JP4210238B2 - Method for modifying surface of polymer substrate and polymer substrate obtained by the method - Google Patents

Method for modifying surface of polymer substrate and polymer substrate obtained by the method Download PDF

Info

Publication number
JP4210238B2
JP4210238B2 JP2004154633A JP2004154633A JP4210238B2 JP 4210238 B2 JP4210238 B2 JP 4210238B2 JP 2004154633 A JP2004154633 A JP 2004154633A JP 2004154633 A JP2004154633 A JP 2004154633A JP 4210238 B2 JP4210238 B2 JP 4210238B2
Authority
JP
Japan
Prior art keywords
substrate
fluoromonomer
polymer substrate
polymer
surface modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004154633A
Other languages
Japanese (ja)
Other versions
JP2005015778A (en
Inventor
俊明 森
恵雄 岡畑
兼平 今井
勝也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004154633A priority Critical patent/JP4210238B2/en
Publication of JP2005015778A publication Critical patent/JP2005015778A/en
Application granted granted Critical
Publication of JP4210238B2 publication Critical patent/JP4210238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

本発明は、高分子基材の表面修飾方法に関する。   The present invention relates to a method for modifying the surface of a polymer substrate.

従来より、高分子基材を、各種用途への適合性を向上させる目的で、高分子基材の表面修飾方法が種々提案されている。その具体例として、下記に示す(1)〜(4)の方法等が挙げられる。   Conventionally, various methods for modifying the surface of a polymer substrate have been proposed for the purpose of improving the compatibility of the polymer substrate with various applications. Specific examples thereof include the methods (1) to (4) shown below.

すなわち、(1)親水性高分子又は疎水性基を有する親水性高分子を高分子基材表面に塗布する方法、(2)高分子基材をプラズマ処理して、表面に化学活性種を発生させ、種々のモノマーをグラフト重合する方法、(3)高分子基材表面に存在する官能基と、該官能基と反応可能な官能基を有する高分子又はモノマーとを反応させる方法、(4)モノマーとラジカル重合開始剤とを溶解した溶剤を高分子基材表面に塗布し、ついで光や熱等のエネルギーを与えることでラジカルを発生させ高分子表面で重合を行う表面グラフト重合法である。   (1) A method of applying a hydrophilic polymer or a hydrophilic polymer having a hydrophobic group to the surface of the polymer substrate, (2) Plasma treatment of the polymer substrate to generate chemically active species on the surface (3) a method of reacting a functional group present on the surface of a polymer substrate with a polymer or monomer having a functional group capable of reacting with the functional group, (4) This is a surface graft polymerization method in which a solvent in which a monomer and a radical polymerization initiator are dissolved is applied to the surface of a polymer substrate, and then a radical is generated by applying energy such as light or heat to polymerize the polymer surface.

また、フッ素系高分子材料やフルオロモノマーを用いる方法についても、種々の提案がなされている。例えば下記特許文献1には、エラストマー基材表面にフッ素樹脂溶液を塗布し塗膜を形成する方法が開示されている。   Various proposals have also been made for methods using fluorine-based polymer materials and fluoromonomers. For example, Patent Document 1 below discloses a method of forming a coating film by applying a fluororesin solution to the surface of an elastomer substrate.

更には、下記特許文献2には、パーオキシドとモノマーとを含有する溶液を高分子基材に接触させた後、該基材を加熱処理し該モノマーを重合させて表面とその近傍の修飾を行う方法が、下記特許文献3には、含フッ素エラストマー基材表面を低温プラズマ処理し、該基材表面に活性点を形成し、ついで末端に水酸基を含有する水溶性シリコーンモノマーをグラフト重合させる方法が開示されている。   Furthermore, in Patent Document 2 below, after a solution containing a peroxide and a monomer is brought into contact with a polymer substrate, the substrate is heated to polymerize the monomer to modify the surface and its vicinity. Patent Document 3 below discloses a method in which the surface of a fluorine-containing elastomer substrate is subjected to low-temperature plasma treatment, an active site is formed on the surface of the substrate, and then a water-soluble silicone monomer containing a hydroxyl group at the terminal is graft-polymerized. It is disclosed.

また、超臨界状態の流体を媒体として表面修飾する方法として、超臨界二酸化炭素中、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)基材にスチレンと重合開始剤を浸透させ、スチレンを重合させるFEPの表面修飾方法が提案されている(非特許文献1参照)。
特開平11−255929号公報 特開平11−199691号公報 特開2002−363320号公報 Macromolecules、32巻、2562〜2568頁、1999年
Also, as a method of surface modification using a fluid in a supercritical state as a medium, styrene and a polymerization initiator are infiltrated into a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) substrate in supercritical carbon dioxide to polymerize styrene. A surface modification method of FEP to be performed has been proposed (see Non-Patent Document 1).
Japanese Patent Laid-Open No. 11-255929 Japanese Patent Laid-Open No. 11-199691 JP 2002-363320 A Macromolecules, 32, 2566-2568, 1999

しかし、上記(1)〜(4)の表面修飾方法は要求特性を充分に満足できる方法ではなかった。例えば、(1)の方法では、基材と塗布して形成された高分子層との密着性が十分得られず剥離しやすいいものとなってしまう。(2)の方法では、プラズマ処理により高分子基材の物性が変化してしまう。(3)の方法では、高分子基材表面の官能基及びそれと反応可能な官能基の種類が限定されてしまう。(4)の方法では、高分子基材に溶剤が浸透するため、基材が膨潤し、変質する等の問題が生じてしまう。   However, the above surface modification methods (1) to (4) are not methods that can sufficiently satisfy the required characteristics. For example, in the method (1), sufficient adhesion between the base material and the polymer layer formed by coating cannot be obtained and the film is easily peeled off. In the method (2), the physical properties of the polymer base material are changed by the plasma treatment. In the method (3), the types of functional groups on the surface of the polymer substrate and functional groups capable of reacting with the functional groups are limited. In the method (4), since the solvent penetrates into the polymer substrate, problems such as swelling and alteration of the substrate occur.

また、上記非特許文献1等に示されている超臨界二酸化炭素を用いるFEPの表面修飾方法では、モノマーとしてフルオロモノマーを用いた記載はなく、フルオロモノマーを用いる適切な表面修飾方法についてはこれまで知られていなかった。   In addition, in the FEP surface modification method using supercritical carbon dioxide shown in Non-Patent Document 1 or the like, there is no description using a fluoromonomer as a monomer, and an appropriate surface modification method using a fluoromonomer has been described so far. It was not known.

したがって、本発明は、これまでの表面修飾方法の問題点を解決し、高分子基材自体の特性変化を伴わない、該基材表面のフルオロモノマーによる表面修飾法を提供することを目的とする。   Accordingly, an object of the present invention is to solve the problems of the conventional surface modification methods and to provide a surface modification method using a fluoromonomer on the surface of the base material without causing a change in properties of the polymer base material itself. .

上記課題を解決するため、本発明の高分子基材の表面修飾方法は、該基材をフルオロモノマー及びラジカル重合開始剤を含有する超臨界状態の流体の中で該フルオロモノマーをラジカル重合させることを特徴とする。これによれば、超臨界状態の該流体はフルオロモノマー及び高分子基材との親和性に優れることから、フルオロモノマーの高分子基材への浸透が容易となり、高分子基材表面近傍でフルオロモノマーが重合して生成したフルオロポリマーは該基材との密着性に優れたものとなる。   In order to solve the above problems, the method for modifying the surface of a polymer substrate of the present invention comprises subjecting the substrate to radical polymerization of the fluoromonomer in a supercritical fluid containing a fluoromonomer and a radical polymerization initiator. It is characterized by. According to this, since the fluid in the supercritical state is excellent in affinity with the fluoromonomer and the polymer base material, the permeation of the fluoromonomer into the polymer base material becomes easy, and the fluoromonomer is near the surface of the polymer base material. The fluoropolymer produced by polymerization of the monomer has excellent adhesion to the substrate.

また、本発明においては、前記超臨界状態が、該流体の臨界圧力の1〜5倍の圧力下にある超臨界状態であることが好ましい。これによれば、フルオロモノマーの高分子基材の表面近傍への浸透がより容易となり、また、フルオロモノマーがラジカル重合して得られるフルオロポリマーの重量平均分子量が高く、均一なフルオロポリマー層を形成することができる。   In the present invention, it is preferable that the supercritical state is a supercritical state under a pressure of 1 to 5 times the critical pressure of the fluid. This makes it easier for the fluoromonomer to penetrate into the vicinity of the surface of the polymer substrate, and the fluoropolymer obtained by radical polymerization of the fluoromonomer has a high weight average molecular weight, forming a uniform fluoropolymer layer. can do.

更には、前記フルオロモノマーが、重合性炭素−炭素不飽和結合を有し、かつ該炭素原子の1個以上にフッ素原子、ポリフルオロアルキル基及びポリフルオロアルコキシ基からなる群から選ばれる1種以上が結合した含フッ素化合物、もしくは、ポリフルオロアルキルアクリレート又はポリフルオロアルキルメタクリレートであることが好ましい。   Further, the fluoromonomer has a polymerizable carbon-carbon unsaturated bond, and at least one selected from the group consisting of a fluorine atom, a polyfluoroalkyl group, and a polyfluoroalkoxy group at one or more of the carbon atoms. Is preferably a fluorine-containing compound in which is bonded, or polyfluoroalkyl acrylate or polyfluoroalkyl methacrylate.

本発明の表面修飾方法によれば、高分子基材自体の特性変化を伴わずに、該基材表面のフルオロモノマーにより修飾することができ、高分子基材にフルオロポリマーが有する種々の特性を付与することができる。   According to the surface modification method of the present invention, the polymer substrate can be modified with the fluoromonomer on the surface of the substrate without changing the properties of the polymer substrate itself. Can be granted.

また、本発明の表面修飾方法により得られる、フルオロモノマーにより表面修飾された高分子基材は、撥水發油性、耐候性、非粘着性、防汚性、耐薬品性、低摩擦性、耐摩耗性、高絶縁性等に優れることから、化学薬品接触部材、絶縁部材、摺動部材、耐候性フィルム等の用途に適する。   In addition, the polymer substrate surface-modified with a fluoromonomer obtained by the surface modification method of the present invention has water repellency, oil resistance, weather resistance, non-adhesiveness, antifouling properties, chemical resistance, low friction resistance, Since it is excellent in abrasion, high insulation, etc., it is suitable for applications such as chemical contact members, insulating members, sliding members, and weather resistant films.

本発明における超臨界状態の流体は、特に限定されず、フルオロモノマーとの親和性、高分子基材との親和性、臨界温度、臨界圧力の観点より適宜選定される。該流体としては、二酸化炭素、炭素原子数1〜3の飽和フルオロカーボン、炭素原子数1〜3の飽和ハイドロフルオロカーボン、炭素原子数1〜3の飽和ハイドロクロロフルオロカーボン、炭素原子数1〜3の飽和クロロフルオロカーボン等が挙げられる。該流体を用いると、臨界温度及び臨界圧力が比較的低いので工業的に有利であるほか、超臨界状態の該流体はフルオロモノマー及び高分子基材との親和性に優れることから、フルオロモノマーの高分子基材への浸透が容易であり、高分子基材表面近傍でフルオロモノマーが重合して生成したフルオロポリマーは該基材との密着性に優れる。   The fluid in the supercritical state in the present invention is not particularly limited, and is appropriately selected from the viewpoints of affinity with a fluoromonomer, affinity with a polymer substrate, critical temperature, and critical pressure. Examples of the fluid include carbon dioxide, a saturated fluorocarbon having 1 to 3 carbon atoms, a saturated hydrofluorocarbon having 1 to 3 carbon atoms, a saturated hydrochlorofluorocarbon having 1 to 3 carbon atoms, and a saturated chloro having 1 to 3 carbon atoms. Examples thereof include fluorocarbon. The use of the fluid is industrially advantageous because the critical temperature and pressure are relatively low, and the fluid in the supercritical state is excellent in affinity with the fluoromonomer and the polymer substrate. Penetration into the polymer substrate is easy, and the fluoropolymer produced by polymerization of the fluoromonomer near the surface of the polymer substrate is excellent in adhesion to the substrate.

本発明における流体の超臨界状態は、該流体の臨界圧力の1〜5倍の圧力下にある超臨界状態であることが好ましい。より好ましくは臨界圧力の1〜2倍の圧力下であり、最も好ましくは臨界圧力の1〜1.5倍の圧力下である。この範囲にあると、フルオロモノマーの高分子基材の表面近傍への浸透が容易であり、また、フルオロモノマーがラジカル重合して得られるフルオロポリマーの重量平均分子量が高いうえ、高分子基材表面に均一なフルオロポリマー層が形成される。   The supercritical state of the fluid in the present invention is preferably a supercritical state under a pressure of 1 to 5 times the critical pressure of the fluid. More preferably, the pressure is 1 to 2 times the critical pressure, and most preferably 1 to 1.5 times the critical pressure. Within this range, it is easy for the fluoromonomer to penetrate into the vicinity of the surface of the polymer substrate, the fluoropolymer obtained by radical polymerization of the fluoromonomer has a high weight average molecular weight, and the surface of the polymer substrate is high. A uniform fluoropolymer layer is formed.

該流体の温度は、該流体の臨界温度より0〜200℃高い温度が好ましい。より好ましくは、臨界温度より0〜150℃高い温度であり、最も好ましくは臨界温度より0〜100℃高い温度である。この温度範囲超では反応設備が高価になり、この温度範囲未満ではフルオロモノマーの高分子基材表面近傍への浸透が困難になる。この範囲にあると、フルオロモノマーが高分子基材表面近傍への浸透性に優れ、反応設備が安価である。   The temperature of the fluid is preferably 0 to 200 ° C. higher than the critical temperature of the fluid. More preferably, the temperature is 0 to 150 ° C. higher than the critical temperature, and most preferably 0 to 100 ° C. higher than the critical temperature. Above this temperature range, the reaction equipment becomes expensive, and below this temperature range, penetration of the fluoromonomer into the vicinity of the polymer substrate surface becomes difficult. Within this range, the fluoromonomer has excellent permeability to the vicinity of the polymer substrate surface, and the reaction equipment is inexpensive.

本発明におけるラジカル重合開始剤としては、超臨界状態の流体と相溶性を有するものであれば、特に限定されず、公知のラジカル重合開始剤が使用できる。具体例としては、アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド、ジペンタフルオロプロピオニルパーオキシド等のジアシルパーオキサイド類、tert−ブチルパーオキシイソブチレート等のパーオキシエステル類、ジイソプロピルベンゼンハイドロパーオキシド等のハイドロパーオキシド類、パーフルオロプロピオニルパーオキシド、パーフルオロベンゾイルパーオキシド等のパーフルオロパーオキシド類等が挙げられる。   The radical polymerization initiator in the present invention is not particularly limited as long as it is compatible with a fluid in a supercritical state, and a known radical polymerization initiator can be used. Specific examples include azo compounds such as azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile), diacyl peroxides such as benzoyl peroxide and dipentafluoropropionyl peroxide, tert -Peroxyesters such as butylperoxyisobutyrate, hydroperoxides such as diisopropylbenzene hydroperoxide, perfluoroperoxides such as perfluoropropionyl peroxide, perfluorobenzoyl peroxide, and the like.

本発明におけるラジカル重合開始剤の使用量は、フルオロモノマーの重合反応に通常の使用量が好ましく、フルオロモノマーの100質量部に対し、10−6〜10質量部が好ましく、10−5〜2質量部がより好ましい。 The amount of the radical polymerization initiator used in the present invention is preferably a usual amount used for the polymerization reaction of the fluoromonomer, preferably 10 −6 to 10 parts by mass, and 10 −5 to 2 masses per 100 parts by mass of the fluoromonomer. Part is more preferred.

本発明におけるフルオロモノマーとしては、ラジカル重合性の炭素−炭素不飽和結合を有する含フッ素化合物が好ましい。フルオロモノマーの具体例としては、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)等のパーフルオロオレフィン;パーフルオロ(アルキルビニルエーテル)(PFAVE)、パーフルオロ(1,3−ジオキソール)、パーフルオロ(2,2−ジメチル−1,3−ジオキソール)(PFDD)、パーフルオロ−(2−メチレン−4−メチル−1、3−ジオキソラン)(MMD)、パーフルオロブテニルビニルエーテル(PFBVE)等のパーフルオロビニルエーテル;ビニリデンフルオライド(VdF)、トリフルオロエチレン、1,2−ジフルオロエチレン、フッ化ビニル、トリフルオロプロピレン、3,3,3−トリフルオロ−2−トリフルオロメチルプロペン、3,3,3−トリフルオロプロペン、パーフルオロ(ブチル)エチレン(PFBE)等の水素原子含有フルオロオレフィン;1,1−ジヒドロパーフルオロオクチルアクリレート(DPFOA)、1,1−ジヒドロパーフルオロオクチルメタクリレート(DPFOMA)、2−(パーフルオロオクチル)エチルアクリレート(PFOEA)、2−(パーフルオロオクチル)エチルメタクリレート(PFOEMA)、2−(パーフルオロヘキシル)エチルメタクリレート(PFHEMA)、2−(パーフルオロブチル)エチルメタクリレート(PFBEMA)等のポリフルオロアルキル(メタ)アクリレート;α−フルオロスチレン、β−フルオロスチレン、α,β−ジフルオロスチレン、β,β−ジフルオロスチレン、α,β,β−トリフルオロスチレン、α−トリフルオロメチルスチレン、2,4,6−トリ(トリフルオロメチル)スチレン、2,3,4,5,6−ペンタフルオロスチレン、2,3,4,5,6−ペンタフルオロ−α−メチルスチレン、2,3,4,5,6−ペンタフルオロ−β−メチルスチレン等のフルオロスチレン等が挙げられる。   The fluoromonomer in the present invention is preferably a fluorine-containing compound having a radically polymerizable carbon-carbon unsaturated bond. Specific examples of the fluoromonomer include perfluoroolefins such as tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and chlorotrifluoroethylene (CTFE); perfluoro (alkyl vinyl ether) (PFAVE), perfluoro (1, 3-dioxole), perfluoro (2,2-dimethyl-1,3-dioxole) (PFDD), perfluoro- (2-methylene-4-methyl-1,3-dioxolane) (MMD), perfluorobutenyl Perfluorovinyl ethers such as vinyl ether (PFBVE); vinylidene fluoride (VdF), trifluoroethylene, 1,2-difluoroethylene, vinyl fluoride, trifluoropropylene, 3,3,3-trifluoro-2-trifluoromethyl Propene, , 3,3-trifluoropropene, hydrogen atom-containing fluoroolefins such as perfluoro (butyl) ethylene (PFBE); 1,1-dihydroperfluorooctyl acrylate (DPFOA), 1,1-dihydroperfluorooctyl methacrylate (DPFOMA) ), 2- (perfluorooctyl) ethyl acrylate (PFOEA), 2- (perfluorooctyl) ethyl methacrylate (PFOEMA), 2- (perfluorohexyl) ethyl methacrylate (PFHEMA), 2- (perfluorobutyl) ethyl methacrylate Polyfluoroalkyl (meth) acrylates such as (PFBEMA); α-fluorostyrene, β-fluorostyrene, α, β-difluorostyrene, β, β-difluorostyrene, α, β, β-trifluoros Len, α-trifluoromethylstyrene, 2,4,6-tri (trifluoromethyl) styrene, 2,3,4,5,6-pentafluorostyrene, 2,3,4,5,6-pentafluoro- Examples thereof include fluorostyrene such as α-methylstyrene and 2,3,4,5,6-pentafluoro-β-methylstyrene.

PFAVEとしては、パーフルオロ(メチルビニルエーテル)(PFMVE)、パーフルオロ(エチルビニルエーテル)(PFEVE)、パーフルオロ(プロピルビニルエーテル)(PFPVE)が挙げられる。   Examples of PFAVE include perfluoro (methyl vinyl ether) (PFMVE), perfluoro (ethyl vinyl ether) (PFEVE), and perfluoro (propyl vinyl ether) (PFPVE).

フルオロモノマーとしては、官能基を含有するフルオロオレフィンも使用できる。官能基含有フルオロオレフィンとしては、化1に示すモノマー等が挙げられる。   A fluoroolefin containing a functional group can also be used as the fluoromonomer. Examples of the functional group-containing fluoroolefin include monomers shown in Chemical Formula 1.

Figure 0004210238
Figure 0004210238

ここで、X及びYは水素原子又はフッ素原子で同じでもよく異なっていてもよい、Zは−CHOH、−COOH、−SOF、−CHOCN又はCHPOH、Rは炭素原子数1〜20の2価の含フッ素アルキレン基であり、エーテル結合性酸素原子を含有してもよい。 Here, X and Y are hydrogen atoms or fluorine atoms, which may be the same or different. Z is —CH 2 OH, —COOH, —SO 2 F, —CH 2 OCN or CH 2 PO 3 H, R f Is a divalent fluorine-containing alkylene group having 1 to 20 carbon atoms, and may contain an etheric oxygen atom.

フルオロモノマーとしては、重合性炭素−炭素不飽和結合を有し、かつ該炭素原子の1個以上にフッ素原子、ポリフルオロアルキル基及びポリフルオロアルコキシ基からなる群から選ばれる1種以上が結合したが含フッ素化合物がより好ましい。   The fluoromonomer has a polymerizable carbon-carbon unsaturated bond, and at least one selected from the group consisting of a fluorine atom, a polyfluoroalkyl group and a polyfluoroalkoxy group is bonded to one or more of the carbon atoms. Is more preferably a fluorine-containing compound.

また、フルオロモノマーとしては、ポリフルオロアルキルアクリレート又はポリフルオロアルキルメタクリレートがより好ましい。   The fluoromonomer is more preferably polyfluoroalkyl acrylate or polyfluoroalkyl methacrylate.

フルオロモノマーは1種単独で用いてもよく、また、2種以上を併用してもよい。また、炭化水素系モノマーを併用してもよい。   A fluoromonomer may be used individually by 1 type and may use 2 or more types together. A hydrocarbon monomer may be used in combination.

該炭化水素系モノマーとしては、エチレン、プロピレン、ブテン、塩化ビニル等の炭化水素系オレフィン;酢酸ビニル、ブタン酸ビニル、安息香酸ビニル等のビニルエステル;エチルビニルエーテル、ブチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル等のビニルエーテル;エチルアクリレート、オクチルメタクリレート、ラウリルアクリレート、ステアリルアクリレート、ステアリルメタクリレート、グリシジルメタクリレート等の(メタ)アクリレート;スチレン、α−メチルスチレン等のスチレン;無水マレイン酸、無水イタコン酸、無水シトラコン酸等の酸無水物構造を有する重合性不飽和化合物、等が挙げられる。炭化水素モノマーは1種単独で用いてもよく、2種以上を併用してもよい。   Examples of the hydrocarbon monomers include hydrocarbon olefins such as ethylene, propylene, butene and vinyl chloride; vinyl esters such as vinyl acetate, vinyl butanoate and vinyl benzoate; ethyl vinyl ether, butyl vinyl ether, hydroxybutyl vinyl ether, glycidyl vinyl ether. Vinyl ethers such as: ethyl acrylate, octyl methacrylate, lauryl acrylate, stearyl acrylate, stearyl methacrylate, glycidyl methacrylate and other (meth) acrylates; styrene, such as α-methylstyrene; maleic anhydride, itaconic anhydride, citraconic anhydride, etc. And polymerizable unsaturated compounds having an acid anhydride structure. A hydrocarbon monomer may be used individually by 1 type, and may use 2 or more types together.

フルオロモノマー及び必要に応じて使用する炭化水素系モノマーの合計の使用量は、超臨界状態の流体の100質量部に対して0.1〜100質量部が好ましく、1〜50質量部がより好ましく、3〜30質量部が最も好ましい。使用量があまりに少ないと、高分子基材表面に均一なフルオロポリマー層が形成されない。添加量があまりに多いと、フルオロモノマーの転化率が低下する。この範囲にあると、フルオロモノマーが高転化率で重合され、重量平均分子量が高いフルオロポリマー層が高分子基材表面に形成される。   The total amount of the fluoromonomer and the hydrocarbon monomer used as necessary is preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the supercritical fluid. 3 to 30 parts by mass is most preferable. When the amount used is too small, a uniform fluoropolymer layer is not formed on the surface of the polymer substrate. When the addition amount is too large, the conversion rate of the fluoromonomer is lowered. Within this range, the fluoromonomer is polymerized at a high conversion rate, and a fluoropolymer layer having a high weight average molecular weight is formed on the surface of the polymer substrate.

本発明において、フルオロモノマーをラジカル重合するときに、連鎖移動剤を使用することも好ましい。連鎖移動剤を用いると生成するフルオロポリマーの分子量、物理的性質、化学的性質等を制御することができる。連鎖移動剤としては、特に限定されるものではなく、メタノール等のアルコール、エチルメルカプタン、ブチルメルカプタン等のメルカプタン、ヨウ化アルキル、ヨウ化パーフルオロアルキル、臭化アルキル、臭化パーフルオロアルキル、四塩化炭素、クロロホルム、塩化スルフリル等のハロゲン含有化合物、エタン、メチルシクロヘキサン等のアルカン等が挙げられる。連鎖移動剤は、1種単独で用いてもよく、2種類以上を併用してもよい。   In the present invention, it is also preferable to use a chain transfer agent when radically polymerizing the fluoromonomer. When a chain transfer agent is used, the molecular weight, physical properties, chemical properties and the like of the fluoropolymer produced can be controlled. The chain transfer agent is not particularly limited, and alcohol such as methanol, mercaptan such as ethyl mercaptan and butyl mercaptan, alkyl iodide, perfluoroalkyl iodide, alkyl bromide, perfluoroalkyl bromide, tetrachloride. Examples thereof include halogen-containing compounds such as carbon, chloroform and sulfuryl chloride, and alkanes such as ethane and methylcyclohexane. A chain transfer agent may be used individually by 1 type, and may use 2 or more types together.

連鎖移動剤の使用量は、超臨界状態の流体に対して0.001質量%〜50質量%が好ましい。より好ましくは0.001質量%〜20質量%である。使用量があまりに少ないと、分子量を調整する機能が発現せず、添加量があまりに多いと生成するのフルオロポリマーの分子量が低くなる。この範囲にあると、強度等の物理的特性に優れる、適切な分子量のフルオロポリマーが得られる。   The amount of the chain transfer agent used is preferably 0.001% by mass to 50% by mass with respect to the fluid in the supercritical state. More preferably, it is 0.001 mass%-20 mass%. If the amount used is too small, the function of adjusting the molecular weight will not be exhibited, and if the amount added is too large, the molecular weight of the resulting fluoropolymer will be low. Within this range, a fluoropolymer having an appropriate molecular weight that is excellent in physical properties such as strength can be obtained.

本発明において、反応に関与しない添加剤を加えてもよい。添加剤としては、パーフルオロヘキサン等のラジカル重合開始剤の溶剤等が挙げられる。   In the present invention, an additive not involved in the reaction may be added. Examples of the additive include a solvent for a radical polymerization initiator such as perfluorohexane.

本発明において、フルオロモノマーのラジカル重合条件としては、重合温度は該流体の臨界温度より0〜200℃高い温度が好ましい。より好ましくは、臨界温度より0〜150℃高い温度であり、最も好ましくは臨界温度より0〜100℃高い温度である。重合時間は0.1〜48時間が好ましく、2〜24時間がより好ましい。   In the present invention, as the radical polymerization conditions for the fluoromonomer, the polymerization temperature is preferably 0 to 200 ° C. higher than the critical temperature of the fluid. More preferably, the temperature is 0 to 150 ° C. higher than the critical temperature, and most preferably 0 to 100 ° C. higher than the critical temperature. The polymerization time is preferably 0.1 to 48 hours, more preferably 2 to 24 hours.

本発明における高分子基材としては、特に制限なく種々の材料が用いられる。具体例としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリメチルメタクリレート等のポリ(メタ)アクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリ塩化ビニル、ポリウレタン、ポリカーボネート、ポリアミド6、ポリアミド66、ポリアミド12等のポリアミド、ポリアラミド、ポリスルホン、ポリフェニレンエーテル、ポリフェニレンスルフィド等が挙げられる。   As the polymer base material in the present invention, various materials are used without particular limitation. Specific examples include polyolefins such as polyethylene and polypropylene, poly (meth) acrylates such as polymethyl methacrylate, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polystyrene, polyvinyl chloride, polyurethane, polycarbonate, polyamide 6, Examples thereof include polyamides such as polyamide 66 and polyamide 12, polyaramid, polysulfone, polyphenylene ether, polyphenylene sulfide and the like.

高分子基材の形状としては、種々の形状が制限なく使用できるが、板、フィルム、チューブ、ディスク、コンテナ、円柱、多角柱、円錐、多角錐、球、繊維、中空糸、箱型等が挙げられる。また、それらの形状が組み合わされた複雑で、微細な形状の基材であっても、流体が基材表面の浸透性に優れることから制限なく使用できる。   As the shape of the polymer substrate, various shapes can be used without limitation, but a plate, a film, a tube, a disk, a container, a cylinder, a polygonal column, a cone, a polygonal pyramid, a sphere, a fiber, a hollow fiber, a box shape, etc. Can be mentioned. Moreover, even if it is the complicated and fine-shaped base material which those shapes combined, since a fluid is excellent in the permeability of the base-material surface, it can be used without a restriction | limiting.

本発明において、フルオロモノマーにより表面修飾される高分子基材の表面厚さは、1〜500nmが好ましく、2〜100nmがより好ましく、5〜50nmが最も好ましい。表面厚さがこの範囲にあると、高分子基材自体の性質を損なわずに高分子基材表面にフルオロポリマーが有する種々の特性を付与できる。   In the present invention, the surface thickness of the polymer substrate that is surface-modified with a fluoromonomer is preferably 1 to 500 nm, more preferably 2 to 100 nm, and most preferably 5 to 50 nm. When the surface thickness is within this range, various characteristics of the fluoropolymer can be imparted to the surface of the polymer substrate without impairing the properties of the polymer substrate itself.

付与される特性としては、撥水發油性、耐候性、非粘着性、防汚性、耐薬品性、低摩擦性、耐摩耗性、高絶縁性等が挙げられる。   Examples of the properties to be imparted include water repellency / oil repellency, weather resistance, non-adhesiveness, antifouling properties, chemical resistance, low friction properties, wear resistance, and high insulation properties.

本発明の表面修飾方法により表面修飾された高分子基材が得られる。該表面修飾された高分子基材の用途としては、化学薬品接触部材、絶縁部材、摺動部材、耐候性フィルム、等が挙げられる。   The polymer substrate surface-modified by the surface modification method of the present invention is obtained. Applications of the surface-modified polymer substrate include chemical contact members, insulating members, sliding members, weather resistant films, and the like.

以下に実施例を挙げて本発明を具体的に説明するが、本発明は該実施例により限定されない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.

[実施例1]
ポリメチルメタクリレート(PMMA)基材(縦2.0cm、横0.5cm、厚さ0.1cm)をイソプロピルアルコールに浸漬して15分間超音波洗浄した。該PMMA基材をよく乾燥させた後、2−(パーフルオロオクチル)エチルメタクリレート(PFOEMA)の1.0g及びアゾビスイソブチロニトリル(AIBN)の9.2mgとともに、内容積10mlの耐圧反応器に入れ、反応器を密閉した。つぎに、反応器を液体窒素で冷却し、PFOEMA及びAIBNを固化させ、真空ポンプにより反応器を脱気した。ついで、反応器にCOの10gを仕込み、80℃に昇温した。このとき、圧力は7.4MPaを示した。温度80℃で12時間保持した後、反応器を室温まで冷却し、常圧までパージし、反応器を開放した。得られたPMMA基材をCFClCFCHClF(以下、HCFC−225cbという。)で洗浄し、乾燥した。得られたPMMA基材の質量は反応前より24.2mg増加した。XPS測定によってPMMA基材表面にフッ素原子が検出されたことから、表面がPFOEMAポリマーで改質されたことが確認された。
[Example 1]
A polymethyl methacrylate (PMMA) substrate (vertical 2.0 cm, horizontal 0.5 cm, thickness 0.1 cm) was immersed in isopropyl alcohol and ultrasonically cleaned for 15 minutes. After the PMMA substrate was thoroughly dried, a pressure resistant reactor having an internal volume of 10 ml together with 1.0 g of 2- (perfluorooctyl) ethyl methacrylate (PFOEMA) and 9.2 mg of azobisisobutyronitrile (AIBN) And the reactor was sealed. Next, the reactor was cooled with liquid nitrogen, PFOEMA and AIBN were solidified, and the reactor was deaerated with a vacuum pump. The reactor was then charged with 10 g of CO 2 and heated to 80 ° C. At this time, the pressure was 7.4 MPa. After holding at 80 ° C. for 12 hours, the reactor was cooled to room temperature, purged to normal pressure, and the reactor was opened. The obtained PMMA base material was washed with CF 2 ClCF 2 CHClF (hereinafter referred to as HCFC-225cb) and dried. The mass of the obtained PMMA base material increased by 24.2 mg from before the reaction. Since the fluorine atom was detected on the surface of the PMMA substrate by XPS measurement, it was confirmed that the surface was modified with the PFOEMA polymer.

[実施例2]
COの代わりにCHFの10gを仕込む以外は実施例1と同様の操作を実施した。80℃での圧力は6.0MPaであった。温度80℃で保持した時間は5時間であった。得られたPMMA基材の質量は反応前より12.9mg増加した。XPS測定によってPMMA基材表面にフッ素原子が検出されたことから、表面がPFOEMAポリマーで改質されたことが確認された。
[Example 2]
The same operation as in Example 1 was carried out except that 10 g of CHF 3 was charged instead of CO 2 . The pressure at 80 ° C. was 6.0 MPa. The time kept at a temperature of 80 ° C. was 5 hours. The mass of the obtained PMMA base material increased 12.9 mg from before the reaction. Since the fluorine atom was detected on the surface of the PMMA substrate by XPS measurement, it was confirmed that the surface was modified with the PFOEMA polymer.

[実施例3]
基材として、高密度ポリエチレン(HDPE)基材(縦0.6cm、横0.6cm、厚さ0.3cm)を用い、AIBNの0.6mgを使用する以外は、実施例1と同様の操作を実施した。80℃での圧力は7.4MPaを示した。80℃で保持した時間は12時間であった。得られたHDPE基材の質量は反応前後で変化しなかったが、基材表面にフッ素原子が検出された。また、基材表面をエッチングすることにより、表面より約20nmの深さまでフッ素原子が検出され、PFOEMAポリマーで表面修飾されていることが確認された。得られたHDPE基材表面と水との接触角を自動接触角計により測定したところ、127度であり、高い撥水性を示した。なお、原料のHDPEの接触角は87度であった。
[Example 3]
The same operation as in Example 1 except that a high-density polyethylene (HDPE) substrate (length 0.6 cm, width 0.6 cm, thickness 0.3 cm) was used as the substrate, and 0.6 mg of AIBN was used. Carried out. The pressure at 80 ° C. was 7.4 MPa. The time kept at 80 ° C. was 12 hours. The mass of the obtained HDPE substrate did not change before and after the reaction, but fluorine atoms were detected on the surface of the substrate. Further, by etching the substrate surface, fluorine atoms were detected to a depth of about 20 nm from the surface, and it was confirmed that the surface was modified with the PFOEMA polymer. When the contact angle between the surface of the obtained HDPE substrate and water was measured with an automatic contact angle meter, it was 127 degrees, indicating high water repellency. The contact angle of the raw material HDPE was 87 degrees.

[実施例4]
基材として、実施例3のHDPE基材を用い、COの15gを仕込み、AIBNの0.6mgを使用する以外は、実施例1と同様の操作を実施した。80℃での圧力は20MPaを示した。80℃で保持した時間は16時間であった。得られたHDPE基材の質量は反応前後で変化しなかったが、基材表面にフッ素原子が検出された。また、基材表面をエッチングすることにより、表面より約20nmの深さまでフッ素原子が検出され、PFOEMAポリマーで表面修飾されていることが確認された。HDPE基材表面と水との接触角は、110度であり、ポリテトラフルオロエチレンと同等の撥水性を示した。
[Example 4]
The same operation as in Example 1 was performed, except that the HDPE substrate of Example 3 was used as the substrate, 15 g of CO 2 was charged, and 0.6 mg of AIBN was used. The pressure at 80 ° C. was 20 MPa. The time kept at 80 ° C. was 16 hours. The mass of the obtained HDPE substrate did not change before and after the reaction, but fluorine atoms were detected on the surface of the substrate. Further, by etching the substrate surface, fluorine atoms were detected to a depth of about 20 nm from the surface, and it was confirmed that the surface was modified with the PFOEMA polymer. The contact angle between the HDPE substrate surface and water was 110 degrees, indicating water repellency equivalent to that of polytetrafluoroethylene.

[実施例5]
ポリカーボネート(PC)基材(縦0.5cm、横0.5cm、厚さ0.1cm)をイソプロピルアルコールに浸漬し、15分間超音波洗浄した。該PC基材をよく乾燥させた後、テトラフルオロエチレン(以下、TFEという。)0.6g及びAIBN4.9mgとともに、内容積10mlの耐圧反応器に入れ、反応器を密閉した。つぎに、反応器を液体窒素で冷却し、TFE及びAIBNを固化させ、真空ポンプにより反応器を脱気した。ついで、反応器にCOの10gを仕込み、80℃に昇温した。このとき、圧力は7.6MPaを示した。温度80℃で12時間保持した後、反応器を室温まで冷却し、常圧までパージし、反応器を開放した。得られたPC基材をHCFC−225cbで洗浄し、乾燥した。XPS測定によってPC基材表面にフッ素原子が検出されたことから、表面がポリテトラフルオロエチレン(以下、PTFEという)で改質されたことが確認された。また、表面修飾したPC基材表面と水との接触角は、101度、n−ヘキサデカンとの接触角は39度であり、PTFE同等の高い撥水撥油性を示した。
[Example 5]
A polycarbonate (PC) substrate (length 0.5 cm, width 0.5 cm, thickness 0.1 cm) was immersed in isopropyl alcohol and subjected to ultrasonic cleaning for 15 minutes. After thoroughly drying the PC substrate, it was placed in a pressure resistant reactor having an internal volume of 10 ml together with 0.6 g of tetrafluoroethylene (hereinafter referred to as TFE) and 4.9 mg of AIBN, and the reactor was sealed. Next, the reactor was cooled with liquid nitrogen, TFE and AIBN were solidified, and the reactor was degassed with a vacuum pump. The reactor was then charged with 10 g of CO 2 and heated to 80 ° C. At this time, the pressure was 7.6 MPa. After holding at 80 ° C. for 12 hours, the reactor was cooled to room temperature, purged to normal pressure, and the reactor was opened. The obtained PC substrate was washed with HCFC-225cb and dried. Since fluorine atoms were detected on the surface of the PC substrate by XPS measurement, it was confirmed that the surface was modified with polytetrafluoroethylene (hereinafter referred to as PTFE). The contact angle between the surface-modified PC substrate surface and water was 101 degrees, and the contact angle with n-hexadecane was 39 degrees, indicating high water and oil repellency equivalent to PTFE.

[実施例6]
COの代わりにCHFの10gを仕込み、温度40℃、圧力5.0MPaで3時間維持したのち、反応器を80℃に昇温させる以外は実施例5と同様の操作を実施した。なお、80℃での圧力は5.9MPaを示した。また、温度80℃で保持した時間は6時間であった。
[Example 6]
10 g of CHF 3 was charged instead of CO 2 and maintained at a temperature of 40 ° C. and a pressure of 5.0 MPa for 3 hours, and then the same operation as in Example 5 was performed except that the reactor was heated to 80 ° C. The pressure at 80 ° C. was 5.9 MPa. Moreover, the time hold | maintained at the temperature of 80 degreeC was 6 hours.

得られたPC基材は、XPS測定によってフッ素原子が検出されたことから、表面がPTFEで改質されたことが確認された。また、得られたPC基材表面と水との接触角は、113度、n−ヘキサデカンとの接触角は46度であり、PTFE同等の高い撥水撥油性を示した。   As for the obtained PC base material, since the fluorine atom was detected by XPS measurement, it was confirmed that the surface was modified with PTFE. In addition, the contact angle between the obtained PC substrate surface and water was 113 degrees, and the contact angle with n-hexadecane was 46 degrees, indicating high water and oil repellency equivalent to PTFE.

[比較例1]
実施例3で用いたHDPE基材をイソプロピルアルコールに浸漬し、15分間超音波洗浄した。該HDPE基材をよく乾燥させた後、数平均分子量10万のポリ2−(パーフルオロオクチル)エチルメタクリレートの1.0gとともに内容積10mlの耐圧反応器に入れ、反応器を密閉した。ついで、真空ポンプにより反応器を脱気した後、COの10gを仕込み、80℃に昇温した。このとき、圧力は7.4MPaを示した。80℃で16時間保持した後、反応器を室温まで冷却し、常圧までパージし、反応器を開放した。得られたHDPE基材をHCFC−225cbで洗浄し、乾燥した。HDPE基材の質量は反応前後で変化しなかった。XPS測定によって該HDPE基材表面にフッ素原子が検出されたが、得られたHDPE基材表面と水との接触角は86度であった。この接触角は、反応前のHDPE基材と同等であり、表面修飾は不充分であった。
[Comparative Example 1]
The HDPE substrate used in Example 3 was immersed in isopropyl alcohol and ultrasonically cleaned for 15 minutes. After thoroughly drying the HDPE substrate, it was placed in a pressure resistant reactor having an internal volume of 10 ml together with 1.0 g of poly-2- (perfluorooctyl) ethyl methacrylate having a number average molecular weight of 100,000, and the reactor was sealed. The reactor was then degassed with a vacuum pump, charged with 10 g of CO 2 and heated to 80 ° C. At this time, the pressure was 7.4 MPa. After holding at 80 ° C. for 16 hours, the reactor was cooled to room temperature, purged to normal pressure, and the reactor was opened. The obtained HDPE substrate was washed with HCFC-225cb and dried. The mass of the HDPE substrate did not change before and after the reaction. Fluorine atoms were detected on the surface of the HDPE substrate by XPS measurement, but the contact angle between the obtained HDPE substrate surface and water was 86 degrees. This contact angle was equivalent to that of the HDPE substrate before the reaction, and the surface modification was insufficient.

本発明の表面修飾方法によれば、高分子基材自体の特性変化を伴わずに、該基材表面のフルオロモノマーにより修飾することができる。また、本発明の表面修飾方法により得られる、フルオロモノマーにより表面修飾された高分子基材は、撥水發油性、耐候性、非粘着性、防汚性、耐薬品性、低摩擦性、耐摩耗性、高絶縁性等に優れることから、化学薬品接触部材、絶縁部材、摺動部材、耐候性フィルム等の用途として好適である。

According to the surface modification method of the present invention, modification can be performed with the fluoromonomer on the surface of the base material without changing the properties of the polymer base material itself. In addition, the polymer substrate surface-modified with a fluoromonomer obtained by the surface modification method of the present invention has water repellency, oil resistance, weather resistance, non-adhesiveness, antifouling properties, chemical resistance, low friction resistance, Since it is excellent in abrasion, high insulation, etc., it is suitable for uses such as a chemical contact member, an insulating member, a sliding member, and a weather resistant film.

Claims (5)

高分子基材の表面修飾方法であって、該基材をフルオロモノマー及びラジカル重合開始剤を含有する超臨界状態の流体の中で該フルオロモノマーをラジカル重合させることを特徴とする高分子基材の表面修飾方法。   A method for modifying a surface of a polymer substrate, wherein the substrate is radically polymerized in a supercritical fluid containing a fluoromonomer and a radical polymerization initiator. Surface modification method. 前記超臨界状態が、該流体の臨界圧力の1〜5倍の圧力下にある超臨界状態である請求項1に記載の表面修飾法。   The surface modification method according to claim 1, wherein the supercritical state is a supercritical state under a pressure of 1 to 5 times the critical pressure of the fluid. 前記フルオロモノマーが、重合性炭素−炭素不飽和結合を有し、かつ該炭素原子の1個以上にフッ素原子、ポリフルオロアルキル基及びポリフルオロアルコキシ基からなる群から選ばれる1種以上が結合したが含フッ素化合物である請求項1又は2に記載の表面修飾方法。   The fluoromonomer has a polymerizable carbon-carbon unsaturated bond, and at least one selected from the group consisting of a fluorine atom, a polyfluoroalkyl group and a polyfluoroalkoxy group is bonded to one or more of the carbon atoms. The surface modification method according to claim 1, wherein is a fluorine-containing compound. 前記フルオロモノマーが、ポリフルオロアルキルアクリレート又はポリフルオロアルキルメタクリレートである請求項1又は2に記載の表面修飾方法。   The surface modification method according to claim 1, wherein the fluoromonomer is polyfluoroalkyl acrylate or polyfluoroalkyl methacrylate. 請求項1〜4のいずれかに記載の表面修飾方法で表面修飾された高分子基材。   The polymer base material surface-modified by the surface modification method in any one of Claims 1-4.
JP2004154633A 2003-06-06 2004-05-25 Method for modifying surface of polymer substrate and polymer substrate obtained by the method Expired - Fee Related JP4210238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154633A JP4210238B2 (en) 2003-06-06 2004-05-25 Method for modifying surface of polymer substrate and polymer substrate obtained by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003161901 2003-06-06
JP2004154633A JP4210238B2 (en) 2003-06-06 2004-05-25 Method for modifying surface of polymer substrate and polymer substrate obtained by the method

Publications (2)

Publication Number Publication Date
JP2005015778A JP2005015778A (en) 2005-01-20
JP4210238B2 true JP4210238B2 (en) 2009-01-14

Family

ID=34196823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154633A Expired - Fee Related JP4210238B2 (en) 2003-06-06 2004-05-25 Method for modifying surface of polymer substrate and polymer substrate obtained by the method

Country Status (1)

Country Link
JP (1) JP4210238B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006109740A1 (en) * 2005-04-07 2008-11-20 独立行政法人産業技術総合研究所 Perfluoroalkylating agent and method for producing perfluoroalkylated organic polymer
JP4500218B2 (en) * 2005-06-06 2010-07-14 株式会社神戸製鋼所 Resin water repellent method
JP5514411B2 (en) * 2008-07-30 2014-06-04 三菱マテリアル株式会社 Method for producing surface-treated resin composition

Also Published As

Publication number Publication date
JP2005015778A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
EP3760649B1 (en) Method for manufacturing fluoropolymer
JP4536267B2 (en) Polymerization of fluoromonomer
JP6156543B2 (en) Method for producing aqueous fluoropolymer dispersion
EP3609935B1 (en) Melt-processible fluoropolymer
RU2441883C2 (en) Process for producing melt-moldable tetrafluoroethylene copolymer
JP2005522541A5 (en)
JP2003526705A5 (en)
JP7193747B2 (en) Method for producing fluoropolymer
JP6369541B2 (en) Method for producing aqueous fluoropolymer dispersion
CN114127131B (en) Method for producing fluorine-containing polymer, polytetrafluoroethylene composition, and polytetrafluoroethylene powder
WO2021100835A1 (en) Method for producing fluoropolymer
JP2023158062A (en) Method for producing fluoropolymer, method for producing polytetrafluoroethylene, method for producing perfluoroelastomer, and composition
JP4210238B2 (en) Method for modifying surface of polymer substrate and polymer substrate obtained by the method
JP4144463B2 (en) Fluorine-containing copolymer and method for producing granulated product thereof
US20220213277A1 (en) Process for producing aqueous fluoropolymer dispersion
WO2020162512A1 (en) Tetrafluoroethylene polymer production method, and composition
JP4363113B2 (en) Method for producing polytetrafluoroethylene
JP4341125B2 (en) Chemical liquid permeation inhibitor, chemical liquid permeation inhibiting fluorine-containing resin composition comprising the inhibitor
JP4834966B2 (en) Tetrafluoroethylene copolymer
CN117015557A (en) Process for producing fluororesin, and aqueous dispersion
CN118146427A (en) Method for producing fluorine-containing polymer, polytetrafluoroethylene composition, and polytetrafluoroethylene powder
CN118146601A (en) Method for producing fluorine-containing polymer, polytetrafluoroethylene composition, and polytetrafluoroethylene powder
US20240141155A1 (en) Production method of fluoropolymer composition and fluoropolymer composition
CN116761828A (en) Method for producing fluoropolymer composition
JP2009029722A (en) Sulfonate compound, method for producing sulfonate compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees