトンX−100、Lubrol PX、デオキシコール酸、コール酸、Tween、エマルゲン等の界面活性剤が好ましく、中でもトリトンX−100が特に好ましい。脂質溶解能を有する界面活性剤の使用濃度としては、適用する細胞の種類や処理時間にもよるが、例えばトリトンX−100の場合、0.01〜1.0%、特に0.1%前後が好ましい。また、上記アルカリ溶液としては、細胞の基底膜表面に残存する蛋白質を溶解し、基底膜の蛋白までは溶解しないアルカリ溶液であればどのようなものでもよいが、pH9〜10のアルカリ溶液が好ましく、例えば、20〜50mMのNHや1mMのNaOH等のアルカリ性溶液を具体的に挙げることができる。
【0017】
また、細胞が溶解する際に遊離してくるリソゾーム中のDNaseI等の蛋白分解酵素などの内因性プロテアーゼ活性による基底膜の分解を抑制するため、プロテアーゼ阻害剤、好ましくは蛋白分解酵素阻害剤の混合液(PIC、protease inhibitors cocktail)を添加したリン酸緩衝液中で行う方法が好ましい。さらに、本発明の基底膜標品の作製方法においては、人工ヒト組織等の基底膜を介して支持体上に接着している基底膜形成能を有する細胞にあらかじめ2mMのNa3VO4等のバナジウム塩を用いて前処理することもできる。バナジウム塩を用いて前処理すると、基底膜から細胞の剥離がよくなるが、バナジウム塩の洗浄が必要となる。
【0018】
基底膜を介して支持体上に接着している基底膜形成能を有する細胞、好ましくはヒト等の人工組織の調製方法としては、公知の人工組織の調製方法の他、本発明者により開発された新たな調製方法を挙げることができる。上記公知の人工組織の調製方法としては、図1に示されるように、上皮細胞を、カルチャーインサートの上部ウェルの肺線維芽細胞マトリックス基層上で培養した人工組織(T2-Fgel)の調製方法、下部ウェルに肺線維芽細胞マトリックスの共存下、上部ウェルの線維性コラーゲン基層上で培養した人工組織(T2-fib-Fcm)の調製方法、下部ウェルにコーティングされたマトリゲルの共存下、上部ウェルの線維性コラーゲン基層上で培養した人工組織(T2-fib-MG)の調製方法、上部ウェル及び下部ウェルの成長因子TGF−βの共存下、上部ウェルの線維性コラーゲン基層上で培養した人工組織(T2-fib-TGFβ)の調製方法を好適に挙げることができる。また、図2に示されるように、内皮細胞をカルチャーインサートの上部ウェルの肺線維芽細胞マトリックス基層上で培養した新規人工組織(EC-Fgel)の調製方法を好適に挙げることができる。
【0019】
ところで、基底膜の調製には、ラミニン、IV型コラーゲン、ヘパラン硫酸プロテオグリカン(HSPG)、エンタクチン等の基底膜構成成分が必要とされ、また個々の基底膜形成能を有する細胞は基底膜構成成分を分泌するが、かかる細胞から分泌される基底膜構成成分は、細胞の基底面(下面)から線維性コラーゲンマトリックスが形成する細胞外基質の内部に向かって分泌される。したがって、分泌された基底膜成分の大部分は基底面表面から離れてしまい反対側から培地中に拡散したり、途中で蛋白質分解酵素に分解されたりして、通常有効利用されない。しかし、基底膜形成能を有する細胞の基底面に、基底膜構成成分の集積作用を有するレセプターを局在化させることができる糖鎖を備えた支持体上で、基底膜形成能を有する細胞を培養することにより、上記上皮細胞や内皮細胞などの基底膜形成能を有する細胞から分泌される内生の基底膜構成成分を好適に活用することができる。すなわち、本発明者により開発された新たな人工組織の調製方法として、基底膜形成能を有する細胞の基底面に、基底膜構成成分の集積作用を有するレセプターを局在化させることができる糖鎖を備えた支持体上で、基底膜形成能を有する細胞を培養することにより人工組織を調製する方法を挙げることができる。
【0020】
そして、上記新たな人工組織の調製方法においては、基底膜形成能を有する細胞から分泌される内生の基底膜構成成分に加えて、外生の基底膜構成成分等をも利用して短期間で人工組織を調製することができるように、基底膜構成成分及びTGF−βを分泌する線維芽細胞、好ましくは線維芽細胞の順化培地や、基底膜構成成分を豊富に含有するマトリゲルなどの線維芽細胞代替物と共培養することもできる。また、同様に短期間で人工組織を調製することができるように、基底膜形成能を有する細胞を、別途調製されたラミニン、IV型コラーゲン、ヘパラン硫酸プロテオグリカン(HSPG)、エンタクチン等の基底膜構成成分の1種又は2種以上の存在下で培養したり、TGF−βの存在下で培養することもできる。上記ラミニンやHSPGは市販品が用いることができ、IV型コラーゲンとしては、牛レンズカプセルから酢酸抽出したものを有利に用いることができる。上記ラミニン、IV型コラーゲン、ヘパラン硫酸プロテオグリカン(HSPG)、エンタクチン等の基底膜構成成分やTGF−βを用いる方法は、コスト高になることから、基底膜形成能を有する細胞や線維芽細胞として、基底膜構成成分の1種又は2種以上の遺伝子が導入された基底膜構成成分高発現細胞や、TGF−βの遺伝子が導入された成長因子高発現細胞を選抜・使用することができる。
【0021】
上記基底膜形成能を有する細胞の基底面に、基底膜構成成分の集積作用を有するレセプターを局在化させることができる糖鎖としては、糖鎖又は該糖鎖の一部が上記レセプターと結合することにより、基底膜形成能を有する細胞を支持体上に接着しうる糖鎖、中でも、レセプターと結合する糖鎖又は該糖鎖の一部が前記基底膜構成成分と置換しうる糖鎖を用いることが好ましい。また、糖鎖を備えた支持体としては、かかる糖鎖を有する一体成形体、あるいは、糖鎖を有するポリマーをコーティングした支持体であることが好ましく、該糖鎖を有するポリマーとしては、β−D−グルコピラノース(β-D-glucopyranosyl)非還元末端又は2−アセトアミド−2−デオキシ−β−D−グルコピラノース(2-acetoamide-2-deoxy-β-D-glucopyranosyl)非還元末端を有する糖鎖を有するポリマーを例示することができる。また、かかるβ−D−グルコピラノース非還元末端を有する糖鎖を有するポリマーとしてはPV-CAやPV-Lam等、2−アセトアミド−2−デオキシ−β−D−グルコピラノース非還元末端を有する糖鎖を有するポリマーとしてはPV-GlcNAc等のビニル系モノマーにオリゴ糖を導入した高分子ポリマー(PV-sugar)をより具体的に例示することができる。そして、これらPV-sugarは1種単独の他、2種以上の混合物を用いてもよく、これらPV-sugarは市販のものを用いることができる。
【0022】
また、本発明者により開発された新たな方法による人工組織の他の態様としては、支持体の相対する2つの基層面上で、基底膜形成能を有する細胞を培養する方法を挙げることができ、例えば、多孔性メンブレン膜の両側に線維性コラーゲンを作製し、その両側に上皮細胞と血管内皮細胞の組み合わせなど、2種類の基底膜形成能を有する細胞を播種・培養すると、基底膜形成能を有する細胞から分泌される内生の基底膜構成成分の拡散が防止され、基底膜成分の有効利用率を高めることができる。すなわち、一方の細胞が分泌する基底膜構成成分が、線維性コラーゲンの反対側に位置する他方の細胞に辿り着き、かかる細胞が形成する細胞−細胞間結合(密着結合)で隙間の無い障壁により阻まれて、培地中に拡散することがなく、その結果、基底膜成分の有効利用率を高めることができる。図3の上段には、コラーゲンゲル包埋線維芽細胞存在下、コラーゲン線維を介しての上皮細胞と血管内皮細胞の共培養による基底膜の形成(左)、糖鎖を備えた支持体であるコラーゲン線維の薄膜を介しての上皮細胞と血管内皮細胞の共培養による基底膜の形成(中)、コラーゲン線維を介しての上皮細胞と線維芽細胞の共培養による基底膜の形成(右)が模式的に示されており、また、図3の下段には、所望の細胞組織ではない方の細胞組織、すなわち、血管内皮組織(左)、上皮組織(中)、線維芽細胞(右)を機械的に剥がして取り除いた状態が示されている。これら細胞の組合せとしては、上皮細胞と血管内皮細胞、上皮細胞と上皮細胞、内皮細胞と内皮細胞、上皮細胞又は内皮細胞と一部の間充織細胞等が考えられる。
【0023】
また、基底膜形成能を有する細胞が基底膜を介して接着している上記支持体としては、線維性コラーゲンマトリックス、多孔性PET膜、ポリスチレンプレート、(合成)エラスチンポリマー、生体吸収性ポリマーなどを例示することができるが、栄養塩、老廃物の拡散を確保する点で線維性コラーゲンマトリックスが好ましく、かかる線維性コラーゲンマトリックスとしては、線維芽細胞によって収縮されるコラーゲンゲルの高密度マトリックスを用いることもできる。この場合、コラーゲンの生合成を高めるため、ascorbic acid-2-phosphate(Asc−P)を添加することもできる。中性I型コラーゲン溶液をCO2インキュベーター内で静置してインキュベートし、ポリマー化したゲルを、室温下に風乾した線維性コラーゲンマトリックスを用いることもできる。また、生体吸収性ポリマーを用いると、支持体に担持された基底膜の構造を保持したままで移植が可能なことから好ましく、かかる生体吸収性ポリマーとしては、ポリグリコール酸、ポリ−L−乳酸、L−乳酸−グリコール酸共重合体、グリコール酸−ε−カプロラクトン共重合体、L−乳酸−ε−カプロラクトン共重合体、ポリ−ε−カプロラクトン等を具体的に例示することができる。
【0024】
本発明の基底膜標品としては、上記本発明の基底膜標品の作製方法により得られるものであればどのようなものでもよく、かかる上皮細胞や内皮細胞等が剥離され、基底膜が露出した基底膜標品、例えば、上皮細胞や内皮細胞等が形成した基底膜構造体とコラーゲン線維等の支持材からなる上記基底膜標品は、他の細胞の培養に利用することができる(図4参照)。上皮の基底膜と内皮の基底膜とは同じものとはいえないものの構成成分の多くが共通し、上皮細胞が形成した基底膜を内皮組織の構築に転用することができ、例えば、基底膜標品上に目的とするヒト上皮細胞やヒト内皮細胞を播種し、培養するだけでヒト上皮組織やヒト内皮組織を再構築することができる。実際、肺胞II型上皮細胞が形成した基底膜上に肺動脈内皮細胞を播種・培養し、肺動脈内皮組織を構築することができることを確認している。基底膜構造体上に上皮細胞ないし血管内皮細胞を播種し、新たな組織を形成させる際、目的とする組織や臓器の間質細胞(線維芽細胞)を共存させると、基底膜の新陳代謝が円滑になることから好ましい。また、基底膜は、細胞が接着した状態では保存出来ないが、細胞が除去され非細胞成分のみで構成される本発明の基底膜標品は、保存が容易であり、必要時に、何時でも、何処でも使用できるという利点を有する。そして、基底膜標品の保存は、冷蔵でも冷凍でも全く問題がなく行うことができる。
【0025】
上記のように、本発明の基底膜標品を利用した上皮組織や内皮組織などの再構築方法は汎用性が高く、例えば、ラットの肺胞上皮細胞を用いて作製した基底膜はヒトの組織構築にも使用することが可能であり、また、かかるラット肺胞上皮細胞由来の基底膜から構築される臓器や組織も肺胞に限定されるものではない。これに対し、個々の臓器の上皮細胞や内皮細胞を培養して基底膜を形成させ、上皮組織や内皮組織などを構築する場合には、個々の細胞に応じた培養系を開発するのに、多くの時間と労力が必要であり、また、それぞれの組織用に基底膜を個別に用意するのでは無駄が多いが、上記のように、本発明の基底膜標品を組織再構築用共通ベース資材として使うことによって、効率化を図ることができる。そして、基底膜標品を利用して上皮組織や内皮組織などを再構築する場合の培養容器としては特に制限されず、カルチャーインサート方式の他、ホロファーバー方式にも応用することができ、例えば、人工血管に適用する場合は、人工血管における問題点である血栓の発生を防止することができ、また、人工透析に適用する場合は、患者への負担が軽減できる。
【0026】
このように、本発明の基底膜標品から再構築された組織モデルや臓器モデルも、従前の組織モデルと同様に、生体本来のバリアー機能を備えた細胞層と基底膜構造を有していることから、生体本来のバリアー機能を備えており、化学物質等の薬理試験、毒性試験等へ有利に応用することができる。例えば、被検物質を上皮組織モデルの細胞層上に存在せしめ、上皮細胞の上面と基底面間の電気抵抗を測定することにより、上皮組織に対する被検物質の安全性や毒性を試験することができる。被検物質により肺胞上皮組織に軽微だが傷害が生ずれば、電気抵抗が低下することから、被検物質の安全性や毒性を評価することができる。また、被検物質を上皮組織モデルの細胞層上に存在せしめ、上皮細胞や基底膜の状態を走査型電子顕微鏡や透過型電子顕微鏡で観察することにより、上皮組織に対する被検物質の安全性や毒性を試験することができる。
【0027】
さらに、本発明の基底膜標品の他の態様として、支持体から遊離状態にある基底膜標品を挙げることができる。プラスチック膜等を有さない基底膜標品やプラスチック表面に固着していない本発明の基底膜標品、例えば、コラーゲン線維上に形成された基底膜標品を直接局所に移植することにより、基底膜形成能を有する細胞が基底膜標品上で増殖し、局所における組織等を生体内で構築することができる。また、プラスチック膜等を有さない基底膜標品やプラスチック表面に固着していない基底膜標品、例えば、コラーゲン線維上に形成された基底膜標品を利用して再構築された組織や臓器等は、基底膜の構造を保持したままで移植が可能なことから、その汎用性が一層高く、その適用例として、内径3mm以下の微細人工血管や、体内埋込み型のヒト人工組織等を例示することができ、特に、人工子球体、人工肝臓、人工肺胞など上皮組織と内皮組織が近接する組織や臓器を好適に例示することができる。上記プラスチック膜等を有さない基底膜標品の作製には、反応性の官能基(反応基)を有するポリマー、より詳細には、プラスチック表面に吸着することができる、ポリビニール鎖、直鎖状アミノ酸ポリマー(ポリグリシン、ポリアラニン等)などの疎水性の直鎖状骨格を持つポリマーで、該疎水性の直鎖状骨格に直接、あるいは、スペーサーを介して、コラーゲン等の蛋白質と反応できる反応基を有するポリマーを好適に用いることができる。これらのポリマーは、前記疎水性の直鎖状骨格により、化学結合でなく疎水性結合でプラスチック表面に吸着されることから、プラスチックの種類や材質に関係なく用いることができ、例えば、コラーゲン線維上に形成された基底膜標品を利用して組織や臓器等を構築する場合、培養後の操作中に基底膜標品がプラスチック膜から剥がれて、その使用価値を失うといったおそれがない一方で、必要に応じてプラスチック膜やプラスチック表面から容易に機械的に剥離させることができる。
【0028】
また、上記反応基としては、タンパク質の官能基と反応して、結合しうるものであれば特に制限されるものではなく、無水カルボン酸型の反応基、アミノ基、SH基等を例示することができる。上記無水カルボン酸型の反応基としては、無水マレイン酸基を好適に例示することができ、タンパク質のN末端アミノ基、リジンε−アミノ基、SH基等の官能基と結合する。上記アミノ基はタンパク質のカルボキシル基と反応するが、化学結合とするためペプチド縮合剤を添加することが好ましい。上記SH基はタンパク質のSH基と主として反応し、時には、S−S結合とSS交換反応で結合することもある。そして、かかるSH基に、前記疎水性の直鎖状骨格とコポリマーを形成することができる範囲内で、簡単に外れる可逆的な保護基をつけることもできる。
【0029】
かかる反応性の官能基を有するポリマーとして、メチルビニルエ−テルと無水マレイン酸との交互共重合体(MMAC;methyl vinyl ether / maleic anhydride copolymer)を具体的に挙げることができ、MMACの場合、メチレン基を骨格とする直鎖ポリマーが、プラスチック表面に疎水性結合で吸着することを可能にしているが、−CH2−CH2−骨格だけだとあまりにも疎水性で、水との親和性が低くなり、微視的には水をはじいて、反応性に支障がでる可能性があり、そこで、メチレン基のH原子の一部をCH3O基で置換し、O原子の存在により反応効率が高まると考えられている。なお、CH3O基に代えてOH基で置換すると、分子間で無水カルボン酸とエステル結合を作ることから好ましくない。またMMACは、エタノールに可溶のため、アセトン等を必要とするポリマーよりも使い易い上に、塗布後に速やかに風乾できる。そして、MMACにおける反応基である無水マレイン酸は、コラーゲン等のタンパク質のアミノ基と結合することになるが、この無水マレイン酸がたとえ水と反応してカルボン酸になったとしても、タンパク質の+の電荷とイオン結合することができる。コラーゲンタンパク質は、分子内にリジン残基を有しており、側鎖のε−アミノ基がその結合相手になると考えられる。
【0030】
【実施例】
以下、実施例を挙げて本発明を更に具体的に説明するが、この発明の技術的範囲はこれら実施例に限定されるものではない。
実施例1(基底膜を形成する上皮細胞・内皮細胞等)
上皮細胞として、Dr. A. Clement, Hopital Armand Trousseau, Paris(Clement et al.,Exp.Cell Res., 196: 198-205, 1991)から供与された肺胞II型上皮細胞(SV40−ラージT抗原遺伝子をトランスフェクトしたラットから採取;T2細胞)を、10mMの2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸(HEPES)(pH7.2)、10%ウシ胎児血清(FBS;Hyclone Laboratories Inc., Logan, Utah)、ペニシリン及びストレプトマイシンを添加したDMEM(Dulbecco's modified Eagle medium)において、空気95%/CO25%の大気条件下で培養して用いた。また、内皮細胞として、クローンテックス(Clonetics)社から購入したヒト肺動脈血管内皮細胞(HPAE細胞)を、10mMのHEPES(pH7.2)、2%FBS、成長因子、ペニシリン及びストレプトマイシンを添加したMCDB131単独又はMCDB131とDMEMの等量混合培地において、空気95%/CO25%の大気条件下で培養して用いた。線維芽細胞は、雄ラットJcl:Fischer 344由来の肺線維芽細胞を文献(CELL STRUCTURE AND FUNCTION 22: 603-614,1997)記載の方法に準じて調製したもの、及び、クローンテックス社から購入したヒト肺線維芽細胞を用いた。
【0031】
実施例2(線維性コラーゲンゲルの調製)
コラーゲンゲル線維を、通常線維芽細胞によって構築されるコラーゲンゲルの密度マトリックスを模して調製した。DMEM(pH7.2)における中性I型コラーゲン溶液(0.42mlのウシ真皮から酸抽出で採った0.3〜0.5mg/mlのI型コラーゲン;Koken Co., Tokyo)を、6ウエル培養プレート(Becton Dickinson Labware, Franklin Lakes, NJ)のポリエチレンテレフタル酸エステル膜と共に、4.3cm2の培養線維芽細胞層に投入し、CO2インキュベーターで、数時間〜24時間インキュベートし、ゲル化した。このゲルを、室温下24〜48時間風乾して圧縮し、高密度コラーゲン線維(fib)として使用した。上記線維芽細胞としては、雄ラットJcl:Fischer 344由来の肺線維芽細胞を文献(CELL STRUCTURE AND FUNCTION 22: 603-614,1997)記載の方法に準じて調製した。
【0032】
実施例3(組織モデルの構築1)
肺胞II型上皮細胞及び血管内皮細胞層の直下に基底膜を有する上皮組織及び内皮組織の形成法を、それぞれ図1及び図2に示した。最も基本的な組織モデルの構築するために、線維芽細胞を包埋したコラーゲンゲル上に直接上記上皮細胞(T2)又は内皮細胞(HPAEC)を播種し2週間培養した(図1のT2-Fgel,図2のEC-Fgel)。また、上記fibを培養基質に用いて基底膜を有する上皮組織及び内皮組織を形成するために、fib上に直接上皮細胞(T2)又は内皮細胞(HPAEC)を播種し2週間培養した(図1のT2-fib-Fcm、T2-fib-MGとT2-fib-TGFβ)。図1において、Fcmは、線維芽細胞を包埋したコラーゲンゲル(Fgel)との共培養、MGは、マトリゲル200μl(ベクトンディッキンソン社製)を培養皿底にコーティングした培養、TGFβは、1ng/mlのTGFβ添加した培養を示す。
【0033】
実施例4(組織モデルの構築2)
4−1(上皮細胞・内皮細胞におけるレセプターの存在の確認)
10μg/ml濃度の各種PV-Sugar(生化学工業社製)を、製造者のプロトコールに従い、96穴ポリスチレン製プレート(ベクトンディッキンソン社製)にコーティングし、その上にラット肺胞II型上皮細胞を1×104個まき、10mM HEPES(pH7.2)と1%FBSを添加したDMEM中、CO2インキュベーターで37℃、24〜48時間インキュベートした。インキュベート後、クリスタルバイオレットで細胞を染色し、595nmの吸光度を測定して細胞数とすることにより、各種PV-Sugarとの接着性について調べた。また、細胞接着因子のファイブロネクチン(FN)及びビトロネクチン(VN)コートに対する細胞接着も同時に行い、対照実験とした。結果を図5に示す。図5の横軸には、種々の非還元末端糖鎖のPV-sugar(GlcNAc;2-acetoamide-2-deoxy-β-D-glucopyranosyl、Lam;β-D-glucopyranosyl-(1→3)、CA;β-D-glucopyranosyl-(1→4)、LA;β-D-galactopyranosyl、MA;α-D-glucopyranosyl、Man;β-D-mannopyranosyl、MEA;α-D-galactopyranosyl)が示されている。図5から、肺胞II型上皮細胞は、2−アセトアミド−2−デオキシ−β−D−グルコピラノース非還元末端を有する糖鎖をもつPV-GlcNAc、β−D−グルコピラノース非還元末端を有する糖鎖をもつPV-CAやPV-Lam、β−D−ガラクトピラノース非還元末端を有する糖鎖をもつPV-LAに対し強い接着を示すことがわかった。これらの結果から、肺胞II型上皮細胞は、その基底面にこれら糖鎖に対するレセプターを発現することが示された。
【0034】
4−2(肺胞II型上皮細胞による基底膜の調製)
基底膜の調製には、下部ウェルと、該下部ウェルに同心円上に収納され、底部にPET膜を有する上部ウェルからなるカルチャーインサートを用いた(図1を参照)。上部ウェルの底部PET膜上に、実施例3で示した方法で作製した高密度コラーゲン線維(fib)にDMEMに溶解した10μg/ml濃度のPV-GlcNAc、PV-CA又はPV-Lamをコーティングした支持体(fib*)上で、肺胞II型上皮細胞を37℃、5%CO2存在下で2週間培養した。この培養では、線維芽細胞を包埋したコラーゲンゲル(Fgel)、マトリゲル(MG)又はTGFβを培養系に添加せず、培養液には10mMのHEPES(pH7.2)、1%FBSと0.2mM ascorbic acid-2-phosphate(Asc−P)を添加したDMEMを用いた。形成された肺胞上皮組織の透過型電子顕微鏡写真を図6に、形成された肺胞上皮組織の表面の肺胞II型上皮細胞層を実施例5(後述)に示す方法で除去し、露出した肺胞上皮組織直下の細胞外基質の走査型電子顕微鏡写真を図7に示す。
【0035】
図6中、太矢印は基底膜緻密板(lamina densa)を、細矢印は培養初期に形成され、一部は分解されつつある旧基底膜を、鏃は基底膜が形成されていない領域をそれぞれ示す(スケールの長さは1μm)。また図7のPV-sugar未処理(Cont)では、既存のfib(コラーゲン線維,白抜き太矢印)に上皮細胞の分泌物が集積している個所(*)が認められるにすぎないが、PV-GlcNAc,PV-Lam,PV-CA処理では、基底膜が平面状(図6の太矢印に対応)に形成されており、PV-Lam処理では、肺胞II型上皮細胞層を除去する際に、一部失われた基底膜の欠損窓から、下部のコラーゲン線維(白抜き太矢印)が垣間見える(スケールの長さは1μm)。これらの結果から、2−アセトアミド−2−デオキシ−β−D−グルコピラノース非還元末端を有するPV-GlcNAcやβ−D−グルコピラノース非還元末端を有するPV-CAやPV-Lamでコーティングした高密度コラーゲン線維支持体(GlcNAc-fib*, CA-fib*, Lam-fib*)上で培養すると、肺胞II型上皮細胞層の直下に基底膜が形成された肺胞上皮組織が構築されることを確認した。また、β−D−ガラクトピラノース非還元末端を有するPV-LAに対して、肺胞II型細胞は接着するが(図5)、基底膜は形成されなかった(図6及び図7)。このことは、糖鎖に対する細胞接着は、基底膜形成の必要条件ではあっても、十分条件ではないことを示している。
【0036】
4−3(マトリゲルによる基底膜形成を促進する効果)
図1のT2-fib-MGに示した様に、下部ウェルにマトリゲル200μlをコーティングし、高密度コラーゲン線維(fib)上で肺胞上皮細胞を2週間培養すると上皮細胞直下に基底膜が形成される。しかし、マトリゲルの量が50μlに満たないと基底膜は形成されない(J. Cell Sci., 113: 589-868, 2000)。この場合にあっても、実施例3に示した方法で高密度コラーゲン線維(fib)を作製し、実施例4に示した方法でPV-GlcNAc, PV-CA又はPV-Lamでコーティングした培養基質(fib*)を用いると、10日間培養で肺胞II型上皮細胞層直下に基底膜が形成される。図8には、種々のPV-sugarをコーティングした高密度コラーゲン線維(fib*)上で、培養皿底面にコーティングした25μlマトリゲルと10日間共培養し、形成した上皮組織の透過型電子顕微鏡写真(左側:未処理、及びPV-GlcNAc,PV-CAコーティング)、及び実施例5(後述)に示す方法で肺胞上皮細胞層を除去し、直下の基底膜構造体を表面に露出させ走査型電子顕微鏡で撮影した(右側:未処理、及びPV-GlcNAc,PV-CAコーティング)結果が示されている(記号の意味及びスケールは実施例4−2と同じ。)。これらの結果から、マトリゲルの量が不十分の場合でも、PV-GlcNAc又はPV-CAでコーティングした高密度コラーゲン線維支持体(GlcNAc-fib*, CA-fib*)を用いることにより、肺胞II型上皮細胞層の直下に基底膜が形成された肺胞上皮組織が構築されることを確認した。
【0037】
4−4(ヒト肺動脈血管内皮細胞による基底膜の調製)
ヒト肺動脈血管内皮(HPAE)細胞を、図2に示した方法で培養した。すなわちヒト線維芽細胞を包埋したコラーゲンゲル(Fgel)上に直接培養(EC-Fgel)、Fgel共存下で高密度コラーゲン線維(fib)上に培養(EC-fib-Fcm)、200μlのマトリゲルと共にfib上で共培養(EC-fib-MG)、及びfib上で培養(EC-fib)した。培養後、表面のHPAE細胞層を実施例5(後述)の方法で除去し、細胞直下の細胞外基質構造を走査型電子顕微鏡で観察した(図9)。EC-Fgelの場合は基底膜が形成されたが、EC-fib-Fcm,EC-fib-MG,EC-fibの場合には既存のコラーゲン線維が露出し、T2細胞の場合(T2-fib-Fcm, T2-fib-MG)の様に基底膜は形成されなかった(白抜き太矢印はコラーゲン線維。*はコラーゲン線維間に沈着した分泌物。スケールの長さは1μm。)。そこで、EC-fib-Fcmの培養系を用いて、実施例5の肺胞II型上皮細胞の場合と同様に、PV-sugarをコーティングした高密度コラーゲン線維支持体(fib*)上で培養した。培養後、表面のHPAE細胞層を実施例5の方法で除去し、露出した細胞直下の細胞外基質構造を、走査型電子顕微鏡で観察した(図10)。PV-GlcNAc,PV-CAコーティングの場合に、基底膜の形成が認められた。PV-Lamコーティングの場合には、基底膜の形成が不完全だった。PV-sugar未処理(Cont)及びPV-LA, PV-MA, PV-Man, PV-MEA処理では、既存のコラーゲン線維(白抜き太矢印)に上皮細胞の分泌物が集積(*)しているが、基底膜は形成していない。これらの結果から、PV-GlcNAc, PV-CAコーティングしたfib*(GlcNAc-fib*,CA-fib*)を用いると、ヒト肺動脈血管内皮細胞層の直下に基底膜が形成されたヒト肺動脈内皮組織が構築されることを確認した。
【0038】
実施例5(肺胞上皮細胞層が除去され、基底膜が露出した基底膜標品の作製)
組織モデル(T2-fib-MG)から、図4に模式的に示されているように、II型肺胞上皮細胞層を剥離し、基底膜が露出した基底膜標品を作製し、作製した基底膜構造体上に、ラット気道上皮細胞又はヒト肺動脈血管内皮細胞を播種し、気道上皮組織や血管上皮組織を作製した。まず、カルチャーインサートの上部ウェルのII型肺胞上皮組織に、蛋白分解酵素阻害剤の混合液(PIC、ペプチド研究所社製、大阪)を添加した等張のリン酸緩衝液(pH7.2;PBS(−))中で、0.1%のトリトンX−100(界面活性剤)2mlを用いて、上皮細胞の脂質成分を溶解・溶出すると同時に、共存する50mM NH3で、細胞の基底膜表面に残存する蛋白質を溶解する操作を2回(基底膜の蛋白までは溶かしてはならない)繰り返した後、再度PICを含むPBC(−)溶液で基底膜から界面活性剤とアルカリ洗浄をすることによって、肺胞上皮細胞層を剥離して基底膜が露出した基底膜標品を作製した。
【0039】
参考例1(基底膜構造体上でのラット気道上皮組織の構築)
実施例5で構築した基底膜構造体上に、ラット気道上皮細胞株(SPOC1、米国NIEHSより供与)を5×105個播種し、37℃、5%CO2存在下、10mMのHEPES(pH7.2)と1%FBSを添加した、Ham's F12:DMEM=1:1の混合培地中で1週間培養して、気道上皮組織を構築した。基底膜構造体上に構築された気道上皮組織の透過型電子顕微鏡写真を図11として示す。図11Aは基底膜構造体上の気道上皮細胞を示し、図11Bは気道上皮細胞が肺胞上皮細胞由来の基底膜を認識してアンカリングフィラメントで繋がっている、気道上皮細胞の基底面と基底膜構造体との強拡大の境界面を示し、図11Cは細胞−細胞間結合で気道上皮細胞同士が結合して上皮組織を形成していることを示している。
【0040】
参考例2(基底膜構造体上でのヒト血管上皮組織の構築)
実施例5で構築した基底膜構造体上に、ヒト肺動脈血管内皮細胞(クローンテック社製)を5×105個播種し、37℃、5%CO2存在下、10mMのHEPES(pH7.2)と2%FBSを添加した、MCDB131:DMEM=1:1の混合培地中で2週間培養して、ヒト血管上皮組織を構築した。基底膜構造体上に構築されたヒト血管内皮組織の透過型電子顕微鏡写真を図12として示す。図12Aには線維芽細胞との共培養により構築したヒト血管上皮組織を、図12Bにはマトリゲル共存下で構築したヒト血管上皮組織を示している。
【0041】
【発明の効果】
本発明によると、基底膜形成能を有する同種又は異種の所定の細胞を播種・培養した場合に、細胞の形態、分化、増殖、運動、機能発現などを制御する機能を有する基底膜の標品を得ることができ、この基底膜の標品を用いることにより、基底膜構造体をもつ上皮組織モデルや内皮組織モデルを穏和な条件で再構築することができ、またかかる方法で調製した基底膜構造体は他組織の上皮組織や内皮組織をも形成させることが可能となった。これら基底膜構造体及び上皮組織・内皮組織は、医学・生物学の研究用に、人工血管、人工肺、人工肝、人工腎臓、人工皮膚、人工角膜等として移植・治療用に、薬理試験や毒性試験用に利用することができる。
【図面の簡単な説明】
【図1】肺胞上皮細胞による基底膜形成を示す模式図である。
【図2】肺動脈内皮細胞による基底膜形成を示す模式図である。
【図3】上皮細胞と内皮細胞の共培養による基底膜の形成を示す模式図である。
【図4】再構成基底膜標品を用いた内皮組織や上皮組織の構築を示す模式図である。
【図5】肺胞II型細胞の糖鎖接着の特異性を示す図である。
【図6】肺胞II型上皮細胞を種々のPV-sugarをコーティングした高密度コラーゲン線維(fib*)上で2週間培養した結果形成された肺胞上皮組織の透過型電子顕微鏡写真を示す図である。
【図7】肺胞II型上皮細胞を種々のPV-sugarをコーティングした高密度コラーゲン線維(fib*)上で2週間培養した結果形成された肺胞上皮組織直下の細胞外基質の走査型電子顕微鏡写真を示す図である。
【図8】肺胞II型上皮細胞を種々のPV-sugarをコーティングした高密度コラーゲン線維(fib*)上で、培養皿底面にコーティングした25μlマトリゲルと10日間共培養した結果形成された肺胞上皮組織の透過型電子顕微鏡写真(左)と肺胞上皮組織直下の細胞外基質の走査型電子顕微鏡写真(右)を示す図である。
【図9】図2の培養方法によるヒト肺動脈血管内皮細胞の基底膜形成の結果を示す細胞外基質の走査型電子顕微鏡写真を示す図である。
【図10】種々のPV-sugarをコーティングした高密度コラーゲン線維(fib*)上にヒト肺動脈血管内皮細胞を播種し、肺線維芽細胞を包埋したコラーゲンゲルと2週間共培養した(EC-fib*-Fcm)結果形成された血管内皮細胞層直下の細胞外基質の走査型電子顕微鏡写真を示す図である。
【図11】基底膜構造体上に再構築された気道上皮組織の透過型電子顕微鏡写真を示す図である。
【図12】基底膜構造体上に再構築されたヒト血管内皮組織の透過型電子顕微鏡写真を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preparing a basement membrane specimen which is an extracellular matrix having a function of controlling cell morphology, differentiation, proliferation, movement, functional expression, and the like, and a basement membrane specimen obtained by such a preparation method About.
[0002]
[Prior art]
Epithelial tissues, such as the epidermis, corneal epithelium, alveolar epithelium, mucosal epithelium of the digestive system, renal epithelial epithelium, hepatic parenchymal cells, etc. , Allergens, chemical substances, etc.). The outer interface of epithelial cells constituting such epithelial tissue is called the upper end surface (apical), and the inner lower surface is called the basal plane, and immediately below the basal plane is composed of extracellular matrix (ECM) such as protein and proteoglycan. There is a 50-100 nm thin film structure called the basement membrane (without cells). The basement membrane is considered to be an essential structure for immature epithelial cells to proliferate and differentiate into mature cells to express their original form and function. That is, without the basement membrane, the epithelial tissue cannot achieve its own maintenance and original performance. The multi-layer or single-layer epithelial cell layer serves as a barrier to prevent foreign substances from entering from the outside world, but the basement membrane itself also acts as a physical barrier. Thus, the epithelial cells constituting the epithelial tissue and the basement membrane cooperate to form a strong barrier and protect the vital activity in the body.
[0003]
In addition to epithelial cells, the basement membrane, which is a unique membranous structure of extracellular matrix formed at the interface between parenchymal cells such as endothelial cells, muscle cells, fat cells, Schwann cells, and connective tissue・ While it is commonly found in organs, some are highly specialized, such as glomerular capillary loops and neural synaptic membranes. Therefore, functions such as selective substance / cell permeation and induction of cell differentiation as well as adhesion of cells to the stroma have been clarified. In the glomeruli, it is considered that the negative charge of the basement membrane is responsible for the filtration function of the kidney, and it is classically known that the negative charge is due to heparan sulfate proteoglycan (HSPG) now called perlecan. HSPG is widely distributed not only in the glomerular basement membrane but also in various basement membranes as basic constituent molecules like type IV collagen, laminin, entactin and the like.
[0004]
The extracellular matrix, especially the basement membrane, has been revealed to be deeply involved in not only physiological phenomena such as individual development and differentiation as described above, but also pathogenesis such as cancer metastasis and inflammation, Elucidation of the function of the constituent proteins has become an important issue. For example, laminin, the main glycoprotein of the basement membrane, is a complex composed of three types of α, β, and γ subunits, and 15 types of isoforms are known. These are tissue-specific or developmental. It is expressed specifically at each stage. Laminin is a complex macromolecule with a molecular weight of 900,000 that has various biological activities and has reported more than 20 types of laminin receptors.
[0005]
The interaction between epithelial cells and the components of the basement membrane, a thin extracellular matrix layer to which cells can adhere, affects cellular functions such as migration, proliferation and differentiation (Crouch et al., Basement membrane. In The Lung (ed. RG Crystal and JB West), pp 53.1-53.23. Philadephia: Lippincott-Raven. 1996). As described above, laminin, type IV collagen, heparan sulfate proteoglycan (HSPG) and entactin are known as main components of the basement membrane (Curr. Opin. Cell Biol. 6, 674-681, 1994). And mesenchymal cells are thought to play an important role in the synthesis of basement membrane components, including isoforms of type IV collagen (Matrix Biol. 14, 209-211, 1994, J. Biol. Chem. 268, 26033-26036, 1993), but the role of epithelial cells is also important. HSPG is thought to be derived from epithelial cells, but laminin, type IV collagen and entactin are synthesized in vivo by both epithelial and mesenchymal cells (Development 120, 2003-2014, 1994, Gastroenterology 102). , 1835-1845, 1992). Many attempts have been made to create an in vitro epithelial tissue model showing a continuous dense layer (lamina densa). Intestine (J. Cell Biol. 133, 417-430, 1996) and skin (J. Invest. Dermatol. 105, 597-601, 1995, J. Invest. Dermatol. 109, 527-533, 1997, Dev. Dynam. 197, 255-267, 1993) have been studied, and it has also been found that several mesenchymal cell-derived basement membrane components play an important role in basement membrane formation.
[0006]
Conventionally, several methods have been reported for constructing a basement membrane by culturing epithelial cells and constructing an epithelial tissue having a basement membrane structure immediately below the basal plane. For example, the present inventors have reported that a basement membrane is formed in vitro by co-culture of alveolar epithelial cells and lung fibroblasts (Cell Struc. Func., 22: 603-614, 1997). That is, when acclimated culture is performed with lung fibroblasts embedded in type I collagen gel, the collagen gel contracts and becomes firmer by the lung fibroblasts, and the secreted extracellular matrix becomes collagen fibers surrounding the cells. The formation is called pseudo-stromal because it is similar to the stroma in vivo. On this pseudo-interstitial type I collagen fiber, the type II alveolar epithelial cell line (SV40-T2 ) For about 14 days (T2-Fgel), basement membrane components such as type IV collagen and laminin in the extracellular matrix secreted by lung fibroblasts diffuse into the medium, and the type II alveoli We reported that the basement membrane structure was formed as a result of reaching the basal plane of the epithelial cell line and used as a basement membrane construction material.
[0007]
Also dilute neutral collagen solution with 5% CO2. 2 Incubate at 37 ° C. in the medium to form collagen fibers, and then use air-dried collagen fiber matrix (fib) that has been dried by sterilization in aseptic conditions as an alternative to the pseudostromal material. It has also been reported that a basement membrane is formed in the same manner as in the case of co-culture of cells and lung fibroblasts (Eur. J. Cell Biol., 78: 867-875, 1999, J. Cell Sci. , 113: 859-868, 2000). In the case of this method, when the concentration of the collagen solution is high, there are few or no gaps in the formed collagen fibers, and when the epithelial cells are cultured for a long period of time (10 days to 2 weeks) to form the basement membrane, the cells peel off. (E.g., Becton Dickinson, Fibrillar collagen coat culture insert), the collagen solution concentration is considered to be optimal at 0.3 to 0.5 mg / ml (Eur. J. Cell Biol., 78: 867-875, 1999, J. Cell Sci., 113: 859-868, 2000).
[0008]
Instead of using a collagen matrix with embedded fibroblasts, a type II alveolar epithelial cell line (SV40-T2) was cultured on a collagen fiber matrix supplemented with Matrigel (registered trademark of Becton Dickinson). Matrigel then functioned as an exogenous source of basement membrane components. Matrigel is a basement membrane preparation extracted from the Engelbreth-Holm-Swarm tumor matrix (J. Exp. Med. 145, 204-220, 1977) and contains a variety of cytokines that may affect ECM synthesis. In addition, laminin-1, entactin, type IV collagen and perlecan are included (Exp. Cell Res. 202, 1-8, 1992). In order to trace the components of Matrigel incorporated into the basement membrane, the Matrigel is labeled with biotin and depends on the amount of Matrigel by immunofluorescence staining and electron microscopy of the basement membrane components laminin, entactin, type IV collagen, perlecan As a result, the formation of the basement membrane was observed as the basement membrane formation was promoted, and the basement membrane matrix secreted in the form of dots was deposited in the form of a sheet. As a result, it has been clarified that, under the alveolar epithelial cells, the stabilized exogenous laminin-1 and entactin are greatly involved in the complete development of the basement membrane by the epithelial cells in vitro. (J. Cell Sci., 113: 859-868, 2000).
[0009]
[Problems to be solved by the invention]
When cultivating alveolar epithelial cells on a fibrous collagen substrate, the present inventor cultivated in the presence of fibroblasts, TGF-β or Matrigel, so that the substrate directly below the epithelial cells was placed on the basement membrane. In the case of type II alveolar epithelial cells, as shown in FIG. 1, the type II alveolar epithelial cells are separated from the lung fibroblast matrix substratum (in the upper well of the culture insert). When cultured on a collagen gel with embedded fibroblasts (T2-Fgel), when cultured on a fibrous collagen substratum in the upper well in the presence of a lung fibroblast matrix in the lower well (T2-fib- Fcm), when cultured on the fibrous collagen base layer of the upper well in the presence of Matrigel coated in the lower well (T2-fib-MG), in the presence of the growth factor TGF-β in the upper well and the lower well, It was confirmed that a basement membrane was formed when cultured on the fibrous collagen base layer in the upper well (T2-fib-TGFβ).
[0010]
In addition, the basement membrane that exists directly under the basal plane of endothelial cells also contributes to the functional expression and maintenance of endothelial cells, and serves as a barrier when inflammatory cells enter tissues from blood vessels or when cancer cells metastasize. Because of its role, we also examined the construction of the basement membrane using endothelial cells (EC). Unlike the case of type II alveolar epithelial cells, as shown in FIG. When cultivated above (EC-Fgel), when cultivated on the fibrous collagen base layer of the upper well (EC-fib-Fcm) in the coexistence of the pulmonary fibroblast matrix in the lower well, Matrigel coated in the lower well When cultured on the fibrous collagen base layer in the upper well (EC-fib-MG) and cultured on the fibrous collagen substrate in the upper well (EC-fib), Unless A basement membrane was not formed.
[0011]
By the way, the present inventors treated the alveolar epithelial cells on which the basement membrane was formed with 0.18 M hydrogen peroxide for 10 minutes, and when the culture was continued for 1 day, the epithelial cells were automatically removed from the basement membrane. It has been reported that it can be peeled off (Cell Struc. Func., 22, 603-614, 1997). However, in such a method, separation of cells from the basement membrane may be insufficient, or a part of the basement membrane may be damaged. It has been found that there is a problem in that even when seeding and culturing different types of cells, it may not be possible to prepare artificial human tissues having sufficient physiological activity such as functional expression and maintenance of the cells. An object of the present invention is to provide a label for a basement membrane having a function of controlling cell morphology, differentiation, proliferation, movement, functional expression, etc. when seeding and culturing predetermined same or different types of cells having the ability to form a basement membrane. The purpose is to provide the product easily and in a short period of time.
[0012]
[Means for Solving the Problems]
The present inventor has intensively studied to solve the above problems, and when a surfactant, for example, 0.1% Triton X-100 (Calbiochem-Novabiochem Corporation) is used, the lipid component of the cell is obtained by the surfactant activity. Dissolved in an alkaline solution, eg 20-50 mM NH Three Proteins remaining on the basement membrane surface of cells are dissolved. When a mixture of protease inhibitors (PIC, protease inhibitors cocktail) is used, proteins in lysosomes released when cells are dissolved Basement membrane degradation due to endogenous protease activity such as degrading enzymes is suppressed, and when seeding and culturing the same or different desired cells with the ability to form basement membrane, cell morphology, differentiation, proliferation, movement, functional expression The present inventors have found that a basement membrane preparation having a function of controlling the above can be obtained in a short time, and completed the present invention.
[0013]
That is, the present invention provides a cell having a basement membrane-forming ability adhered to a support through a basement membrane, and having the lipid-dissolving ability of the cell. Surfactant An isotonic phosphate buffer with the addition of alkaline solution and protease inhibitor From the basement membrane A method for preparing a basement membrane preparation characterized by removing (Claim 1) and having lipid-dissolving ability Surfactant 2. A method for producing a basement membrane preparation according to claim 1, wherein the protein is deproteinized and enucleated using an alkaline solution after the degreasing treatment or simultaneously with the degreasing treatment (claim 2). And the interface The activator is Triton X-100. 1 or 2 Preparation method of the basement membrane preparation according to claim 3 ) And the alkaline solution is an alkaline solution having a pH of 9 to 10. 3 A method for producing a basement membrane preparation according to any one of claims 4 )
[0014]
In the present invention, the basement membrane is a basement membrane prepared by culturing cells having basement membrane-forming ability on a collagen gel in which fibroblasts are embedded. 4 A method for producing a basement membrane preparation according to any one of claims 5 ) Or β-D-glucopyranose non-reducing end or 2-acetamide capable of localizing a receptor having an action of accumulating basement membrane components on the basal plane of a cell having the ability to form a basement membrane A basement membrane prepared by culturing cells having a basement membrane-forming ability on a support having a sugar chain having a non-reducing end of 2-deoxy-β-D-glucopyranose Claims 1 to 5 A method for producing a basement membrane preparation according to any one of claims 6 ) And claims 1 to 6 A basement membrane preparation obtained by the method for producing a basement membrane preparation according to any one of claims 7 ) Or in a free state from the support. 7 Basement membrane preparation as described (claim) 8 )
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As a method for producing a basement membrane preparation of the present invention, a cell having a basement membrane-forming ability adhered to a support through a basement membrane has a lipid-dissolving ability of the cell. Surfactant And alkaline solution And protease inhibitors Using From the basement membrane It is not particularly limited as long as it is a removal method, but has lipid dissolving ability. Surfactant Alkaline solution after degreasing using or simultaneously with degreasing And protease inhibitors A method of performing protein removal / nucleation removal treatment using a pesticide is preferred. Here, the basement membrane preparation is a basement having a function of controlling cell morphology, differentiation, proliferation, movement, functional expression, etc. when seeding and culturing desired cells of the same or different types having basement membrane forming ability. As used herein, cells having the ability to form a basement membrane include epithelial cells, endothelial cells, mesenchymal cells, etc., and epithelial cells include epidermal cells, corneal epithelial cells, alveolar epithelial cells, digestive cells Organ mucosal epithelial cells, kidney epithelial epithelial cells, hepatic parenchymal cells, etc., as the above endothelial cells kidney epithelial capillary endothelial cells, pulmonary artery vascular endothelial cells, placental vein vascular endothelial cells, aortic vascular endothelial cells, etc. Examples of mesenchymal cells include muscle cells, adipocytes, glial cells, Schwann cells, etc., and cells having the ability to form a basement membrane that adhere to the support through the basement membrane. Is it normal Tissue is an aggregate of cells, preferably include artificial tissue, such as a human. Such an artificial tissue (tissue model) may be any tissue as long as it includes a cell layer and a basement membrane immediately below it. For example, an epidermis tissue model, a corneal epithelial tissue model, an alveolar epithelial tissue model, an airway Specific examples include an epithelial tissue model, a renal glomerular tissue model, a liver parenchymal tissue model, a pulmonary artery vascular endothelial tissue model, and the like.
[0016]
Has lipid-dissolving ability of the above cells Surfactant As The Surfactants such as Riton X-100, Lubrol PX, deoxycholic acid, cholic acid, Tween, and emulgen are preferred, with Triton X-100 being particularly preferred. Yes. Fat Has the ability to dissolve Surfactant The use concentration depends on the type of cells to be applied and the treatment time, but in the case of Triton X-100, for example, 0.01 to 1.0%, particularly around 0.1% is preferable. The alkaline solution may be any alkaline solution that dissolves the protein remaining on the basement membrane surface of the cell and does not dissolve the protein of the basement membrane, but is preferably an alkaline solution having a pH of 9 to 10. E.g. 20-50 mM NH 3 Specific examples include alkaline solutions such as 1 mM NaOH.
[0017]
In addition, in order to suppress degradation of the basement membrane due to endogenous protease activity such as proteolytic enzymes such as DNase I in lysosomes released when cells are lysed, a mixture of protease inhibitors, preferably protease inhibitors A method in which a solution (PIC, protease inhibitors cocktail) is added in a phosphate buffer is preferable. Furthermore, in the preparation method of the basement membrane preparation of the present invention, 2 mM Na is previously added to cells having the ability to form a basement membrane that are adhered to the support via a basement membrane such as an artificial human tissue. Three VO Four It can also be pretreated with a vanadium salt such as Pretreatment with vanadium salt improves cell detachment from the basement membrane, but requires vanadium salt washing.
[0018]
As a method for preparing a basement membrane-forming cell adhered to a support through a basement membrane, preferably a human or other artificial tissue, a method for preparing a known artificial tissue as well as a known artificial tissue preparation method was developed by the present inventor. And new preparation methods. As the known method for preparing an artificial tissue, as shown in FIG. 1, a method for preparing an artificial tissue (T2-Fgel) in which epithelial cells are cultured on a lung fibroblast matrix base layer in an upper well of a culture insert, Preparation of artificial tissue (T2-fib-Fcm) cultured on fibrous collagen base layer in upper well in the presence of lung fibroblast matrix in lower well, coexistence of Matrigel coated in lower well, Method for preparing artificial tissue (T2-fib-MG) cultured on fibrous collagen base layer, artificial tissue cultured on fibrous collagen base layer in upper well in the presence of growth factor TGF-β in upper well and lower well ( A method for preparing T2-fib-TGFβ) can be preferably mentioned. In addition, as shown in FIG. 2, a method for preparing a novel artificial tissue (EC-Fgel) in which endothelial cells are cultured on the lung fibroblast matrix base layer in the upper well of the culture insert can be preferably mentioned.
[0019]
By the way, the preparation of the basement membrane requires basement membrane components such as laminin, type IV collagen, heparan sulfate proteoglycan (HSPG), entactin and the like. Although secreted, the basement membrane component secreted from such cells is secreted from the basal plane (lower surface) of the cells toward the interior of the extracellular matrix formed by the fibrous collagen matrix. Therefore, most of the secreted basement membrane component is separated from the basal plane surface and diffuses into the medium from the opposite side or is decomposed into a proteolytic enzyme on the way, and is not normally used effectively. However, a cell having a basement membrane-forming ability is placed on a support having a sugar chain capable of localizing a receptor having an action of accumulating basement membrane components on the basal plane of the cell having a basement membrane-forming ability. By culturing, endogenous basement membrane components secreted from cells having the ability to form basement membrane such as epithelial cells and endothelial cells can be suitably used. That is, as a method for preparing a new artificial tissue developed by the present inventor, a sugar chain capable of localizing a receptor having an action of accumulating basement membrane components on the basal plane of a cell having basement membrane-forming ability. And a method of preparing an artificial tissue by culturing cells having the ability to form a basement membrane on a support provided with.
[0020]
In the above-described new artificial tissue preparation method, in addition to endogenous basement membrane constituents secreted from cells having the ability to form basement membranes, exogenous basement membrane constituents are also used for a short period of time. In order to be able to prepare an artificial tissue, fibroblasts secreting basement membrane components and TGF-β, preferably fibroblast conditioned medium, Matrigel rich in basement membrane components, etc. It can also be co-cultured with a fibroblast substitute. Similarly, in order to be able to prepare an artificial tissue in a short period of time, cells having the ability to form a basement membrane are prepared by separately preparing a basement membrane composition such as laminin, type IV collagen, heparan sulfate proteoglycan (HSPG), entactin and the like. It can also be cultured in the presence of one or more components or in the presence of TGF-β. Commercially available laminin and HSPG can be used. As type IV collagen, acetic acid extracted from bovine lens capsules can be advantageously used. The above-mentioned method using laminin, type IV collagen, heparan sulfate proteoglycan (HSPG), entactin and other basement membrane constituents and TGF-β is costly, so as cells and fibroblasts having basement membrane forming ability, A cell having a high expression level of a basement membrane constituent component into which one or more genes of the basement membrane constituent component have been introduced, or a cell having a high expression of a growth factor into which a TGF-β gene has been introduced can be selected and used.
[0021]
As a sugar chain capable of localizing a receptor having an action of accumulating basement membrane components on the basal plane of a cell having the ability to form a basement membrane, a sugar chain or a part of the sugar chain binds to the receptor. Thus, a sugar chain capable of adhering a cell having the ability to form a basement membrane on a support, particularly a sugar chain capable of substituting a sugar chain binding to a receptor or a part of the sugar chain with the basement membrane component. It is preferable to use it. Further, the support provided with a sugar chain is preferably an integral molded body having such a sugar chain, or a support coated with a polymer having a sugar chain, and the polymer having the sugar chain includes β- D-glucopyranose (β-D-glucopyranosyl) non-reducing end or 2-acetoamide-2-deoxy-β-D-glucopyranosyl non-reducing end sugar A polymer having a chain can be exemplified. Examples of the polymer having a sugar chain having a β-D-glucopyranose non-reducing terminal include PV-CA and PV-Lam, and sugars having 2-acetamido-2-deoxy-β-D-glucopyranose non-reducing terminal. As the polymer having a chain, a polymer polymer (PV-sugar) in which an oligosaccharide is introduced into a vinyl monomer such as PV-GlcNAc can be illustrated more specifically. These PV-sugars may be used alone or in combination of two or more, and commercially available PV-sugars can be used.
[0022]
As another embodiment of the artificial tissue by the new method developed by the present inventor, a method of culturing cells having the ability to form a basement membrane on two opposing base layers of the support can be mentioned. For example, when fibrous collagen is produced on both sides of a porous membrane, and cells having two types of basement membrane forming ability such as a combination of epithelial cells and vascular endothelial cells are seeded and cultured on both sides, the basement membrane forming ability The diffusion of the endogenous basement membrane constituents secreted from the cells having the above can be prevented and the effective utilization rate of the basement membrane components can be increased. That is, the basement membrane component secreted by one cell arrives at the other cell located on the opposite side of the fibrous collagen, and the cell-cell junction (tight junction) formed by such a cell causes a gap without gaps. It is blocked and does not diffuse into the medium, and as a result, the effective utilization rate of the basement membrane component can be increased. In the upper part of FIG. 3, a basement membrane is formed by co-culture of epithelial cells and vascular endothelial cells via collagen fibers in the presence of collagen gel-embedded fibroblasts (left), and a support provided with sugar chains. Formation of basement membrane by co-culture of epithelial cells and vascular endothelial cells via collagen fiber thin film (middle), formation of basement membrane by co-culture of epithelial cells and fibroblasts via collagen fibers (right) The lower part of FIG. 3 shows a cell tissue that is not a desired cell tissue, that is, vascular endothelial tissue (left), epithelial tissue (middle), and fibroblast (right). The mechanically peeled and removed state is shown. Possible combinations of these cells include epithelial cells and vascular endothelial cells, epithelial cells and epithelial cells, endothelial cells and endothelial cells, epithelial cells or endothelial cells and some mesenchymal cells.
[0023]
In addition, as the above-mentioned support to which cells having the ability to form a basement membrane are adhered via the basement membrane, a fibrous collagen matrix, a porous PET membrane, a polystyrene plate, a (synthetic) elastin polymer, a bioabsorbable polymer, etc. As an example, a fibrous collagen matrix is preferable from the viewpoint of ensuring the diffusion of nutrients and wastes. As the fibrous collagen matrix, a high-density matrix of collagen gel that is contracted by fibroblasts is used. You can also. In this case, ascorbic acid-2-phosphate (Asc-P) can also be added in order to increase the biosynthesis of collagen. Neutral type I collagen solution 2 It is also possible to use a fibrous collagen matrix that is incubated by standing in an incubator and air-dried at room temperature. In addition, it is preferable to use a bioabsorbable polymer because it can be transplanted while maintaining the structure of the basement membrane supported on the support. Examples of the bioabsorbable polymer include polyglycolic acid and poly-L-lactic acid. Specific examples include L-lactic acid-glycolic acid copolymer, glycolic acid-ε-caprolactone copolymer, L-lactic acid-ε-caprolactone copolymer, and poly-ε-caprolactone.
[0024]
The basement membrane preparation of the present invention may be any base material as long as it is obtained by the above-described method for producing a basement membrane preparation of the present invention, and such epithelial cells and endothelial cells are peeled off and the basement membrane is exposed. The basement membrane preparation, for example, the above-mentioned basement membrane preparation comprising a basement membrane structure formed by epithelial cells, endothelial cells and the like and a support material such as collagen fiber can be used for culturing other cells (FIG. 4). Although the basement membrane of the epithelium and the basement membrane of the endothelium are not the same, many of the components are common, and the basement membrane formed by epithelial cells can be diverted to the construction of endothelial tissue. The human epithelial tissue or human endothelial tissue can be reconstructed simply by seeding and culturing the target human epithelial cells or human endothelial cells on the product. In fact, it has been confirmed that pulmonary artery endothelial cells can be constructed by seeding and culturing pulmonary artery endothelial cells on the basement membrane formed by alveolar type II epithelial cells. When seeding epithelial cells or vascular endothelial cells on the basement membrane structure to form a new tissue, the interstitial cells (fibroblasts) of the target tissue or organ can coexist to facilitate the metabolism of the basement membrane. This is preferable. In addition, the basement membrane cannot be stored in a state where the cells are adhered, but the basement membrane preparation of the present invention composed only of non-cellular components from which the cells have been removed is easy to store and can be stored whenever necessary. It has the advantage that it can be used anywhere. And the preservation | save of a basement membrane sample can be performed without a problem at all even if it is refrigerated or frozen.
[0025]
As described above, a method for reconstructing epithelial tissue or endothelial tissue using the basement membrane preparation of the present invention is highly versatile. For example, a basement membrane prepared using rat alveolar epithelial cells is human tissue. It can also be used for construction, and organs and tissues constructed from the basement membrane derived from such rat alveolar epithelial cells are not limited to alveoli. In contrast, when culturing epithelial cells and endothelial cells of individual organs to form a basement membrane and constructing epithelial tissues and endothelial tissues, etc., to develop a culture system according to individual cells, It takes a lot of time and effort, and it is wasteful to prepare a basement membrane for each tissue individually. However, as described above, the basement membrane preparation of the present invention is a common base for tissue reconstruction. Efficiency can be improved by using it as a material. And as a culture vessel when reconstructing epithelial tissue, endothelial tissue and the like using a basement membrane preparation, it is not particularly limited and can be applied to a holo-fabric method in addition to a culture insert method, for example, When applied to an artificial blood vessel, it is possible to prevent the occurrence of thrombus, which is a problem in the artificial blood vessel, and when applied to artificial dialysis, the burden on the patient can be reduced.
[0026]
As described above, the tissue model and the organ model reconstructed from the basement membrane preparation of the present invention also have a cell layer and a basement membrane structure having a barrier function inherent to the living body, like the conventional tissue model. Therefore, it has a barrier function inherent to the living body, and can be advantageously applied to pharmacological tests, toxicity tests, and the like of chemical substances. For example, the safety and toxicity of a test substance against epithelial tissue can be tested by allowing the test substance to exist on the cell layer of an epithelial tissue model and measuring the electrical resistance between the upper surface and the basal surface of the epithelial cell. it can. If the test substance causes slight alveolar epithelial tissue damage, but the electrical resistance decreases, the safety and toxicity of the test substance can be evaluated. In addition, the test substance is allowed to exist on the cell layer of the epithelial tissue model, and the state of the epithelial cells and the basement membrane is observed with a scanning electron microscope or a transmission electron microscope. Toxicity can be tested.
[0027]
Furthermore, as another embodiment of the basement membrane preparation of the present invention, a basement membrane preparation in a free state from the support can be mentioned. By directly transplanting the basement membrane preparation of the present invention not adhered to the plastic surface or the basement membrane preparation of the present invention not adhered to the plastic surface, for example, the basement membrane preparation formed on the collagen fiber directly to the base, Cells having the ability to form membranes grow on the basement membrane preparation, and local tissues and the like can be constructed in vivo. In addition, a basement membrane specimen that does not have a plastic membrane or the like, or a basement membrane specimen that is not fixed to the plastic surface, for example, a tissue or organ reconstructed using a basement membrane specimen formed on a collagen fiber Can be transplanted while maintaining the structure of the basement membrane, and is therefore more versatile. Examples of applications include micro-artificial blood vessels with an inner diameter of 3 mm or less, and implantable human artificial tissues. In particular, tissues and organs in which epithelial tissues and endothelial tissues are close to each other, such as artificial spheres, artificial livers, and artificial alveoli, can be preferably exemplified. For the preparation of a base membrane preparation without the above plastic membrane, etc., a polymer having a reactive functional group (reactive group), more specifically, a polyvinyl chain or linear chain that can be adsorbed on the plastic surface. A polymer having a hydrophobic linear skeleton such as a linear amino acid polymer (polyglycine, polyalanine, etc.), which can react with a protein such as collagen directly on the hydrophobic linear skeleton or via a spacer. A polymer having a reactive group can be suitably used. These polymers can be used regardless of the type and material of the plastic because they are adsorbed on the plastic surface by hydrophobic bonds instead of chemical bonds by the hydrophobic linear skeleton. When constructing tissues, organs, etc. using the basement membrane preparation formed on the basement membrane, the basement membrane preparation is peeled off from the plastic membrane during the operation after culturing, while there is no risk of losing its use value, If necessary, it can be easily mechanically peeled from the plastic film or the plastic surface.
[0028]
The reactive group is not particularly limited as long as it can react with and bind to a functional group of a protein, and examples thereof include carboxylic anhydride type reactive groups, amino groups, and SH groups. Can do. A preferable example of the carboxylic anhydride type reactive group is a maleic anhydride group, which binds to a functional group such as an N-terminal amino group, lysine ε-amino group or SH group of a protein. The amino group reacts with the carboxyl group of the protein, but it is preferable to add a peptide condensing agent for chemical bonding. The SH group mainly reacts with the SH group of the protein and sometimes binds with an SS bond and an SS exchange reaction. A reversible protective group that can be easily removed can be attached to the SH group as long as it can form a copolymer with the hydrophobic linear skeleton.
[0029]
As a polymer having such a reactive functional group, an alternating copolymer of methyl vinyl ether and maleic anhydride (MMAC) can be specifically mentioned. In the case of MMAC, a methylene group Makes it possible to adsorb a hydrophobic polymer on the plastic surface with a hydrophobic bond. 2 -CH 2 -The skeleton alone is too hydrophobic and has a low affinity with water, and microscopically repels water, which may hinder the reactivity. Part is CH Three It is considered that the reaction efficiency is increased by substitution with an O group and the presence of an O atom. CH Three Substitution with an OH group instead of an O group is not preferable because an ester bond with a carboxylic anhydride is formed between molecules. Moreover, since MMAC is soluble in ethanol, it is easier to use than polymers that require acetone or the like, and can be quickly air-dried after coating. And, maleic anhydride, which is a reactive group in MMAC, binds to an amino group of a protein such as collagen. Even if this maleic anhydride reacts with water to form a carboxylic acid, the + Can be ionically bonded to the charge. Collagen protein has a lysine residue in the molecule, and the ε-amino group of the side chain is considered to be its binding partner.
[0030]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
Example 1 (epithelial cells / endothelial cells forming the basement membrane)
As epithelial cells, alveolar type II epithelial cells (SV40-large T) donated from Dr. A. Clement, Hopital Armand Trousseau, Paris (Clement et al., Exp. Cell Res., 196: 198-205, 1991) Harvested from antigen-transfected rats; T2 cells) were treated with 10 mM 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (HEPES) (pH 7.2), 10% fetal bovine serum. (FBS; Hyclone Laboratories Inc., Logan, Utah), DMEM (Dulbecco's modified Eagle medium) supplemented with penicillin and streptomycin, 95% air / CO 2 The cells were cultured under 5% atmospheric conditions. Further, as endothelial cells, human pulmonary artery vascular endothelial cells (HPAE cells) purchased from Clonetics were used as MCDB131 alone supplemented with 10 mM HEPES (pH 7.2), 2% FBS, growth factor, penicillin and streptomycin. Alternatively, in an equal volume mixed medium of MCDB131 and DMEM, 95% air / CO 2 The cells were cultured under 5% atmospheric conditions. Fibroblasts were prepared from male rat Jcl: Fischer 344-derived lung fibroblasts according to the method described in the literature (CELL STRUCTURE AND FUNCTION 22: 603-614, 1997), and purchased from Clontex. Human lung fibroblasts were used.
[0031]
Example 2 (Preparation of fibrous collagen gel)
Collagen gel fibers were prepared to mimic the density matrix of collagen gels normally constructed by fibroblasts. Neutral type I collagen solution in DMEM (pH 7.2) (0.3-0.5 mg / ml type I collagen taken by acid extraction from 0.42 ml bovine dermis; Koken Co., Tokyo) in 6 wells 4.3 cm with polyethylene terephthalate film from culture plate (Becton Dickinson Labware, Franklin Lakes, NJ) 2 Into the cultured fibroblast layer of 2 Incubated for several to 24 hours in an incubator to gel. The gel was air-dried at room temperature for 24-48 hours, compressed and used as high density collagen fibers (fib). As the fibroblasts, lung fibroblasts derived from male rat Jcl: Fischer 344 were prepared according to the method described in the literature (CELL STRUCTURE AND FUNCTION 22: 603-614, 1997).
[0032]
Example 3 (construction of organizational model 1)
A method for forming an epithelial tissue and an endothelial tissue having a basement membrane directly under the alveolar type II epithelial cell and the vascular endothelial cell layer is shown in FIGS. In order to construct the most basic tissue model, the above epithelial cells (T2) or endothelial cells (HPAEC) were directly seeded on a collagen gel embedded with fibroblasts and cultured for 2 weeks (T2-Fgel in FIG. 1). , EC-Fgel in Fig. 2). In addition, in order to form epithelial tissue and endothelial tissue having a basement membrane using fib as a culture substrate, epithelial cells (T2) or endothelial cells (HPAEC) were directly seeded on fib and cultured for 2 weeks (FIG. 1). T2-fib-Fcm, T2-fib-MG and T2-fib-TGFβ). In FIG. 1, Fcm is a co-culture with collagen gel (Fgel) in which fibroblasts are embedded, MG is a culture in which 200 μl of Matrigel (manufactured by Becton Dickinson) is coated on the bottom of the culture dish, and TGFβ is 1 ng / ml. The culture to which TGFβ was added is shown.
[0033]
Example 4 (Organization model construction 2)
4-1 (Confirmation of the presence of receptors in epithelial cells and endothelial cells)
Various PV-Sugars (manufactured by Seikagaku Corporation) with a concentration of 10 μg / ml were coated on a 96-well polystyrene plate (Becton Dickinson) according to the manufacturer's protocol, and rat alveolar type II epithelial cells were coated thereon. 1 × 10 Four In a DMEM supplemented with 10M HEPES (pH 7.2) and 1% FBS, CO 2 Incubation was performed at 37 ° C. for 24-48 hours in an incubator. After incubation, the cells were stained with crystal violet, and the absorbance at 595 nm was measured to obtain the number of cells, thereby examining the adhesion to various PV-Sugars. In addition, cell adhesion to the fibronectin (FN) and vitronectin (VN) coats of the cell adhesion factor was simultaneously performed as a control experiment. The results are shown in FIG. The horizontal axis of FIG. 5 shows various non-reducing terminal sugar chains PV-sugar (GlcNAc; 2-acetoamide-2-deoxy-β-D-glucopyranosyl, Lam; β-D-glucopyranosyl- (1 → 3), CA; β-D-glucopyranosyl- (1 → 4), LA; β-D-galactopyranosyl, MA; α-D-glucopyranosyl, Man; β-D-mannopyranosyl, MEA; α-D-galactopyranosyl) Yes. From FIG. 5, the alveolar type II epithelial cells have PV-GlcNAc, β-D-glucopyranose non-reducing end having a sugar chain having 2-acetamido-2-deoxy-β-D-glucopyranose non-reducing end. It was found that strong adhesion to PV-CA having a sugar chain, PV-Lam, and PV-LA having a sugar chain having a β-D-galactopyranose non-reducing end was exhibited. From these results, it was shown that alveolar type II epithelial cells express receptors for these sugar chains on the basal plane.
[0034]
4-2 (Preparation of basement membrane by alveolar type II epithelial cells)
The basement membrane was prepared using a culture insert comprising a lower well and an upper well concentrically housed in the lower well and having a PET film on the bottom (see FIG. 1). On the bottom PET film of the upper well, high-density collagen fibers (fib) produced by the method shown in Example 3 were coated with PV-GlcNAc, PV-CA or PV-Lam at a concentration of 10 μg / ml dissolved in DMEM. On alveolar type II epithelial cells on support (fib *) at 37 ° C, 5% CO 2 Cultured in the presence for 2 weeks. In this culture, collagen gel (Fgel), matrigel (MG), or TGFβ in which fibroblasts are embedded is not added to the culture system, and 10 mM HEPES (pH 7.2), 1% FBS, and 0. DMEM to which 2 mM ascorbic acid-2-phosphate (Asc-P) was added was used. A transmission electron micrograph of the formed alveolar epithelial tissue is shown in FIG. 6, and the alveolar type II epithelial cell layer on the surface of the formed alveolar epithelial tissue is removed by the method shown in Example 5 (described later) and exposed. FIG. 7 shows a scanning electron micrograph of the extracellular matrix directly under the alveolar epithelial tissue.
[0035]
In FIG. 6, the thick arrow indicates the basement membrane dense plate (lamina densa), the thin arrow indicates the old basement membrane that is formed at the initial stage of the culture, a part of the old basement membrane being decomposed, and the wrinkle indicates the region where the basement membrane is not formed Shown (scale length is 1 μm). In addition, in the PV-sugar untreated (Cont) in FIG. 7, only the location (*) where the secretion of epithelial cells is accumulated in the existing fib (collagen fiber, hollow thick arrow) is recognized. In -GlcNAc, PV-Lam, and PV-CA treatment, the basement membrane is formed flat (corresponding to the thick arrow in FIG. 6), and in PV-Lam treatment, the alveolar type II epithelial cell layer is removed. In addition, the collagen fibers in the lower part (open thick arrows) can be seen through the missing basement membrane window (scale length is 1 μm). From these results, it was confirmed that PV-GlcNAc having a non-reducing end of 2-acetamido-2-deoxy-β-D-glucopyranose or PV-CA or PV-Lam having a non-reducing end of β-D-glucopyranose was coated. When cultured on a density collagen fiber support (GlcNAc-fib *, CA-fib *, Lam-fib *), an alveolar epithelial tissue with a basement membrane formed immediately below the alveolar type II epithelial cell layer is constructed It was confirmed. In addition, alveolar type II cells adhered to PV-LA having a β-D-galactopyranose non-reducing end (FIG. 5), but no basement membrane was formed (FIGS. 6 and 7). This indicates that cell adhesion to sugar chains is not a sufficient condition even though it is a necessary condition for the formation of a basement membrane.
[0036]
4-3 (Effect of promoting basement membrane formation by Matrigel)
As shown in T2-fib-MG in FIG. 1, when 200 μl of Matrigel is coated on the lower well and alveolar epithelial cells are cultured on high-density collagen fibers (fib) for 2 weeks, a basement membrane is formed directly under the epithelial cells. The However, if the amount of Matrigel is less than 50 μl, the basement membrane is not formed (J. Cell Sci., 113: 589-868, 2000). Even in this case, a culture substrate coated with PV-GlcNAc, PV-CA or PV-Lam by the method shown in Example 4 after producing high-density collagen fibers (fib) by the method shown in Example 3 When (fib *) is used, a basement membrane is formed immediately below the alveolar type II epithelial cell layer after 10 days of culture. FIG. 8 shows transmission electron micrographs of epithelial tissues formed by co-culture with 25 μl Matrigel coated on the bottom of the culture dish on high-density collagen fibers (fib *) coated with various PV-sugars for 10 days. Left side: untreated, PV-GlcNAc, PV-CA coating), and the alveolar epithelial cell layer was removed by the method shown in Example 5 (described later), and the underlying basement membrane structure was exposed on the surface to make scanning electron Photographed with a microscope (right side: untreated and PV-GlcNAc, PV-CA coating) shows the results (the meaning and scale of the symbols are the same as in Example 4-2). From these results, even when the amount of Matrigel is insufficient, alveolar II can be obtained by using high-density collagen fiber support (GlcNAc-fib *, CA-fib *) coated with PV-GlcNAc or PV-CA. It was confirmed that an alveolar epithelial tissue in which a basement membrane was formed immediately below the type epithelial cell layer was constructed.
[0037]
4-4 (Preparation of basement membrane by human pulmonary artery endothelial cells)
Human pulmonary artery endothelial (HPAE) cells were cultured by the method shown in FIG. In other words, cultured directly on collagen gel (Fgel) embedded with human fibroblasts (EC-Fgel), cultured on high-density collagen fibers (fib) in the presence of Fgel (EC-fib-Fcm), together with 200 μl of Matrigel Co-culture (EC-fib-MG) on fib, and culture (EC-fib) on fib. After culturing, the surface HPAE cell layer was removed by the method of Example 5 (described later), and the extracellular matrix structure directly under the cells was observed with a scanning electron microscope (FIG. 9). In the case of EC-Fgel, a basement membrane was formed, but in the case of EC-fib-Fcm, EC-fib-MG, and EC-fib, the existing collagen fibers were exposed, and in the case of T2 cells (T2-fib- Fcm, T2-fib-MG), the basement membrane was not formed (thick white arrows are collagen fibers. * Are secretions deposited between collagen fibers. Scale length is 1 μm). Therefore, using the EC-fib-Fcm culture system, the cells were cultured on a high-density collagen fiber support (fib *) coated with PV-sugar, as in the case of the alveolar type II epithelial cells of Example 5. . After culturing, the surface HPAE cell layer was removed by the method of Example 5, and the exposed extracellular matrix structure directly under the cells was observed with a scanning electron microscope (FIG. 10). In the case of PV-GlcNAc and PV-CA coating, formation of a basement membrane was observed. In the case of PV-Lam coating, basement membrane formation was incomplete. In PV-sugar untreated (Cont) and PV-LA, PV-MA, PV-Man, and PV-MEA treatments, epithelial cell secretions accumulate (*) in existing collagen fibers (open thick arrows). However, the basement membrane is not formed. From these results, when fib * (GlcNAc-fib *, CA-fib *) coated with PV-GlcNAc and PV-CA is used, a human pulmonary artery endothelial tissue in which a basement membrane is formed immediately below the human pulmonary artery vascular endothelial cell layer Confirmed that it was built.
[0038]
Example 5 (Preparation of a basement membrane preparation from which the alveolar epithelial cell layer was removed and the basement membrane was exposed)
From a tissue model (T2-fib-MG), as schematically shown in FIG. 4, a basement membrane preparation was prepared by peeling the type II alveolar epithelial cell layer and exposing the basement membrane. Rat airway epithelial cells or human pulmonary artery vascular endothelial cells were seeded on the basement membrane structure to prepare airway epithelial tissues and vascular epithelial tissues. First, an isotonic phosphate buffer (pH 7.2) in which a mixed solution of a protease inhibitor (PIC, manufactured by Peptide Laboratories, Osaka) was added to type II alveolar epithelial tissue in the upper well of the culture insert; In PBS (−)), 2 ml of 0.1% Triton X-100 (surfactant) is used to dissolve and elute lipid components of epithelial cells, and at the same time coexist with 50 mM NH Three Then, after repeating the operation of dissolving the protein remaining on the basement membrane surface of the cell twice (not to dissolve the protein of the basement membrane) again, the surfactant is removed from the basement membrane with the PBC (−) solution containing PIC again. And a basement membrane preparation in which the alveolar epithelial cell layer was peeled off to expose the basement membrane.
[0039]
Reference Example 1 (Construction of rat airway epithelial tissue on basement membrane structure)
On the basement membrane structure constructed in Example 5, 5 × 10 rat airway epithelial cell line (SPOC1, provided by NIEHS, USA) Five Seed individually, 37 ° C, 5% CO 2 In the presence, airway epithelial tissue was constructed by culturing for 1 week in a mixed medium of Ham's F12: DMEM = 1: 1 supplemented with 10 mM HEPES (pH 7.2) and 1% FBS. FIG. 11 shows a transmission electron micrograph of the airway epithelial tissue constructed on the basement membrane structure. FIG. 11A shows airway epithelial cells on the basement membrane structure, and FIG. 11B shows the basal plane and basement of the airway epithelial cells in which the airway epithelial cells recognize the alveolar epithelial cell-derived basement membrane and are connected by anchoring filaments. FIG. 11C shows that the airway epithelial cells are connected to each other at the cell-cell junction to form an epithelial tissue.
[0040]
Reference Example 2 (Construction of human vascular epithelial tissue on basement membrane structure)
On the basement membrane structure constructed in Example 5, 5 × 10 5 human pulmonary artery vascular endothelial cells (Clontech) were used. Five Seed individually, 37 ° C, 5% CO 2 In the presence, human vascular epithelial tissue was constructed by culturing for 2 weeks in a mixed medium of MCDB131: DMEM = 1: 1 supplemented with 10 mM HEPES (pH 7.2) and 2% FBS. FIG. 12 shows a transmission electron micrograph of human vascular endothelial tissue constructed on the basement membrane structure. FIG. 12A shows a human vascular epithelial tissue constructed by co-culture with fibroblasts, and FIG. 12B shows a human vascular epithelial tissue constructed in the presence of Matrigel.
[0041]
【The invention's effect】
According to the present invention, a basement membrane preparation having a function of controlling cell morphology, differentiation, proliferation, movement, functional expression, etc. when seeding and culturing predetermined cells of the same or different types having the ability to form a basement membrane By using this basement membrane preparation, an epithelial tissue model or endothelial tissue model having a basement membrane structure can be reconstructed under mild conditions, and the basement membrane prepared by such a method can be obtained. The structure can also form epithelial tissues and endothelial tissues of other tissues. These basement membrane structures and epithelial / endothelial tissues are used for medical and biological research, for transplantation / treatment as artificial blood vessels, artificial lungs, artificial livers, artificial kidneys, artificial skin, artificial corneas, pharmacological tests, It can be used for toxicity tests.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing basement membrane formation by alveolar epithelial cells.
FIG. 2 is a schematic diagram showing basement membrane formation by pulmonary artery endothelial cells.
FIG. 3 is a schematic diagram showing the formation of a basement membrane by co-culture of epithelial cells and endothelial cells.
FIG. 4 is a schematic diagram showing the construction of endothelial tissue and epithelial tissue using a reconstructed basement membrane preparation.
FIG. 5 shows the specificity of sugar chain adhesion of alveolar type II cells.
FIG. 6 is a transmission electron micrograph of alveolar epithelial tissue formed as a result of culturing alveolar type II epithelial cells on high-density collagen fibers (fib *) coated with various PV-sugars for 2 weeks. It is.
[Fig. 7] Scanning electrons of the extracellular matrix immediately below the alveolar epithelial tissue formed as a result of culturing alveolar type II epithelial cells on high-density collagen fibers (fib *) coated with various PV-sugars for 2 weeks. It is a figure which shows a microscope picture.
FIG. 8: Alveoli formed as a result of co-culture of alveolar type II epithelial cells on high-density collagen fibers (fib *) coated with various PV-sugars with 25 μl Matrigel coated on the bottom of the culture dish for 10 days It is a figure which shows the transmission electron micrograph (left) of epithelial tissue, and the scanning electron micrograph (right) of the extracellular matrix directly under alveolar epithelial tissue.
9 is a view showing a scanning electron micrograph of an extracellular matrix showing the result of basement membrane formation of human pulmonary artery vascular endothelial cells by the culturing method of FIG. 2. FIG.
FIG. 10 Human pulmonary artery vascular endothelial cells were seeded on high-density collagen fibers (fib *) coated with various PV-sugars, and co-cultured with collagen gel embedded with lung fibroblasts for 2 weeks (EC-). fib * -Fcm) is a view showing a scanning electron micrograph of the extracellular matrix directly under the vascular endothelial cell layer formed as a result.
FIG. 11 is a transmission electron micrograph of airway epithelial tissue reconstructed on a basement membrane structure.
FIG. 12 is a transmission electron micrograph of human vascular endothelial tissue reconstructed on a basement membrane structure.

Claims (8)

基底膜を介して支持体上に接着している基底膜形成能を有する細胞を、該細胞の脂質溶解能を有する界面活性剤とアルカリ溶液とプロテアーゼ阻害剤を添加した等張のリン酸緩衝液を用いて基底膜から除去することを特徴とする基底膜標品の作製方法。An isotonic phosphate buffer solution in which a cell having a basement membrane-forming ability adhered to a support through a basement membrane is added with a surfactant capable of dissolving the lipid, an alkaline solution, and a protease inhibitor. A method for producing a basement membrane preparation, which comprises removing the basement membrane from the basement membrane. 脂質溶解能を有する界面活性剤を用いて脱脂処理をした後、又は脱脂処理と同時にアルカリ溶液を用いて除タンパク・除核処理をすることを特徴とする請求項1記載の基底膜標品の作製方法。2. The base membrane preparation according to claim 1, wherein the protein is deproteinized and enucleated using an alkaline solution after degreasing using a surfactant having lipid solubility or simultaneously with degreasing. Manufacturing method. 界面活性剤がトリトンX−100(Triton X−100)であることを特徴とする請求項1又は2記載の基底膜標品の作製方法。The method for producing a basement membrane preparation according to claim 1 or 2, wherein the surfactant is Triton X-100. アルカリ溶液がpH9〜10のアルカリ溶液であることを特徴とする請求項1〜のいずれか記載の基底膜標品の作製方法。The method for producing a basement membrane preparation according to any one of claims 1 to 3 , wherein the alkaline solution is an alkaline solution having a pH of 9 to 10. 基底膜が、線維芽細胞を包埋したコラーゲンゲル上で、基底膜形成能を有する細胞を培養することにより調製された基底膜であることを特徴とする請求項1〜のいずれか記載の基底膜標品の作製方法。Basement membrane, fibroblasts over-embedded collagen gel of basement membrane claims, characterized in that the cells having ability to form a basement membrane prepared by culturing 1-4 according to any one A method for preparing a basement membrane preparation. 基底膜が、基底膜形成能を有する細胞の基底面に、基底膜構成成分の集積作用を有するレセプターを局在化させることができるβ−D−グルコピラノース非還元末端又は2−アセトアミド−2−デオキシ−β−D−グルコピラノース非還元末端を有する糖鎖を備えた支持体上で、基底膜形成能を有する細胞を培養することにより調製された基底膜であることを特徴とする請求項1〜のいずれか記載の基底膜標品の作製方法。Β-D-glucopyranose non-reducing end or 2-acetamido-2- capable of localizing a receptor having an action of accumulating basement membrane components on the basal plane of a cell having basement membrane-forming ability 2. A basement membrane prepared by culturing cells having a basement membrane-forming ability on a support having a sugar chain having deoxy-β-D-glucopyranose non-reducing terminal. basement membrane manufacturing method of preparation according to any one of 1-5. 請求項1〜のいずれか記載の基底膜標品の作製方法により得られることを特徴とする基底膜標品。A basement membrane preparation obtained by the method for producing a basement membrane preparation according to any one of claims 1 to 6 . 支持体から遊離状態にあることを特徴とする請求項記載の基底膜標品。The basement membrane preparation according to claim 7, which is in a released state from the support.
JP2001292676A 2001-09-25 2001-09-25 Preparation method of basement membrane preparation Expired - Fee Related JP4214287B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001292676A JP4214287B2 (en) 2001-09-25 2001-09-25 Preparation method of basement membrane preparation
EP02772905A EP1437147B1 (en) 2001-09-25 2002-09-25 Method of preparing basement membrane
PCT/JP2002/009841 WO2003026712A1 (en) 2001-09-25 2002-09-25 Method of preparing basement membrane, method of constructing basement membrane specimen, reconstituted artificial tissue using the basement membrane specimen and process for producing the same
US10/809,218 US7399634B2 (en) 2001-09-25 2004-03-25 Method of preparing basement membrane, method of constructing basement membrane specimen, reconstituted artificial tissue using the basement membrane specimen and process for producing the same
US11/599,953 US8765473B2 (en) 2001-09-25 2006-11-15 Method of preparing basement membrane, method of constructing basement membrane specimen, reconstituted artificial tissue using the basement membrane specimen and process for producing the same
US11/599,974 US7972852B2 (en) 2001-09-25 2006-11-15 Method of preparing basement membrane, method of constructing basement membrane specimen, reconstituted artificial tissue using the basement membrane specimen and process for producing the same
US11/599,760 US7906332B2 (en) 2001-09-25 2006-11-15 Method of preparing basement membrane, method of constructing basement membrane specimen, reconstituted artificial tissue using the basement membrane specimen and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292676A JP4214287B2 (en) 2001-09-25 2001-09-25 Preparation method of basement membrane preparation

Publications (2)

Publication Number Publication Date
JP2003093053A JP2003093053A (en) 2003-04-02
JP4214287B2 true JP4214287B2 (en) 2009-01-28

Family

ID=19114592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292676A Expired - Fee Related JP4214287B2 (en) 2001-09-25 2001-09-25 Preparation method of basement membrane preparation

Country Status (1)

Country Link
JP (1) JP4214287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2607975A1 (en) * 2005-05-30 2006-12-07 Commonwealth Scientific And Industrial Research Organisation Preparation and use of basement membrane particles
WO2011016485A1 (en) * 2009-08-04 2011-02-10 国立大学法人岡山大学 METHOD FOR INDUCING DIFFERENTIATION OF iPS CELLS INTO HEPATIC PARENCHYMAL CELLS

Also Published As

Publication number Publication date
JP2003093053A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
US7906332B2 (en) Method of preparing basement membrane, method of constructing basement membrane specimen, reconstituted artificial tissue using the basement membrane specimen and process for producing the same
CA2367507C (en) Angiogenesis using three-dimensional stromal tissue constructs
US9290742B2 (en) Tissue engineered blood vessel
EP0299010B1 (en) Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5759830A (en) Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
RU2470611C2 (en) Occluder for transcutaneous transluminal procedure (versions), method of transcutaneous transluminal closing of hole in heart, method of activisation of mammalian tissue vascularisation in vivo and method of activisation of anastomosis place healing
US20110143429A1 (en) Tissue engineered blood vessels
US20110293666A1 (en) Bioengineered Tissue Constructs and Methods for Production and Use
US20050124062A1 (en) Milk protein biofilm and uses thereof
JP4023597B2 (en) Reconstructed artificial tissue using a basement membrane specimen and the like and method for producing the same
JP3829193B2 (en) Basement membrane preparation or artificial tissue
JP3785532B2 (en) Preparation method of basement membrane
JP4214287B2 (en) Preparation method of basement membrane preparation
Mikhailovna et al. Liver tissue decellularization as a promising porous scaffold processing technology for tissue engineering and regenerative medicine
US20220280695A1 (en) Sealing of decellularized and recellularized engineered organ grafts
US20130196438A1 (en) Tissue engineered blood vessels
EP1782849A2 (en) Three-dimensional stromal tissue

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees