JP4205981B2 - Continuous casting roll excellent in heat crack resistance and cooling method - Google Patents

Continuous casting roll excellent in heat crack resistance and cooling method Download PDF

Info

Publication number
JP4205981B2
JP4205981B2 JP2003094583A JP2003094583A JP4205981B2 JP 4205981 B2 JP4205981 B2 JP 4205981B2 JP 2003094583 A JP2003094583 A JP 2003094583A JP 2003094583 A JP2003094583 A JP 2003094583A JP 4205981 B2 JP4205981 B2 JP 4205981B2
Authority
JP
Japan
Prior art keywords
continuous casting
casting roll
crack resistance
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003094583A
Other languages
Japanese (ja)
Other versions
JP2004298918A (en
Inventor
裕一 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003094583A priority Critical patent/JP4205981B2/en
Publication of JP2004298918A publication Critical patent/JP2004298918A/en
Application granted granted Critical
Publication of JP4205981B2 publication Critical patent/JP4205981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rolls And Other Rotary Bodies (AREA)
  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱疲労による亀裂発生に対する耐性(耐熱亀裂性という)を向上させた、連続鋳造装置の鋳片のガイドロール(連続鋳造ロールという)に関する。
【0002】
【従来の技術】
製鉄用連続鋳造装置の一例を模式的に図1に示す。図1において、連続鋳造ロールと接触している鋳片は、鋳型内で表面層のみが凝固した半凝固状態であり、その後二次冷却帯でスプレー状の水を吹き付けられ、内部の凝固が促進される。連続鋳造ロールは、鋳片の溶鋼の静圧、冷却による熱応力等による変形を矯正し、また鋳片のガイド機構として配置されている。
【0003】
連続鋳造ロールは操業中に高温の鋳片と接触し、操業間には冷却水により冷却されるという加熱・冷却サイクルを受ける。この加熱・冷却サイクルの繰り返しと鋳片からの反力により、連続鋳造ロールの表面に亀裂が発生し、中心に向け進展し、折損に至ることもある。
【0004】
そのため、連続鋳造ロールは、亀裂の深さを定期的に、少なくとも修理、保守、点検時に測定し、状態を管理しながら折損時期を見込んだ使用期間を定めて交換される。この連続鋳造ロールの交換は、連続鋳造装置のメンテナンスコストの大半を占め、製造コスト上、連続鋳造ロールの長寿命化、即ち亀裂の発生及び進展の抑制が大きな課題となっている。
【0005】
図2および図3は、連続鋳造ロールの表面に生じた亀裂を模式的に示したものである。亀裂1は、連続鋳造ロールの表面に円周方向に発生し、軸方向に向かって進展している。この亀裂1の進展により、構造的に曲げやせん断応力に耐えられない状態になると折損に至る。
【0006】
このような問題に対して、特許文献1、2には、溶接肉盛材料に合金を採用し、かつ表面に亀裂を分散させるための熱処理を施す方法が開示されている。また、特許文献3には、亀裂発生の原因となる熱負荷を低減するために、冷却水路によって表層を冷却する方法が開示されている。しかし、これらの対策によっても、連続鋳造ロールの表面における亀裂の発生及び進展を防止することは困難であった。
【0007】
また、特許文献4には、表面に凹部を設け、凹部の側面から冷却水を噴出する熱間スラブ用ピンチロールが開示されている。しかし、製鉄用連続鋳造装置では、連続鋳造ロールが百本以上も配置されているため、スラブが大量の水によって冷却され、異常収縮が生じるなどスラブ品質に問題が生じる可能性がある。また、連続鋳造設備全体で莫大な量の冷却水が必要であるため、工業的に現実的でないという問題を抱えていた。
【0008】
このような問題に対し、本発明者は、特許文献5に、図3に示すように、連続鋳造ロールの表面に深さと幅の比を最適化した円周状の溝を設け、熱亀裂発生の要因である熱応力を緩和する連続鋳造用ロールを提案した。
【0009】
【特許文献1】
特開平11−314145号公報
【特許文献2】
特開2000−297328号公報
【特許文献3】
特開平9−192808号公報
【特許文献4】
特開平11−57831号公報
【特許文献5】
特願2002−367896号
【0010】
【発明が解決しようとする課題】
本発明は、熱疲労による亀裂発生を抑制し、長時間の操業を可能とし、メンテナンスコストを削減し得る連続鋳造ロールを提供するものである。
【0011】
【課題を解決するための手段】
本発明は、連続鋳造ロールの表面に円周状の溝を設けて熱亀裂発生の要因である熱応力を緩和する方法において、表面の凸部に熱応力を緩和する空隙を軸方向又は周方向に設けたものであり、更に空隙を連結して冷却流体を供給し、連続鋳造ロールの表面の熱亀裂を大幅に抑制するものであり、その要旨は以下のとおりである。
【0013】
) 表層部の周方向に溝を有する連続鋳造ロールにおいて、隣り合う溝の間の連続鋳造ロールの表面から溝底までの間で、周方向に貫通する空隙3を設けたことを特徴とする耐熱亀裂性に優れた連続鋳造ロール。
【0014】
表層部の周方向に溝を有する連続鋳造ロールにおいて、連続鋳造ロールの表面から溝底までの間で軸方向に貫通する空隙2を同一円周上に9〜240本設け、軸方向に垂直な断面で、隣り合う前記軸方向に貫通する空隙2の中心と前記連続鋳造ロールの軸中心とを結ぶ線分のなす空隙中心角θ[°]が1.5〜40°であり、該空隙2を連結する連通管7により冷却流体の流路を形成することを特徴とする耐熱亀裂性に優れた連続鋳造ロール。
【0015】
) ()記載の周方向に貫通する空隙3の少なくとも1箇所に軸方向の孔を有し、前記孔を連結する連通管7により溝を挟んで隣り合う前記周方向に貫通する空隙3同士が連通する冷却流体の流路を形成することを特徴とする耐熱亀裂性に優れた連続鋳造ロール。
【0016】
) 表層部に耐熱材料の溶接肉盛を有することを特徴とする(1)〜()の何れか記載の耐熱亀裂性に優れた連続鋳造ロール。
【0017】
) 表層部の耐熱材料の溶接肉盛の厚みが、表層部の溝の深さよりも薄いことを特徴とする()記載の耐熱亀裂性に優れた連続鋳造ロール。
【0018】
) 表層部に耐熱材料のスリーブを有することを特徴とする(1)〜()の何れかに記載の耐熱亀裂性に優れた連続鋳造ロール。
【0019】
) 表層部の耐熱材料のスリーブの厚みが、表層部の溝の深さよりも薄いことを特徴とする()記載の耐熱亀裂性に優れた連続鋳造ロール。
【0020】
) ()〜()の何れかに記載の冷却流体の流路に冷却流体を供給することを特徴とする耐熱亀裂性に優れた連続鋳造ロールの冷却方法。
【0021】
) 冷却流体の流路の全てに冷却流体を供給することを特徴とする()記載の耐熱亀裂性に優れた連続鋳造ロールの冷却方法。
【0022】
10) 冷却流体の流路のうち、スラブに面する1〜120本に冷却流体を供給することを特徴とする()記載の耐熱亀裂性に優れた連続鋳造ロールの冷却方法。
【0023】
11) 冷却流体が空気、窒素ガス、水、油の1種または2種以上の混合流体からなることを特徴とする()〜(10)の何れかに記載の耐熱亀裂性に優れた連続鋳造ロールの冷却方法。
【0024】
【発明の実施の形態】
図4は、本発明の連続鋳造ロールを模式的に示したものである。図4cは、連続鋳造ロールの軸方向に垂直な断面であり、表面から軸方向に溝を設け、更に表面から溝底に相当する位置までの間に軸方向に貫通する空隙2を設けたものである。本発明の連続鋳造ロールにおいて、軸方向に貫通する空隙2は、表面に加えられたスラブからの熱を効率よく冷却し、連続鋳造ロールの中心への熱の伝播を抑制するために、間隔が狭いことが必要である。しかし、軸方向に貫通する空隙2の間隔が狭いと連続鋳造ロールの強度が低下するため、軸方向に垂直な断面において、隣り合う軸方向に貫通する空隙2のそれぞれの中心と連続鋳造ロールの軸中心9とを結ぶ線分のなす角(空隙中心角θ[°]という。以下同じ。)を1°以上とすることが好ましい。
【0025】
軸方向に貫通する空隙2の空隙中心角θは、連続鋳造ロールの冷却を促進すれば、大きくしても良い。例えば、熱伝導係数の大きい材質とすること、軸方向に貫通する空隙2の径を大きくすることなどは、連続鋳造ロールの冷却の促進に効果的である。しかし、空隙中心角θが40°を超えると、表面から軸方向への熱伝播を防止する効果が不十分であるため、上限を40°以下とすることが好ましい。
【0026】
図4aに示したように、連続鋳造ロールの表面の軸方向に設けた軸方向に貫通する空隙2を連通管7によって連結し、冷却流体の流路(冷却流路という)を形成して、冷却水を流すことにより、連続鋳造ロールの表面から中心への熱の伝播を著しく抑制することができる。また、冷却流路に冷却水を流すことにより、スラブへの冷却水の噴出を防止することができるため、スラブの冷却を抑制することができ、スラブの品質を損なうことがない。
【0027】
連続鋳造ロールの表面を効率良く冷却するためには、図5cに示したように、連続鋳造ロールの表面から溝底に相当する位置までの間に、周方向に貫通する空隙3を設けても良い。
【0028】
更に図5aに示したように、溝の側面に周方向に貫通する空隙3の開口部を軸方向に設け、隣り合う周方向に貫通する空隙3の開口部を連通管7により連結して冷却流路を形成することが好ましい。この冷却流路に冷却流体を流すと、連続鋳造ロールの表面から軸の中心に伝播する熱は、この周方向に貫通する空隙3の位置で大幅に低減される。
【0029】
図4、5に示した何れの連続鋳造ロールも、軸の中心から溝底に相当する部位までの間では、温度勾配が極めて小さい。そのため、溝の形状によって溝底部に応力が集中しても、亀裂が発生するほどの応力には到達せず、亀裂1の発生を抑制できる。また、図4の軸方向に貫通する空隙2又は図5の周方向に貫通する空隙3は、何れも、連続鋳造ロールの表面から溝底に相当する位置までの間に形成すれば良い。
【0030】
一方、連続鋳造ロールの軸方向に貫通する空隙2又は周方向に貫通する空隙3よりも表面側の部分は、温度勾配が急激になり、大きな熱応力が発生するが、溝を深くすること、溝の間隔を小さくすること等により、連続鋳造ロールの表面の熱膨張による変形に対する拘束を軽減し、熱応力の発生を抑制することができる。
【0031】
連続鋳造ロール4の材質は、鋼、鋳鋼、鋳鉄、低合金、ステンレス、各種合金、セラミックスなどの単一の材料で構成しても構わないが、高温に晒される表面から溝底よりも厚い部位に、耐熱性に優れたステンレス鋼、Fe基合金、Ni基合金などをスリーブや溶接肉盛によって形成しても良い。また、図6に示したように、軸方向に貫通する空隙2よりも表面側(図中斜線部)を、連続鋳造ロール本体とは異なる材質のスリーブ又は溶接肉盛によって構成しても良い。
【0032】
本発明の連続鋳造ロールは、機械加工、電解加工、放電加工等によって表面に溝を設け、その後、表面から溝底までの部位に軸方向に、ドリルによる孔加工などの機械加工、電解加工、放電加工して形成することができる。
【0033】
また、連続鋳造ロールの周方向に貫通する空隙3は、連続鋳造ロールの表面に溝を設け、内側に溝を設けたスリーブを嵌め、ロウ付けや溶接によって接合することにより形成することができる。即ち、連続鋳造ロールの表面及びスリーブの内側の溝を、嵌めた際に互いの溝が周方向に貫通する空隙3を形成する位置に、機械加工、電解加工、放電加工等によって形成し、鋳造ロールにスリーブを嵌めて接合すれば良い。この際には、リング状のスリーブを用いても良く、円筒状のスリーブを接合した後に、円筒状スリーブ外表面から機械加工等によって研削し、連続鋳造ロールの周方向に貫通する空隙3よりも深い位置に達する溝を形成しても良い。
【0034】
図4a、図5aに示した連通管7は、軸方向に力を加えると縮み、軸方向の力を解除すると再び元の長さに戻るように、中央部分をジャバラとし、凹部に装入しやすい構造であることが好ましい。連通管7は耐食性に優れ、加工しやすい銅合金、ステンレス鋼などが好ましい。ジャバラは、連通管7をバルジ加工して形成すれば良い。また、ジャバラと管を溶接等により接合しても良い。
【0035】
冷却流体の供給は、連続鋳造ロール4の軸方向に貫通する空隙2又は周方向に貫通する空隙3の全てに、同時に供給しても良い。また、図7に示したように、スラブと接触する部位の近傍の冷却流路に部分的に供給しても良い。
【0036】
図7は、連続鋳造ロールの周方向において、スラブと接触する部分の近傍に、ノズル6つを配したノズルヘッド8を配置した例であり、6列の軸方向に貫通する空隙2に同時に冷却水を供給することができる。このノズルヘッド8は、連続鋳造ロール4の軸方向に貫通する空隙2の位置を自動で検出する機能をもち、連続鋳造ロールの回転停止位置にあわせて、6つのノズルが確実に軸方向に貫通する空隙2に押し付けることができるように上下左右の移動機構を有している。
【0037】
連続鋳造ロールは、回転と停止を繰り返してスラブの引き抜きを行うものである。連続鋳造ロールの回転時には、軸方向に貫通する空隙2への冷却水の注入は行わないが、回転が停止している間に、ノズルを自動で押し当て冷却水を供給する。冷却水は、それぞれ6つの流路を通り、連続鋳造ロールの反対側で排出される。なお、図7では6本の冷却水路に冷却流体を供給する例であるが、冷却流体を供給する冷却水路は、1〜120本の範囲であることが好ましい。冷却流体は、気体や液体など、いかなる流体でも構わないが、工業的に入手の簡便な空気、窒素ガス、水、油の1種または、2種以上を混合した流体であることが好ましい。
【0038】
さらに、鋳造速度などの操業条件によっては、連続鋳造ロールの中心方向の温度勾配が大きくなることがある。これを防止するために、図4b、図5bに示したように、溝底に相当する位置よりさらに深い位置に冷却水路6を配することが好ましい。
【0039】
【実施例】
図6に模式的に示したように、鋳鋼からなるロールの表面にマルテンサイト系ステンレス鋼を肉盛溶接して、直径280mmの連続鋳造ロールを製造した。連続鋳造ロールの中心には、ドリルにてφ50の冷却孔5を設けた。連続鋳造ロールの表面には、幅20mm、深さ10mmの円周方向の溝をバイト加工により20mmの間隔で設けた。即ち表面とスラブが接触する部分(ロール凸部という)の幅は、それぞれ20mmである。
【0040】
ロール凸部の表層から7mmの深さに、軸方向に貫通する空隙2を、連続鋳造ロールを軸方向に貫通するように設けた。軸方向に貫通する空隙2は、空隙中心角θを6°、直径をφ4mmとし、ドリルによる機械加工によって形成した。連続鋳造ロールの溝底、直径の1/2深さの位置に、それぞれ一本ずつ熱電対を設置した。
【0041】
この連続鋳造ロールの軸方向に貫通する空隙2を銅管からなる連通管7で連結し、軸方向に貫通する冷却水路を形成した。連通管7は、溝の側面に形成された軸方向に貫通する空隙2の開口部を連結するものであり、溝部に嵌め易いように中央部近傍にジャバラを設けている。連通管7は、伸縮可能であり、溝の側面の開口部に嵌めたときには、ジャバラの復元力によって押し当てられ、連続鋳造ロールの膨張、収縮に追従できる。軸方向に貫通する空隙2の開口部と連結管7は銀ロウ付けにて接合している。
【0042】
連続鋳造ロールの中心の冷却孔5には、毎分50リットルの水を流して、水温を40℃に管理した。水温は連続鋳造ロールの入り口で熱電対によって測定し、複数の冷却塔の稼動数を調整することで、水温を常に一定に保つように管理した。水量は連続鋳造ロール入り口で熱電対によって測定し、複数の冷却塔の稼動数を調整することで、水温を常に一定に保つよう管理した。水量は連続鋳造ロール入り側に流量計を設置して測定した。
【0043】
連続鋳造ロールの周方向において、スラブと接触する部位の近傍の6本の軸方向に貫通する空隙2と連通管7からなる冷却流路には、1本あたり、毎分10リットルの水を流した。
【0044】
このような条件で本発明の連続鋳造ロール(本発明ロールという)を操業した。比較として、本発明の連続鋳造ロールとサイズ及び材質が同等であり、表面に溝を設けた、軸方向に貫通する空隙2のない連続鋳造ロール(比較ロールという)についても、同条件で操業した。
【0045】
操業中の連続鋳造ロールの溝底、直径の1/2深さの位置における温度を、予め設置した熱電対によって測定し、表1に示した。表1の温度は、操業中の最高温度とした。また、これらの温度と軸方向の距離から連続鋳造ロール内部の熱応力に相関のある温度勾配を求め、表1に示した。表1から、本発明ロールは、比較ロールよりも温度勾配が極めて小さいことがわかる。
【0046】
また、操業を36ヶ月行い、操業開始から1ヶ月後、6ヶ月後、12ヶ月後、24ヶ月後、36ヶ月後に亀裂の有無を判定し、亀裂が見られた場合は亀裂長さを測定した。比較ロールでは、表面、溝底の両方にクラックが発生したが、本発明による連続鋳造ロールでは、亀裂が発生しなかった。亀裂の測定は電気抵抗法によるクラックメーターで測定した。
【0047】
【表1】

Figure 0004205981
【0048】
【表2】
Figure 0004205981
【0049】
【発明の効果】
本発明の耐熱亀裂性を向上させた連続鋳造ロールにより、長時間の操業が可能となり、メンテナンスコストを削減し得るなど、産業上の貢献が極めて大きい。
【図面の簡単な説明】
【図1】連続鋳造ラインを説明する図。
【図2】一般的な連続鋳造ロールとそれに発生する亀裂を説明する図。
【図3】一般的な連続鋳造連続鋳造ロールの表面の亀裂分布を説明する図。
【図4】本発明を適用した連続鋳造ロールを説明する図で、(a)はロール軸方向に貫通する空隙を連通管で連結して冷却流路を形成した例を示す正面図、(b)はその側面図、(c)はロール周方向に貫通する空隙を設け冷却流路を形成した例を示す正面図、(d)はその側面図である。
【図5】本発明を適用した連続鋳造ロールを説明する図で、空隙の開口部を連通管により連結して冷却流路を形成した例を示す正面図、(b)はその側面図、(c)はロール周方向に貫通する空隙を設け冷却流路を形成した例を示す正面図、(d)はその側面図である。
【図6】本発明を適用した連続鋳造ロールを説明する図で、(a)はロール概観図、(b)はその側面図、(c)は(a)の拡大図で、ロール表層をスリーブまたは溶接開盛した例を示す図である。
【図7】本発明を適用した連続鋳造ロールの冷却方法を説明する図。
【符号の説明】
1…連続鋳造ロールの表面の亀裂
2…連続鋳造ロール軸方向に貫通する空隙
3…連続鋳造ロール周方向に貫通する空隙
4…連続鋳造ロール
5…冷却水路(連続鋳造ロール中心位置)
6…冷却水路(連続鋳造ロール表層近傍位置)
7…連通管
8…冷却水供給ノズル(ノズルヘッド)
9…連続鋳造ロールの軸中心
θ…空隙中心角[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a slab guide roll (referred to as a continuous casting roll) of a continuous casting apparatus, which has improved resistance to cracking due to thermal fatigue (referred to as thermal crack resistance).
[0002]
[Prior art]
An example of a continuous casting apparatus for iron making is schematically shown in FIG. In FIG. 1, the slab in contact with the continuous casting roll is in a semi-solid state in which only the surface layer is solidified in the mold, and then sprayed water is sprayed in the secondary cooling zone to promote internal solidification. Is done. The continuous casting roll corrects deformation due to static pressure of molten steel in the slab, thermal stress due to cooling, etc., and is disposed as a guide mechanism for the slab.
[0003]
The continuous casting roll is in contact with a hot slab during operation and is subjected to a heating / cooling cycle in which it is cooled by cooling water during the operation. Due to the repetition of the heating / cooling cycle and the reaction force from the slab, a crack is generated on the surface of the continuous casting roll, and it progresses toward the center and may be broken.
[0004]
For this reason, the continuous casting roll is exchanged at regular intervals, at least during repairs, maintenance, and inspections, and by determining the period of use with the expected breakage time while managing the state. The replacement of the continuous casting roll occupies most of the maintenance cost of the continuous casting apparatus, and the long life of the continuous casting roll, that is, the generation of cracks and the suppression of cracks are a major issue in terms of manufacturing cost.
[0005]
2 and 3 schematically show the cracks generated on the surface of the continuous casting roll. The crack 1 is generated in the circumferential direction on the surface of the continuous casting roll and progresses in the axial direction. If the crack 1 is structurally unable to withstand bending or shear stress, the crack 1 is broken.
[0006]
In order to solve such a problem, Patent Documents 1 and 2 disclose a method in which an alloy is used as the weld overlay material and heat treatment is performed to disperse cracks on the surface. Patent Document 3 discloses a method of cooling the surface layer with a cooling water channel in order to reduce the thermal load that causes cracking. However, even with these measures, it has been difficult to prevent the occurrence and development of cracks on the surface of the continuous casting roll.
[0007]
Further, Patent Document 4 discloses a hot slab pinch roll in which a concave portion is provided on the surface and cooling water is ejected from the side surface of the concave portion. However, in the continuous casting apparatus for iron making, since 100 or more continuous casting rolls are arranged, the slab is cooled by a large amount of water, and abnormal shrinkage may occur, which may cause a problem in slab quality. Moreover, since a huge amount of cooling water is required in the entire continuous casting equipment, there is a problem that it is not practical industrially.
[0008]
In order to solve such a problem, the present inventor disclosed in Patent Document 5 as shown in FIG. 3 that a circumferential groove having an optimized ratio of depth to width was provided on the surface of a continuous casting roll, and thermal cracking occurred. This paper proposes a continuous casting roll that relieves the thermal stress.
[0009]
[Patent Document 1]
JP 11-314145 A [Patent Document 2]
JP 2000-297328 A [Patent Document 3]
JP-A-9-192808 [Patent Document 4]
Japanese Patent Laid-Open No. 11-57831 [Patent Document 5]
Japanese Patent Application No. 2002-367896 [0010]
[Problems to be solved by the invention]
The present invention provides a continuous casting roll that suppresses the occurrence of cracks due to thermal fatigue, enables long-time operation, and reduces maintenance costs.
[0011]
[Means for Solving the Problems]
The present invention relates to a method for relaxing a thermal stress that is a cause of thermal cracking by providing a circumferential groove on the surface of a continuous casting roll, and a void that relaxes the thermal stress is formed in a convex portion of the surface in the axial direction or the circumferential direction. Further, a cooling fluid is supplied by connecting gaps to greatly suppress thermal cracks on the surface of the continuous casting roll, and the gist thereof is as follows.
[0013]
( 1 ) In the continuous casting roll having grooves in the circumferential direction of the surface layer portion, the gap 3 penetrating in the circumferential direction is provided between the surface of the continuous casting roll between adjacent grooves and the groove bottom. Continuous casting roll with excellent heat cracking resistance.
[0014]
( 2 ) In a continuous casting roll having grooves in the circumferential direction of the surface layer portion, 9 to 240 voids 2 penetrating in the axial direction between the surface of the continuous casting roll and the groove bottom are provided on the same circumference, and the axial direction The gap center angle θ [°] formed by the line connecting the center of the gap 2 passing through the adjacent axial direction and the axis center of the continuous casting roll is 1.5 to 40 °. continuous casting rolls having excellent thermal cracking resistance, which comprises forming a flow path of the cooling fluid by communication pipe 7 for connecting the air gap 2.
[0015]
( 3 ) A gap having an axial hole in at least one of the gaps 3 penetrating in the circumferential direction described in ( 1 ) and penetrating in the circumferential direction adjacent to each other with a communication pipe 7 connecting the holes. A continuous casting roll excellent in heat crack resistance, characterized by forming a flow path of a cooling fluid in which three communicate with each other.
[0016]
( 4 ) The continuous casting roll excellent in heat crack resistance according to any one of (1) to ( 3 ), wherein the surface layer portion has a weld overlay of a heat resistant material.
[0017]
( 5 ) The continuous casting roll excellent in heat crack resistance according to ( 4 ), wherein the thickness of the weld overlay of the heat resistant material in the surface layer portion is thinner than the depth of the groove in the surface layer portion.
[0018]
( 6 ) The continuous casting roll excellent in heat crack resistance according to any one of (1) to ( 4 ), wherein the surface layer portion has a sleeve of a heat resistant material.
[0019]
( 7 ) The continuous casting roll excellent in heat crack resistance according to ( 6 ), wherein the thickness of the sleeve of the heat resistant material in the surface layer portion is thinner than the depth of the groove in the surface layer portion.
[0020]
( 8 ) A cooling method for a continuous casting roll excellent in heat crack resistance, characterized in that the cooling fluid is supplied to the cooling fluid channel according to any one of ( 2 ) to ( 7 ).
[0021]
( 9 ) The method for cooling a continuous casting roll excellent in heat crack resistance according to ( 8 ), wherein the cooling fluid is supplied to all of the cooling fluid flow paths.
[0022]
( 10 ) The cooling method for a continuous cast roll excellent in heat crack resistance according to ( 9 ), wherein the cooling fluid is supplied to 1 to 120 slabs facing among the cooling fluid flow paths.
[0023]
( 11 ) The cooling fluid is composed of one or two or more mixed fluids of air, nitrogen gas, water and oil, and has excellent thermal crack resistance according to any one of ( 8 ) to ( 10 ) Cooling method for continuous casting roll.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 4 schematically shows the continuous casting roll of the present invention. FIG. 4c is a cross section perpendicular to the axial direction of the continuous casting roll, in which a groove is provided from the surface to the axial direction, and a gap 2 penetrating in the axial direction is provided from the surface to a position corresponding to the groove bottom. It is. In the continuous casting roll of the present invention, the gap 2 penetrating in the axial direction efficiently cools the heat from the slab applied to the surface and suppresses the propagation of heat to the center of the continuous casting roll. It is necessary to be narrow. However, if the gap between the gaps 2 penetrating in the axial direction is narrow, the strength of the continuous casting roll is reduced, so in the cross section perpendicular to the axial direction, the center of each of the gaps 2 penetrating in the adjacent axial direction and the continuous casting roll The angle formed by the line connecting the axis center 9 (referred to as the void center angle θ [°], hereinafter the same) is preferably 1 ° or more.
[0025]
The gap central angle θ of the gap 2 penetrating in the axial direction may be increased if cooling of the continuous casting roll is promoted. For example, using a material having a large thermal conductivity coefficient and increasing the diameter of the gap 2 penetrating in the axial direction are effective in promoting cooling of the continuous casting roll. However, if the gap center angle θ exceeds 40 °, the effect of preventing heat propagation from the surface in the axial direction is insufficient, so the upper limit is preferably set to 40 ° or less.
[0026]
As shown in FIG. 4a, the gap 2 penetrating in the axial direction provided in the axial direction on the surface of the continuous casting roll is connected by the communication pipe 7 to form a cooling fluid channel (referred to as a cooling channel), By flowing the cooling water, the propagation of heat from the surface of the continuous casting roll to the center can be remarkably suppressed. Moreover, since the cooling water can be prevented from being ejected to the slab by flowing the cooling water through the cooling flow path, the cooling of the slab can be suppressed, and the quality of the slab is not impaired.
[0027]
In order to efficiently cool the surface of the continuous casting roll, as shown in FIG. 5c, a gap 3 penetrating in the circumferential direction may be provided between the surface of the continuous casting roll and a position corresponding to the groove bottom. good.
[0028]
Further, as shown in FIG. 5a, an opening portion of the gap 3 penetrating in the circumferential direction is provided in the axial direction on the side surface of the groove, and the opening portion of the gap 3 penetrating in the adjacent circumferential direction is connected by the communication pipe 7 for cooling. It is preferable to form a flow path. When a cooling fluid is allowed to flow through the cooling flow path, the heat propagated from the surface of the continuous casting roll to the center of the shaft is greatly reduced at the position of the gap 3 penetrating in the circumferential direction.
[0029]
In any of the continuous casting rolls shown in FIGS. 4 and 5, the temperature gradient is extremely small from the center of the shaft to the portion corresponding to the groove bottom. Therefore, even if stress concentrates on the groove bottom due to the shape of the groove, the stress does not reach such a level that a crack is generated, and the generation of the crack 1 can be suppressed. Further, the gap 2 penetrating in the axial direction of FIG. 4 or the gap 3 penetrating in the circumferential direction of FIG. 5 may be formed between the surface of the continuous casting roll and the position corresponding to the groove bottom.
[0030]
On the other hand, the portion on the surface side of the gap 2 penetrating in the axial direction of the continuous casting roll or the gap 3 penetrating in the circumferential direction has a rapid temperature gradient and generates a large thermal stress, but deepening the groove, By reducing the interval between the grooves, it is possible to reduce constraints on deformation due to thermal expansion of the surface of the continuous casting roll, and to suppress generation of thermal stress.
[0031]
The material of the continuous casting roll 4 may be a single material such as steel, cast steel, cast iron, low alloy, stainless steel, various alloys, ceramics, etc., but it is thicker than the groove bottom from the surface exposed to high temperature In addition, stainless steel, Fe-based alloy, Ni-based alloy and the like having excellent heat resistance may be formed by a sleeve or weld overlay. Further, as shown in FIG. 6, the surface side (shaded portion in the figure) from the gap 2 penetrating in the axial direction may be constituted by a sleeve or a weld overlay made of a material different from that of the continuous casting roll body.
[0032]
The continuous casting roll of the present invention is provided with grooves on the surface by machining, electrolytic machining, electric discharge machining, etc., and then in the axial direction from the surface to the groove bottom, machining such as drilling with holes, electrolytic machining, It can be formed by electric discharge machining.
[0033]
Further, the gap 3 penetrating in the circumferential direction of the continuous casting roll can be formed by providing a groove on the surface of the continuous casting roll, fitting a sleeve provided with the groove inside, and joining them by brazing or welding. That is, the surface of the continuous casting roll and the groove on the inner side of the sleeve are formed by machining, electrolytic machining, electric discharge machining, etc. at a position where a gap 3 is formed so that each groove penetrates in the circumferential direction. A sleeve may be fitted to the roll and joined. In this case, a ring-shaped sleeve may be used, and after joining the cylindrical sleeve, it is ground from the outer surface of the cylindrical sleeve by machining or the like, and the gap 3 penetrates in the circumferential direction of the continuous casting roll. A groove reaching a deep position may be formed.
[0034]
The communication pipe 7 shown in FIGS. 4a and 5a is contracted when a force is applied in the axial direction, and is restored to its original length when the force in the axial direction is released. It is preferable that the structure is easy. The communication pipe 7 is preferably made of a copper alloy, stainless steel or the like that has excellent corrosion resistance and is easy to process. The bellows may be formed by bulging the communication pipe 7. Further, the bellows and the pipe may be joined by welding or the like.
[0035]
The cooling fluid may be supplied simultaneously to all of the gaps 2 penetrating in the axial direction of the continuous casting roll 4 or the gaps 3 penetrating in the circumferential direction. Moreover, as shown in FIG. 7, you may supply partially to the cooling flow path of the vicinity of the site | part which contacts a slab.
[0036]
FIG. 7 shows an example in which a nozzle head 8 having six nozzles is arranged in the vicinity of a portion in contact with the slab in the circumferential direction of the continuous casting roll, and simultaneously cools the gaps 2 penetrating in six rows in the axial direction. Water can be supplied. This nozzle head 8 has a function of automatically detecting the position of the gap 2 that penetrates the continuous casting roll 4 in the axial direction, and the six nozzles reliably penetrate in the axial direction according to the rotation stop position of the continuous casting roll. It has a vertical and horizontal movement mechanism so that it can be pressed against the gap 2.
[0037]
The continuous casting roll is one that repeatedly rotates and stops to pull out the slab. During the rotation of the continuous casting roll, the cooling water is not injected into the gap 2 penetrating in the axial direction, but while the rotation is stopped, the nozzle is automatically pressed to supply the cooling water. The cooling water passes through six flow paths, and is discharged on the opposite side of the continuous casting roll. Although FIG. 7 shows an example in which the cooling fluid is supplied to the six cooling channels, the number of the cooling channels for supplying the cooling fluid is preferably in the range of 1 to 120. The cooling fluid may be any fluid such as gas or liquid, but is preferably a fluid obtained by mixing one or more of air, nitrogen gas, water, and oil, which are industrially available.
[0038]
Furthermore, depending on operating conditions such as casting speed, the temperature gradient in the center direction of the continuous casting roll may increase. In order to prevent this, it is preferable to dispose the cooling water channel 6 at a position deeper than the position corresponding to the groove bottom, as shown in FIGS. 4b and 5b.
[0039]
【Example】
As schematically shown in FIG. 6, martensitic stainless steel was overlay welded to the surface of a roll made of cast steel to produce a continuous cast roll having a diameter of 280 mm. In the center of the continuous casting roll, a cooling hole 5 of φ50 was provided by a drill. On the surface of the continuous casting roll, circumferential grooves having a width of 20 mm and a depth of 10 mm were provided at intervals of 20 mm by cutting. That is, the widths of the portions where the surface and the slab contact (referred to as roll convex portions) are each 20 mm.
[0040]
A gap 2 penetrating in the axial direction was provided at a depth of 7 mm from the surface layer of the roll protrusion so as to penetrate the continuous casting roll in the axial direction. The gap 2 penetrating in the axial direction was formed by machining with a drill with a gap center angle θ of 6 ° and a diameter of 4 mm. One thermocouple was installed at each of the groove bottom of the continuous casting roll and the position at a depth of 1/2 the diameter.
[0041]
The gap 2 penetrating in the axial direction of the continuous casting roll was connected by a communication pipe 7 made of a copper pipe to form a cooling water passage penetrating in the axial direction. The communication pipe 7 connects the opening portion of the gap 2 formed in the side surface of the groove extending in the axial direction, and is provided with a bellows in the vicinity of the center portion so as to be easily fitted into the groove portion. The communication tube 7 can be expanded and contracted, and when it is fitted into the opening on the side surface of the groove, it is pressed by the restoring force of the bellows and can follow the expansion and contraction of the continuous casting roll. The opening of the gap 2 penetrating in the axial direction and the connecting pipe 7 are joined by silver brazing.
[0042]
The cooling hole 5 at the center of the continuous casting roll was supplied with 50 liters of water per minute, and the water temperature was controlled at 40 ° C. The water temperature was measured with a thermocouple at the entrance of the continuous casting roll, and the water temperature was controlled to be kept constant by adjusting the number of operating cooling towers. The amount of water was measured with a thermocouple at the entrance of the continuous casting roll, and the water temperature was controlled to be kept constant by adjusting the number of operating cooling towers. The amount of water was measured by installing a flow meter on the side containing the continuous casting roll.
[0043]
In the circumferential direction of the continuous casting roll, 10 liters of water per minute flows through the cooling flow path consisting of the six axially penetrating voids 2 and the communication pipes 7 in the vicinity of the portion in contact with the slab. did.
[0044]
Under such conditions, the continuous casting roll of the present invention (referred to as the present roll) was operated. For comparison, the continuous casting roll of the present invention was the same in size and material, and a continuous casting roll (referred to as a comparative roll) without a gap 2 penetrating in the axial direction and having grooves on the surface was also operated under the same conditions. .
[0045]
The temperature at the position of the groove bottom of the continuous casting roll during operation and a depth of 1/2 the diameter was measured by a thermocouple installed in advance, and is shown in Table 1. The temperature in Table 1 was the highest temperature during operation. Further, a temperature gradient correlated with the thermal stress inside the continuous casting roll was obtained from these temperatures and the distance in the axial direction, and shown in Table 1. From Table 1, it can be seen that the roll of the present invention has a much smaller temperature gradient than the comparative roll.
[0046]
In addition, the operation was performed for 36 months, and after one month, six months, twelve months, twenty-four months, and thirty-six months after the start of operation, the presence or absence of cracks was determined, and when cracks were observed, the crack length was measured. . In the comparative roll, cracks occurred on both the surface and the groove bottom, but in the continuous casting roll according to the present invention, no crack occurred. The crack was measured with a crack meter by an electric resistance method.
[0047]
[Table 1]
Figure 0004205981
[0048]
[Table 2]
Figure 0004205981
[0049]
【The invention's effect】
The continuous casting roll having improved heat cracking resistance according to the present invention can be operated for a long time and can reduce the maintenance cost.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a continuous casting line.
FIG. 2 is a diagram for explaining a general continuous casting roll and a crack generated in the roll.
FIG. 3 is a view for explaining the crack distribution on the surface of a general continuous casting continuous casting roll.
4A and 4B are diagrams illustrating a continuous cast roll to which the present invention is applied, in which FIG. 4A is a front view showing an example in which a cooling passage is formed by connecting gaps penetrating in the roll axis direction with a communication pipe; ) Is a side view thereof, (c) is a front view showing an example in which a cooling passage is formed by providing a gap penetrating in the circumferential direction of the roll, and (d) is a side view thereof.
FIG. 5 is a view for explaining a continuous casting roll to which the present invention is applied, and is a front view showing an example in which a cooling channel is formed by connecting openings of gaps with a communication pipe, FIG. (c) is a front view showing an example in which a cooling passage is formed by providing a gap penetrating in the roll circumferential direction, and (d) is a side view thereof.
6A and 6B are diagrams illustrating a continuous casting roll to which the present invention is applied, in which FIG. 6A is a schematic view of the roll, FIG. 6B is a side view thereof, and FIG. 6C is an enlarged view of FIG. Or it is a figure which shows the example which welded up.
FIG. 7 is a view for explaining a cooling method for a continuous casting roll to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Crack of the surface of a continuous casting roll 2 ... The space | gap 3 penetrated to a continuous casting roll axial direction ... The space | gap 4 penetrated to the circumferential direction of a continuous casting roll ... Continuous casting roll 5 ... Cooling water channel (continuous casting roll center position)
6 ... Cooling water channel (position near the continuous casting roll surface layer)
7 ... Communication pipe 8 ... Cooling water supply nozzle (nozzle head)
9 ... Axis center of continuous casting roll θ ... Cavity center angle

Claims (11)

表層部の周方向に溝を有する連続鋳造ロールにおいて、隣り合う溝の間の連続鋳造ロールの表面から溝底までの間で、周方向に貫通する空隙3を設けたことを特徴とする耐熱亀裂性に優れた連続鋳造ロール。  In a continuous casting roll having grooves in the circumferential direction of the surface layer portion, a heat-resistant crack characterized by providing gaps 3 penetrating in the circumferential direction between the surface of the continuous casting roll between adjacent grooves and the groove bottom Continuous casting roll with excellent properties. 表層部の周方向に溝を有する連続鋳造ロールにおいて、連続鋳造ロールの表面から溝底までの間で軸方向に貫通する空隙2を同一円周上に9〜240本設け、軸方向に垂直な断面で、隣り合う前記軸方向に貫通する空隙2の中心と前記連続鋳造ロールの軸中心とを結ぶ線分のなす空隙中心角θ[°]が1.5〜40°であり、該空隙2を連結する連通管7により冷却流体の流路を形成することを特徴とする耐熱亀裂性に優れた連続鋳造ロール。 In a continuous casting roll having grooves in the circumferential direction of the surface layer portion, 9 to 240 gaps 2 penetrating in the axial direction between the surface of the continuous casting roll and the bottom of the groove are provided on the same circumference, and are perpendicular to the axial direction. in cross-section, forming voids central angle theta [°] of a line connecting the axial center of the axial direction in the center and the continuous casting rolls of the gap 2 that penetrate adjacent is 1.5 to 40 °, the gaps 2 A continuous casting roll excellent in heat crack resistance, characterized in that a flow path of a cooling fluid is formed by a communication pipe 7 connecting the two. 請求項記載の周方向に貫通する空隙3の少なくとも1箇所に軸方向の孔を有し、前記孔を連結する連通管7により溝を挟んで隣り合う前記周方向に貫通する空隙3同士が連通する冷却流体の流路を形成することを特徴とする耐熱亀裂性に優れた連続鋳造ロール。The space | interval 3 penetrated in the said circumferential direction which has a hole of an axial direction in the at least one location of the space | gap 3 penetrated in the circumferential direction of Claim 1 , and adjoins the groove | channel by the communicating pipe 7 which connects the said hole. A continuous casting roll excellent in heat crack resistance, characterized by forming a flow path of a cooling fluid that communicates. 表層部に耐熱材料の溶接肉盛を有することを特徴とする、請求項1〜の何れか1項記載の耐熱亀裂性に優れた連続鋳造ロール。The continuous casting roll excellent in heat crack resistance according to any one of claims 1 to 3 , wherein the surface layer portion has a weld overlay of a heat resistant material. 表層部の耐熱材料の溶接肉盛の厚みが、表層部の溝の深さよりも薄いことを特徴とする請求項記載の耐熱亀裂性に優れた連続鋳造ロール。The continuous casting roll excellent in heat crack resistance according to claim 4 , wherein the thickness of the weld overlay of the heat resistant material in the surface layer portion is thinner than the depth of the groove in the surface layer portion. 表層部に耐熱材料のスリーブを有することを特徴とする請求項1〜の何れか1項に記載の耐熱亀裂性に優れた連続鋳造ロール。The continuous casting roll excellent in heat crack resistance according to any one of claims 1 to 4 , wherein a sleeve of a heat resistant material is provided in a surface layer portion. 表層部の耐熱材料のスリーブの厚みが、表層部の溝の深さよりも薄いことを特徴とする請求項記載の耐熱亀裂性に優れた連続鋳造ロール。The continuous casting roll excellent in heat crack resistance according to claim 6 , wherein the thickness of the sleeve of the heat resistant material in the surface layer portion is thinner than the depth of the groove in the surface layer portion. 請求項の何れか1項に記載の冷却流体の流路に冷却流体を供給することを特徴とする耐熱亀裂性に優れた連続鋳造ロールの冷却方法。A cooling method of a continuous casting roll excellent in heat crack resistance, characterized in that a cooling fluid is supplied to the cooling fluid flow path according to any one of claims 2 to 7 . 冷却流体の流路の全てに冷却流体を供給することを特徴とする請求項記載の耐熱亀裂性に優れた連続鋳造ロールの冷却方法。9. The method for cooling a continuous casting roll having excellent heat crack resistance according to claim 8 , wherein the cooling fluid is supplied to all of the cooling fluid flow paths. 冷却流体の流路のうち、スラブに面する1〜120本に冷却流体を供給することを特徴とする請求項記載の耐熱亀裂性に優れた連続鋳造ロールの冷却方法。10. The cooling method for a continuous casting roll excellent in heat crack resistance according to claim 9 , wherein the cooling fluid is supplied to 1-120 of the cooling fluid flow paths facing the slab. 冷却流体が空気、窒素ガス、水、油の1種または2種以上の混合流体からなることを特徴とする請求項10の何れか1項に記載の耐熱亀裂性に優れた連続鋳造ロールの冷却方法。The continuous casting roll excellent in heat crack resistance according to any one of claims 8 to 10 , wherein the cooling fluid is composed of one kind or a mixture of two or more kinds of air, nitrogen gas, water and oil. Cooling method.
JP2003094583A 2003-03-31 2003-03-31 Continuous casting roll excellent in heat crack resistance and cooling method Expired - Fee Related JP4205981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094583A JP4205981B2 (en) 2003-03-31 2003-03-31 Continuous casting roll excellent in heat crack resistance and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094583A JP4205981B2 (en) 2003-03-31 2003-03-31 Continuous casting roll excellent in heat crack resistance and cooling method

Publications (2)

Publication Number Publication Date
JP2004298918A JP2004298918A (en) 2004-10-28
JP4205981B2 true JP4205981B2 (en) 2009-01-07

Family

ID=33407110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094583A Expired - Fee Related JP4205981B2 (en) 2003-03-31 2003-03-31 Continuous casting roll excellent in heat crack resistance and cooling method

Country Status (1)

Country Link
JP (1) JP4205981B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091967A1 (en) * 2012-12-11 2014-06-19 旭硝子株式会社 Float glass production device and float glass production method
JP7410372B2 (en) 2019-09-09 2024-01-10 日本製鉄株式会社 Continuous casting roll

Also Published As

Publication number Publication date
JP2004298918A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP2005118816A (en) Nozzle for plasma torch
JP2004074283A (en) Liquid-cooled mold
JP4205981B2 (en) Continuous casting roll excellent in heat crack resistance and cooling method
JP4181805B2 (en) High temperature and high pressure vessel
JP4453562B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JPH06182499A (en) Cooling roll in continuous casting apparatus and manufacture thereof
JP2015051442A (en) Continuous casting mold and continuous casting method for steel
JP5146006B2 (en) Secondary cooling method in continuous casting
JP2019171435A (en) Method of continuous casting
JP6740924B2 (en) Continuous casting mold and steel continuous casting method
WO2018016101A1 (en) Continuous casting mold and method for continuous casting of steel
KR100594363B1 (en) Sleeve of die casting machine
JP6428721B2 (en) Continuous casting mold and steel continuous casting method
AU726561B2 (en) Cooling drum for twin-drum continuous casting machine
KR101182118B1 (en) Casting roll
JPH11216539A (en) Dummy bar head for continuous casting
EP0147474A1 (en) Apparatus for continuously casting thin billet
JPH09155522A (en) Plunger sleeve for die-cast
JPH0347944B2 (en)
JP3889876B2 (en) Continuous casting roll
JPH0445305A (en) Sleeve for fuel injection nozzle
JPH10272561A (en) Nozzle unit for hot-scarfing steel and steel hot-scarfing method
TW202402422A (en) Gas blowing-up nozzle and continuous casting method
JPS6145959Y2 (en)
JP2024035081A (en) Mold for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4205981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees