JP4198414B2 - Tire abnormality detection method and wheel rolling abnormality detection method - Google Patents

Tire abnormality detection method and wheel rolling abnormality detection method Download PDF

Info

Publication number
JP4198414B2
JP4198414B2 JP2002228450A JP2002228450A JP4198414B2 JP 4198414 B2 JP4198414 B2 JP 4198414B2 JP 2002228450 A JP2002228450 A JP 2002228450A JP 2002228450 A JP2002228450 A JP 2002228450A JP 4198414 B2 JP4198414 B2 JP 4198414B2
Authority
JP
Japan
Prior art keywords
tire
detection method
abnormality detection
magnetic
annular portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002228450A
Other languages
Japanese (ja)
Other versions
JP2004069462A (en
Inventor
郁夫 金子
Original Assignee
郁夫 金子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郁夫 金子 filed Critical 郁夫 金子
Priority to JP2002228450A priority Critical patent/JP4198414B2/en
Publication of JP2004069462A publication Critical patent/JP2004069462A/en
Application granted granted Critical
Publication of JP4198414B2 publication Critical patent/JP4198414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走行中の車両に取り付けられたタイヤの異常状態および車輪の転動状態を監視して、これを運転者に通知するための、タイヤの異常検出方法に関する。
【0002】
【従来の技術】
従来、タイヤの異常をリアルタイムで監視するものとして、リムに取り付けられるタイヤ内圧警報装置に、圧力センサや温度センサを内蔵させ、これらのセンサで検出したデータを車体側に設けた受信機に送信し、送信されたデータが受信機側で設定した正常範囲外のデータである場合、この状態を異常と判断し、運転者に通知するようにしたものが知られている。
【0003】
しかしながら、このタイヤ内圧警報装置に内蔵された圧力センサや温度センサは、タイヤの内空部の状態を測定しているに過ぎない。例えば、タイヤのある部分が異常に発熱して、セパレーションを起こしたり、バーストしたりする可能性を予知するためには、発熱した部分の温度、もしくは、さらに直接的には、タイヤの所定部分の歪を測定する必要があり、従来のタイヤ内圧警報装置を用いた異常検出方法は、タイヤそのものの異常を直接検知するには、実用上、有効とは言えないものであった。
さらに、この従来の異常検出方法は、当然ながら、ホイールをハブに締結しているボルトが緩んでホイールが異常に転動している場合のように、車輪の異常な転動状態が発生した場合、これを検出することはできないものであった。
【0004】
【発明が解決しようとする課題】
本発明は、このような問題点に鑑みてなされたものであり、タイヤの所要の部分の温度や歪等の物理量を直接測定して、タイヤの故障に繋がる可能性のある異常を早期に発見するためのタイヤの異常検出方法、および、車輪の転動の異常を早期に発見するための車輪転動の異常検出方法を提供し、運転者が、タイヤを含む車輪の転動が正常であることを確認しながら運転することを可能にして、よって、車両の安全な走行に資することを目的とするものである。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明はなされたものであり、その要旨構成ならびに作用を以下に示す。
【0006】
請求項1に記載のタイヤの異常検出方法は、磁性体を、タイヤ軸心を中心軸とするタイヤの所定環状部分に、タイヤ周方向に沿って所定のピッチで配設するとともに、前記タイヤ環状部分と交差する環状磁路を形成する磁石を車体側に設け、タイヤの回転に伴い生起する環状磁路の磁束密度変化によって、環状磁路の外周に巻きつけたコイルに誘起される起電力を測定するとともに、タイヤの回転速度を測定し、起電力の測定波形のピーク値をこの回転速度のデータを用いて回転速度の依存性を除去する補正を行ったあと、補正後の測定波形のピーク値から前記タイヤ環状部分の異常を検出するものである。
【0007】
前記タイヤ環状部分と交差する環状磁路内に磁性体がないときは、この磁路はほぼ開放状態に近いので磁束密度は極めて小さいが、この磁路内に磁性体が入ると、急激に磁束密度が上昇し、逆に、この磁路から磁性体が出てゆくと、急激に磁束密度が低下する。このような磁束密度の変化に伴って、この磁路の外周に巻き付けられたコイルには、起電力が発生する。そして、タイヤ環状部分に異常な歪が発生して、磁石の位置が異常に変位したり、また、タイヤ環状部分の状態に起因して磁性体の磁気特性が異常に変化したりすると、起電力の測定波形にも変化があらわれ、正常な状態の波形と区別することができる。
【0008】
本発明に係るこのタイヤの異常検出方法は、このようにして、タイヤの環状部分に現れる変化を直接測定するので、タイヤの故障と強い相関のあるタイヤの変化を異常として捉えることができる。しかも、この検出方法は、磁束密度の変化を捉えるので、他の電気的検出方法や、光学的検出方法に対比して、汚れや電気的ノイズ等の環境に左右されることがなく、高い信頼性をもって、タイヤの異常を検出することができる。
【0010】
前記タイヤ環状部分が異常に膨らむ、あるいは凹む等して、磁性体と環状磁路を形成する磁石とが接近もしくは離隔すると、磁性体が磁路内にあるときの磁束密度は大きくなり、あるいは小さくなるので、正常なタイヤに対する磁束密度の範囲を予め設定しておくことにより、磁束密度の変化は正常な範囲を逸脱し、よって、起電力のピーク予め設定した正常な範囲から逸脱した測定波形が得られる。本発明は、ピーク値から前記タイヤ環状部分の異常を検出するので、例えば、このピーク値が所定の正常範囲を越えたとき、これを異常と判定することにより、例えば、内部の層間の微小な剥離に起因するタイヤ表面の微小突起等のタイヤ表面の膨らみを検出でき、よって、セパレーション等の故障の予兆を捉えて、これを運転者に知らせることができる。
【0011】
なお、起電力のピーク値は、タイヤの回転速度にも依存することになるので、このタイヤの異常検出方法においては、起電力のピーク値に、別途測定する速度データ等を用いて速度の依存性を取り除く補正を加え、補正後の起電力のピーク値が所定の値を超えたとき、異常と判定するものとする。
【0012】
請求項2に記載のタイヤの異常検出方法は、請求項1に記載するところにおいて、前記回転速度の依存性を除去する補正は、回転速度のデータを用いて、回転速度に応じて予め定まる補正係数をピーク値に乗ずることによって行うものである。
【0014】
請求項3に記載のタイヤの異常検出方法は、請求項1もしくは2に記載するところにおいて、磁性体を、所定温度範囲にキュリー点を有する感温フェライトとし、起電力の測定波形のピーク値の大きさが所定の値を下回った時、前記タイヤ環状部分が異常な温度に達したと判定するものである。
【0015】
このタイヤの異常検出方法によれば、磁性体を、所定温度範囲にキュリー点を有する感温フェライトとしたので、所定温度範囲を、温度の正常範囲上限付近に設定することにより、大きな繰り返し変形等によってタイヤ内部の温度が上昇しキュリー点に近づくと、磁性体の磁力は低下し、よって、環状磁路を磁性体が通過しても、小さな値の起電力しか励起することがない。そして、タイヤの異常検出方法では、起電力の測定波形のピーク値の大きさが所定の値を下回った時、前記タイヤ環状部分に異常な温度に達したと判定するので、起電力のピーク値の低下として、異常に高い温度をもたらす故障の予兆を捉えて、これを運転者に知らせることができる。
【0016】
また、この感温フェライトは、軟質磁性材料であり、一旦キュリー点に達しても、キュリー点より低い温度に復帰したとき、その透磁率は元にもどるので、復帰後も、環状磁路内に入って磁束密度を変化させる磁性体として用いることができる。そして、感温フェライトは、そのフェライト成分の、磁性体に占める割合を変化させて、この磁性体のキュリー点が所要の温度になるように感温フェライトの磁力の温度特性を調整することができ、よって、タイヤの種類や、検知したい故障にあわせて、自由に、温度上限を設定することができる。
【0017】
請求項4に記載のタイヤの異常検出方法は、請求項3に記載するところにおいて、磁性体を、軟質磁性材料とするものである。
【0018】
このタイヤの異常検出方法によれば、感温磁性体として軟質磁性材料をもちいたので、この磁性体は、いったんキュリー点まで達して磁力を喪失しても、温度がキュリー点以下に低下すれば磁力を回復するので、繰り返し、温度の異常の検出が可能となる。
【0019】
請求項5に記載のタイヤの異常検出方法は、請求項1〜4のいずれかに記載するところにおいて、タイヤ環状部分を、タイヤのショルダ部とビード部のいずれか一方もしくは両方とするものである。
【0020】
このタイヤの異常検出方法によれば、タイヤ環状部分を、故障の起こる確率が相対的に高い、タイヤのショルダ部とビード部のいずれか一方もしくは両方としたので、故障の予知を有利に行うことができる。また、このタイヤの異常検出方法においても、起電力の測定波形のピーク値をタイヤの回転速度で補正した後、補正後の起電力のピーク値を用いて異常の判定をする点は、前述と同様である。
【0024】
【発明の実施の形態】
以下、本発明に係るタイヤの異常検出方法の実施形態について図1〜図5に基づいて順次説明する。図1は、このタイヤの異常検出方法に用いるタイヤ1の略線正面図である。タイヤ1の一方の側のショルダ部を構成する環状部分2の外表面に、周方向に互いに隣接し、周方向に長細い磁性体を合計十二枚、等ピッチで配設する。
【0025】
図2は、タイヤ1の異常を検知するタイヤ異常検出装置10を配置した状態で、図1のタイヤ1を上面から見たタイヤの側面図である。タイヤ異常検出装置10は、鉄心11と、鉄心11の両端に取り付けられ、タイヤの表面に対向する向きに磁極を有するそれぞれの永久磁石12と、鉄心11の外周に巻きつけられた起電力測定用コイル13とよりなるヨーク部14とを具え、このヨーク部14は磁路Fを形成している。
【0026】
起電力測定用コイル13の両端には、起電力を測定する電圧計15が接続され、電圧計15で測定された電圧は、図示しないタイヤ異常判定装置によって正常・異常の判定がなされ、これが異常と判定されれば、運転者に異常警報が発せられるよう、このタイヤ異常検出装置10が構成されている。また、ヨーク部14は、タイヤが回転しても回転することはない車軸部に固定して設けられるが、電圧計は車体側の任意の場所に設けることができる。
【0027】
なお、磁性体3として、永久磁石に代表される硬質磁性材料、あるいは、鉄等の通常の軟質磁性材料を用いることもできるが、本実施形態においては、タイヤ1の正常温度上限付近にキュリー点をもつ軟質の感温フェライトを用いた。軟質磁性材料は、一旦、この材料が、キュリー点以上の温度で、磁力を消失したとしても、温度が通常状態に復元したときは、透磁率を元通りに回復するので、キュリー点以上の温度履歴をもっていても、何度もこれを用いるこができる。さらに、磁性体3の形状は、本実施形態のように、周方向に長細いものに限定されるものではなく、例えば、粉末磁性を任意のパターンで印刷して形成しても可能であり、周期的な起電力の測定波形が得られる範囲で、ヨーク部14の位置と姿勢に応じて自由に組み合わせることができる。また、磁性体3の個数も、必要に応じて、増減するのがよく、磁性体3を埋設するタイヤ1の部位も、ショルダ部のほか、ビード部近傍や、あるいは、カーカスプライ折り返し端付近等、検出したい故障に応じて適宜選択することができる。
【0028】
磁性体3は、タイヤの回転に伴って周方向に移動するが、図1は、ちょうど、ヨーク部14と対向する回転位置に磁性体3が位置する状態のタイヤ1を示し、この状態においては、磁路Fは、タイヤ1と永久磁石3との間のわずかなギャップを有するだけの、ほぼ閉じたものなり、よって、この磁路Fの磁束密度は最大値を示す。
【0029】
一方、図3は、図1と異なる回転位置におけるタイヤ1を上面から見たタイヤの側面図であるが、図3の状態においては、ヨーク部14と対向して位置する磁性体3はなく、よって、磁性体3は磁路Fの一部をも構成していないので、磁路Fはほぼ開放状態となり、その磁束密度は最小となる。そして、タイヤが連続して回転すると、等ピッチに周方向に配列された十二個の磁性体3が順次、磁路Fに入り、そして出てゆくが、磁性体3が磁路Fから出入りする際に、磁路Fの磁束密度は前記最大値と最小値との間を変化し、この変化により起電力が発生する。この起電力の大きさは、タイヤの回転速度と、磁束密度の最大値と最小値との差に依存する。
【0030】
図4(a)は、タイヤ1を正常な状態にして、電圧計15で測定した起電力の測定波形を、前述の、回転速度に影響のない形に補正した後の、補正済み起電力波形であるが、磁性体3が磁路Fに入るときに現れる正のピークと、磁性体3が磁路Fから出るときに現れる負のピークとが交互に出現する波形となる。ピーク値Pの正常範囲の上限と下限とをそれぞれPmax、Pminとしたとき、タイヤ1が正常な時のPは式(1)で表される範囲の値である。一方、隣接する正のピーク同士の間隔Tの、タイヤ正常時の上限と下限とをそれぞれTmax、Tminとしたとき、タイヤ1が正常な時のTは式(2)で表される範囲の値である。
Pmin<P<Pmax (1)
Tmin<T<Tmax (2)
【0031】
図4(b)は、タイヤ1の環状部分2が異常に幅方向に広がった状態に対応する、補正済み起電力波形である。この状態においては、磁性体3がヨーク部14と対向する回転位置に来たとき、磁性体3とヨーク部14とのギャップは極めて小さくなり、したがって、磁路Fの磁束密度の最大値はは極めて大きくなる。このことにより、このときの起電力のピーク値Pは式(3)で表される範囲となり、タイヤの幅方向歪が異常であると判定することができる。
P>Pmax (3)
【0032】
図4(c)は、タイヤ1の環状部分2が異常に周方向に広がった状態に対応する、補正済み起電力波形である。この状態においては、回転速度を同じにしても隣接する磁性体同士の間隔が極めて広くなるため、起電力の正あるいは負のピーク値同士の間隔Tは式(4)で表される範囲となり、タイヤ周方向歪が異常であると判定することができる。逆に、タイヤ1の環状部分2が異常に周方向に狭まった状態においては、同じ原理により、起電力の正のピーク値同士の間隔Tは式(5)で表される範囲となり、この場合も、タイヤ周方向歪が異常であると判定することができる。
T>Tmax (4)
T<Tmin (5)
【0033】
図4(c)は、タイヤ1の環状部分2の温度が異常に上昇した状態に対応する、補正済み起電力波形である。この磁性体3は、キュリー点が温度正常範囲上限付近になるよう成分比を調整した感温フェライトとしたので、タイヤ1の環状部分2の温度が異常に上昇すると、磁性体3の磁力はほぼゼロとなり、起電力のピーク値Pは式(6)で表される範囲となり、タイヤの温度が異常であると判定することができる。
P<Pmin (6)
【0034】
以上の補正済み起電力波形を、補正するための回転速度データは、アンチスキッドブレーキシステムで用いる車軸回転速度計の情報等、別途の手段で測定した回転速度のデータを用いることができ、また、回転速度の依存性を除去する補正を行うには、このデータを用いて、回転速度に応じて予め定まる補正係数をピーク値に乗ずることによって容易にオンラインで実施することができる。
【0035】
図5は、他の実施形態におけるタイヤの異常検出方法に用いるタイヤ異常検出装置20を示す、略線側面図である。この測定装置20においては、磁路Fを形成するヨーク部25の起磁力要素として、図2における永久磁石12の代わりに、鉄心21の回りに巻きつけた励磁用コイル22と定電流直流電源23とよりなる電磁石24を用いている。また、ヨーク部25は、この電磁石24と、起電力測定用コイル26とを含んで構成される。このタイヤ異常検出装置20を用いてタイヤの異常を検出する方法については、前の実施形態の通りであるので、説明を分かりやすくするため、これを省略する。
【0036】
【発明の効果】
以上述べたところから明らかなように、本発明によれば、磁性体を、タイヤの環状部分に周方向に沿って所定のピッチで配設するとともに、環状部分と交差する環状磁路を形成する磁石を車体側に設け、タイヤの回転に伴い生起する環状磁路の磁束密度変化によって誘起される起電力を測定し、この測定波形から前記タイヤ環状部分の異常を検出するので、タイヤの故障と強い相関のあるタイヤの変形を直接測定してその異常を検出すると同時に、異常昇温の検出を正確に行うことができる。しかも、この検出方法は、磁束密度の変化を捉えるので、他の電気的検出方法や、光学的検出方法に対比して、汚れや電気的ノイズ等の環境に左右されることがなく、高い信頼性をもって、タイヤの異常を検出することができる。さらに、本発明によれば、タイヤの異常だけでなく、車輪の転動の異常についても検出することができ、このことによって、本発明の異常検出方法を用いたシステムは、異常時に運転者に警報を出すことができるとともに、正常な車両走行時には、運転者が正常な車輪の転動状態であることを確認しながら運転することを可能にすることができる。
【図面の簡単な説明】
【図1】本発明に係るタイヤの異常検出方法の実施形態に用いるタイヤを示す略線正面図である。
【図2】異常検出装置を配置した状態で示す、タイヤの側面図である。
【図3】異常検出装置を配置した状態で示す、タイヤの側面図である。
【図4】補正済み起電力測定波形を示すグラフである。
【図5】他の実施形態に用いる異常検出装置の略線側面図である。
【符号の説明】
1 タイヤ
2 環状部分
3 磁性体
10、20 異常検出装置
11 鉄心
12 永久磁石
13、26 起電力測定用コイル
14、25 ヨーク部
15 電圧計
22 励磁用コイル
23 定電流直流電源
24 電磁石
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tire abnormality detection method for monitoring an abnormal state of a tire attached to a running vehicle and a rolling state of a wheel and notifying a driver of this.
[0002]
[Prior art]
Conventionally, in order to monitor tire abnormalities in real time, a pressure sensor and a temperature sensor are built into a tire internal pressure alarm device attached to a rim, and data detected by these sensors is transmitted to a receiver provided on the vehicle body side. When the transmitted data is out of the normal range set on the receiver side, it is known that this state is determined to be abnormal and the driver is notified.
[0003]
However, the pressure sensor and the temperature sensor built in the tire internal pressure alarm device merely measure the state of the inner space of the tire. For example, in order to predict the possibility that a part of a tire will abnormally generate heat and cause separation or bursting, the temperature of the heated part, or more directly, a predetermined part of the tire It is necessary to measure the strain, and the conventional abnormality detection method using the tire internal pressure warning device is not practically effective for directly detecting the abnormality of the tire itself.
Furthermore, this conventional abnormality detection method is naturally used when an abnormal rolling state of the wheel occurs, such as when the bolt that fastens the wheel to the hub is loosened and the wheel is rolling abnormally. This could not be detected.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and by directly measuring physical quantities such as temperature and strain of a required portion of a tire, an abnormality that may lead to a tire failure is detected at an early stage. The present invention provides a method for detecting an abnormality of a tire for detecting the abnormality of a wheel rolling for detecting an abnormality of the rolling of a wheel at an early stage, and the driver is normal in rolling of the wheel including the tire. The object of the present invention is to make it possible to drive while confirming this, and thus contribute to the safe driving of the vehicle.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has been made, and the gist configuration and operation thereof will be described below.
[0006]
The tire abnormality detection method according to claim 1, wherein the magnetic body is disposed at a predetermined pitch along a tire circumferential direction in a predetermined annular portion of the tire having a tire axis as a central axis, and the tire annular A magnet that forms an annular magnetic path that intersects the portion is provided on the vehicle body side, and an electromotive force induced in a coil wound around the outer periphery of the annular magnetic path due to a change in magnetic flux density of the annular magnetic path that occurs as the tire rotates. After measuring the tire rotation speed, and correcting the peak value of the electromotive force measurement waveform using this rotation speed data to remove the dependency of the rotation speed, the peak of the measured waveform after correction The abnormality of the tire annular portion is detected from the value .
[0007]
When there is no magnetic body in the annular magnetic path intersecting the tire annular portion, the magnetic path is almost open, so the magnetic flux density is extremely small. However, if the magnetic body enters the magnetic path, the magnetic flux rapidly increases. On the contrary, when the magnetic material comes out of this magnetic path, the magnetic flux density rapidly decreases. With such a change in magnetic flux density, an electromotive force is generated in the coil wound around the outer periphery of the magnetic path. If abnormal distortion occurs in the annular portion of the tire and the position of the magnet is abnormally displaced, or if the magnetic properties of the magnetic material change abnormally due to the state of the annular portion of the tire, the electromotive force The measured waveform also changes, and can be distinguished from the normal waveform.
[0008]
Since the tire abnormality detection method according to the present invention directly measures changes appearing in the annular portion of the tire in this way, changes in the tire having a strong correlation with a tire failure can be regarded as abnormal. In addition, since this detection method captures changes in magnetic flux density, it is not affected by the environment such as dirt or electrical noise and is highly reliable compared to other electrical detection methods and optical detection methods. Therefore, it is possible to detect abnormality of the tire.
[0010]
When the tire annular portion is abnormally swollen or dented, and the magnetic body and the magnet forming the annular magnetic path approach or separate from each other, the magnetic flux density when the magnetic body is in the magnetic path increases or decreases. Therefore, by setting the magnetic flux density range for normal tires in advance, the change in magnetic flux density deviates from the normal range, and thus the peak value of electromotive force also deviates from the preset normal range. A waveform is obtained. Since the present invention detects an abnormality of the tire annular portion from the peak value, for example, when this peak value exceeds a predetermined normal range, it is determined as abnormal , for example, a minute difference between internal layers. Swelling of the tire surface such as minute protrusions on the tire surface due to peeling can be detected, so that a sign of failure such as separation can be detected and notified to the driver.
[0011]
Since the peak value of the electromotive force also depends on the rotational speed of the tire, in this tire abnormality detection method, the peak value of the electromotive force depends on the speed using separately measured speed data or the like. It is determined that an abnormality is detected when a correction for removing the characteristic is added and the peak value of the electromotive force after the correction exceeds a predetermined value.
[0012]
The tire abnormality detection method according to claim 2 is the correction according to claim 1, wherein the correction for removing the dependency on the rotational speed is a correction determined in advance according to the rotational speed using the rotational speed data. This is done by multiplying the coefficient by the peak value.
[0014]
Abnormality detection method of the tire according to claim 3, in place of claim 1 or 2, a magnetic material, a temperature-sensitive ferrite having a Curie point at a predetermined temperature range, the peak value of the electromotive force measured waveform When the size falls below a predetermined value, it is determined that the tire annular portion has reached an abnormal temperature.
[0015]
According to this tire abnormality detection method, since the magnetic body is a temperature-sensitive ferrite having a Curie point in a predetermined temperature range, a large repeated deformation or the like can be achieved by setting the predetermined temperature range near the upper limit of the normal range of the temperature. When the temperature inside the tire rises and approaches the Curie point, the magnetic force of the magnetic body decreases, so that even if the magnetic body passes through the annular magnetic path, only a small value of electromotive force is excited. In the tire abnormality detection method, when the peak value of the electromotive force measurement waveform falls below a predetermined value, it is determined that the tire annular portion has reached an abnormal temperature. It is possible to catch a sign of a failure that causes an abnormally high temperature and to inform the driver of this.
[0016]
This temperature-sensitive ferrite is a soft magnetic material, and once it reaches the Curie point, its magnetic permeability returns to its original value when it returns to a temperature lower than the Curie point. It can be used as a magnetic material that enters and changes the magnetic flux density. And the temperature sensitive ferrite can adjust the temperature characteristic of the magnetic force of the temperature sensitive ferrite by changing the proportion of the ferrite component in the magnetic material so that the Curie point of this magnetic material becomes the required temperature. Therefore, the upper temperature limit can be freely set according to the type of tire and the failure to be detected.
[0017]
A tire abnormality detection method according to a fourth aspect is the method according to the third aspect , wherein the magnetic material is a soft magnetic material.
[0018]
According to this tire abnormality detection method, a soft magnetic material is used as the temperature-sensitive magnetic material, so that even if the magnetic material once reaches the Curie point and loses its magnetic force, the temperature drops below the Curie point. Since the magnetic force is restored, the temperature abnormality can be detected repeatedly.
[0019]
A tire abnormality detection method according to a fifth aspect of the present invention is the tire abnormality detection method according to any one of the first to fourth aspects, wherein the tire annular portion is one or both of a shoulder portion and a bead portion of the tire. .
[0020]
According to this tire abnormality detection method, the tire annular portion is set to either one or both of the shoulder portion and the bead portion of the tire, which has a relatively high probability of failure. Can do. Also, in this tire abnormality detection method, after correcting the peak value of the electromotive force measurement waveform with the rotation speed of the tire, abnormality is determined using the corrected peak value of the electromotive force as described above. It is the same.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a tire abnormality detection method according to the present invention will be sequentially described with reference to FIGS. FIG. 1 is a schematic front view of a tire 1 used in this tire abnormality detection method. A total of twelve magnetic bodies that are adjacent to each other in the circumferential direction and that are long in the circumferential direction are arranged at an equal pitch on the outer surface of the annular portion 2 constituting the shoulder portion on one side of the tire 1.
[0025]
FIG. 2 is a side view of the tire when the tire 1 of FIG. 1 is viewed from above with the tire abnormality detection device 10 that detects abnormality of the tire 1 disposed. The tire abnormality detection device 10 is attached to both ends of an iron core 11, each permanent magnet 12 having a magnetic pole in a direction facing the surface of the tire, and an electromotive force measurement wound around the outer periphery of the iron core 11. A yoke portion 14 including a coil 13 is provided, and the yoke portion 14 forms a magnetic path F.
[0026]
A voltmeter 15 for measuring electromotive force is connected to both ends of the electromotive force measuring coil 13, and the voltage measured by the voltmeter 15 is determined to be normal or abnormal by a tire abnormality determination device (not shown). If it is determined, the tire abnormality detection device 10 is configured so that an abnormality warning is issued to the driver. The yoke portion 14 is fixedly provided on the axle portion that does not rotate even when the tire rotates, but the voltmeter can be provided at an arbitrary location on the vehicle body side.
[0027]
In addition, although the hard magnetic material represented by the permanent magnet, or normal soft magnetic materials, such as iron, can also be used as the magnetic body 3, in this embodiment, the Curie point is near the normal temperature upper limit of the tire 1. Soft temperature sensitive ferrite with The soft magnetic material once returns to its original permeability when the temperature is restored to the normal state even if the material loses the magnetic force at the temperature above the Curie point. You can use it many times, even if you have a history. Furthermore, the shape of the magnetic body 3 is not limited to the one that is long and thin in the circumferential direction as in the present embodiment, and for example, it can be formed by printing powder magnetism in an arbitrary pattern, They can be freely combined according to the position and posture of the yoke portion 14 within a range in which a periodic electromotive force measurement waveform can be obtained. Further, the number of the magnetic bodies 3 should be increased or decreased as necessary, and the portion of the tire 1 in which the magnetic body 3 is embedded is also near the bead portion or the carcass ply turn-back end in addition to the shoulder portion. Depending on the failure to be detected, it can be selected as appropriate.
[0028]
Although the magnetic body 3 moves in the circumferential direction as the tire rotates, FIG. 1 shows the tire 1 in a state where the magnetic body 3 is located at a rotational position just opposite to the yoke portion 14. The magnetic path F is almost closed with only a slight gap between the tire 1 and the permanent magnet 3, and therefore the magnetic flux density of the magnetic path F shows the maximum value.
[0029]
On the other hand, FIG. 3 is a side view of the tire when the tire 1 at a rotational position different from that in FIG. 1 is viewed from above, but in the state of FIG. 3, there is no magnetic body 3 positioned facing the yoke portion 14. Therefore, since the magnetic body 3 does not constitute a part of the magnetic path F, the magnetic path F is almost open and the magnetic flux density is minimized. When the tire rotates continuously, twelve magnetic bodies 3 arranged in the circumferential direction at equal pitches sequentially enter and exit the magnetic path F, but the magnetic bodies 3 enter and exit the magnetic path F. In doing so, the magnetic flux density of the magnetic path F changes between the maximum value and the minimum value, and an electromotive force is generated by this change. The magnitude of this electromotive force depends on the rotational speed of the tire and the difference between the maximum value and the minimum value of the magnetic flux density.
[0030]
FIG. 4 (a) shows a corrected electromotive force waveform after correcting the electromotive force measurement waveform measured by the voltmeter 15 into a normal state and correcting the waveform so as not to affect the rotational speed. However, the waveform is such that a positive peak that appears when the magnetic body 3 enters the magnetic path F and a negative peak that appears when the magnetic body 3 exits the magnetic path F appear alternately. When the upper limit and the lower limit of the normal range of the peak value P are Pmax and Pmin, respectively, P when the tire 1 is normal is a value in the range represented by the expression (1). On the other hand, when the upper and lower limits of the interval T between adjacent positive peaks when the tire is normal are Tmax and Tmin, respectively, T when the tire 1 is normal is a value in the range represented by the formula (2). It is.
Pmin <P <Pmax (1)
Tmin <T <Tmax (2)
[0031]
FIG. 4B is a corrected electromotive force waveform corresponding to a state in which the annular portion 2 of the tire 1 is abnormally spread in the width direction. In this state, when the magnetic body 3 comes to the rotational position facing the yoke portion 14, the gap between the magnetic body 3 and the yoke portion 14 becomes extremely small. Therefore, the maximum value of the magnetic flux density of the magnetic path F is Become very large. As a result, the peak value P of the electromotive force at this time falls within the range represented by the expression (3), and it can be determined that the tire width direction distortion is abnormal.
P> Pmax (3)
[0032]
FIG. 4C is a corrected electromotive force waveform corresponding to a state where the annular portion 2 of the tire 1 is abnormally spread in the circumferential direction. In this state, even if the rotational speed is the same, the interval between adjacent magnetic bodies becomes extremely wide. Therefore, the interval T between the positive or negative peak values of the electromotive force is in the range represented by Expression (4). It can be determined that the tire circumferential distortion is abnormal. On the contrary, in the state where the annular portion 2 of the tire 1 is abnormally narrowed in the circumferential direction, the interval T between the positive peak values of the electromotive force is in the range represented by the formula (5) according to the same principle. Also, it can be determined that the tire circumferential distortion is abnormal.
T> Tmax (4)
T <Tmin (5)
[0033]
FIG. 4C is a corrected electromotive force waveform corresponding to a state in which the temperature of the annular portion 2 of the tire 1 has abnormally increased. Since the magnetic body 3 is a temperature-sensitive ferrite whose component ratio is adjusted so that the Curie point is close to the upper limit of the normal temperature range, when the temperature of the annular portion 2 of the tire 1 rises abnormally, the magnetic force of the magnetic body 3 is almost equal. It becomes zero, and the peak value P of the electromotive force is in the range represented by the formula (6), and it can be determined that the tire temperature is abnormal.
P <Pmin (6)
[0034]
The rotational speed data for correcting the corrected electromotive force waveform as described above can be rotational speed data measured by a separate means such as information on an axle rotational speed meter used in the anti-skid brake system. In order to perform the correction for removing the dependency on the rotational speed, it is possible to easily carry out the online operation by multiplying the peak value by a correction coefficient determined in advance according to the rotational speed using this data.
[0035]
FIG. 5 is a schematic side view showing a tire abnormality detection device 20 used in a tire abnormality detection method according to another embodiment. In this measuring device 20, as a magnetomotive force element of the yoke portion 25 forming the magnetic path F, an exciting coil 22 and a constant current DC power source 23 wound around the iron core 21 are used instead of the permanent magnet 12 in FIG. Is used. The yoke portion 25 includes the electromagnet 24 and an electromotive force measurement coil 26. The method for detecting tire abnormality using the tire abnormality detection device 20 is the same as in the previous embodiment, and will be omitted for ease of explanation.
[0036]
【The invention's effect】
As is apparent from the above description, according to the present invention, the magnetic body is disposed at a predetermined pitch along the circumferential direction in the annular portion of the tire, and an annular magnetic path that intersects the annular portion is formed. A magnet is provided on the vehicle body side, and an electromotive force induced by a change in magnetic flux density of the annular magnetic path caused by the rotation of the tire is measured, and an abnormality in the tire annular portion is detected from this measurement waveform. The abnormal temperature rise can be accurately detected at the same time as the abnormality is detected by directly measuring the deformation of the tire having a strong correlation. In addition, since this detection method captures changes in magnetic flux density, it is not affected by the environment such as dirt or electrical noise and is highly reliable compared to other electrical detection methods and optical detection methods. Therefore, it is possible to detect abnormality of the tire. Furthermore, according to the present invention, not only tire abnormalities but also wheel rolling abnormalities can be detected, so that the system using the abnormality detecting method of the present invention can provide a driver with abnormalities. In addition to issuing an alarm, it is possible to allow the driver to drive while confirming that the wheel is in a normal rolling state during normal vehicle travel.
[Brief description of the drawings]
FIG. 1 is a schematic front view showing a tire used in an embodiment of a tire abnormality detection method according to the present invention.
FIG. 2 is a side view of a tire shown in a state where an abnormality detection device is arranged.
FIG. 3 is a side view of a tire shown in a state where an abnormality detection device is arranged.
FIG. 4 is a graph showing a corrected electromotive force measurement waveform.
FIG. 5 is a schematic side view of an abnormality detection device used in another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tire 2 Annular part 3 Magnetic body 10, 20 Abnormality detection apparatus 11 Iron core 12 Permanent magnet 13, 26 Electromotive force measuring coil 14, 25 Yoke part 15 Voltmeter 22 Excitation coil 23 Constant current DC power supply 24 Electromagnet

Claims (5)

磁性体を、タイヤ軸心を中心軸とするタイヤの所定環状部分に、タイヤ周方向に沿って所定のピッチで配設するとともに、前記タイヤ環状部分と交差する環状磁路を形成する磁石を車体側に設け、タイヤの回転に伴い生起する環状磁路の磁束密度変化によって、環状磁路の外周に巻きつけたコイルに誘起される起電力を測定するとともに、タイヤの回転速度を測定し、起電力の測定波形のピーク値をこの回転速度のデータを用いて回転速度の依存性を除去する補正を行ったあと、補正後の測定波形のピーク値から前記タイヤ環状部分の異常を検出するタイヤの異常検出方法。  A magnetic body is disposed on a predetermined annular portion of the tire centered on the tire axis at a predetermined pitch along the tire circumferential direction, and a magnet that forms an annular magnetic path intersecting the tire annular portion is provided on the vehicle body. In addition to measuring the electromotive force induced in the coil wound around the outer circumference of the annular magnetic path due to the change in magnetic flux density of the annular magnetic path that occurs as the tire rotates, the rotational speed of the tire is also measured. After correcting the peak value of the measurement waveform of the electric power to remove the dependency of the rotation speed by using the data of the rotation speed, the abnormality of the tire annular portion is detected from the peak value of the measurement waveform after the correction. Anomaly detection method. 前記回転速度の依存性を除去する補正は、回転速度のデータを用いて、回転速度に応じて予め定まる補正係数をピーク値に乗ずることによって行う請求項1に記載のタイヤの異常検出方法。  The tire abnormality detection method according to claim 1, wherein the correction for removing the dependency on the rotational speed is performed by multiplying the peak value by a correction coefficient determined in advance according to the rotational speed using rotational speed data. 磁性体を、所定温度範囲にキュリー点を有する感温フェライトとし、前記補正後の起電力の測定波形のピーク値の大きさが所定の値を下回った時、前記タイヤ環状部分が異常な温度に達したと判定する請求項1もしくは2に記載のタイヤの異常検出方法。When the magnetic material is a thermosensitive ferrite having a Curie point in a predetermined temperature range, and the magnitude of the peak value of the measured waveform of the electromotive force after correction is less than a predetermined value, the tire annular portion has an abnormal temperature. The tire abnormality detection method according to claim 1, wherein it is determined that the tire has reached. 前記磁性体を、軟質磁性材料とする請求項3に記載のタイヤの異常検出方法。The tire abnormality detection method according to claim 3 , wherein the magnetic material is a soft magnetic material. タイヤ環状部分を、タイヤのショルダ部とビード部のいずれか一方もしくは両方とする請求項1〜4のいずれかに記載のタイヤの異常検出方法。The tire abnormality detection method according to claim 1 , wherein the tire annular portion is one or both of a shoulder portion and a bead portion of the tire.
JP2002228450A 2002-08-06 2002-08-06 Tire abnormality detection method and wheel rolling abnormality detection method Expired - Fee Related JP4198414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228450A JP4198414B2 (en) 2002-08-06 2002-08-06 Tire abnormality detection method and wheel rolling abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228450A JP4198414B2 (en) 2002-08-06 2002-08-06 Tire abnormality detection method and wheel rolling abnormality detection method

Publications (2)

Publication Number Publication Date
JP2004069462A JP2004069462A (en) 2004-03-04
JP4198414B2 true JP4198414B2 (en) 2008-12-17

Family

ID=32015129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228450A Expired - Fee Related JP4198414B2 (en) 2002-08-06 2002-08-06 Tire abnormality detection method and wheel rolling abnormality detection method

Country Status (1)

Country Link
JP (1) JP4198414B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861869A1 (en) * 2003-11-05 2005-05-06 Michelin Soc Tech PROCESS FOR EXTRACTING AT LEAST ONE SIZE CHARACTERIZING A PERIODIC SIGNAL, AND APPLICATION
US10001130B2 (en) 2004-09-17 2018-06-19 Shimadzu Corporation Vacuum pump
JP4525267B2 (en) * 2004-09-17 2010-08-18 株式会社島津製作所 Vacuum pump
JP4710322B2 (en) * 2005-01-11 2011-06-29 株式会社島津製作所 Vacuum pump
JP2007150006A (en) * 2005-11-29 2007-06-14 Jfe Ferrite Corp Magnetic property recovery method of ferrite core
US7965054B2 (en) 2007-07-26 2011-06-21 Shimadzu Corporation Vacuum pump
JP5495971B2 (en) 2010-06-24 2014-05-21 株式会社ブリヂストン Tire internal failure judgment method
JP2019211430A (en) * 2018-06-08 2019-12-12 株式会社ブリヂストン Method for detecting distortion of rubber member and device thereof, and tire for detecting internal distortion

Also Published As

Publication number Publication date
JP2004069462A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP6677347B2 (en) Pneumatic tire, tire wear information acquisition system, and pneumatic tire wear information acquisition method
EP1642108B1 (en) Method and system for determining a tyre load during the running of a motor vehicle
EP1046893B1 (en) Torque sensing apparatus
JP5495971B2 (en) Tire internal failure judgment method
JP4198414B2 (en) Tire abnormality detection method and wheel rolling abnormality detection method
JPH05264562A (en) Bearing apparatus integrating rotary sensor
JP4055658B2 (en) Vehicle state monitoring device and ground plane state quantity acquisition device
US11774301B2 (en) Tire load estimation system and method
JPH0537505U (en) Passive pick-up device that detects the tire condition of a vehicle wheel and measures the wheel rotation characteristics
EP1680289B1 (en) Thermal monitoring system for a tire
JP3954394B2 (en) Tire temperature measurement method
JP2003285728A (en) Method of measuring force on tire and method of measuring friction coefficient
JP2004177282A (en) Displacement measuring device and tire circumferential force measuring sensor
JP3019022B2 (en) Magnetic rotation speed sensor
JP2003344205A (en) Method of detecting abnormality of internal pressure in tire
JP4393827B2 (en) Demagnetizing device and demagnetizing method
EP1512557A1 (en) Magnetized tire
EP3916370B1 (en) Tyre temperature sensor, system and method of measuring a temperature of a pneumatic tyre
JP4470720B2 (en) Tire surface rubber thickness measuring device
JP6686133B2 (en) Load and torque sensing device
JP3518575B2 (en) Tire pressure estimation device
JP2005153785A (en) Tire condition estimating device and vehicular tire
WO2021201095A1 (en) Wear measurement device for tire and embedded pin for wear measurement device
JP2005212696A (en) Tire abnormal condition detecting device
JP2004338620A (en) Tire temperature measuring method, and tire temperature measuring apparatus used for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees