JP4208906B2 - Moving body - Google Patents

Moving body Download PDF

Info

Publication number
JP4208906B2
JP4208906B2 JP2006200260A JP2006200260A JP4208906B2 JP 4208906 B2 JP4208906 B2 JP 4208906B2 JP 2006200260 A JP2006200260 A JP 2006200260A JP 2006200260 A JP2006200260 A JP 2006200260A JP 4208906 B2 JP4208906 B2 JP 4208906B2
Authority
JP
Japan
Prior art keywords
acceleration
moving body
arm
lifting platform
basic command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006200260A
Other languages
Japanese (ja)
Other versions
JP2008024461A (en
Inventor
和夫 吉田
武 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Keio University
Original Assignee
Murata Machinery Ltd
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd, Keio University filed Critical Murata Machinery Ltd
Priority to JP2006200260A priority Critical patent/JP4208906B2/en
Priority to KR1020070066519A priority patent/KR101391222B1/en
Priority to TW096124491A priority patent/TWI397492B/en
Priority to CN2007101386292A priority patent/CN101112931B/en
Publication of JP2008024461A publication Critical patent/JP2008024461A/en
Application granted granted Critical
Publication of JP4208906B2 publication Critical patent/JP4208906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • B65G1/0421Storage devices mechanical using stacker cranes with control for stacker crane operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/30Details; Auxiliary devices
    • B65G17/32Individual load-carriers
    • B65G17/34Individual load-carriers having flat surfaces, e.g. platforms, grids, forks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/07Floor-to-roof stacking devices, e.g. "stacker cranes", "retrievers"

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Control And Safety Of Cranes (AREA)

Description

この発明は移動体の制振に関する。   The present invention relates to vibration control of a moving body.

スタッカークレーンや無人搬送車、有軌道台車などの搬送台車では、スライドフォークやスカラアームなどの進退自在なアームと、昇降台やリフタなどの組み合わせで、物品の移載を行う。また天井走行車では、昇降台のチャックで物品をチャックし、昇降させることにより、移載を行う。これらの何れの場合も、移載時の物品の振動を抑制したいとの要求がある。振動を抑制できれば、移載時に物品に加わる力を小さくできる、振動が収まるまで待つ時間を短縮できる、移載時の高さ精度を向上できる、移載装置の剛性が小さくても良い、より重く損傷しやすい物品を移載できるなどの利点がある。ところで特許文献1(特許3526014)は、スタッカークレーンでの移載で、スライドフォークが物品に接触する前は高速で、接触開始時期付近から低速で、昇降台を上昇させ、物品とスライドフォークが接触する際の衝撃を小さくすることを提案している。
特許3526014号公報
In transport carts such as stacker cranes, automated guided vehicles, and tracked carts, articles are transferred using a combination of a retractable arm, such as a slide fork or a SCARA arm, and a lifting platform or lifter. In addition, in an overhead traveling vehicle, transfer is performed by chucking an article with a chuck on a lifting platform and moving it up and down. In any of these cases, there is a demand for suppressing vibration of the article during transfer. If vibration can be suppressed, the force applied to the article at the time of transfer can be reduced, the time to wait for the vibration to settle can be shortened, the height accuracy at the time of transfer can be improved, the rigidity of the transfer device can be small, heavier There are advantages such as transfer of easily damaged items. By the way, patent document 1 (patent 3526014) is a transfer with a stacker crane, and before the slide fork comes into contact with the article, the elevator is raised at a high speed and at a low speed from around the contact start timing, and the article and the slide fork contact It is proposed to reduce the impact when doing.
Japanese Patent No. 3526014

この発明の基本的課題は、振動を抑制しながら、短時間で必要な運動を行えるようにすることにある。
この発明での追加の課題は、物品の振動を抑制しながら、短時間で物品を移載できるようにすることにある。
請求項2の発明での追加の課題は、スタッカークレーンでの物品の移載時の振動を抑制すると共に、短時間で物品を移載できるようにし、更に移載相手の棚などのデッドスペースを小さくすることにある。
この発明での追加の課題は、上記のための制御系の構成を提供することにある。
A basic object of the present invention is to enable a necessary movement in a short time while suppressing vibration.
An additional problem in the present invention is to enable transfer of an article in a short time while suppressing vibration of the article.
An additional problem in the invention of claim 2 is that the vibration at the time of transfer of the article in the stacker crane is suppressed, the article can be transferred in a short time, and dead space such as a shelf of the transfer partner is further reduced. To make it smaller.
An additional object of the present invention is to provide a control system configuration for the above.

この発明の移動体は、移動体の位置を検出するための位置検出手段と、移動体の振動加速度を検出するための振動検出手段と、少なくとも振動の抑制対象となる運動に対して、前記各手段の検出結果に応じて、移動体の駆動機構をフィードバック制御するための制御部とを設けたものであって、制御部は、制御部は、駆動機構へのオープンループの基本指令を発生するための基本指令発生手段と、該基本指令を移動体の位置と加速度との参照信号に変換するための参照信号発生手段と、
前記各検出手段で求めた移動体の位置と加速度と、前記参照信号発生手段で求めた移動体の位置と振動加速度との誤差の算出手段と、算出した誤差に基づいて移動体の状態の推定値を更新するための更新手段と、
前記基本指令に移動体の状態の推定値に基づく補正値を加算して、駆動機構への制御入力とするための加算手段、とを備えている。
The moving body according to the present invention includes a position detecting means for detecting the position of the moving body, a vibration detecting means for detecting vibration acceleration of the moving body, and at least each of the motions to be subjected to vibration suppression. in accordance with the detection result of the unit, there is the also provided a control unit for feedback control of the drive mechanism of the moving body, the control unit, the control unit generates a basic command of the open loop to the drive mechanism Basic command generating means, and a reference signal generating means for converting the basic command into a reference signal of the position and acceleration of the moving body,
The means for calculating the error between the position and acceleration of the moving body obtained by each detecting means, the position and vibration acceleration of the moving body obtained by the reference signal generating means, and the estimation of the state of the moving body based on the calculated error Update means for updating the value;
Adding means for adding a correction value based on the estimated value of the state of the moving body to the basic command to obtain a control input to the drive mechanism;

この発明は、昇降モータによりマストに沿って昇降する昇降台に、進退自在なアームを搭載したスタッカークレーンにおいて、
昇降台の高さセンサを設けると共に、加速度センサをアーム先端に設けて該アーム先端の振動加速度を検出し、
該アームを進出させた状態で昇降台を昇降させる際に、前記高さセンサの信号と加速度センサの信号により、昇降モータをフィードバック制御する制御部を設け、制御部は、前記昇降モータへのオープンループの基本指令を発生するための基本指令発生手段と、該基本指令を昇降台の高さとアームの加速度との参照信号に変換するための参照信号発生手段と、
前記高さセンサで求めた昇降台の高さと前記加速度センサで求めたアームの振動加速度と、前記参照信号発生手段で求めた昇降台の高さとアームの加速度との誤差の算出手段と、算出した誤差に基づいて昇降台とアームの状態の推定値を更新するための更新手段と、
前記基本指令に昇降台とアームの状態の推定値に基づく補正値を加算して、昇降モータへの制御入力とするための加算手段、とを備えている。
This invention is a stacker crane equipped with a retractable arm on a lifting platform that moves up and down along the mast by a lifting motor,
While providing a height sensor for the lifting platform, an acceleration sensor is provided at the tip of the arm to detect vibration acceleration at the tip of the arm,
When raising and lowering the lifting platform with the arm advanced, a control unit for feedback control of the lifting motor is provided by the signal of the height sensor and the signal of the acceleration sensor , and the control unit opens to the lifting motor. Basic command generating means for generating a basic command of the loop, reference signal generating means for converting the basic command into a reference signal of the height of the lifting platform and the acceleration of the arm,
Calculating means for calculating an error between the height of the lifting platform determined by the height sensor and the vibration acceleration of the arm determined by the acceleration sensor, and the height of the lifting platform determined by the reference signal generating unit and the acceleration of the arm; Updating means for updating the estimated values of the lift and arm states based on the error;
Adding means for adding a correction value based on the estimated values of the platform and the arm state to the basic command to provide a control input to the lifting motor;

この発明では、移動体の駆動機構を、移動体の位置と振動の検出結果でフィードバック制御するので、振動を抑制しながら短時間で必要な運動を行うことができる。
特に移載装置の移載動作にこの発明を適用すると、移載時に物品に加わる振動を抑制しながら短時間で移載を行える。
そしてスタッカークレーンの昇降台に対する、移載時の昇降制御にこの発明を適用すると、アーム先端の振動を抑制し、少なくともアーム先端の振動が増さないようにしながら、昇降台の高さやアーム先端の高さの目標の高さからの偏差を小さくすることにより、短時間で移載できる。また昇降台やアームの先端の高さを正確に制御できるので、棚などの移載相手側のデッドスペースを小さくできる。
In the present invention, since the drive mechanism of the moving body is feedback-controlled by the position of the moving body and the detection result of the vibration, the necessary motion can be performed in a short time while suppressing the vibration.
In particular, when the present invention is applied to a transfer operation of a transfer device, transfer can be performed in a short time while suppressing vibration applied to the article during transfer.
And when this invention is applied to the lifting control at the time of transfer for the lifting platform of the stacker crane, the vibration of the arm tip is suppressed and at least the vibration of the arm tip is not increased, while the height of the lifting platform and the arm tip Transfer can be performed in a short time by reducing the deviation of the height from the target height . In addition, since the height of the lifting platform and the tip of the arm can be accurately controlled, the dead space on the transfer partner side such as a shelf can be reduced.

さらに、検出手段で求めた位置と振動と、オープンループの基本指令から算出した位置と振動との誤差に基づいて、移動体の状態の推定値を更新すると、基本指令に対する実際の状態のずれに応じて移動体の状態の推定値を修正できる。そしてこの推定値に基づく補正値を加算手段で基本指令に修正すると、基本指令からのずれに応じたフィードバック制御が行え、基本指令に追従するように移動体を運動させることができる。 Furthermore, if the estimated value of the state of the moving object is updated based on the position and vibration obtained by the detection means and the error between the position and vibration calculated from the open-loop basic command, the actual state deviation from the basic command may result. Accordingly, the estimated value of the state of the moving object can be corrected. When the correction value based on the estimated value is corrected to the basic command by the adding means, feedback control according to the deviation from the basic command can be performed, and the moving body can be moved so as to follow the basic command.

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図5に、スタッカークレーン2での昇降台4の制御を例に、実施例とその特性とを示す。各図において、昇降台4はマスト6にガイドされて昇降し、マスト6には高さ方向に沿ってリニアスケール8を設け、昇降台4に設けたリニアセンサ10で昇降台4の高さ位置x0を読み取る。また昇降台4は歯付きベルトやワイヤ、ロープなどの吊持材12により吊り下げられて、図示しないカウンターウェイトと共に、図3の昇降モータ20により昇降する。   1 to 5 show an embodiment and its characteristics, taking the control of the lifting platform 4 in the stacker crane 2 as an example. In each figure, the lifting platform 4 is guided by a mast 6 and is moved up and down. A linear scale 8 is provided along the height direction of the mast 6, and the height position of the lifting platform 4 is detected by a linear sensor 10 provided on the lifting platform 4. Read x0. The lifting platform 4 is suspended by a suspension member 12 such as a toothed belt, a wire, or a rope, and is moved up and down by a lifting motor 20 in FIG. 3 together with a counterweight (not shown).

22はスライドフォークで、水平面内で進退自在なスカラアームなどの他のアームでもよく、24はスライドフォーク22のトッププレートからなる物品支持部で、26は物品支持部24に設けた加速度センサである。スタッカークレーン2の走行経路に対向して棚28が設けられ、29はその支柱で、棚受け30に物品32が載置してある。   Reference numeral 22 denotes a slide fork, which may be another arm such as a SCARA arm that can be moved back and forth in a horizontal plane. Reference numeral 24 denotes an article support portion made of a top plate of the slide fork 22, and 26 denotes an acceleration sensor provided on the article support portion 24. . A shelf 28 is provided opposite to the travel path of the stacker crane 2, 29 is a support column, and an article 32 is placed on the shelf receiver 30.

ここではスタッカークレーン2は、棚28と図示しないステーションとの間で、液晶基板のカセットなどの重量物を、物品32として搬送するものとする。液晶基板は損傷しやすく、スライドフォーク22や昇降台4の剛性を増すと、スタッカークレーン2が大形化して好ましくない。また棚28等はクリーンルーム内に設置するので、受け渡しのためのデッドスペースを小さくする必要があり、液晶ディスプレイの生産性の点から、受け渡しのサイクルタイムを短縮する必要がある。   Here, it is assumed that the stacker crane 2 conveys a heavy object such as a cassette of a liquid crystal substrate as an article 32 between the shelf 28 and a station (not shown). The liquid crystal substrate is easily damaged, and increasing the rigidity of the slide fork 22 and the lifting platform 4 is not preferable because the stacker crane 2 becomes large. Further, since the shelves 28 and the like are installed in a clean room, it is necessary to reduce the dead space for delivery, and it is necessary to shorten the delivery cycle time from the viewpoint of productivity of the liquid crystal display.

物品32の荷すくいを例に、移載時の昇降動作を説明する。昇降台4は物品32の底面よりも充分低い位置で停止し、スライドフォーク22を前進させる。次いで第1の速度で上昇し、物品32の底面にスライドフォーク22が近づくと、上昇速度を微速の第2の速度に切り替え、棚受け30から物品32を移載する。物品32が確実に物品支持部24に移載された位置まで上昇すると、第1の速度に近い第3の速度に増速して上昇し、その後上昇を停止して、スライドフォーク22を復帰させる。なお物品32の底面とスライドフォーク22との残距離は測定していないので、スライドフォーク22から棚受け30へ物品が移載される正確な時刻は予測不能である。荷すくいのストロークは、スライドフォーク22の撓みや振幅と関係し、振幅を小さくできればストロークも短くできる。棚受け30は棚28の上下に複数設けられ、スライドフォーク22の振幅を±hとすると、棚受け30の配置では物品を支持していた棚受けとの干渉を避けるため少なくともhのゆとりが、また物品の上側の棚受けとの干渉を避けるためにもhのゆとりが必要で、合計2h分のデッドスペースが必要である。最初やや高速で昇降台4を昇降させ、次いで微速で昇降させて棚受け30との間で物品32を受け渡しし、その後再度やや高速で昇降台4を昇降させる点は、荷下ろしの場合も同様である。   Taking the load of the article 32 as an example, the lifting and lowering operation at the time of transfer will be described. The lifting platform 4 stops at a position sufficiently lower than the bottom surface of the article 32 and advances the slide fork 22. Next, when the slide fork 22 approaches the bottom surface of the article 32 ascending at the first speed, the ascent speed is switched to the second low speed, and the article 32 is transferred from the shelf holder 30. When the article 32 is reliably moved up to the position where it has been transferred to the article support section 24, the article 32 is increased to a third speed close to the first speed and then raised, and then the rise is stopped and the slide fork 22 is returned. . Since the remaining distance between the bottom surface of the article 32 and the slide fork 22 is not measured, the exact time when the article is transferred from the slide fork 22 to the shelf receiver 30 is unpredictable. The stroke of the load is related to the deflection and amplitude of the slide fork 22, and the stroke can be shortened if the amplitude can be reduced. A plurality of shelf holders 30 are provided above and below the shelf 28, and assuming that the amplitude of the slide fork 22 is ± h, the arrangement of the shelf holders 30 has at least a clearance of h in order to avoid interference with the shelf holders supporting the articles. Further, in order to avoid interference with the shelf holder on the upper side of the article, a clearance of h is necessary, and a dead space corresponding to 2 h in total is required. The same applies to the case of unloading. First, the elevator 4 is moved up and down at a slightly high speed, then moved up and down at a very low speed to deliver the article 32 to and from the shelf holder 30, and then the elevator 4 is raised and lowered again at a slightly higher speed. It is.

図2に、昇降台と、スライドフォークやスライドフォーク上の物品の制御モデルを示す。昇降台を、水平に姿勢を保たれた質量m3のベースと、これに対して傾斜角θで傾斜し、ピンで接合された剛体(質量m)とでモデル化する。さらに剛体とベースはバネk3と摩擦抵抗C3とで接続されている。スライドフォーク並びにそれに支持された物品を質点m1で表し、剛体との間をバネk1並びに摩擦抵抗C1で接続されているものとする。なお質点m1の質量は、物品の荷すくいにより急変する。昇降台は吊持材を介してカウンターウエイト(質点m2)に接続され、カウンターウエイトがさらに吊持材で昇降モータに接続されている。カウンターウエイトと昇降台との間の吊持材のバネ定数をk2,摩擦抵抗をC2とする。またカウンターウエイトと昇降モータとの間のバネ定数をk4,摩擦抵抗をC4とする。昇降台のベースの絶対高さをx0とし、x0を基準とする相対座標でスライドフォーク先端の高さをx1,カウンターウエイトの高さをx2,カウンターウエイトから昇降モータへの指令位置までの高さをx3とする。   FIG. 2 shows a control model of the lift and the slide fork and the article on the slide fork. The elevator platform is modeled by a base of mass m3 maintained in a horizontal position and a rigid body (mass m) inclined at an inclination angle θ and joined by a pin. Further, the rigid body and the base are connected by a spring k3 and a frictional resistance C3. A slide fork and an article supported by the slide fork are represented by a mass point m1, and are connected to a rigid body by a spring k1 and a frictional resistance C1. The mass of the mass point m1 changes suddenly depending on the load of the article. The lifting platform is connected to a counterweight (mass point m2) via a suspension material, and the counterweight is further connected to a lifting motor by a suspension material. The spring constant of the suspension material between the counterweight and the lifting platform is k2, and the frictional resistance is C2. The spring constant between the counterweight and the lifting motor is k4 and the frictional resistance is C4. X0 is the absolute height of the base of the lifting platform, x1 is the height of the tip of the slide fork, x2 is the height of the counterweight, and the height from the counterweight to the command position for the lifting motor. X3.

図2の系の状態Xは、高さを表す4つの変数、x0〜x3と、これらの時間微分、並びに昇降台の傾斜角θとその時間微分とで表現できる。そして状態Xは、スタッカークレーン中の昇降台とスライドフォークとからなる系の状態を表す。さらにロバスト制御のためのHフィルタに関係した変数として変数F1〜F4を定め、合計14変数により状態Xを表す。またuは昇降モータへの制御入力である。 The state X of the system of FIG. 2 can be expressed by four variables representing height, x0 to x3, their time derivatives, and the tilt angle θ of the elevator and its time derivatives. And the state X represents the state of the system which consists of the lifting platform and slide fork in a stacker crane. Furthermore, variables F1 to F4 are defined as variables related to the H∞ filter for robust control, and the state X is represented by a total of 14 variables. U is a control input to the lifting motor.

図3に、実施例での制御系を示す。目標高さ記憶部34は、昇降モータ20への基本的な指令のパターンを記憶し、これはスライドフォーク22の振動を抑制しながら、荷すくいや荷下ろしをするための昇降速度のパターンである。ただし棚受けとの間で物品をやりとりする正確な時刻は不明なので、図2のモデルで、質点m1の質量がスライドフォークのみの場合も、スライドフォーク+物品の場合も、固有振動を抑制するように、基本指令を定めてある。参照信号発生部36は、基本指令を昇降台の高さ位置及び昇降台の昇降に伴うスライドフォークの加速度からなる2次元の参照信号refに変換する。なおこの加速度には、スライドフォークの振動による分は含まれていない。   FIG. 3 shows a control system in the embodiment. The target height storage unit 34 stores a basic command pattern to the lifting motor 20, which is a lifting speed pattern for loading and unloading while suppressing the vibration of the slide fork 22. . However, since the exact time at which goods are exchanged with the shelf holder is unknown, the natural vibration is suppressed in the model of FIG. 2 regardless of whether the mass of the mass point m1 is only a slide fork or a slide fork + article. The basic directive has been established. The reference signal generator 36 converts the basic command into a two-dimensional reference signal ref consisting of the height position of the lifting platform and the acceleration of the slide fork accompanying the lifting of the lifting platform. This acceleration does not include the amount due to the vibration of the slide fork.

差分器38は、センサ10,26の信号と参照信号refとの差分からなるエラーベクトルeを出力し、これは基本指令からのシフトを昇降台の高さ位置とスライドフォーク先端の振動で表したものである。乗算手段44はエラーベクトルに行列Bを乗算し、乗算手段48は状態Xの推定値に行列Aを乗算し、これらを加算器40で加算して積分手段46で積分し、状態Xを更新する。乗算手段44は、エラーベクトルに基づいて状態Xの推定値を修正し、乗算手段48は状態Xの推定値自体に基づいてXを修正する。例えば時刻n+1での状態Xn+1は、時刻nでの状態Xnから、 Xn+1=Xn+AXn+Ben で表され、ここに添字は時刻を示す。各時刻間の時間刻みをΔとすると、2次の項まで考慮して例えば、
Xn+1=(1+A・Δ+A/2・Δ)Xn+(B・Δ+B/2・Δ)en
となる。
The difference unit 38 outputs an error vector e consisting of the difference between the signals of the sensors 10 and 26 and the reference signal ref. This represents a shift from the basic command by the height position of the lifting platform and the vibration of the tip of the slide fork. Is. The multiplication means 44 multiplies the error vector by the matrix B, the multiplication means 48 multiplies the estimated value of the state X by the matrix A, adds these by the adder 40, integrates by the integration means 46, and updates the state X. . Multiplier 44 corrects the estimated value of state X based on the error vector, and multiplier 48 corrects X based on the estimated value of state X itself. For example, the state Xn + 1 at the time n + 1 is expressed as Xn + 1 = Xn + AXn + Ben from the state Xn at the time n, where the subscript indicates the time. Assuming that the time increment between each time is Δ,
Xn + 1 = (1 + A · Δ + A 2/2 · Δ 2) Xn + (B · Δ + B 2/2 · Δ 2) en
It becomes.

乗算手段50は、例えば14次元のベクトルである状態Xに行列Cを乗算して、出力CXを発生させる。出力CXは状態Xに基づく制御入力で、基本指令からの高さ位置や振動加速度のシフト分に応じて、基本指令FFを修正する。乗算手段52はエラーベクトルeに行列Dを乗算して、出力Deを制御入力に加算する。加算器42で、基本指令FFにCXとDeを加算して、制御入力uとする。なおDeの項は設けなくても良い。制御入力uはH制御の意味でのロバスト性があり、想定最悪外乱に対してもその影響は所定値以下である。また昇降台の昇降時の自由度は5であるが、その内スライドフォークの先端の振動と、昇降台の高さ位置とに対し、センサ10,26によるフィードバック制御を行う。従って実施例の制御は、2自由度のロバスト制御である。 The multiplication unit 50 multiplies the state X, which is a 14-dimensional vector, for example, by the matrix C to generate an output CX. The output CX is a control input based on the state X, and modifies the basic command FF according to the height position from the basic command and the shift amount of vibration acceleration. Multiplier 52 multiplies error vector e by matrix D and adds output De to the control input. The adder 42 adds CX and De to the basic command FF to obtain a control input u. The term De may not be provided. The control input u has robustness in the sense of H∞ control, and the influence thereof is less than a predetermined value even for the assumed worst case disturbance. Further, the degree of freedom in raising and lowering the lifting platform is 5. However, feedback control by the sensors 10 and 26 is performed on the vibration of the tip of the slide fork and the height position of the lifting platform. Therefore, the control of the embodiment is a robust control with two degrees of freedom.

表1 2自由度ロバスト制御の項目
項 目 値 他 内 容
物理モデル自由度 5 x0,x1,x2,x3,θ
フィルタ次数 4
センサ数 2 昇降台の高さ位置,スライドフォークの先端加速度
制御入力u 1 昇降モータへの指令
誤差ベクトルe 2次元 昇降台の高さ位置,スライドフォークの先端加速度と、 基本指令との誤差
状態量X 14次元 自由度の5×2+フィルタ次数の4
各自由度に対し、その値と時間微分とを状態量とする
出力y 2次元 昇降台の高さ位置,スライドフォークの先端加速度
行列A 14行14列 状態Xからのその時間変化への寄与を表現する
行列B 14行2列 誤差ベクトルeによる状態Xの修正を行う
行列C 1行14列 状態Xから制御入力uへの寄与を決定する
行列D 1行2列 誤差ベクトルeから制御入力uへの寄与を定め省略可能
FF 基本指令
Table 1 2-DOF robust control items
Item Value Others Contents
Physical model degrees of freedom 5 x0, x1, x2, x3, θ
H filter order 4
Number of sensors 2 Height position of the lifting platform, slide fork tip acceleration control input u 1 Command error vector e to the lifting motor, 2D Height position of the lifting platform, tip acceleration of the slide fork, and error state quantity with basic command X 14-dimensional degree of freedom 5 × 2 + filter order 4
For each degree of freedom, the output y with the value and time derivative as the state quantity y 2 dimensional height position of the platform, slide fork tip acceleration matrix A 14 rows 14 columns Contribution to the time change from state X Matrix B to be represented 14 rows and 2 columns Matrix C to correct state X by error vector e 1 row and 14 columns Matrix D to determine contribution from state X to control input u 1 row and 2 columns From error vector e to control input u FF basic directive

表2 2自由度ロバスト制御の詳細モデル
dX/dt=AX+Be
u=FF+CX+De
Table 2 Detailed model of 2-DOF robust control
dX / dt = AX + Be
u = FF + CX + De

図4に、荷下ろしの場合の実施例の動作波形を示す。A)は昇降モータに対する入力速度指令を表し、非制御は基本指令のみを加えてフィードバック制御を行わない例を、2自由度ロバスト制御はリニアセンサ10と加速度センサ26によるフィードバック制御を加えた際の結果を示す。B)に昇降台の目的高さ位置からの偏差を示し、C)に移載対象物品のワークでの加速度を示す。なおスライドフォークから棚受けへの荷下ろし自体は時刻1秒目付近で行われている。図4C)から明らかなように、ワークに加わる振動の程度は、実施例でも基本指令のみでも同程度であるが、実施例では時刻3秒目以降で、昇降台の高さの偏差が殆ど0である。このため目的高さまで昇降台を速やかに下降させて、スライドフォークを後退させることができ、移載時間を短縮できる。基本指令はワークの振動を充分抑制するように設計されており、昇降台の高さが速やかに目的位置に収束するようにフィードバック制御を追加しても、ワークの振動は増加していない。   FIG. 4 shows operation waveforms of the embodiment in the case of unloading. A) represents an input speed command for the lifting motor, and non-control is an example in which only a basic command is added and feedback control is not performed. In the two-degree-of-freedom robust control, feedback control by the linear sensor 10 and the acceleration sensor 26 is added. Results are shown. B) shows the deviation from the target height position of the lifting platform, and C) shows the acceleration of the article to be transferred on the workpiece. The unloading from the slide fork to the shelf holder itself is performed around the first second of the time. As is clear from FIG. 4C), the degree of vibration applied to the workpiece is the same in both the embodiment and the basic command alone, but in the embodiment, the height deviation of the lifting platform is almost 0 after the third time. It is. For this reason, the lifting platform can be quickly lowered to the target height, the slide fork can be moved backward, and the transfer time can be shortened. The basic command is designed to sufficiently suppress the vibration of the workpiece. Even if feedback control is added so that the height of the lifting platform quickly converges to the target position, the vibration of the workpiece does not increase.

図5は荷すくい時の特性を示し、A)は基本指令FFによる入力速度指令と、2自由度ロバスト制御による速度指令とを示し、B)は昇降台の目的高さ位置からの偏差を示し、C)はスライドフォーク先端の加速度を示し、D)はワークに加わる加速度を示す。荷すくいは時刻1秒目付近で行われており、これに対応して入力速度指令も時刻1秒目付近で基本指令FFから変化している。ワークの加速度では、時刻2秒目弱で基本指令FFのみの場合、加速のピークがあるが、実施例ではこのピークが消失している。昇降台の高さについては、実施例では時刻5秒目以降で偏差がほぼ0であるが、基本指令FFのみでは偏差が解消していない。   Fig. 5 shows the characteristics when scooping, A) shows the input speed command based on the basic command FF and the speed command based on the two-degree-of-freedom robust control, and B) shows the deviation from the target height position of the lifting platform. , C) shows the acceleration at the tip of the slide fork, and D) shows the acceleration applied to the workpiece. The load scooping is performed around the first second of the time, and the input speed command is changed from the basic command FF around the first second of the time correspondingly. In the acceleration of the workpiece, there is a peak of acceleration in the case of only the basic command FF at the time less than 2 seconds, but this peak disappears in the embodiment. Regarding the height of the lifting platform, in the embodiment, the deviation is almost zero after the fifth time, but the deviation is not eliminated only by the basic command FF.

実施例では以上のように、短時間で昇降台の高さ位置の偏差を解消できる。また荷すくいや荷下ろしに伴うワークやスライドフォーク先端に加わる加速度は、基本指令と同程度である。これらの結果、ワークやスライドフォーク先端に大きな衝撃を加えることなく短時間で移載を行うことができ、また昇降台の位置決め精度が高いので、棚側のデッドスペースを小さくできる。   In the embodiment, as described above, the height position deviation of the lifting platform can be eliminated in a short time. The acceleration applied to the tip of the work and slide fork accompanying load scooping and unloading is comparable to the basic command. As a result, transfer can be performed in a short time without applying a large impact to the tip of the work or slide fork, and the positioning accuracy of the lifting platform is high, so that the dead space on the shelf side can be reduced.

実施例ではスタッカークレーンの昇降台について説明したが、固定のガイドに沿って吊持材により昇降する昇降台にスカラアームやスライドフォークを搭載した移載装置にも、実施できる。さらにスライドフォークやスカラアームをリフタ上に搭載して移載を行う、移載装置でのリフタの制御にも同様に実施例を適用できる。またスタッカークレーン等の搬送台車の走行制御の制振にも、同様に実施例を適用できる。さらに天井走行車本体から吊持材により吊り下げられ、チャックにより物品を支持する昇降台の昇降制御にも同様に実施例を適用できる。この場合、スライドフォーク先端の振動を、昇降台の横方向振動と置き換え、スタッカークレーンでの昇降台の昇降をそのまま天井走行車での昇降台の昇降に置き換えればよい。ロバスト制御の例としてH制御を用いたが、これに限らずH2制御やμ制御などでもよい。 In the embodiment, the lifting platform of the stacker crane has been described, but the present invention can also be applied to a transfer device in which a SCARA arm or a slide fork is mounted on a lifting platform that is lifted and lowered by a suspension material along a fixed guide. Furthermore, the embodiment can be similarly applied to the control of the lifter in the transfer device in which the slide fork and the SCARA arm are mounted on the lifter to perform the transfer. In addition, the embodiment can be similarly applied to vibration control of travel control of a transport cart such as a stacker crane. Furthermore, the embodiment can be similarly applied to lifting control of a lifting platform that is suspended from a ceiling traveling vehicle body by a suspension material and supports an article by a chuck. In this case, the vibration at the tip of the slide fork may be replaced with the lateral vibration of the lifting platform, and the lifting of the lifting platform with the stacker crane may be replaced with the lifting of the lifting platform with an overhead traveling vehicle. Although H control is used as an example of robust control, it is not limited to this, and H 2 control, μ control, or the like may be used.

スライドフォークの先端に、物品までの距離や物品からの荷重の有無を検出するセンサを設けて、状態をより正確に推定し得るようにしてもよい。さらに昇降台の高さは、リニアスケールに限らず、昇降台の昇降ガイド用のローラの回転数を読み込むエンコーダや、レーザ距離計などの絶対距離センサで求めてもよい。
A sensor that detects the distance to the article and the presence or absence of a load from the article may be provided at the tip of the slide fork so that the state can be estimated more accurately. Further, the height of the lifting platform is not limited to a linear scale, but may be obtained by an absolute distance sensor such as an encoder that reads the number of rotations of a lifting guide roller of the lifting platform or a laser distance meter.

実施例での、昇降台とスライドフォーク及び棚の物品を模式的に示す図The figure which shows typically the goods of a raising / lowering stand, a slide fork, and a shelf in an Example. 実施例での、昇降モータへの指令位置からスライドフォークまでのモデルを示す図The figure which shows the model from the command position to the lift motor to the slide fork in the embodiment 実施例でのフィードバック制御器のブロック図Block diagram of feedback controller in the embodiment 荷下ろし時の実施例の特性を示し、A)は入力速度指令を、B)は昇降台の高さ位置の基本指令からの偏差を、C)は物品の加速度を示す。The characteristics of the embodiment at the time of unloading are shown, A) shows the input speed command, B) shows the deviation from the basic command of the height position of the lifting platform, and C) shows the acceleration of the article. 荷すくい時の実施例の特性を示し、A)は入力速度指令を、B)は昇降台の高さ位置の基本指令からの偏差を、C)はスライドフォーク先端の加速度を、D)は物品の加速度を示す。The characteristics of the embodiment when scooping are shown, A) is the input speed command, B) is the deviation from the basic command of the height position of the lifting platform, C) is the acceleration at the tip of the slide fork, and D) is the article Indicates the acceleration.

符号の説明Explanation of symbols

2 スタッカークレーン
4 昇降台
6 マスト
8 リニアスケール
10 リニアセンサ
12 吊持材
16 フィードバック制御器
20 昇降モータ
22 スライドフォーク
24 物品支持部
26 加速度センサ
28 棚
29 支柱
30 棚受け
32 物品
34 目標高さ記憶部
38 差分器
40,42 加算器
46 積分手段
44,48〜52 乗算手段
2 Stacker crane 4 Lift platform 6 Mast 8 Linear scale 10 Linear sensor 12 Suspension material 16 Feedback controller 20 Lifting motor 22 Slide fork 24 Article support section 26 Acceleration sensor 28 Shelf 29 Post 30 Shelf receiver 32 Article 34 Target height storage section 38 Difference machine 40, 42 Adder 46 Integration means 44, 48-52 Multiplication means

Claims (2)

移動体の位置を検出するための位置検出手段と、移動体の振動加速度を検出するための振動検出手段と、少なくとも振動の抑制対象となる運動に対して、前記各手段の検出結果に応じて、移動体の駆動機構をフィードバック制御するための制御部とを設けた、移動体であって、
前記制御部は、駆動機構へのオープンループの基本指令を発生するための基本指令発生手段と、該基本指令を移動体の位置と加速度との参照信号に変換するための参照信号発生手段と、
前記各検出手段で求めた移動体の位置と振動加速度と、前記参照信号発生手段で求めた移動体の位置と加速度との誤差の算出手段と、算出した誤差に基づいて移動体の状態の推定値を更新するための更新手段と、
前記基本指令に移動体の状態の推定値に基づく補正値を加算して、駆動機構への制御入力とするための加算手段、とを備えていることを特徴とする移動体
A position detection means for detecting the position of the moving body, a vibration detection means for detecting the vibration acceleration of the moving body, and at least a motion that is a vibration suppression target, according to a detection result of each means. A moving body provided with a control unit for feedback control of the driving mechanism of the moving body,
The control unit includes basic command generating means for generating an open-loop basic command to the drive mechanism, reference signal generating means for converting the basic command into a reference signal of the position and acceleration of the moving body,
The moving body position and vibration acceleration obtained by each of the detecting means, the error calculating means for the moving body position and acceleration obtained by the reference signal generating means, and the state of the moving body is estimated based on the calculated error. Update means for updating the value;
By adding the correction value based on the estimated value of the state of the mobile to the base command, adding means for the control input to the drive mechanism, the moving body, characterized in that it comprises a city.
昇降モータによりマストに沿って昇降する昇降台に、進退自在なアームを搭載したスタッカークレーンにおいて、
昇降台の高さセンサを設けると共に、加速度センサをアーム先端に設けて該アーム先端の振動加速度を検出し、
該アームを進出させた状態で昇降台を昇降させる際に、前記高さセンサの信号と加速度センサの信号により、昇降モータをフィードバック制御する制御部を設け、
前記制御部は、前記昇降モータへのオープンループの基本指令を発生するための基本指令発生手段と、該基本指令を昇降台の高さとアームの加速度との参照信号に変換するための参照信号発生手段と、
前記高さセンサで求めた昇降台の高さと前記加速度センサで求めたアームの振動加速度と、前記参照信号発生手段で求めた昇降台の高さとアームの加速度との誤差の算出手段と、算出した誤差に基づいて昇降台とアームの状態の推定値を更新するための更新手段と、
前記基本指令に昇降台とアームの状態の推定値に基づく補正値を加算して、昇降モータへの制御入力とするための加算手段、とを備えていることを特徴とする、スタッカークレーン。
In a stacker crane equipped with a retractable arm on a lifting platform that moves up and down along the mast by a lifting motor,
While providing a height sensor for the lifting platform, an acceleration sensor is provided at the tip of the arm to detect vibration acceleration at the tip of the arm,
When raising and lowering the lifting platform with the arm advanced, a control unit for feedback control of the lifting motor is provided by the signal of the height sensor and the signal of the acceleration sensor,
The control unit generates basic command generation means for generating an open-loop basic command to the lifting motor, and generates a reference signal for converting the basic command into a reference signal of the height of the lifting platform and the acceleration of the arm Means,
Calculating means for calculating an error between the height of the lifting platform determined by the height sensor and the vibration acceleration of the arm determined by the acceleration sensor, and the height of the lifting platform determined by the reference signal generating unit and the acceleration of the arm; Updating means for updating the estimated values of the lift and arm states based on the error;
A stacker crane , comprising: addition means for adding a correction value based on the estimated values of the platform and arm states to the basic command to provide a control input to the lifting motor .
JP2006200260A 2006-07-24 2006-07-24 Moving body Active JP4208906B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006200260A JP4208906B2 (en) 2006-07-24 2006-07-24 Moving body
KR1020070066519A KR101391222B1 (en) 2006-07-24 2007-07-03 Moving body and controlling method thereof
TW096124491A TWI397492B (en) 2006-07-24 2007-07-05 Mobile body, tower crane and tower crane lifting control method
CN2007101386292A CN101112931B (en) 2006-07-24 2007-07-24 Moving body and controlling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200260A JP4208906B2 (en) 2006-07-24 2006-07-24 Moving body

Publications (2)

Publication Number Publication Date
JP2008024461A JP2008024461A (en) 2008-02-07
JP4208906B2 true JP4208906B2 (en) 2009-01-14

Family

ID=39021500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200260A Active JP4208906B2 (en) 2006-07-24 2006-07-24 Moving body

Country Status (4)

Country Link
JP (1) JP4208906B2 (en)
KR (1) KR101391222B1 (en)
CN (1) CN101112931B (en)
TW (1) TWI397492B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008045369B4 (en) 2008-09-02 2013-11-21 Grenzebach Maschinenbau Gmbh Apparatus and method for picking up glass plates
JP4807600B2 (en) * 2009-08-18 2011-11-02 村田機械株式会社 Mobile system
JP2013224198A (en) * 2012-04-23 2013-10-31 Amada Co Ltd Lift device
WO2019154433A2 (en) * 2018-11-05 2019-08-15 上海快仓智能科技有限公司 Item transportation robot and control method therefor
CN109239071B (en) * 2018-11-20 2021-12-21 帝麦克斯(苏州)医疗科技有限公司 Pathological section scanner control method and pathological section scanner
JP2020105006A (en) * 2018-12-28 2020-07-09 株式会社前川製作所 Carrying-in device, carrying-in method, and positioning mechanism
KR102504683B1 (en) * 2020-12-03 2023-02-27 세메스 주식회사 Carriage apparatus and tower lifting system including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2334727Y (en) * 1998-05-22 1999-08-25 张俊生 Stacking machine for tunnel with track
JP2001192104A (en) * 2000-01-06 2001-07-17 Kito Corp Running control method of moving body
JP2002134583A (en) * 2000-10-24 2002-05-10 Tokyo Electron Ltd Substrate conveying apparatus
JP4021228B2 (en) * 2002-03-26 2007-12-12 株式会社ダイフク・ロジスティック・テクノロジー Speed / position control method for stacker crane

Also Published As

Publication number Publication date
TW200808630A (en) 2008-02-16
JP2008024461A (en) 2008-02-07
CN101112931B (en) 2012-05-30
TWI397492B (en) 2013-06-01
KR101391222B1 (en) 2014-05-07
CN101112931A (en) 2008-01-30
KR20080009632A (en) 2008-01-29

Similar Documents

Publication Publication Date Title
JP4208906B2 (en) Moving body
KR101699373B1 (en) Stacker crane
CN101152921B (en) Carrying system
JP4142700B2 (en) Loading scooping device
JPWO2012132569A1 (en) Automatic warehouse
CN102020090A (en) Transfer apparatus and transfer method
CN108217537A (en) Article transport vehicle
JP5765577B2 (en) Stacker crane
JP2010215359A (en) Ceiling conveyance system and method for temporarily storing article
JP7415963B2 (en) stacker crane control system
JP5196221B2 (en) Automatic warehouse equipment
JP5190694B2 (en) Learning device in article storage facility
JP4038807B2 (en) Stacker crane
JP2019034830A (en) Automatic warehouse system
JP4534152B2 (en) Goods storage equipment
JP2021031211A (en) Stacker crane
JP2013224198A (en) Lift device
US20240157577A1 (en) Transport apparatus
JP2006206296A (en) Article transporting device of elevating and sinking type
JP2021059436A (en) Cargo handling system and control method
JP2020186091A (en) Conveyance device
JP2006341960A (en) Article accommodation facility
JP2000351416A (en) Transfer device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Ref document number: 4208906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250