JP4201954B2 - Method and apparatus for repairing gas turbine blade made of Ni-based single crystal superalloy - Google Patents

Method and apparatus for repairing gas turbine blade made of Ni-based single crystal superalloy Download PDF

Info

Publication number
JP4201954B2
JP4201954B2 JP2000089073A JP2000089073A JP4201954B2 JP 4201954 B2 JP4201954 B2 JP 4201954B2 JP 2000089073 A JP2000089073 A JP 2000089073A JP 2000089073 A JP2000089073 A JP 2000089073A JP 4201954 B2 JP4201954 B2 JP 4201954B2
Authority
JP
Japan
Prior art keywords
material powder
torch
gas turbine
turbine blade
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000089073A
Other languages
Japanese (ja)
Other versions
JP2001269784A (en
Inventor
野 武 久 日
渡 裕 石
岡 洋 明 吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000089073A priority Critical patent/JP4201954B2/en
Publication of JP2001269784A publication Critical patent/JP2001269784A/en
Application granted granted Critical
Publication of JP4201954B2 publication Critical patent/JP4201954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding

Description

【0001】
【発明の属する技術分野】
本発明は、Ni基超合金からなるガスタービン単結晶翼の補修再生技術に関するものである。
【0002】
【従来の技術】
長時間運転に供したガスタービン動静翼には、熱応力やクリープ等により翼部に開口亀裂が発生することがある。また、ガスタービン翼は高温ガスの流れの中に曝されるため、コーティング無しのガスタービン翼ではエロージョンやコロージョンによりガス入口側が減肉している事例が多く見うけられる。
【0003】
図1はこのような長時間運転した後のガスタービン動翼1を示しており、翼全面に酸化皮膜が生成するとともに翼前縁部を中心に翼材料の減肉2、翼プラットホーム上から翼先端部に向けて亀裂3が発生する。これらの減肉および亀裂が生成するとガスタービンの運転時にかかる応力を残った部材部分では受け持てなくなるため、何らかの補修を行う必要がある。
【0004】
近年では、ガスタービンの高温化に伴い、従来から使用されてきた普通鋳造翼および一方向凝固翼に代わり、単結晶翼が使用されるようになってきている。単結晶翼の材料としてはNi基超合金が使用されている。
【0005】
このようなNi基超合金からなる単結晶翼は、従来型の翼に比べて耐久性は優れてはいるものの、長時間使用すれば開口亀裂等の損傷発生は避けられない。単結晶翼は、材料費および加工費が非常に高価であるため、運用コスト低減の観点からは補修を行いながら使用することが前提となる。
【0006】
ところで、Ni基単結晶超合金翼を補修する上では、二つの大きな解決すべき問題がある。Ni基超合金自体の溶接性の悪さに起因した溶接割れの問題、もう一つは、肉盛りを行う際に、補修部に単結晶材料のメリットを大幅に損なう結晶粒界が形成されてしまうという問題である。
【0007】
この問題を解決するための手法の一例が特開平9−110596号に開示されている。ここに開示された手法は、切除面が基材の優先結晶成長方向を向くように損傷部位を削除し、その後、溶加材を添加するとともに比較的低い出力密度で照射面でのビーム直径が比較的大きくなるように、かつ比較的長時間にわたってレーザービームを照射して深さの幅に対する比が小さい溶融池を生成して補修を行うというものである。
【0008】
しかし、この方法は、補修部位を広範囲にわたって削除する必要があり、また、溶解に時間がかかるため、非効率的である。また、溶融池の幅方向端部における結晶成長方向は他の部位に比べて大幅に異なることになる。
【0009】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたもので、効率的で、かつ結晶粒界が生成される可能性を最小限にすることができ、かつ溶接割れを防止することができるガスタービンNi基単結晶翼の補修方法を提供することを目的としている。
【0010】
【解決を解決するための手段】
上記目的を達成するため、本発明は、Ni基単結晶超合金からなるガスタービン翼の補修方法であって、損傷部位の近傍を除去する工程であって、除去した結果として現れる表面が結晶の優先成長方位である[001]方位を向くように除去する工程と、除去部分に基材と同一あるいは類似組成の材料粉末を供給するとともに前記材料粉末を、加熱ビームを発生する材料粉末溶解用トーチを用いて溶解して、前記除去部分に積層させる工程と、を含むガスタービン翼の補修方法において、前記材料粉末溶解用トーチに加えて前記材料粉末溶解用トーチより低い出力密度の加熱ビームを発生する基材加熱用トーチを用い、前記除去部分に形成される溶融池の等温線の法線方向を前記[001]方位に近づけるように前記基材加熱用トーチにより加熱を行いながら、前記材料粉末溶解用トーチにより前記材料粉末を溶解することを特徴とするものである。
【0011】
本発明によれば、材料粉末溶解用トーチより低い出力密度の加熱ビームを発生する基材加熱用トーチを専用に設け、除去部分に形成される溶融池の等温線の法線方向を[001]方位に近づけるように基材加熱用トーチにより加熱を行いながら、材料粉末溶解用トーチにより材料粉末を溶解することにより、補修部位の単結晶化が容易となり、また溶接割れも生じにくくなる。さらに、補修効率を向上させることができる。
【0012】
また、本発明は、Ni基単結晶超合金からなるガスタービン翼を補修するための装置であって、除去した結果として現れる表面が結晶の優先成長方位である[001]方位を向くように損傷部位の近傍を除去したガスタービン翼を姿勢変化可能に保持する姿勢制御装置と、溶加材としての材料粉末を供給する粉末供給装置と、加熱ビームを発生する材料粉末溶解用トーチと、前記材料粉末溶解用トーチより低い出力密度の加熱ビームを発生する基材加熱用トーチと、前記ガスタービン翼の除去した部分に形成される溶融池の等温線の法線方向を前記[001]方位に近づけるように前記基材加熱用トーチにより加熱を行いながら、前記材料粉末溶解用トーチにより前記材料粉末を溶解する制御を行なうコントローラと、を備えたガスタービン翼の補修装置を提供する。この装置によれば、本発明方法を容易に実施することができる。
【0013】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態について説明する。なお、以下においては、図1に示したように翼長手方向に入った亀裂3の補修方法について説明することとする。
【0014】
なお、亀裂の進展状況はコーティング施工翼、コーティング未施工翼ともほぼ同様であり、動翼表面にMCrAlY(ここでMはNi,Co,Feあるいはそれらの合金を示す),アルミナイジング、クロマイジング、シリコナイジングあるいはそれらの複合処理を施した耐食コーティング施工翼および耐食コーティング上層にY−ZrO,MgO−ZrO等の遮熱コーティングを施した翼についても、コーティングを剥がした後はコーティング未施工翼と同様に下記の手法により補修が可能である。
【0015】
補修を行うに際しては、まず、予め調べておいたガスタービン単結晶翼1(以下、単に「翼」という)の結晶成長方位データに基づいて、溶加材を積層させる方向が、図2(a)に示すようにNi基合金の優先結晶成長方向である[001]方位となるように亀裂を含む部位をグラインダーを用いて切削除去して(図2の鎖線参照)溝状の除去部4を形成する。すなわち、除去部4の底壁4aの向き(底壁表面の法線方向)が[001]方位と平行になるようにする。なお、本例では除去部4の側壁4bの向き(側壁表面の法線方向)を[001]方位と垂直としているが(図2(b)参照)、必ずしもこのようにする必要はなく、側壁4bの法線が[001]方位となす角度が90度以外の角度であってもよい。
【0016】
なお、切削除去作業を行う場合の基礎となる翼1の結晶成長方位データは、運転後に計測したデータ、新品製造時に計測されて保管しているデータのいずれを用いてもよい。また、損傷部近傍の除去を行う加工手段としては、上記のような結晶の優先成長方位との関係を確立できるのであれば、グラインダーの他、放電加工、ブラスト等の手段を用いてもよい。
【0017】
次に、翼1表面の油分を有機溶剤を用いて除去し、続いて有機溶剤が残らないように純水で洗浄した後、エアブロー等の方法により乾燥する。
【0018】
続いて、除去部4に合金粉末の積層を行うが、この積層工程について説明する前に、積層工程に用いられる補修装置について簡単に説明しておく。
【0019】
図3は補修装置を示す図であり、符号11は翼1が載置されるテーブルである。テーブル11には、翼1の例えばプラットホーム部をクランプして翼1をテーブル11に固定するクランプ12が付設されている。テーブル11は、姿勢制御装置13により任意の方向を向くことができる。この姿勢制御装置13を設けた目的は、積層工程を行っている間、除去部4の底壁4aを鉛直方向上方を向くように、すなわち[001]方位が鉛直方向を向くようにすることにある。
【0020】
また、補修装置は、一対の基材加熱用トーチ14と、1つの材料粉末溶解用トーチ15とを有している。なおトーチ14、15の数は、この数に限定されない。基材加熱用トーチ14および材料粉末溶解用トーチ15は、いずれもレーザービームを発生するトーチであり、両者の違いは出力密度にある。すなわち基材加熱用トーチ14は、基材の温度コントロールを行うためのトーチであるため、相対的に低い出力密度のビームを翼に照射するためのものである。一方、材料粉末溶解用トーチ15は、相対的に高い出力密度のビームを翼に照射するためのものである。また、符号16は材料粉末を除去部4に供給するための粉末供給ノズルである。
【0021】
両トーチ14,15および粉末供給ノズル16は、図3に概略的に示したロボットアーム17により任意の方向に移動することができる。符号18は、この補修装置を制御するコントローラであり、このコントローラ18は、姿勢制御装置13、トーチ14,15および粉末供給ノズル16の動作の全てを制御することができる。
【0022】
なおコントローラ18は、記憶装置も内蔵しており、除去部4の形状をティーチングしておくくことにより姿勢制御装置13、トーチ14,15およびノズル16を自動的に動作させることができる。
【0023】
なお、本例では、基材加熱用トーチ14および材料粉末溶解用トーチ15はいずれもレーザービームを照射するトーチとしているが、トーチは電子ビームを照射するものであってもよい。この場合、この補修装置全体を覆う真空チャンバ(図示せず)が更に設けられる。
【0024】
次に、積層工程について説明する。
【0025】
まず、翼1の補修対象部位における[001]方位が鉛直方向を向き、かつ底壁4aが上方を向くように、翼1をテーブル11に固定する。
【0026】
次に、図2(c)に示すように、基材加熱用トーチ14を用いて、翼1の除去部4近傍を予熱する。次いで、溶加材すなわち補修用合金粉末としてNi基合金粉末を粉末供給ノズル16から除去部4に吹き込みつつ、Ni基合金粉末を材料粉末溶解用トーチ15を用いて溶解し、翼表面1aに達するまで積層させる。なお、供給するNi基合金粉末は、母材単結晶合金組成あるいは補修部に要求される特性に応じて適宜変更が可能である。
【0027】
この過程において、基材加熱用トーチ14により引き続き除去部4の両側の近傍部分(翼1の基材部分)を加熱する。これにより、除去部4内に形成される溶融池内の温度勾配およびその近傍の基材部分の温度勾配が、図2(c)に示すような状態となる。すなわち、図2(c)に模式的に示す溶融池内の等温線20の法線方向が[001]方位と一致するか若しくはそれに近い状態となる。凝固時の結晶の成長方向は等温線20の法線方向と一致するため、図2(c)に示すような温度分布が得られれば、積層部分の結晶方位を[001]方位と一致またはほぼ一致させることが可能となる。
【0028】
なお、図4は、比較例として、基材加熱用トーチ14を用いない場合の温度勾配を模式的に示す図である。この図4に示すように、基材加熱用トーチ14を用いない場合には、溶融池内の等温線20の法線方向が[001]方位から大きく外れることになる。このことは、高傾角粒界が形成される確率が高くなることを意味している。
【0029】
積層は、積層部分が翼表面1aより盛り上がるまで継続される(図2(c)一点鎖線参照)。
【0030】
次に、レーザーによる補修箇所と基材との接合性の強化および補修箇所の合金組織の調整のため熱間静水圧プレス処理を行い、動翼作製時に生成したポロシティおよびシュリンケージあるいはガスタービン運転時に発生したクリープボイドを高温高圧をかけることにより潰す。
【0031】
次いで、翼1の表面をブラストおよびバレル研磨により所望の形状となるように加工する(盛り上がり部の除去)。
【0032】
次に、溶体化熱処理および時効熱処理を行い、γ相中に矩形のγ’相が析出する合金組織とする。以上により補修作業は終了する。
【0033】
以上説明したように、本実施形態によれば、専用の基材加熱用トーチ14により基材の温度コントロールを行うため、凝固の進行方向を適正に制御することが可能となる。また、溶接割れを防止することもできる。
【0034】
なお上記実施形態においては、ガスタービン動翼の亀裂部を補修する場合を例にとって説明したが、本発明方法の適用はこれに限定されるものではなく、ガスタービン静翼の亀裂部の補修、動静翼の酸化および腐食による減肉部の補修に適用することも可能である。
【0035】
【発明の効果】
以上述べたように本発明によれば、結晶粒界が生成される可能性を最小限にするとともに溶接割れを防止しつつ、効率的にガスタービンNi基単結晶翼の補修を行うことができる。
【図面の簡単な説明】
【図1】補修対象であるガスタービン動翼に発生した損傷を模式的に示す図。
【図2】補修の手順を示す図。
【図3】補修装置を概略的に示す図。
【図4】本発明方法を適用しない場合を比較して示す模式図。
【符号の説明】
1 ガスタービン翼
2,3 損傷部位
4 除去部分
14 基材加熱用トーチ
15 材料粉末溶解用トーチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a repair and regeneration technique for a gas turbine single crystal blade made of a Ni-base superalloy.
[0002]
[Prior art]
In gas turbine rotor blades subjected to long-term operation, opening cracks may occur in the blade portions due to thermal stress or creep. In addition, since the gas turbine blade is exposed to a high-temperature gas flow, there are many cases where the gas inlet side of the gas turbine blade without coating is thinned due to erosion or corrosion.
[0003]
FIG. 1 shows a gas turbine rotor blade 1 after such a long-time operation, in which an oxide film is formed on the entire surface of the blade and the blade material is thinned around the leading edge of the blade, and the blade from above the blade platform. A crack 3 is generated toward the tip. If these thinnings and cracks are generated, the remaining part of the member cannot receive the stress applied during the operation of the gas turbine, and some repair is required.
[0004]
In recent years, as the temperature of gas turbines has increased, single crystal blades have been used in place of conventional cast blades and unidirectionally solidified blades that have been conventionally used. A Ni-based superalloy is used as a material for the single crystal blade.
[0005]
A single crystal blade made of such a Ni-based superalloy is superior in durability to conventional blades, but damage such as opening cracks is inevitable if used for a long time. Since the single crystal blade is very expensive in terms of material cost and processing cost, it is assumed that the single crystal blade is used while being repaired from the viewpoint of reducing operational costs.
[0006]
By the way, in repairing a Ni-based single crystal superalloy wing, there are two major problems to be solved. The problem of weld cracking due to the poor weldability of the Ni-base superalloy itself, and the other is that during graining, grain boundaries that significantly impair the merit of the single crystal material are formed in the repaired part. It is a problem.
[0007]
An example of a technique for solving this problem is disclosed in JP-A-9-110596. The technique disclosed here removes the damaged part so that the cut surface faces the preferred crystal growth direction of the base material, and then adds a filler material and reduces the beam diameter on the irradiated surface at a relatively low power density. The repair is performed by generating a molten pool having a small ratio to the depth width by irradiating a laser beam for a relatively long time so as to be relatively large.
[0008]
However, this method is inefficient because the repair site needs to be removed over a wide area and it takes time to dissolve. In addition, the crystal growth direction at the end of the molten pool in the width direction is significantly different from that of other portions.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and is a gas turbine Ni-based unit that is efficient, can minimize the possibility of generation of crystal grain boundaries, and can prevent weld cracking. It aims to provide a repair method for crystal wings.
[0010]
[Means for solving the problem]
In order to achieve the above object, the present invention is a method for repairing a gas turbine blade made of a Ni-based single crystal superalloy, which is a step of removing the vicinity of a damaged portion, and the surface that appears as a result of the removal is a crystal. A step of removing so as to face the [001] direction which is the preferential growth direction, a material powder having the same or similar composition as that of the base material is supplied to the removed portion, and the material powder is heated to generate a heating beam. A gas turbine blade repairing method comprising: a heating beam having a power density lower than that of the material powder melting torch in addition to the material powder melting torch. using a substrate heating torch, by the substrate heating torch so as to approach the normal direction of the isotherms of the molten pool formed in the removed portion to said [001] orientation While heat, is characterized in dissolving the material powder by the material powder melting torches.
[0011]
According to the present invention, a base material heating torch that generates a heating beam having a power density lower than that of the material powder melting torch is provided exclusively, and the normal direction of the isotherm of the molten pool formed in the removed portion is set to [001]. while heating by the substrate heating torches so as to approach the orientation, by dissolving the material powder of a material powder melting torch, it is easy to single crystal of the complement Osamu site, also is less likely to occur weld cracking. Furthermore, repair efficiency can be improved.
[0012]
Further, the present invention is an apparatus for repairing a gas turbine blade made of a Ni-based single crystal superalloy, and the surface that appears as a result of the removal is damaged so as to face the [001] orientation, which is the preferential growth orientation of the crystal. A posture control device that holds the gas turbine blade from which the vicinity of the part has been removed so that the posture can be changed, a powder supply device that supplies material powder as a filler material, a material powder melting torch that generates a heating beam, and the material The normal direction of the substrate heating torch that generates a heating beam having a lower power density than the powder melting torch and the isotherm of the molten pool formed in the removed portion of the gas turbine blade is brought closer to the [001] direction. wherein while heated by the substrate heating torch, said material by powder melting torch performs control to dissolve the material powder controller and a gas turbine equipped with such To provide a repair device. According to this apparatus, the method of the present invention can be easily carried out.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the following, a method for repairing the crack 3 entering the blade longitudinal direction as shown in FIG. 1 will be described.
[0014]
The progress of cracks is almost the same for coated and uncoated blades, and MCrAlY (where M is Ni, Co, Fe or their alloys), aluminizing, chromizing, For anti-corrosion coating blades that have been siliconized or their combined treatment, and for blades that have been coated with a thermal barrier coating such as Y 2 O 3 —ZrO 2 or MgO—ZrO 2 on the anticorrosion coating, As with uncoated wings, repair is possible using the following method.
[0015]
When performing repair, first, based on the crystal growth orientation data of the gas turbine single crystal blade 1 (hereinafter, simply referred to as “wing”) that has been examined in advance, the direction in which the filler metal is laminated is shown in FIG. As shown in FIG. 2, a portion including a crack is cut and removed using a grinder so as to be in the [001] orientation which is the preferential crystal growth direction of the Ni-based alloy (see the chain line in FIG. 2). Form. That is, the direction of the bottom wall 4a of the removal unit 4 (the normal direction of the bottom wall surface) is made parallel to the [001] direction. In this example, the direction of the side wall 4b (normal direction of the side wall surface) of the removal portion 4 is perpendicular to the [001] orientation (see FIG. 2B), but this is not always necessary. The angle formed by the normal of 4b and the [001] orientation may be an angle other than 90 degrees.
[0016]
Note that the crystal growth orientation data of the blade 1 that is the basis for performing the cutting and removing operation may be either data measured after the operation or data measured and stored at the time of manufacturing a new product. Further, as a processing means for removing the vicinity of the damaged portion, means such as electric discharge machining and blasting may be used in addition to the grinder, as long as the relationship with the preferential growth orientation of the crystal as described above can be established.
[0017]
Next, the oil component on the surface of the blade 1 is removed using an organic solvent, and subsequently washed with pure water so that the organic solvent does not remain, and then dried by a method such as air blow.
[0018]
Then, although the alloy powder is laminated on the removal portion 4, before describing this lamination process, a repair device used in the lamination process will be briefly described.
[0019]
FIG. 3 is a view showing the repair device, and reference numeral 11 denotes a table on which the wing 1 is placed. The table 11 is provided with a clamp 12 that clamps, for example, a platform portion of the blade 1 to fix the blade 1 to the table 11. The table 11 can be directed in any direction by the attitude control device 13. The purpose of providing the attitude control device 13 is to make the bottom wall 4a of the removal unit 4 face vertically upward during the stacking process, that is, to make the [001] orientation face the vertical direction. is there.
[0020]
Further, the repair device has a pair of base material heating torches 14 and one material powder dissolving torch 15. The number of torches 14 and 15 is not limited to this number. The substrate heating torch 14 and the material powder melting torch 15 are both torches that generate a laser beam, and the difference between them is the output density. That is, since the substrate heating torch 14 is a torch for controlling the temperature of the substrate, the substrate heating torch 14 is for irradiating the blade with a beam having a relatively low output density. On the other hand, the material powder melting torch 15 is for irradiating a blade with a relatively high power density beam. Reference numeral 16 denotes a powder supply nozzle for supplying the material powder to the removing unit 4.
[0021]
Both torches 14 and 15 and the powder supply nozzle 16 can be moved in an arbitrary direction by a robot arm 17 schematically shown in FIG. Reference numeral 18 denotes a controller that controls the repair device. The controller 18 can control all of the operations of the attitude control device 13, the torches 14 and 15, and the powder supply nozzle 16.
[0022]
The controller 18 also has a built-in storage device, and can automatically operate the attitude control device 13, the torches 14 and 15, and the nozzle 16 by teaching the shape of the removal unit 4.
[0023]
In this example, the substrate heating torch 14 and the material powder melting torch 15 are both torches that irradiate a laser beam, but the torch may irradiate an electron beam. In this case, a vacuum chamber (not shown) that covers the entire repair device is further provided.
[0024]
Next, the lamination process will be described.
[0025]
First, the wing 1 is fixed to the table 11 so that the [001] direction in the repair target portion of the wing 1 is directed in the vertical direction and the bottom wall 4a is directed upward.
[0026]
Next, as shown in FIG. 2C, the vicinity of the removal portion 4 of the blade 1 is preheated using the substrate heating torch 14. Next, the Ni-based alloy powder is melted by using the material powder melting torch 15 while blowing the Ni-based alloy powder as the filler material, that is, the repairing alloy powder, from the powder supply nozzle 16 to the blade surface 1a. Laminate until. The Ni-based alloy powder to be supplied can be appropriately changed according to the base material single crystal alloy composition or the characteristics required for the repaired part.
[0027]
In this process, the base portion heating torch 14 continues to heat the vicinity of both sides of the removal portion 4 (base portion of the blade 1). Thereby, the temperature gradient in the molten pool formed in the removal part 4 and the temperature gradient of the base-material part of the vicinity become a state as shown in FIG.2 (c). That is, the normal direction of the isotherm 20 in the molten pool schematically shown in FIG. 2 (c) coincides with or close to the [001] orientation. Since the crystal growth direction at the time of solidification coincides with the normal direction of the isotherm 20, if a temperature distribution as shown in FIG. It is possible to match.
[0028]
In addition, FIG. 4 is a figure which shows typically the temperature gradient when not using the torch 14 for base-material heating as a comparative example. As shown in FIG. 4, when the substrate heating torch 14 is not used, the normal direction of the isotherm 20 in the molten pool is greatly deviated from the [001] direction. This means that the probability that a high-angle grain boundary is formed is increased.
[0029]
The stacking is continued until the stacked portion rises from the blade surface 1a (see the dashed line in FIG. 2C).
[0030]
Next, hot isostatic pressing is performed to strengthen the bondability between the repaired part and the base material by laser and to adjust the alloy structure of the repaired part. The generated creep voids are crushed by applying high temperature and pressure.
[0031]
Next, the surface of the blade 1 is processed into a desired shape by blasting and barrel polishing (removal of the raised portion).
[0032]
Next, solution heat treatment and aging heat treatment are performed to obtain an alloy structure in which a rectangular γ ′ phase is precipitated in the γ phase. This completes the repair work.
[0033]
As described above, according to this embodiment, since the temperature of the base material is controlled by the dedicated base material heating torch 14, the solidification progress direction can be appropriately controlled. Also, weld cracking can be prevented.
[0034]
In the above embodiment, the case where the crack portion of the gas turbine rotor blade is repaired has been described as an example, but the application of the method of the present invention is not limited to this, and repair of the crack portion of the gas turbine stationary blade, It is also possible to apply to repair of thinned parts due to oxidation and corrosion of moving blades.
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to efficiently repair a gas turbine Ni-based single crystal blade while minimizing the possibility of generating grain boundaries and preventing weld cracking. .
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing damage that has occurred in a gas turbine rotor blade to be repaired.
FIG. 2 is a diagram showing a repair procedure.
FIG. 3 is a diagram schematically showing a repair device.
FIG. 4 is a schematic diagram showing a comparison of cases where the method of the present invention is not applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas turbine blade 2, 3 Damaged part 4 Removal part 14 Base material heating torch 15 Material powder dissolution torch

Claims (3)

Ni基単結晶超合金からなるガスタービン翼の補修方法であって、
損傷部位の近傍を除去する工程であって、除去した結果として現れる表面が結晶の優先成長方位である[001]方位を向くように除去する工程と、
除去部分に基材と同一あるいは類似組成の材料粉末を供給するとともに前記材料粉末を、加熱ビームを発生する材料粉末溶解用トーチを用いて溶解して、前記除去部分に積層させる工程と、を含むガスタービン翼の補修方法において、
前記材料粉末溶解用トーチに加えて前記材料粉末溶解用トーチより低い出力密度の加熱ビームを発生する基材加熱用トーチを用い、前記除去部分に形成される溶融池の等温線の法線方向を前記[001]方位に近づけるように前記基材加熱用トーチにより加熱を行いながら、前記材料粉末溶解用トーチにより前記材料粉末を溶解することを特徴とする、ガスタービン翼の補修方法。
A method for repairing a gas turbine blade made of a Ni-based single crystal superalloy,
A step of removing the vicinity of the damaged portion, the step of removing the surface appearing as a result of the removal so as to face the [001] orientation which is the preferential growth orientation of the crystal;
Supplying a material powder having the same or similar composition to the base material to the removal portion and melting the material powder using a material powder melting torch that generates a heating beam , and laminating the material powder on the removal portion. In the gas turbine blade repair method,
In addition to the material powder melting torch, a base material heating torch that generates a heating beam with a power density lower than that of the material powder melting torch is used, and the normal direction of the isotherm of the molten pool formed in the removed portion is determined. A method for repairing a gas turbine blade, wherein the material powder is melted by the material powder melting torch while being heated by the base material heating torch so as to approach the [001] direction .
前記基材加熱用トーチにより前記除去部分の両側の基材の表面を加熱しながら、前記材料粉末溶解用トーチにより前記材料粉末を溶解することを特徴とする、請求項記載のガスタービン翼の補修方法。While heating the surface of both sides of the base material of the removed portion by the substrate heating torches, characterized by dissolving the material powder by the material powder melting torch, of claim 1 of a gas turbine blade Repair method. Ni基単結晶超合金からなるガスタービン翼を補修するための装置であって、
除去した結果として現れる表面が結晶の優先成長方位である[001]方位を向くように損傷部位の近傍を除去したガスタービン翼を姿勢変化可能に保持する姿勢制御装置と、
溶加材としての材料粉末を供給する粉末供給装置と、
加熱ビームを発生する材料粉末溶解用トーチと、
前記材料粉末溶解用トーチより低い出力密度の加熱ビームを発生する基材加熱用トーチと、
前記ガスタービン翼の除去した部分に形成される溶融池の等温線の法線方向を前記[001]方位に近づけるように前記基材加熱用トーチにより加熱を行いながら、前記材料粉末溶解用トーチにより前記材料粉末を溶解する制御を行なうコントローラと、を備えたことを特徴とするガスタービン翼の補修装置。
An apparatus for repairing a gas turbine blade made of a Ni-based single crystal superalloy,
A posture control device for holding the gas turbine blade from which the vicinity of the damaged portion has been removed in such a manner that the posture can be changed so that the surface appearing as a result of the removal faces the [001] direction which is the preferential growth direction of the crystal ;
A powder supply device for supplying material powder as a filler material;
A material powder melting torch that generates a heating beam;
A substrate heating torch that generates a heating beam having a lower power density than the material powder melting torch;
While heating with the substrate heating torch so that the normal direction of the isotherm of the molten pool formed in the removed portion of the gas turbine blade is close to the [001] orientation, the material powder melting torch A gas turbine blade repairing apparatus, comprising: a controller for controlling the melting of the material powder .
JP2000089073A 2000-03-28 2000-03-28 Method and apparatus for repairing gas turbine blade made of Ni-based single crystal superalloy Expired - Fee Related JP4201954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089073A JP4201954B2 (en) 2000-03-28 2000-03-28 Method and apparatus for repairing gas turbine blade made of Ni-based single crystal superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089073A JP4201954B2 (en) 2000-03-28 2000-03-28 Method and apparatus for repairing gas turbine blade made of Ni-based single crystal superalloy

Publications (2)

Publication Number Publication Date
JP2001269784A JP2001269784A (en) 2001-10-02
JP4201954B2 true JP4201954B2 (en) 2008-12-24

Family

ID=18604871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089073A Expired - Fee Related JP4201954B2 (en) 2000-03-28 2000-03-28 Method and apparatus for repairing gas turbine blade made of Ni-based single crystal superalloy

Country Status (1)

Country Link
JP (1) JP4201954B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258545B1 (en) * 2001-05-14 2004-12-01 ALSTOM Technology Ltd Method for isothermal brazing of single crystal components
DE50310894D1 (en) * 2003-03-25 2009-01-22 Siemens Ag Method and device for producing a turbine component
DE10344225A1 (en) 2003-09-24 2005-04-21 Mtu Aero Engines Gmbh Method and device for welding components
JP4551082B2 (en) * 2003-11-21 2010-09-22 三菱重工業株式会社 Welding method
US7250081B2 (en) 2003-12-04 2007-07-31 Honeywell International, Inc. Methods for repair of single crystal superalloys by laser welding and products thereof
US6972390B2 (en) * 2004-03-04 2005-12-06 Honeywell International, Inc. Multi-laser beam welding high strength superalloys
FR2874624B1 (en) * 2004-08-30 2007-04-20 Snecma Moteurs Sa METHOD FOR RECHARGING A MONOCRYSTALLINE OR DIRECTED SOLIDIFICATION METAL PIECE
DE102004042878A1 (en) * 2004-09-04 2006-03-09 Mtu Aero Engines Gmbh Method of repairing turbomachinery blades
US20060049153A1 (en) * 2004-09-08 2006-03-09 Cahoon Christopher L Dual feed laser welding system
US20060231535A1 (en) * 2005-04-19 2006-10-19 Fuesting Timothy P Method of welding a gamma-prime precipitate strengthened material
US20070003416A1 (en) * 2005-06-30 2007-01-04 General Electric Company Niobium silicide-based turbine components, and related methods for laser deposition
EP2072176A1 (en) * 2007-12-21 2009-06-24 Sulzer Markets and Technology AG Method of manufacturing an erosion protection steel layer using laser buildup; Component with such an erosion protection steel layer
DE102008019636A1 (en) * 2008-04-18 2009-10-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Welded component and method for producing a weld
RU2466841C2 (en) * 2008-05-29 2012-11-20 Сименс Акциенгезелльшафт Method and device for welding parts from heat-resistant alloys
JP5038990B2 (en) * 2008-08-07 2012-10-03 株式会社東芝 Heat treatment method and repair method for gas turbine parts and gas turbine parts
KR101035154B1 (en) * 2008-08-08 2011-05-17 한전케이피에스 주식회사 The welding method of blade for gas turbine
US8726501B2 (en) * 2009-08-31 2014-05-20 General Electric Company Method of welding single crystal turbine blade tips with an oxidation-resistant filler material
US8373089B2 (en) * 2009-08-31 2013-02-12 General Electric Company Combustion cap effusion plate laser weld repair
DE102009049518A1 (en) 2009-10-15 2011-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for welding workpieces made of heat-resistant superalloys
JP2011212730A (en) 2010-04-01 2011-10-27 Hitachi Ltd Metal deposition method, and laser metal deposition apparatus
JP5618643B2 (en) * 2010-06-14 2014-11-05 株式会社東芝 Gas turbine rotor blade repair method and gas turbine rotor blade
US9527162B2 (en) 2011-11-07 2016-12-27 Siemens Energy, Inc. Laser additive repairing of nickel base superalloy components
JP5907718B2 (en) * 2011-12-16 2016-04-26 三菱重工業株式会社 Overlay welding method
KR20180026804A (en) * 2012-05-11 2018-03-13 지멘스 에너지, 인코포레이티드 Laser additive repairing of nickel base superalloy components
ITCO20120040A1 (en) * 2012-09-07 2014-03-08 Nuovo Pignone Srl METHOD FOR REPAIRING A TURBOMACHINE COMPONENT
US9272369B2 (en) * 2012-09-12 2016-03-01 Siemens Energy, Inc. Method for automated superalloy laser cladding with 3D imaging weld path control
EP2796237A1 (en) * 2013-04-25 2014-10-29 Siemens Aktiengesellschaft Method of regenerating a metallic component under use of hot isostatic pressing of the welded metallic component
JP2015033717A (en) * 2013-08-09 2015-02-19 三菱重工業株式会社 Repair method
US9982684B2 (en) 2015-08-07 2018-05-29 General Electric Company Hybrid metal compressor blades
JP7005245B2 (en) * 2017-09-19 2022-01-21 三菱重工業株式会社 How to join members
RU2676937C1 (en) * 2017-10-17 2019-01-11 Акционерное общество "ОДК-Авиадвигатель" Gas turbine engine part with the thin-walled element restoration method
JP7270428B2 (en) * 2019-03-19 2023-05-10 三菱重工業株式会社 Directionally solidified material, turbine rotor blade and method for repairing unidirectionally solidified material
KR102586698B1 (en) * 2022-12-28 2023-10-11 한전케이피에스 주식회사 LVPS(Low Vacuum Plasma Spray System) COATING SYSTEM OF GAS TURBINE HIGH-TEMPERATURE COMPONENTS AND METHOD FOR CONTOLLING THE SAME

Also Published As

Publication number Publication date
JP2001269784A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP4201954B2 (en) Method and apparatus for repairing gas turbine blade made of Ni-based single crystal superalloy
JP4969756B2 (en) Method for welding superalloy articles mainly composed of nickel or cobalt
JP4928916B2 (en) Gas turbine high temperature part repair method and gas turbine high temperature part
US6355086B2 (en) Method and apparatus for making components by direct laser processing
JP5887052B2 (en) Method of welding a single crystal turbine blade tip with an oxidation resistant filler material
JP4094690B2 (en) Single crystal gas turbine engine parts and repair method for single crystal metal products
CA2343639C (en) Laser welding superalloy articles
JP4689120B2 (en) How to replace turbine blade airfoil
US6364971B1 (en) Apparatus and method of repairing turbine blades
JP3218567B2 (en) Welding of high-strength nickel-base superalloys.
EP1689553B1 (en) Methods for repair of single crystal superalloys by laser welding and products thereof
US7653996B2 (en) Method of repairing a crack in a turbine component
JP2009502503A (en) Method for repairing parts having base material of directional microstructure and the parts
JP2003507613A (en) Laser cladding of turbine engine blade base plate
JP2009523616A (en) Method for manufacturing holes
JP2005214197A (en) Method for restoring dimension of article and preform for performing same
JP2004195551A (en) Device and method for welding at high temperature
JP2006239775A (en) Airfoil made of nickel alloy or nickel-based superalloy, and method for weld repair of rotor with integrated blademade of in100
JP2005349478A (en) Homogeneous welding method for superalloy article
JP2002235557A (en) Deposition repair of superalloy object
US20050005444A1 (en) Process and apparatus for producing a turbine component, turbine component and use of the apparatus
JP2009090371A (en) Welding method
JP2009090371A6 (en) Welding method
JP4913297B2 (en) Masking agent for use during laser welding or laser drilling
US20130156586A1 (en) Method for connecting a turbine blade or vane to a turbine disc or a turbine ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees