JP4197251B2 - 光源駆動装置と情報記録装置 - Google Patents

光源駆動装置と情報記録装置 Download PDF

Info

Publication number
JP4197251B2
JP4197251B2 JP2002382025A JP2002382025A JP4197251B2 JP 4197251 B2 JP4197251 B2 JP 4197251B2 JP 2002382025 A JP2002382025 A JP 2002382025A JP 2002382025 A JP2002382025 A JP 2002382025A JP 4197251 B2 JP4197251 B2 JP 4197251B2
Authority
JP
Japan
Prior art keywords
pulse width
light source
signal
current
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002382025A
Other languages
English (en)
Other versions
JP2004213763A (ja
Inventor
成博 増井
秀利 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002382025A priority Critical patent/JP4197251B2/ja
Publication of JP2004213763A publication Critical patent/JP2004213763A/ja
Application granted granted Critical
Publication of JP4197251B2 publication Critical patent/JP4197251B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、画像形成装置又は情報記録装置に搭載される多値レベル化及びマルチパルス化された光変調波形を駆動及び制御するレーザ駆動制御装置等の光源駆動装置と、その光源駆動装置を搭載したMDドライブ装置,MOドライブ装置,CD−Rドライブ装置,CD−RWドライブ装置,DVD−Rドライブ装置,DVD−RWドライブ装置,DVD+RWドライブ装置,DVD−RAMドライブ装置などの情報記録装置に関する。
【0002】
【従来の技術】
光変調によって記録を行う光ディスク装置においては、1ビームオーバーライト技術や高密度化のための記録マーク形状制御のため、レーザ光の光変調波形をマルチパルス化,多値レベル化して制御する技術が必須となっており、それにともなって光源駆動部(以下「LDドライバ」とも称する)においては複数のLD駆動電流を切り換える(スイッチングする)必要があり、入力される信号線が増加する。
また、今後さらに情報記録媒体に対して高速記録及び高密度記録を行うためには、データの転送レートの増大,パルス分割幅のより細分化,さらにパワーのレベル数の増加が避けられない。
【0003】
レーザ光を照射するピックアップは情報記録媒体の半径方向に可動(この動作を「シーク動作」と呼ぶ)させるため、ピックアップと信号処理部等が搭載されている回路基板とはフレキシブルプリント回路(Flexible PrintCircuit:FPC)基板と呼ばれる曲げの可能な基板で接続されるのが一般的であり、LDドライバはピックアップに搭載された光源(レーザダイオード:LD)の近傍に配置し、信号制御部からLDドライバまではこのFPC基板を用いて配線している。
しかし、光変調制御信号を供給するFPC基板はある程度の長さとなることは避けられないので、光変調制御信号波形の歪み,遅延(特に複数の制御信号間の遅延差(「スキュー」と称する))等によるLD駆動電流のスイッチタイミングのずれが生じ、LD駆動電流を切り換えるスイッチが同時に切り換わる時点で波形に乱れが生じ、所望の光波形でレーザ発光させることができなくなる。
【0004】
図25は、その説明図である。
同図の(a)の電流源300のIb,Ie,Iwは、光源LD303の照射レベルに対応した電流を供給し、スイッチ301のSW1とSW2はそれぞれ信号S1とS2に従って各電流を選択後、その各電流は加算回路302で加算され、その電流が光源LD303を駆動する。信号S1がハイで信号S2がローの時は光源LD303には電流Ib+Ieが流れてイレースパワーPeで照射する。また、信号S1がローで信号S2がハイの時は光源LD303には電流Ib+Iwが流れてライトパワーPwで照射する。ところが、同図の(b)にmで矢示するように、信号S1に遅延が発生して信号S1とS2の間にスキューが生じると、Pe→Pwへの照射レベル変化の際に光波形に乱れ(同図の(b)に破線枠で囲んだ部分)が生じる。
【0005】
上述のように所望の光波形でレーザ発光させることができなくなると、マーク形状やマークの位置の精度が損なわれ、その結果としてデータエラーの原因になる。特に光ディスク装置固有のスキューに対して高速化記録を行う際にはこの影響はより顕著に現れる。
例えば、1ns程度のスキューが生じている光ディスク装置において、CD1倍速記録を行う際には、1チャネルクロック周期Tは約230nsであり、通常このチャネルクロック周期Tに対してT/32程度の分解能(〜7ns)でパルス幅を設定する必要があり(なお、情報記録媒体によってはT/40の分解能が必要なものもある)、スキューが1ns程度あったとしてもさほど影響は生じない。
【0006】
しかし、CD48倍速記録を行う際にはT=約4.8nsであり、約150ps程度のパルス幅設定分解能が必要になり、1nsものスキューは許容できるものではなく、上述のように所望の光波形でレーザ発光させることができなくなってマーク形状やマークの位置の精度が損なわれ、その結果としてデータエラーの原因になるという問題があった。
そこで、このような問題を解決するものとして、複数の電流源の電流を切り換えるスイッチ手段を介してLDに供給するLD駆動手段と、情報記録媒体に記録する2値化記録信号に対応してLDを駆動する駆動波形(光変調波形)を復元し、スイッチ手段を制御する駆動波形復元手段とを同一のレーザ駆動集積回路に設けることにより、LD駆動手段と駆動波形復元手段との間の配線を短くしてスキュー発生を防止した光源駆動装置が提案されている(例えば、特許文献1参照)。
【0007】
【特許文献1】
特開平11−283249号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上述した従来の光源駆動装置では、LD駆動手段と駆動波形復元手段とを同一集積回路に設けたとしても、各スイッチング制御信号を生成する回路やスイッチの遅延,制御信号線の線路長,負荷条件など全てを等価にすることは困難であり、少なからずはスキューが発生する。今後のより高速化の要求に対してはこの微小なスキューであっても無視できなくなる恐れもあり、根本的な解決にならないという問題があった。
【0009】
また、今後さらに情報記録媒体への高速化,高密度化記録が求められると、光変調制御信号生成部(駆動波形復元手段)では、より高速動作及び高集積化が求められるため微細なCMOSプロセスが好適となるが、一方では、LD駆動部には、1〜数V程度の動作電圧を持つLDが接続されるため、高耐圧プロセス(例えば5Vや3.3Vなど)が要求される。
【0010】
しかしながら、通常、微細なCMOSプロセスでは高耐圧にすることは困難である(例えば、0.18μmCMOSプロセスでは1.8V程度の耐圧しかない)ので、高速化の実現が困難であったり、あるいは大幅なコストアップを招き、消費電力が増大し、集積回路サイズの増大するなどの多くの不具合が生じるという問題もあった。さらには、上記スキュー量はデバイスのバラツキなどによって個体間で異なることもある。
【0011】
さらには、光変調制御信号を伝送する際(特にFPC基板上を伝送する際は顕著となるが)、理想的な二値化信号波形で伝送されず、受信側では信号波形のなまりが生じ、その信号波形のなまりが立上りと立下りで異なる場合や、受信側で二値化する際のスライスレベルの変動や入力電圧振幅の低下などにより、送信側でのパルス幅と受信側でのパルス幅は異なってしまう。
つまり、光波形を所望の光波形で発光させることができなくなり、マーク形状やマークの位置の精度が損なわれた結果としてデータエラーの原因になる。
【0012】
図26はその問題を説明するための信号波形図である。
同図の(a)は理想的な二値化波形を示しており、同図の(b)は波形のなまりが生じて立上り時間と立下り時間が異なった場合の波形例を示しており、同図の(c)は同図の(b)の波形を図示したスライスレベルで二値化した場合の波形を示している。立下り時間が異なるとパルス幅が理想値と異なる。
また、同図の(e)は、同図の(d)に示すなまりの生じた波形に対して異なるスライスレベル(i)〜(iii)で二値化した場合の波形を示している。その実線,破線,一点鎖線で示す部分はそれぞれスライスレベル(i)(ii)(iii)に対応する。
【0013】
このようにスライスレベルが異なると、二値化した信号のパルス幅が変動する。また、スライスレベルが一定であっても、伝送時の損失などによって入力電圧振幅が変動しても同様の問題が生じる。
このようなパルス幅変動量は伝送路などによって決まるため、光ディスク装置によって固定であり、変調信号の立上り/立下り時間が必要なパルス幅精度に対して十分短い場合は大きな問題とはならないが、高速記録の際にパルス幅が狭くなりパルス幅精度も短いものが要求されると、1nsec程度の立上り時間でのパルス幅変動による影響は無視できず、この問題はより顕著に現れる。
さらには、高速化が進んでよりパルス幅が短くなり、パルス幅Tw<立上り時間Tr,立下り時間Tfとなると、二値化した際パルス幅が変動してしまう(同図の(f)〜(h)参照)。つまり、あるパルス幅以下のパルスのみパルス幅が変動してしまうという問題も生じる。
【0014】
また、複数の光変調制御信号間で立上り時間や立下り時間あるいはスライスレベルや入力電圧振幅の差があると、光変調制御信号間のスキューが生じ、上述したスキューによる光波形の乱れの問題が起こる。
このような問題を解決する手段として、光変調制御信号を差動信号で転送する技術が提案されている。
しかしながら、その従来の技術では光変調制御信号の信号線数が二倍になるため、FPC基板幅が拡大し、ピックアップの小型化を妨げてしまう。また、集積回路のピン数も増加するためコストアップになるという問題があった。
【0015】
この発明は上記の課題を解決するためになされたものであり、情報記録媒体に対する高速記録及び高密度記録時、光変調制御信号波形の歪み,スキュー,信号伝送によるパルス幅の変動等によって光変調波形が所望値からずれるのを抑制し、高速化などの要求に対してもコスト,性能などを犠牲にすることなく実現できる光源駆動装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
この発明は上記の目的を達成するため、次の(1)〜()の各光源駆動装置を提供する。
(1)光源の駆動波形生成情報に基づいて複数の変調信号を生成する変調信号生成手段と、その変調信号生成手段によって生成された変調信号に基づいて複数個の電流源から出力される電流のいずれか1つ又は複数を選択する電流源選択手段と、その電流源選択手段によって選択された1つ又は複数の電流に基づいて多段階の電流量の電流を生成し、その生成した電流を光源に供給して多値レベルの光を発生させて駆動する光源駆動手段と、上記変調信号生成手段から出力された変調信号の出力電圧を調整する出力電圧調整手段と、その出力電圧調整手段によって調整された変調信号のパルス幅を検出するパルス幅検出手段と、そのパルス幅検出手段の検出結果に基づいて上記出力電圧調整手段による調整時の出力電圧を制御する出力電圧制御手段を備えた光源駆動装置。
【0019】
(2)光源の駆動波形生成情報に基づいて複数の変調信号を生成する変調信号生成手段と、その変調信号生成手段によって生成された変調信号に基づいて複数個の電流源から出力される電流のいずれか1つ又は複数を選択する電流源選択手段と、その電流源選択手段によって選択された1つ又は複数の電流に基づいて多段階の電流量の電流を生成し、その生成した電流を光源に供給して多値レベルの光を発生させて駆動する光源駆動手段と、上記変調信号生成手段から出力された変調信号を所定のスライスレベルに基づいて二値化する二値化手段と、その二値化手段によって二値化された変調信号のパルス幅を検出するパルス幅検出手段と、そのパルス幅検出手段の検出結果に基づいて上記二値化手段による二値化時のスライスレベルを制御するスライスレベル制御手段を備え、上記スライスレベル制御手段を、上記パルス幅検出手段の検出結果に基づいて上記二値化手段による二値化時の各変調信号毎にそれぞれのスライスレベルを個々に制御する手段にした光源駆動装置。
(3)(1)の光源駆動装置において、上記パルス幅検出手段を、上記光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号を平滑化することによって上記出力電圧調整手段によって調整された変調信号のパルス幅を検出する手段にした光源駆動装置。
(4)(2)の光源駆動装置において、上記パルス幅検出手段を、上記光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号を平滑化することによって変調信号のパルス幅を検出する手段にした光源駆動装置。
(5)光源の駆動波形生成情報に基づいて複数の変調信号を生成する変調信号生成手段と、その変調信号生成手段によって生成された変調信号に基づいて複数個の電流源から出力される電流のいずれか1つ又は複数を選択する電流源選択手段と、その電流源選択手段によって選択された1つ又は複数の電流に基づいて多段階の電流量の電流を生成し、その生成した電流を光源に供給して多値レベルの光を発生させて駆動する光源駆動手段と、上記変調信号生成手段から出力された変調信号のパルス幅を検出するパルス幅検出手段と、そのパルス幅検出手段の検出結果に基づいて上記駆動波形生成情報を変更することにより上記変調信号のパルス幅を調整するパルス幅制御手段を備えた光源駆動装置。
【0023】
)(1)乃至()のいずれかの光源駆動装置において、上記電流源選択手段で上記各変調信号によって複数の電流を選択するタイミングの差を検出する遅延検出手段と、その遅延検出手段の検出結果に基づいて上記電流源選択手段による上記各変調信号によって複数の電流を選択するタイミングの差がほぼ0になるように各々の変調信号の遅延量を制御する遅延制御手段とを設けた光源駆動装置。
)(1)乃至()のいずれかの光源駆動装置において、上記変調信号のハイレベル出力電圧及びローレベル電圧電圧を任意に定めるようにした光源駆動装置。
【0024】
また、次の()の情報記録装置も提供する。
)(1)乃至()のいずれかの光源駆動装置を搭載した情報記録装置。
【0025】
【発明の実施の形態】
以下、この発明の参考技術と実施形態を図面に基づいて具体的に説明する。
まず、この発明と参考技術の光源駆動装置を適用する情報記録再生装置の全体構成及び動作概要について説明する。
図1は、この発明の参考技術と一実施形態である情報記録再生装置の構成を示すブロック図である。
情報記録媒体100は再生すべき情報が記録された光ディスク又は情報の記録が行われる光ディスク(例えば、CD−ROMディスク,DVD−ROMディスク,CD−Rディスク,CD−RWディスク,DVD−Rディスク,DVD−RAMディスク,MDディスク,MOディスクなどの光ディスク等)である。
【0026】
ピックアップ101は、光源(例えば半導体レーザ(LD))102からの出射光を情報記録媒体100に照射して情報の記録を行ったり、情報記録媒体100からの反射光を受光して受光信号に変換するものであり、光源102や光源102を駆動する光源駆動部(ここでは図示を省略する),反射光を受光して受光信号に変換する受光部103などが配置されている。また、ピックアップ101には光源102の出射光の一部をモニタするモニタ受光部も配置され、そのモニタ受光部からの出力であるモニタ信号によって光源102の出射光量変動が制御される。さらに、情報記録媒体100の照射光に対する傾き(「チルト」と呼ぶ)を検知するためのチルト検出受光部などが配置される場合もある。さらにまた、異なる媒体フォーマットが定められた複数種類の情報記録媒体に対応する情報記録再生装置の場合(例えば、DVD及びCD両対応装置など)、それぞれの情報記録媒体に好適な波長の光源を持つ場合があり、それぞれの光源出射時に情報記録媒体からの反射光を受光する受光部やモニタ受光部を別個に備える場合もある。
【0027】
信号処理部104は、ピックアップ101に配置された各種受光部からの受光信号が入力され、様々な信号処理が行われる。例えば、受光信号から情報を再生したり、情報記録媒体の回転に伴う面振れやトラックの半径方向の振れなどの変動に対して常に所定の誤差内で光を照射するように制御(フォーカスサーボ制御及びトラックサーボ制御)するために受光信号からサーボエラー信号を生成し、そのサーボエラー信号に基づいてピックアップ101を制御する。また、記録すべき情報を所定の規則に従って変調し、記録信号として光源102(または光源駆動部)に出力したり、光源102の出力光量制御を行う。
【0028】
回転駆動部105は、データ記録及び再生時に情報記録媒体100を所定の回転速度で回転させるものであり、信号処理部104によって回転速度が制御(スピンドルサーボ制御)される。例えば、CLV回転制御を行う際には、より精度よく回転制御をするために情報記録媒体100に埋め込まれた回転制御信号をピックアップ101を介して検出し、その回転制御信号に基づいて回転制御を行う。回転制御信号には、例えば再生専用の情報記録媒体などでは記録された情報に所定間隔で配置された同期信号などを用い、記録可能な情報記録媒体では記録トラックが所定の周波数で蛇行したウォブルなどを用いる。
コントローラ106は、図示を省略したホストコンピュータとの記録再生情報の受け渡しやコマンド通信を行うと共に、この情報記録再生装置の全体の制御を行う。
【0029】
ピックアップ101は情報記録媒体100の半径方向にシーク動作させるため、ピックアップ101と信号処理部104等が搭載されている回路基板とはFPC基板(またはケーブル)と呼ばれる基板(またはケーブル)で接続しており、光源102や受光部103等のピックアップ101に搭載される部品はこのFPC基板に実装することもできる。
【0030】
次に、上記情報記録再生装置の信号処理部の構成及び動作概略について説明する。
図2は、図1に示した情報記録再生装置の信号処理部104の構成を示すブロック図である。
この実施形態では、異なるフォーマットの情報記録媒体へ対応させるために二つの光源LD1と光源LD2(図1の光源102に相当する)を備えており、受光部PD2及び受光部PD5(図1の受光部103に相当する)によってそれぞれの光源LD1と光源LD2の照射光の一部をモニタする。
【0031】
受光部PD1では光源LD1の照射時に情報記録媒体からの反射光を受光し、受光部PD4では光源LD2の照射時に情報記録媒体からの反射光を受光する。受光部PD3はチルト量を検知する。受光部PD1,受光部PD3,受光部PD4(図1の受光部103に相当する)は、複数に分割された分割受光素子によって受光している。
なお、ピックアップによっては光源LD1と光源LD2の出射光を同一の受光部でモニタする場合もある。同様に、情報記録媒体からの反射光を受光する受光部も同一とする場合もある。
【0032】
受光信号処理部4は、受光部PD1,受光部PD3,受光部PD4がそれぞれ出力する各受光信号を入力し、その各受光信号のオフセット調整及びゲイン調整などの処理を行う。
サーボ信号演算処理部13は、受光信号処理部4から供給される各受光信号からサーボエラー信号を生成する。同時に、オフセット調整とゲイン調整も行い、生成したサーボエラー信号をサーボプロセッサ14へ供給する。
RF選択部5は、受光部PD1及び受光部PD4の出力する受光信号を入力し、後段の回路に必要な信号を選択あるいは一部加減算などの演算を行って供給する。
ウォブル信号生成部6は、RF選択部5から入力される信号に基づいて記録可能な情報記録媒体にプリフォーマットされたウォブルを検出するものである。
【0033】
ウォブル信号処理部15は、ウォブル信号生成部6によって生成されたウォブル信号から二値化ウォブル信号を抽出し、WCK生成部17及び回転制御部18へ供給する。また、ウォブルに情報記録媒体毎に所定の規則で変調されたアドレス情報を復調し、コントローラ19(図1のコントローラ106に相当する)へ供給する。
RF信号処理部/PLL部16は、RF選択部5から入力された再生RF信号から二値化RF信号を生成し、再生している情報記録媒体の変調方式規則に則って復調を行う。また、PLL回路によって二値化RF信号から再生クロックを抽出する。復調したデータはコントローラ19へ供給する。さらに、二値化RF信号に所定間隔で挿入された同期信号より回転制御信号を抽出して回転制御部18へ供給する。
【0034】
回転制御部18は、ウォブル信号処理部15又はRF信号処理部/PLL部16から入力される信号から回転制御を行うためのスピンドルエラー信号を生成し、サーボプロセッサ14へ供給する。また、情報記録媒体を角速度一定(CAV)で回転させる場合は回転制御駆動部(図示を省略)から出力されるディスク回転を示す信号(図示を省略)によってスピンドルエラー信号を生成する。
サーボプロセッサ14は、コントローラ19からの指令に基づいて入力される各種サーボエラー信号からサーボ制御信号を生成し、サーボドライバ7へ出力する。
サーボドライバ7は、サーボプロセッサ14から入力されるサーボ制御信号に基づいてサーボドライブ信号を生成する。各駆動部は供給されたサーボドライブ信号によってサーボ制御動作が行われる。ここでは、フォーカス制御,トラック制御,シーク制御,スピンドル制御,チルト制御である。
【0035】
WCK生成部17は、ウォブル信号処理部15から供給された二値化ウォブル信号に基づいて記録クロック信号WCKを生成し、LD変調信号生成部集積回路2のLD変調信号生成部10とコントローラ19の各部へ供給する。記録時にはその記録クロック信号WCKを基準にして記録データの生成などが行われる。
記録時には、コントローラ19から記録クロック信号WCKに同期して記録データ信号WdataがLD変調信号生成部10へ供給される。その記録データ信号Wdataは記録すべき情報が所定の規則に従って変調されている。
LD変調信号生成部10は、WCK生成部17から入力される記録クロック信号WCK及びコントローラ19から入力される記録データ信号Wdataから光源LD1あるいは光源LD2を変調するためのLD変調信号を生成し、LD駆動集積回路3のLD駆動部12へ供給する。
【0036】
LD制御部9は、受光部PD2あるいは受光部PD5からのモニタ受光信号を入力し、そのモニタ受光信号に基づいて光源LD1と光源LD2の出射光量が所望の値になるようにLD駆動部12へLD制御信号を供給する(いわゆる自動記録パワー(Automatic Power Control:APC)制御を行う)。
LD駆動部12は、LD制御部9から入力されるLD制御信号及びLD変調信号生成部10から入力されるLD変調信号に基づいて光源LD1あるいは光源LD2を電流駆動して発光させる。
また、コントローラ19からは各部の制御信号が出力される。
【0037】
次に、上記駆動・制御対象となる光源LD1と光源LD2について説明する。通常、LDの駆動電流ILDに対する光出力Poは次の数1に示す演算式に基づく演算処理によって近似することができる。ここで、η:微分量子効率、Ith:閾値電流である。
図3は、光源LD1と光源LD2の駆動電流−光出力特性の一例を示す線図である。
【0038】
図3の(a)は、LDの駆動電流ILDに対する光出力Poの特性を示す線図であり、(i)と(ii)は微分量子効率(η,η′)と閾値電流(Ith,Ith′)がそれぞれ変動した場合を示す。同図の(c)は駆動電流ILDの電流量を示す図であり、一定のバイアス電流Ibと変調電流Im(時間tに対する波形を示す)とを加算した値となる。光源LDの特性が(i)である場合は、同図の(c)に示した駆動電流を流すと、同図の(b)に示す光波形Pが得られる。同様にして、光源LDが(ii)の特性の場合には、同図の(d)に示すようにバイアス電流Ib′と変調電流Im′を加算した電流をLDに駆動すると、同図の(b)に示す光波形Pが得られる。
【0039】
【数1】
Po=η・(ILD−Ith)
【0040】
つまり、図3の(a)に示すように、所望の光変調波形Pを得るためには、LD駆動電流ILDをバイアス電流Ibと変調電流Imの和(Ib+Im)とした場合、バイアス電流Ibは閾値電流Ithにほぼ等しく、変調電流Imは図3の(b)に示すような光変調波形P=η・Imとなる電流を駆動すればよい。
しかし、一般に、この閾値電流Ithと微分量子効率ηは個体間のばらつきのみならず、温度変化によっても変動するため、所望の光変調波形Pを常時得るためには、閾値電流Ith及び微分量子効率ηの変動に伴ってバイアス電流Ibと変調電流Imを制御することが望ましい。
【0041】
例えば、図3の(a)に示す(i)の閾値電流Ithと微分量子効率ηが、(ii)のように閾値電流がIth′に、微分量子効率がη′にそれぞれ変動した場合、所望の光変調波形Pを得るためには、バイアス電流Ib′を閾値電流Ith′に、変調電流Im′を図3の(c)に示すように光変調波形P=η′・Im′となるように制御すればよい。
すなわち、図2に示したLD制御部9がこの制御機能を果たす。
【0042】
次に、この発明の光源駆動装置の参考技術と一実施形態を図面に基づいて説明する。
図4は、この発明の参考技術の光源駆動装置の構成を示すブロック図である。
この光源駆動装置は、LD変調信号生成部10を含むLD変調信号生成部集積回路2とLD制御部9及びLD駆動部12からなるLD駆動集積回路3とからなっており、異なるプロセスで作製される集積回路である。LD駆動集積回路3は駆動するLD102の近傍に配置し、ピックアップ101に搭載する。
【0043】
LD変調信号生成部集積回路2のLD変調信号生成部10は、記録クロック信号WCKからn逓倍のクロック信号PCK及びPCKと所定量づつ位相の異なる複数のクロックCK0〜CK7を生成するフェーズロックループ部(PhaseLocked Loop:PLL)20と、コントローラ19(図1のコントローラ106に相当する)から供給される記録データ信号Wdataのランレングスを検出してランレングス信号Lenを供給し、所定量記録データ信号を遅延させた遅延記録データ信号dWdataを出力するランレングス検出部21を備えている。
【0044】
さらに、光源LDの駆動波形に基づく駆動波形生成情報を格納しておき、ランレングス信号Lenに対応した情報を遅延記録データ信号dWdataに合わせて出力する駆動波形生成情報保持部22と、その駆動波形生成情報から変調信号M0〜M2を生成する変調信号生成部23と、その変調信号M0〜M2をそれぞれ所定量パルス幅を増加又は減少させて変調信号MOD0〜MOD2を供給するパルス幅調整部50と、変調信号M0〜M2のパルス幅を制御するパルス幅制御信号をパルス幅調整部50へ供給するパルス幅制御部52と、遅延記録データ信号dWdata(又は記録データ信号Wdata)からLD制御用タイミング信号を生成するLD制御タイミング信号生成部26と、コントローラ19から供給される制御コマンドを受け各部へ制御信号を供給する制御部25を備えている。また、パルス幅制御を行う際にパルス幅検出のためのテスト信号を生成するテスト信号生成部53も備えている。
【0045】
一方、LD駆動集積回路3は、光源LD(図2の光源LD1と光源LD2に相当する)の照射レベルP0,P1,P2にそれぞれ対応した照射レベルデータP0Data,P1Data,P2Data及び変調信号Mod0,Mod1,Mod2に基づいてLD変調電流Imodを生成する変調部27と、光源LDの出射光の一部をモニタするモニタ受光部PD(図2の受光部PD2,PD5に相当する)からのモニタ受光信号を入力し、そのモニタ受光信号に基づいて光源LDの出射光量が所望の値になるようにバイアス電流Ibias及び変調電流のスケールを指示するスケール信号Isclを制御するLD制御部33と、LD変調電流Imodとバイアス電流Ibiasを加算する加算部31と、加算部31から供給される電流を増幅して光源LDの駆動電流ILDを供給する電流駆動部32と、コントローラ19から(あるいは制御部25を介して)供給される制御コマンドを受けて各部へ制御信号を供給する制御部34とから構成されている。
【0046】
また、変調部27は、照射レベルデータP0Data,P1Data,P2Dataに基づいてそれぞれ電流I0,I1,I2を供給する3個の電流源(DAC)28a〜28cからなる電流源28と、変調信号Mod0,Mod1,Mod2に従ってそれぞれ電流I0,I1,I2をオンオフ制御する3個のスイッチ29a〜29cからなるスイッチ(SW)29と、スイッチ29の出力する各電流を加算してLD変調電流Imodを供給する加算部30とから構成される。
上記LD制御部33が図2のLD制御部9に相当し、上記27〜32,34が図2のLD駆動部12の内部構成である。
【0047】
この光源駆動装置においては、電流源28とスイッチ29及び変調信号Modの組み合わせを増やすことによって対応できる。
ここでは説明を簡単にするため、図5に示すように三値レベルで記録する場合について説明する。
図5は、図4に示した各部の出力信号の信号波形の一例を示す図であり、ここで想定する情報記録媒体は相変化型情報記録媒体(例えば、CD−RWディスク,DVD−RWディスク,DVD+RWディスクなど)とし、同図の(c)に示す記録データ信号Wdata及び同図の(b)に示す記録クロック信号WCKに基づいて、同図の(d)に示すような光変調波形Pで光源LDを発光させて、情報記録媒体の記録面に同図の(e)に示す記録マークを形成する。
【0048】
また、同図の(a)に示すライトゲート信号WGは記録/再生の切換えを指示し、ローの期間は再生を(再生パワーPr)、ハイの期間は記録データ信号Wdata及び記録クロック信号WCKに基づいて光源LDを発光させる。
同図の(−1)〜(−3)に示したMod0〜Mod2は、スイッチ29をスイッチングする変調信号であり、スキューのない状態を示す。
同図の(−1)〜(−3)に示したM0′,M1′,M2′は、従来技術の装置での変調信号の波形の一例であり、M0′とM1′間にスキューΔ1が、M1′とM2′間にスキューΔ2が発生しているものとする。
そして、上記スキューΔ1とΔ2を補正すると、変調信号が同図の(−1)〜(−3)に示したMod0〜Mod2の状態になる。
【0049】
なお、スキューの発生には変調信号生成部23の出力時に生じるものと、スイッチ29への伝送中に生じるものと、スイッチ29のスイッチング時に生じるものなどがあり、配線長差,線路インピーダンス差,負荷特性,デバイスバラツキなどが原因となる。この光源駆動装置の説明ではこれらを含んだものとする。
【0050】
相変化型情報記録媒体は、一般には、光変調波形PのライトパワーPw,イレースパワーPe,ボトムパワーPbの三値のマルチパルスで記録マークが形成される。それぞれLD駆動電流ILDが、つまりは増幅前の電流ILD′がIbias,Ibias+I1,Ibias+I2となる照射レベルである。
また、再生時のパワーPrは電流ILD′がIbias+I0となる照射レベルである。つまり、照射レベルは電流値I0,I1,I2をそれぞれ設定する照射レベルデータP0Data,P1Data,P2Dataにより決められる。この時、記録パワーレベル及び各パルスのパルス幅・パルス間隔を精度よく制御することによって正確な記録がなされる。
【0051】
この際、記録媒体あるいはその記録線速度によってはマークが形成されるとき、隣接のスペース長によって媒体上で熱的影響を受け、マークのエッジが隣接スペース長によってさまざまに変動する場合がある。これを避けるために、従来では隣接のスペース長を考慮して光変調波形の各パルス幅を変えている。また、上記に加えて、隣接のスペース長を考慮してパワーを変えられるようにすれば、媒体に与える熱量としては隣接スペース長に応じてパルス幅補正をするのと等価となるので、実質的にパルス幅制御分解能の細分化を行っているのと同等となり、高速記録化対応に適したものとなる。
この光源駆動装置においては、電流源28とスイッチ29及び変調信号Modの組み合わせを増やすことによって対応できる。ここでは説明を簡単にするため、図5に示すように三値レベルで記録する場合について説明する。
【0052】
次に、図4に示した各部の動作と詳細構成について説明する。
[PLL]
図6は、図4のPLL20の内部の詳細な構成を示すブロック図である。
PLL20は、M分周器(1/M)201,位相比較器(PC)202,ループフィルタ203,発振器(VCO)204,N分周器(1/N)205,分周器(M/N)206からなり、各部動作は通常のPLL回路と同様であるので詳細な説明は省略する。
このPLL20は、記録クロック信号WCKからn逓倍のクロック信号PCKを生成し、クロック信号PCKと所定量づつ位相の異なる複数のクロック(この光源駆動装置ではCK0〜CK7の8つのクロックとし、CK0をPCKとする)を生成する。また、チャネルクロック信号CLKも生成する。
【0053】
M分周器201は、記録クロック信号WCKをM分周する。その分周比1/Mは設定可能とし(例えば、M=2,4)、記録クロック信号が記録チャネルクロックを分周した信号で供給される場合に対応する。記録クロック信号の周波数を下げて転送をすることによってノイズの発生を低減できる。
発振器204は、所定量づつ位相の異なるm個のクロック(この光源駆動装置ではCK0〜CK7の8つのクロック(m=8)とし、CK0をPCKとする)を生成し、変調信号生成部23へ出力する。これは例えばリングオシレータなどによって構成される。
【0054】
N分周器205は、発振器204の出力する一つのクロック信号(例えば、CK0)をN分周する。その分周比1/Nは設定可能とし、N/Mが記録クロックWCKに対するクロック信号PCKの逓倍数nとなる。
また、分周器206によってPCK信号をM/N分周して記録チャネルクロックCLKを生成してランレングス検出部21へ供給する。
後述するように、LD変調信号Mod0〜Mod2はクロック信号CK0〜CK7を基準に生成する。
【0055】
つまり、分周比1/N,1/Mを設定することによってLD変調信号Modのパルス幅設定分解能を設定できる。例えば、供給される記録クロック信号WCKが記録チャネルクロックと同一周波数で転送されるものとし、M=4,N=16と設定すると、クロック信号PCKはチャネルクロックの4逓倍の周波数となり、LD変調信号WSPはチャネルクロックに対して1/32(=m・M/N)のパルス幅設定分解能で生成できる。以下、これをパルス幅設定ステップと称する(また適宜、単にステップと省略する)。上記例の場合、32ステップが1チャネルクロック周期に相当する。
【0056】
[ランレングス検出部]
ランレングス検出部21は、コントローラ19から供給される記録データ信号Wdataのランレングスを検出し、駆動波形生成情報保持部22へランレングス信号Lenを供給する。記録データ信号WdataはNRZI(Non Return to Zero Inverted)の二値化信号でハイ区間が記録マークを、ロー区間がスペースをそれぞれ表すものとする。つまり、このランレングス検出部21は記録データのマーク長及びスペース長を検出する。ここでは、ランレングス信号Len1がマーク長を、ランレングス信号Len0が直前スペース長を、ランレングス信号Len2が直後スペース長をそれぞれ供給するものとする。
【0057】
また、ランレングス検出部21は適用する記録データ信号の最小最大ランレングスに応じて構成され、この第一実施形態ではDVDフォーマットの情報記録媒体(DVD+RWディスク,DVD−Rディスク,DVD−RAMディスクなど)に記録を行う光情報記録装置への適用を想定し、記録データ信号WdataはEFM+変調を行った信号を想定して説明する。つまり、ランレングスは3T〜11T及び14T(Tはチャネルクロック周期)となる。
さらに、ランレングス検出部21は、ランレングスを検出するのに必要な所定時間及び各回路の遅延時間差などを考慮して記録データを所定量遅延させて遅延記録データ信号dWdataを変調信号生成部23とLD制御タイミング信号生成部26へ出力する。
【0058】
[駆動波形生成情報保持部]
駆動波形生成情報保持部22は、駆動波形生成情報を格納しておくメモリであり、ランレングス検出部21から出力されるランレングス信号Len0〜Len2に対応した情報を遅延記録データ信号dWdataに合わせて変調信号生成部23へ出力する。
図7は、この参考技術の光源駆動装置における駆動波形生成情報と光波形との関係の一例を示す図である。
【0059】
駆動波形生成情報は光波形の照射レベル変化タイミングを表すタイミング情報などからなる。このタイミング情報はパルス幅設定ステップ数で表され、図7に示すように、各タイミング情報(TSS,TSP,TMS,TMP,TLS,TLP)を基準時刻(例えば、遅延記録データ立上りエッジ)から累積していくことによって変化タイミングを決めていく。また、図中のNMPはTMS及びTMPの繰り返し回数である(図7ではNMP=2の例を示す)。
このようにして、マルチパルス周期及びデューティを任意に設定することができる。
【0060】
また、この光源駆動装置では、駆動波形を記録データ信号Wdataのマーク長とその隣接するスペース長によって変化させ、形成する記録マークエッジ位置を高精度に制御するようにしている。
記録マークが形成される時、隣接のスペース長によって媒体上で熱的影響を受け、エッジが隣接スペース長によって変化する。これを避けるために、隣接のスペース長を考慮して駆動波形を変化させるものである。
つまり、マーク長及び直前直後のスペース長の各組み合わせに対応した駆動波形生成情報を格納しておき、ランレングス検出部21によって検出したランレングス信号Len0〜Len2に応じて対応した駆動波形生成情報を供給する。
【0061】
なお、マーク長及び隣接スペース長が所定値以上の場合は熱的影響やその変化分は少ない。そのため、全ての組み合わせに対応した駆動波形生成情報を用意する必要はなく、影響度の大きい組み合わせのみ用意すれば情報の保持に必要なメモリ容量を低減できる。また、この光源駆動装置では、各パラメータに応じて用意する組み合わせも変え、メモリ容量の低減化とマーク形状制御の高精度化の両立を図っている。
【0062】
[変調信号生成部]
変調信号生成部23は、駆動波形生成情報保持部22からの駆動波形生成情報(タイミング情報)に基づいて変調信号M0〜M2を生成し、パルス幅調整部50へ出力する。図5の(f−1)〜(f−3)がそれぞれ変調信号M0〜M2の一例を示す波形図である。その変調信号M0〜M2の生成の際はクロック信号CK0〜CK7を基準とし、それらのクロック信号の位相差に相当する時間が変調信号のパルス幅設定分解能となる。
【0063】
[LD制御タイミング信号生成部]
LD制御タイミング信号生成部26は、記録データ信号Wdataからサンプルホールド方式のAPC制御用サンプル信号などのLD制御用のタイミング信号を生成する。光源の発光波形は記録データ信号Wdataに対してランレングス検出部21での遅延分遅れるので、発光波形に合わせてサンプル信号を生成する。
【0064】
[変調部]
変調部27は、光源LDの照射レベルP0,P1,P2にそれぞれ対応した照射レベルデータP0Data,P1Data,P2Dataに基づいて、それぞれ電流I0,I1,I2を供給する各電流源(DAC)28a〜28cからなる電流源(DAC)28と、変調信号Mod0,Mod1,Mod2に従ってそれぞれ電流I0,I1,I2をオンオフ制御する各スイッチ29a〜29cからなるスイッチ29と、スイッチ29の出力する各電流を加算してLD変調電流Imodを供給する加算部30とから構成される。
【0065】
図8は、光源LDの駆動電流−光出力特性の例と変調部27の各部電流との関係を示す図である。
電流源(DAC)28aは照射レベルデータP0Dataに基づいて電流I0を供給する電流出力DAC(D/Aコンバータ)であり、同様に電流源(DAC)28b,電流源(DAC)28cはそれぞれ照射レベルデータP1Data,P2Dataに基づいて電流I1,I2を供給する電流出力DACであり、電流源(DAC)28としての機能を果たす。また、電流源(DAC)28a〜電流源(DAC)28cのフルスケールIsclはLD制御部33から供給され、微分量子効率ηの変動に応じて制御される。よって、電流源(DAC)28a〜電流源(DAC)28cの出力電流I0,I1,I2はそれぞれ次の数2〜数4の演算式に基づく処理で得られる。ここでは、電流源(DAC)28a〜電流源(DAC)28cは8ビット(bit)DACとしている。
【0066】
【数2】
I0=(P0Data/255)*Iscl
【0067】
【数3】
I1=(P1Data/255)*Iscl
【0068】
【数4】
I2=(P2Data/255)*Iscl
【0069】
なお、図8においては、後述する電流駆動部32での増幅率Aiをかけた電流値I0′,I1′,I2′を図示している。
スイッチ29a〜29cは、それぞれ変調信号Mod0〜Mod2に従って電流I0〜I2をオンオフ制御する。図5の波形図において、変調信号が「ハイ(High)」の時にスイッチはオンとなるものとする。そして、スイッチ29a〜29cでオンになった電流が加算部30によって加算され、変調電流Imodを得る。つまり、次の数5に示す演算式に基づく処理で変調電流Imodを求めることができる。
なお、「×Mod(n)」((n)は0,1,2)はMod(n)が「ハイ(High)」の時に×1を、「ロー(Low)」の時に×0を意味する。
【0070】
【数5】
Imod=I0×Mod0+I1×Mod1+I2×Mod2
【0071】
図8において、電流IbはLD制御部33で制御されたバイアス電流Ibiasに増幅率Aiをかけた電流値であり、その電流Ibに対してボトムレベルPbで発光するように制御されている。
そして、再生レベルPrで発光させるには、Mod0=1,Mod1=0,Mod2=0として、Imod=I0となるように変調信号を生成し、光源LDに駆動電流Ib+I0′を流す。この時、照射レベルデータP0Dataには、P0(=Pr−Pb)に相当する値を設定しておく。
【0072】
同様にして、イレースレベルPe,ライトレベルPwを照射する。なお、温度変動などにより、光源LDの閾値電流Ithと微分量子効率ηが(i)→(ii)のように変動した場合は、LD制御部33によってバイアス電流Ib及びスケール信号Isclが制御され所望の光量が得られる。つまり、図8の(ii)に示す各電流Ib,I0′〜I2′を生成し、所望の光波形(a)を得る。
また、ボトムレベルPbに相当する電流Ib′を常時LD駆動電流に加算しておき、バイアス電流Ibが閾値電流Ith相当になるように制御してもよい。
つまり、図8の(ア)に示すようにIb+Ib′により、ボトムレベルPbで発光する。なお、電流Ib′は他の電流源と同様にスケール信号Isclによって制御する。
【0073】
[LD制御部]
LD制御部33は、光源LDの出射光の一部をモニタするモニタ受光部PDからのモニタ受光信号が入力され、そのモニタ受光信号に基づいて光源LDの出射光量が所望の値になるようにバイアス電流Ibias及び変調電流のスケールを指示するスケール信号Isclを制御するものである。
すなわち、温度変動などによって光源LDの閾値電流Ithや微分量子効率ηが変動した場合、閾値電流Ithの変動に対してバイアス電流Ibiasを、微分量子効率ηの変動に対してスケール信号Isclをそれぞれ制御する。
また、所定照射レベル時のモニタ受光信号をサンプルホールドして制御を行う場合は、LD制御タイミング信号生成部26から供給されるLD制御信号に従って行う。
【0074】
なお、このLD制御自体は、公知技術を適用すればよいので、詳細な構成や動作説明は省略する。
また、このLD制御部33はLD駆動集積回路3内に設けず、別途設けるものであってもよい。その際はバイアス電流Ibias及びスケール信号Isclを直接または制御部34を介して供給するようにすればよい。
【0075】
[電流駆動部]
電流駆動部32は、加算部31から供給される電流を所定の増幅率Aiで増幅しLDの駆動電流ILDを供給する。この時、LD駆動電流ILDは次の数6の演算式に基づく処理で得られる。
【0076】
【数6】
ILD=Ai*(Ibias+Imod)
【0077】
次に、パルス幅調整部50,パルス幅検出部51及びパルス幅制御部52の各部構成と、それらの各部による変調信号のパルス幅補正動作を説明する。
図9は、パルス幅調整部50から変調部27への伝送経路中の各点a,b,cでの変調信号Mod0の各信号波形(図4中のそれぞれa,b,c点に対応する信号波形)の一例を示す波形図である。
同図の(a)のM0aは、パルス幅調整部50(LD変調信号生成部集積回路2)の出力端での波形を示し、同図の(b)のM0bは、LD駆動集積回路3の入力端での波形を(LD変調信号生成部集積回路2とLD駆動集積回路3との間の伝送により波形のなまりが生じる)示し、同図の(c)のM0cはLD駆動集積回路3の入力部55により二値化した波形を示し、M0cが変調部27でのスイッチング信号及びパルス幅検出部51への入力になる。
ここでは、パルス幅補正時の信号波形例を示しており、変調信号生成部23は所定の周波数で所定のデューティの(同図ではDuty=50%の例を示す)信号を出力している。
【0078】
[パルス幅調整部]
パルス幅調整部50は、パルス幅制御部52から出力されるパルス幅設定信号に基づいて変調信号M0〜M2のパルス幅をそれぞれ増加又は減少させ、変調部27の入力端(M0c)でのパルス幅が変調信号生成部23でのパルス幅とほぼ等しくなるように調整するものである。変調電流は変調部27の入力端での変調信号のスイッチングタイミングによって変調されるため、上述したようにパルス幅の変動が生じると変調電流つまりは光波形が所望の波形とはならない。
【0079】
図10は、パルス幅調整部50の内部構成例を示すブロック図である。
パルス幅調整部50は、各信号を遅延させる遅延部263a〜263cからなり、各遅延部263a〜263cは変調信号を所定量遅延させるn個(nは正の整数)の遅延素子261a〜261nが縦列接続されており、その各遅延素子261a〜261nの出力の何れかをパルス幅制御部52からのパルス幅設定信号PWS0〜PWS2に基づいて選択し、その選択された出力の論理和または論理積を出力する組み合わせ選択部262とからなる。
どの遅延素子261a〜261nの出力を選択し、論理和または論理積をするかによってパルス幅を調整することができる。
図11は、3個の遅延素子261a〜261cがそれぞれ出力した出力信号a〜cの論理和信号(b or c)と論理積信号(b and c)の信号波形例を示す図である。同図の(1)〜(3)に示すように、各出力信号a〜cの論理和信号は同図の(4)に示すようになり、各出力信号a〜cの論理積信号は同図の(5)に示すようになる。
【0080】
[パルス幅検出部]
パルス幅検出部51は、パルス幅調整部50から出力された変調信号Mod0〜Mod2の変調部27の入力端でのパルス幅を検出するものであり、その検出結果をパルス幅制御部52へ供給する。所定周期の信号のDCレベルを検出するようにすれば変調信号のパルス幅を簡単に検出することができる。
図12は、パルス幅検出部51の詳細な内部構成例を示すブロック図であり、ローパスフィルタなどによって構成され、変調信号Mod0のDCレベルVmdcを検出する平滑部271と、平滑部271から出力される変調信号Mod0のDCレベルVmdcをアナログからデジタルへA/D変換するA/D変換器272とからなり、そのA/D変換器272から出力されるパルス幅検出信号をパルス幅制御部52へ供給する。
【0081】
例えば、送信側でデューティー(Duty)=50%の信号を送り、伝送の際パルス幅変動が生じた場合には、DCレベルVmdcの変動として検出される。変調信号Mod1と変調信号Mod2のパルス幅もそれぞれ同様にして検出できる。また、平滑部271への入力を切換えるようにしてもよい。さらに、通常、A/D変換器は装置内に別途設けられていることも多く、DCレベルVmdcを出力するようにし、そのA/D変換器を利用してもよい。
【0082】
[パルス幅制御部]
パルス幅制御部52は、パルス幅補正時には、パルス幅検出部51から供給されるパルス幅検出信号に基づいて各変調信号M0〜M2のパルス幅を制御する。そして通常時には、その制御されたパルス幅の調整値をパルス幅設定信号としてパルス幅調整部50に供給する。
図13は、パルス幅補正時の処理の一例を示すフローチャート図である。以下、図13と図9に基づいてパルス幅補正処理を詳しく説明する。
まず、パルス幅補正時には、ステップ(図中「S」で示す)1の初期化ステップで、コントローラ19より、制御部25を介してパルス幅補正動作開始の指示がなされ、各部はパルス幅補正動作に移行する。すなわち、パルス幅設定信号を全て0に初期化し、所定の周期Tpで所定のデューティ(例えば50%(T1=Tp/2)にする)であるパルス幅調整用の変調信号M0を出力する(図9の(a)の実線(i)参照)。
【0083】
次に、ステップ2において、パルス幅検出部51により変調信号のパルス幅を検出し、その検出した変調信号のDCレベルVmdc(図9のV(i)参照)がほぼ所定値(1/2・Vdd)であるOKか所定値と異なるNOかを判断し、OKであればステップ4へ進み、所定値と異なるNOならばステップ3へ移行する。
図9の信号波形図では、変調信号は伝送する際、立上り時間と立下り時間が異なり(M0b)、二値化した信号M0cは正パルス幅が長くなり、DCレベルV(i)が所定値1/2・Vddより、高くなっている波形を例示している。
次に、ステップ3において、パルス幅検出信号に基づいてパルス幅設定信号を増減する。図9の例では、DCレベルV(i)が所定値1/2・Vddよりも高いので、正パルス幅T1を短くするようにパルス幅調整を行う((a)の破線(ii)参照)。
【0084】
そして、ステップ2の判定が真となるまで、ステップ2と3の処理を繰り返す。図9の例では(ii)の状態でDCレベルV(ii)はほぼ所定値となるので、これで調整を終える。これにより、信号伝送によるパルス幅変動を調整できる。同様にしてM1,M2に対しても調整を行う。
最後にステップ4において、現在のパルス幅設定信号を設定値として保持し、通常時はこれを供給する。またテスト信号の供給を停止する。
なお、ここでは立上り時間と立下り時間の差異によるパルス幅変動について説明したが、スライスレベルの変動などやその複合によって生じるパルス幅変動であっても同様に調整できる。
【0085】
このパルス幅補正時には、光源LDの駆動電流を停止し、発光させないようにしておくと光源LDの異常発光を防げ、光源LDの破壊や劣化を保護できる。これは照射レベルデータP0Data,P1Data,P2Dataを0に設定することによっても行える。
また、パルス幅制御部52をコントローラ19内部に設け、パルス幅検出信号及びパルス幅設定信号の授受をそれぞれ制御部34と25を介して行うようにし、上述のパルス幅制御をコントローラ19内部のCPUで行うようにしてもよい。
【0086】
以上からわかるように、この光源駆動装置によれば、各変調信号が伝送の際、信号波形がなまり立上りと立下りで異なる場合や、受信側で二値化する際のスライスレベルの変動や入力電圧振幅の低下などにより、送信側でのパルス幅と受信側でのパルス幅は異なってしまっても、このパルス幅変動を補正するので光波形には影響を及ぼさず、正確な記録マークが形成できる。
【0087】
したがって、LD変調信号生成部集積回路2とLD駆動集積回路3とは別の集積回路で構成してもよく、それぞれ要望される回路特性にあった半導体プロセスを選択できるようになり、コスト・性能に見合った装置を構成することができる。すなわち、変調信号生成部23では高速動作及び高集積化が求められるため微細なCMOSプロセスが好適である。一方、電流駆動部32には、1〜数V程度の動作電圧を持つ光源LDが接続されるため、高耐圧プロセス(例えば5Vや3.3Vなど)が要求されており、通常、微細なCMOSプロセスでは高耐圧にすることは困難である(例えば、0.18μmCMOSプロセスでは1.8V程度の耐圧しかない)が、それぞれを好適なプロセスで構成できるようになる。
そして、この二つの集積回路間はFPC基板やワイヤなどの伝送線で接続されるため少なからずパルス幅変動が発生し、特に高速化した際にはこの光源駆動装置の効果が好適に作用する。
【0088】
さらには、自動的にパルス幅を補正する機構を設けたので、デバイスのバラツキや寄生容量・寄生インダクタンスなどによって装置毎にこのパルス幅変動量が異なっても、それぞれパルス幅変動を調整できる。
したがって、デバイスバラツキを特別に抑制する必要もなく、伝送線の製造も容易となるので、コストを低減することができる。
また、LD駆動集積回路3を光源LDの近傍、つまりピックアップ上に配置し、LD変調信号生成部集積回路2を記録データを生成するコントローラやWCK生成部と同一の集積回路で構成するようにしてもよい。このように構成してもFPC基板での変調信号伝送におけるスキューの発生は上述の通り調整できるので、光波形には影響を及ぼさず、正確な記録マークが形成でき、コストも低減できる。さらに、PLL20をWCK生成部17と共通化することも可能となる。
【0089】
また、パルス幅調整部50によってパルス幅を調整するのではなく、駆動波形生成情報保持部22に保持する駆動波形生成情報のパルス幅を持つ情報を変更するようにしてもよい。すなわち、図7に示した駆動波形情報の場合、パルス幅調整工程で算出されたパルス幅補正値をTSP,TMP,TLPに加え、TMS,TMLから引くように変更するとよい。
さらに、上述したようにパルス幅が立上り時間や立下り時間より短くなると、そのパルス幅の変動量は他のパルスと異なる場合もある。このような場合にはそのパルス幅のパルスを別途調整するようにすればよい。
【0090】
例えば、図7のTLPのみ変更するようにする。また、どのパルス幅からパルス幅変動量が変化するかを検出するには、パルス幅調整用のテスト信号のパルス幅(図9のT1参照)を変更して検出すればよい。
また、パルス幅検出は、パルス幅検出部51によらず、光源LDの出射光の一部をモニタするモニタ受光部PDからのモニタ受光信号をローパスフィルタ(LPF)54によって平滑化してDCレベルを求めるようにしてもよい。A/D変換器272などは同様であるので説明を省略する。
このようにすれば、光変調波形でのパルス幅を検出し、これが所望の値となるように調整できるので、変調部27や電流駆動部32などで生じるパルス幅変動までも補正できるようになり、より正確な記録マークが形成できる。
これは、以降の実施形態でも同様に利用できる。
【0091】
この光源駆動装置によれば、各変調信号が伝送の際、信号波形がなまり立上りと立下りで異なる場合や、受信側で二値化する際のスライスレベルの変動や入力電圧振幅の低下などにより、送信側でのパルス幅と受信側でのパルス幅は異なってしまっても、このパルス幅変動を補正するため、光波形には影響を及ぼさず、所望の光波形が得られる。
また、各部は別の集積回路で構成してもよく、それぞれ要望される回路特性にあった半導体プロセスを選択できるようになり、コスト・性能に見合った装置を構成することができる。
さらに、デバイスのバラツキや寄生容量・寄生インダクタンスなどにより装置毎にこのパルス幅変動量が異なっても、それぞれパルス幅変動を調整できる。したがって、デバイスバラツキを特別に抑制する必要もなく、伝送線の製造も容易となるので、コストを低減することができる。
【0092】
また、光変調波形でのパルス幅を検出し、これが所望の値となるように調整できるので、変調部27や電流駆動部32などで生じるパルス幅変動までも補正できるようになり、より正確な光波形が得られる。
さらに、パルス幅が立上り時間や立下り時間より短くなりパルス幅によって変動量が異なっても、それに応じた補正をするので、より正確な光波形が得られる。特に高速化し、パルス幅が短くなった時には好適に作用する。
さらにまた、常時基準信号を補正し、これにより変調信号のパルス幅も補正しているので、例えば電源電圧などの変動によりパルス幅が動的に変動しても、光波形には影響を及ぼさず、常に正確な光波形が得られる。
【0093】
次に、この発明の光源駆動装置の実施形態を図面に基づいて説明する。
図14は、この発明の実施形態の光源駆動装置の構成を示すブロック図である。図4と同一符号のブロックは前述と同様の動作・機能を果たすので詳細な説明は省略する。
図15は、この実施形態の光源駆動装置におけるパルス幅補正動作時の各部信号波形図である。
図14に示すように、二値化部56はスライスレベルVthに基づいて変調信号M0〜M2を二値化し、変調部27に供給するものである。
スライスレベル制御部57は、パルス幅補正時には、パルス幅検出部51から供給されるパルス幅検出信号に基づいてスライスレベルVthを制御する。そして通常時には、その制御されたスライスレベルを二値化部56に供給する。
【0094】
図15に示すように、調整前のスライスレベルVth(i)に対し、スライスレベルVth(ii)へ調整することにより、同図の(c)に示す二値化した変調信号M0cのパルス幅が適正値に調整される。その調整方法は上述と同様に行えばよいのでその説明を省略する。また、そのスライスレベルは変調信号毎調整するようにしてもよい。
このようにすれば、上述の光源駆動装置と同様の効果が得られ、特にスライスレベルの変動(二つの集積回路間でのスライスレベルの差異など)によりパルス幅が変動する場合により好適に作用する。
また、上述の光源駆動装置と同様の効果をより精度よく得られる。
【0095】
次に、この発明の他の実施形態を図面に基づいて説明する。
図16は、この発明の他の実施形態の光源駆動装置の構成を示すブロック図である。図4,図14と同一符号のブロックは前述と同様の動作・機能を果たすので詳細な説明は省略する。
出力電圧調整部58は、出力電圧制御部59からの出力電圧設定信号に基づいて変調信号M0〜M2の出力電圧を、すなわちハイレベル出力電圧またはローレベル出力電圧あるいは双方の出力電圧を調整するものである。
出力電圧制御部59は、パルス幅補正時には、パルス幅検出部51から供給されるパルス幅検出信号に基づいて変調信号の出力電圧を制御し、出力電圧調整部58へ出力電圧設定信号を供給する。
【0096】
このようにすれば、上述と同様の効果を簡便な構成で得ることができる。
また、この実施形態と上記参考技術を組み合わせたものにしてもよい。
さらに、これらの実施形態によれば、図17に示すように、ハイレベル出力電圧Vhi,ローレベル出力電圧Vloを任意に定めることができる。
なぜならば、二つの集積回路でのデバイスバラツキや電源電圧差などの影響によりパルス幅変動が生じる場合であっても、パルス幅やスライスレベルや出力電圧を調整することによって補正できるからである。つまり、伝送する変調信号振幅は小振幅でよく、このようにすれば不要電磁輻射を低減でき、立上り立下り時間も低減できる。
【0097】
次にこの発明の光源駆動装置のまた他の実施形態を図面に基づいて説明する。
図18は、この発明の他の実施形態の光源駆動装置の構成を示すブロック図である。図4,図14,図16と同一符号のブロックは前述と同様の動作・機能を果たすので詳細な説明は省略する。
基準信号生成部61は、図9の(a)実線(i)に示すパルス幅調整用の変調信号と同様の波形を装置の動作時には常時、基準信号Mrefとして供給するものである。
パルス幅調整部60は、図4のパルス幅調整部と同様に変調信号M0〜M2のパルス幅の調整と、基準信号Mrefのパルス幅調整を行う。
【0098】
パルス幅検出部51は、伝送後二値化した基準信号ModRのパルス幅を検出し、検出結果をパルス幅制御部52に供給する。
パルス幅制御部52では、基準信号のパルス幅検出結果に応じて、基準信号のパルス幅と変調信号M0〜M2のパルス幅を同量分補正するように制御する。
このようにすれば、常時基準信号を補正し、これにより変調信号のパルス幅も補正しているので、例えば電源電圧などの変動によってパルス幅が動的に変動しても、光波形には影響を及ぼさず、さらに正確な記録マークが形成できる。
また、図示は省くが上記参考技術と上記実施形態に対しても同様に適用すればよい。
【0099】
次に、この発明の光源駆動装置のまた他の実施形態を図面に基づいて説明する。
図19は、この発明のまた他の実施形態の光源駆動装置の構成を示すブロック図である。図4,図14,図16,図18と同一符号のブロックは前述と同様の動作・機能を果たすので詳細な説明は省略する。
図20は、スキュー補正動作時の各部信号波形図である。
また、パルス幅の調整は上述したように駆動波形生成情報を変更することによって行うものとし、パルス幅の制御はパルス幅・遅延制御部64が上述と同様の処理で行うものとする。
遅延量調整部24と遅延検出部65とパルス幅・遅延制御部64とにより、変調信号間のスキューを補正するための調整機能を果たす。以下、この各部構成とそれらによる変調信号のスキュー補正動作について説明する。
【0100】
[遅延量調整部]
遅延量調整部24は、パルス幅・遅延制御部64からの遅延設定信号に基づいて変調信号M0〜M2をそれぞれ遅延させ、その遅延させた変調信号Mod0〜Mod2が変調部27の入力端で(図5の(g−1)〜(g−3)に例示する)遅延差が所定値以内になるように遅延させるものである。
変調電流は変調部27の入力端での変調信号のスイッチングタイミングにより変調されるため、複数の変調信号が同時に変化しないと変調電流、つまりは光波形が所望の波形とはならない。つまり、変調信号生成部23において同時にスイッチングするように変調信号M0〜M2を生成しても(図5の(f−1)〜(f−3)参照)、伝送中に配線長差などによってスキュー(遅延差)が生じ、変調部27の入力端でずれが生じると上述の問題が生じる。
【0101】
図5の(h−1)〜(h−3)のM0′,M1′,M2′は、この遅延量調整部24がない場合、つまり従来の装置での変調部27の入力端での変調信号の一例であり、複数の変調信号が同時に変化しないため、変調電流つまりは光波形が所望の波形にはならない。
また、上述した立上り立下り時間やスライスレベル等の差異によって生じるパルス幅変動を各変調信号毎に補正する場合にも若干のスキューが発生することもある。
【0102】
図21は、図19に示した遅延量調整部24の内部の詳細な構成例を示すブロック図である。
図21において、遅延量調整部24は、各信号を遅延させる遅延部243a〜243cからなり、各遅延部243a〜243cは信号を所定量遅延させる遅延素子241a〜241n(nは正の整数)が縦列接続されており、その各遅延素子241a〜241nの出力の何れかを遅延設定信号DlyS0〜DlyS2に基づいて選択して出力する選択部242とからなる。
このように構成することにより、どの遅延素子241a〜241nの出力を選択するかによって遅延量を調整できる。また、各遅延部243a〜243cは供給する電流(または電圧)によって遅延量の変化する遅延バッファで構成し、この供給電流を変化させることによって遅延量を調整するようにしてもよい。
【0103】
[遅延検出部]
遅延検出部65は、変調信号Mod0〜Mod2の変調部27の入力端での遅延差(スキュー)を検出するものであり、その検出結果をパルス幅・遅延制御部64へ供給する。遅延検出部65及び変調部27の入力端を近傍に配置することにより、遅延検出部65の入力端での各変調信号間のスキューは、変調部27の入力端でのスキューとほぼ等しくなる。
【0104】
図22は、遅延検出部65の内部構成例を示すブロック図である。ここでは、変調信号Mod0とMod1とのスキューを検出する構成例を示している。
位相比較部251は、変調信号Mod0とMod1との位相差を検出するものであり、ExOR回路などによって簡単に構成できる。
図20に示したように、同図の(a)のM0と(b)のM1の二つの変調信号を同一周波数の信号とすれば、スキュー量に応じた時間だけ「ハイ(H)」になる信号Diffが得られる。また、位相比較信号Diffは正負2つの信号からなり、Mod0の方が位相が進んでいれば同図の(e−1)の位相比較信号Diff+に、遅れていれば同図の(e−2)の位相比較信号Diff−にパルスがそれぞれ出力される。
【0105】
平滑部252は、位相比較信号Diffを平滑化するものであり、スキュー量に応じた電圧Vdiffが得られる。これは例えば、チャージポンプ回路によって構成し、位相比較信号Diff+及び位相比較信号Diff−をアップ(Up)/ダウン(Down)信号とすればよい。ここでは、変調信号Mod0の方が位相が進んでいれば正電圧として、遅れていれば負電圧(基準電圧に対して)として生成される。
【0106】
比較部253は、平滑部252の出力する電圧Vdiffと基準値を比較し、基準値以上なら「+」を、基準値以下なら「−」をそれぞれ出力し、基準値とほぼ等しければ何れも出力しない。なお、単純なコンパレータとして、+/−何れかを出力するものとしてもよい。これらを遅延検出信号とする。
あるいは、図23に示すように、平滑部252の出力する電圧VdiffをA/D変換器254によってA/D変換し、パルス幅・遅延制御部64に供給するようにしてもよい。
さらには、位相比較部251を単純なExOR回路とし(つまり位相差の絶対値のみ検出して極性は検出しないものとし)、A/D変換器254で検出する電圧Vdiffが最小になる遅延量を求めるようにしてもよい。
変調信号Mod0(あるいは変調信号Mod1)と変調信号Mod2とのスキューも同様にして検出することができる。また、位相比較部251への入力を切り換えるようにしてもよい。
【0107】
[パルス幅・遅延制御部]
パルス幅・遅延制御部64は、上述したパルス幅補正動作の後、スキュー補正動作を行う。スキュー補正時には、遅延検出部65から供給される遅延検出信号に基づいて後述するスキュー補正処理によって各変調信号の遅延量を制御する。そして、通常時には、この制御された遅延量を遅延設定信号として遅延量調整部24に供給する。
【0108】
次に、上記スキュー補正処理についてさらに詳しく説明する。
図24は、この実施形態の光源駆動装置におけるスキュー補正処理の一例を示すフローチャート図である。
まず、スキュー補正処理時には、コントローラ19より、制御部25を介してスキュー補正動作開始の指示がなされ、各部はスキュー補正動作に移行する。すなわち、このテスト信号に基づいてスキュー検出用の変調信号M0〜M2を出力する。
ステップ(図中「S」で示す)11の初期化処理において、変調信号生成部23は、このテスト信号に基づいてスキュー検出用の変調信号M0,M1,M2を出力する(図20の(a)と(b)を参照)。パルス幅・遅延制御部64は遅延設定信号を全て“0”に初期化する。
【0109】
次に、ステップ12において、遅延検出部65によって変調信号間の遅延差δ(Δ)を検出し、その遅延差δがほぼ“0”か否か(各変調信号間の入力タイミングの差が所定値内か否か)を判断し、遅延差δがほぼ“0”であればステップ14へ、遅延差δがほぼ“0”でない(所定値を超えている)ならばステップ13へそれぞれ移行する。
【0110】
図20の信号波形図では、変調信号Mod0とMod1の場合を示している。
同図の(c)と(d)にそれぞれ示すd0,d1はそれぞれ遅延量調整部24での遅延量を示し、Δ0,Δ1は変調信号生成部23の出力端から遅延検出部65(変調部27)の入力端までのそれぞれの伝送遅延量を示している。これらの差(=(d0+Δ0)−(d1+Δ1))が遅延差δである。
ステップ13では、遅延検出信号に従って遅延設定信号を増減することにより、一方の遅延量を+1ステップ又は−1ステップ変更する。
すなわち、遅延検出信号が「+」ならば(Mod0の位相がMod1よりも進んでいれば)、M0の遅延量d0を1ステップ遅らせ、「−」ならばM1の遅延量d1を1ステップ遅らせる(なお、何れかを1ステップ早めるように調整してもよい)。
【0111】
そして、ステップ12の判定が真となるまで、すなわち、遅延差δがほぼ“0”と判断されるまで、ステップ12と13の処理を繰り返す。さらにMod2に対しても上述と同様の処理を行う。このようにして、変調信号Mod0b〜Mod2bの変調部27の入力端での遅延差がなくなるように調整する。
最後にステップ14の遅延量保持処理では、現在の遅延設定信号(つまり遅延量d0〜d2)を保持し、通常時はこれを供給する。またテスト信号の供給を停止する。
また、スキュー補正時のスキュー検出用の変調信号M0〜M2を同一周波数で位相を45°ずらした信号にしておくと、遅延差が微小な時の検出精度を向上できる。これは、遅延差が微小になると位相比較信号Diffのパルス幅が微小となって検出できなくなること(位相比較部251の不感帯)を避けるためである。
あるいは、パルス幅・遅延制御部64をコントローラ19内部に設け、遅延検出信号及び遅延設定信号の授受をそれぞれ制御部34と25を介して行うようにしてもよい。
【0112】
以上からわかるように、この実施形態によれば、各変調信号が伝送の際、信号波形がなまって立上りと立下りで異なる場合や、受信側で二値化する際のスライスレベルの変動や入力電圧振幅の低下などにより、送信側でのパルス幅と受信側でのパルス幅は異なってしまっても、このパルス幅変動を補正し、さらには各変調信号間に、このパルス幅変動補正の際生じるスキューや伝送路自体でのスキューがあっても、このスキューを補正するため光波形には影響を及ぼさず、正確な記録マークが形成できる。
したがって、LD変調信号生成部集積回路2とLD駆動集積回路3とは別の集積回路で構成してもよく、それぞれ要望される回路特性にあった半導体プロセスを選択できるようになり、コスト・性能に見合った装置を構成することができる。
【0113】
すなわち、変調信号生成部では高速動作及び高集積化が求められるために微細なCMOSプロセスが好適である。一方、LD駆動部には、1〜数V程度の動作電圧を持つ光源LDが接続されるため、高耐圧プロセス(例えば5Vや3.3Vなど)が要求されており、通常、微細なCMOSプロセスでは高耐圧にすることは困難である(例えば、0.18μmCMOSプロセスでは1.8V程度の耐圧しかない)が、それぞれを好適なプロセスで構成できるようになる。
そして、この二つの集積回路間はFPC基板やワイヤなどの伝送線で接続されるため少なからずパルス幅変動やスキューが発生し、特に高速化した際にはこの発明に係る効果が好適に作用する。
さらには、自動的にパルス幅及びスキューを補正する機構を設けたので、デバイスのバラツキや寄生容量・寄生インダクタンスなどによって装置毎にこのパルス幅変動量やスキューが異なっても、それぞれパルス幅変動及びスキューを調整できる。
【0114】
したがって、デバイスバラツキを特別に抑制する必要もなく、伝送線の製造も容易となるので、コストを低減することができる。
また、LD駆動集積回路3を光源LDの近傍、つまりピックアップ上に配置し、LD変調信号生成部集積回路2を記録データを生成するコントローラやWCK生成部と同一の集積回路で構成するようにしてもよい。
このように構成しても、FPC基板での変調信号伝送におけるスキューの発生は上述の通り調整できるので、光波形には影響を及ぼさず、正確な記録マークが形成でき、コストも低減できる。さらに、PLL20をWCK生成部17と共通化することも可能となる。
また、パルス幅調整と遅延調整は図10と同様の構成にしたパルス幅・遅延調整部によって行ってもよい。
【0115】
つまり、例えば、b&aとすることによりパルス幅調整した後、c&bを選択することにより1ステップ遅延させることができる。このようにすればパルス幅調整と遅延調整の両方を行える。
また、上述した遅延調整機構と上記参考技術または上記実施形態を組み合わせてもよい。
【0116】
このようにして、各変調信号が伝送の際、信号波形がなまり立上りと立下りで異なる場合や、受信側で二値化する際のスライスレベルの変動や入力電圧振幅の低下などにより、送信側でのパルス幅と受信側でのパルス幅は異なってしまっても、このパルス幅変動を補正し、さらには各変調信号間に、このパルス幅変動補正の際生じるスキューや伝送路自体でのスキューがあっても、このスキューを補正するため光波形には影響を及ぼさず、所望の光波形が得られる。
また、各部は別の集積回路で構成してもよく、それぞれ要望される回路特性にあった半導体プロセスを選択できるようになり、コスト・性能に見合った装置を構成することができる。
【0117】
さらに、デバイスのバラツキや寄生容量・寄生インダクタンスなどにより装置毎にこのパルス幅変動量やスキューが異なっても、それぞれパルス幅変動及びスキューを調整できる。
したがって、デバイスバラツキを特別に抑制する必要もなく、伝送線の製造も容易となるので、コストを低減することができる。
また、伝送する変調信号振幅を小振幅としているので、不要電磁輻射を低減でき、変調信号の立上がり立下り時間も低減でき、よってパルス幅変動分も抑制できる。
さらに、各変調信号間にスキューがあっても光波形には影響を及ぼさず所望の光波形が得られ、正確な記録マークが形成できる。さらにまた、それぞれ要望される回路特性にあった半導体プロセスで構成できるようになり、コスト・性能に見合った装置が実現できる。特に、光情報記録装置の高速記録化する際に適している。
【0118】
【発明の効果】
以上説明してきたように、この発明の光源駆動装置と情報記録装置によれば、情報記録媒体に対する高速記録及び高密度記録時、光変調制御信号波形の歪み,スキュー,信号伝送によるパルス幅の変動等によって光変調波形が所望値からずれるのを抑制し、高速化などの要求に対してもコスト,性能などを犠牲にすることなく実現できる光源駆動装置を提供することができる。
【図面の簡単な説明】
【図1】 この発明の参考技術と一実施形態である情報記録再生装置の構成を示すブロック図である。
【図2】図1に示した情報記録再生装置の信号処理部104の構成を示すブロック図である。
【図3】光源LD1と光源LD2の駆動電流−光出力特性の一例を示す線図である。
【図4】 この発明の参考技術の光源駆動装置の構成を示すブロック図である。
【図5】図4に示した各部の出力信号の信号波形の一例を示す図である。
【図6】図4のPLL20の内部の詳細な構成を示すブロック図である。
【図7】 この参考技術における駆動波形生成情報と光波形との関係の一例を示す図である。
【図8】光源LDの駆動電流−光出力特性の例と変調部27の各部電流との関係を示す図である。
【図9】パルス幅調整部50から変調部27への伝送経路中の各点a,b,cでの変調信号Mod0の各信号波形の一例を示す波形図である。
【図10】図4に示すパルス幅調整部50の内部構成例を示すブロック図である。
【図11】図10に示す3個の遅延素子261a〜261cがそれぞれ出力した出力信号a〜cの論理和信号と論理積信号の信号波形例を示す図である。
【図12】パルス幅検出部51の詳細な内部構成例を示すブロック図である。
【図13】パルス幅補正時の処理の一例を示すフローチャート図である。
【図14】 この発明の実施形態の光源駆動装置の構成を示すブロック図である。
【図15】 この発明の実施形態の光源駆動装置におけるパルス幅補正動作時の各部信号波形図である。
【図16】 この発明の他の実施形態の光源駆動装置の構成を示すブロック図である。
【図17】ハイレベル出力電圧Vhi,ローレベル出力電圧Vloの一例を示す波形図である。
【図18】 この発明のさらに他の実施形態の光源駆動装置の構成を示すブロック図である。
【図19】 この発明のまた他の実施形態の光源駆動装置の構成を示すブロック図である。
【図20】 この発明のまた他の実施形態の光源駆動装置におけるスキュー補正動作時の各部信号波形図である。
【図21】図19に示した遅延量調整部24の内部の詳細な構成例を示すブロック図である。
【図22】図21に示した遅延検出部65の内部構成例を示すブロック図である。
【図23】図21に示した遅延検出部65の他の内部構成例を示すブロック図である。
【図24】 このまた他の実施形態の光源駆動装置におけるスキュー補正処理の一例を示すフローチャート図である。
【図25】従来の光源駆動装置の構成を示すブロック図である。
【図26】従来の問題を説明するための信号波形図である。
【符号の説明】
2:LD変調信号生成部集積回路
3:LD駆動集積回路 4:受光信号処理部
5:RF選択部 6:ウォブル信号生成部
7:サーボドライバ 9:LD制御部
10:LD変調信号生成部 12:LD駆動部
13:サーボ信号演算処理部 14:サーボプロセッサ
15:ウォブル信号処理部
16:RF信号処理部/PLL部
17:WCK生成部 18:回転制御部
19:コントローラ 20:PLL
21:ランレングス検出部
22:駆動波形生成情報保持部
23:変調信号生成部
24:遅延量調整部 25,34:制御部
26:LD制御タイミング信号生成部
27:変調部
28,28a〜28c:電流源
29,29a〜29c:スイッチ
30,31:加算部 32:電流駆動部
33:LD制御部
50,60:パルス幅調整部 51:パルス幅検出部
52:パルス幅制御部 53:テスト信号生成部
54:ローパスフィルタ(LPF) 55:入力部
56:二値化部 57:スライスレベル制御部
58:出力電圧調整部 59:出力電圧制御部
61:基準信号生成部 64:パルス幅・遅延制御部
65:遅延検出部
100:情報記録媒体 101:ピックアップ
102:光源(LD) 103:受光部
104:信号処理部 105:回転駆動部
106:コントローラ 201:M分周器(1/M)
202:位相比較器(PC) 203:ループフィルタ
204:発振器(VCO) 205:N分周器(1/N)
206:分周器(M/N)
241a〜241n,261a〜261n:遅延素子
243a〜243c:遅延部 242,262:選択部
251:位相比較部 252,271:平滑部
253:比較部 254,272:A/D変換器
LD,LD1〜LD2:光源
PD,PD1〜PD5:受光部

Claims (8)

  1. 光源の駆動波形生成情報に基づいて複数の変調信号を生成する変調信号生成手段と、
    該変調信号生成手段によって生成された変調信号に基づいて複数個の電流源から出力される電流のいずれか1つ又は複数を選択する電流源選択手段と、
    該電流源選択手段によって選択された1つ又は複数の電流に基づいて多段階の電流量の電流を生成し、該生成した電流を光源に供給して多値レベルの光を発生させて駆動する光源駆動手段と、
    前記変調信号生成手段から出力された変調信号の出力電圧を調整する出力電圧調整手段と、該出力電圧調整手段によって調整された変調信号のパルス幅を検出するパルス幅検出手段と、該パルス幅検出手段の検出結果に基づいて前記出力電圧調整手段による調整時の出力電圧を制御する出力電圧制御手段とを備えたことを特徴とする光源駆動装置。
  2. 光源の駆動波形生成情報に基づいて複数の変調信号を生成する変調信号生成手段と、
    該変調信号生成手段によって生成された変調信号に基づいて複数個の電流源から出力される電流のいずれか1つ又は複数を選択する電流源選択手段と、
    該電流源選択手段によって選択された1つ又は複数の電流に基づいて多段階の電流量の電流を生成し、該生成した電流を光源に供給して多値レベルの光を発生させて駆動する光源駆動手段と、
    前記変調信号生成手段から出力された変調信号を所定のスライスレベルに基づいて二値化する二値化手段と、該二値化手段によって二値化された変調信号のパルス幅を検出するパルス幅検出手段と、該パルス幅検出手段の検出結果に基づいて前記二値化手段による二値化時のスライスレベルを制御するスライスレベル制御手段とを備え、
    前記スライスレベル制御手段は、前記パルス幅検出手段の検出結果に基づいて前記二値化手段による二値化時の各変調信号毎にそれぞれのスライスレベルを個々に制御する手段であることを特徴とする光源駆動装置。
  3. 請求項1記載の光源駆動装置において、前記パルス幅検出手段は、前記光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号を平滑化することによって前記出力電圧調整手段によって調整された変調信号のパルス幅を検出する手段であることを特徴とする光源駆動装置。
  4. 請求項2記載の光源駆動装置において、前記パルス幅検出手段は、前記光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号を平滑化することによって変調信号のパルス幅を検出する手段であることを特徴とする光源駆動装置。
  5. 光源の駆動波形生成情報に基づいて複数の変調信号を生成する変調信号生成手段と、
    該変調信号生成手段によって生成された変調信号に基づいて複数個の電流源から出力される電流のいずれか1つ又は複数を選択する電流源選択手段と、
    該電流源選択手段によって選択された1つ又は複数の電流に基づいて多段階の電流量の電流を生成し、該生成した電流を光源に供給して多値レベルの光を発生させて駆動する光源駆動手段と、
    前記変調信号生成手段から出力された変調信号のパルス幅を検出するパルス幅検出手段と、該パルス幅検出手段の検出結果に基づいて前記駆動波形生成情報を変更することにより前記変調信号のパルス幅を調整するパルス幅制御手段とを備えたことを特徴とする光源駆動装置。
  6. 請求項1乃至のいずれか一項に記載の光源駆動装置において、
    前記電流源選択手段で前記各変調信号によって複数の電流を選択するタイミングの差を検出する遅延検出手段と、該遅延検出手段の検出結果に基づいて前記電流源選択手段による前記各変調信号によって複数の電流を選択するタイミングの差がほぼ0になるように各々の変調信号の遅延量を制御する遅延制御手段とを設けたことを特徴とする光源駆動装置。
  7. 請求項1乃至のいずれか一項に記載の光源駆動装置において、
    前記変調信号のハイレベル出力電圧及びローレベル電圧電圧を任意に定めるようにしたことを特徴とする光源駆動装置。
  8. 請求項1乃至のいずれか一項に記載の光源駆動装置を搭載したことを特徴とする情報記録装置。
JP2002382025A 2002-12-27 2002-12-27 光源駆動装置と情報記録装置 Expired - Fee Related JP4197251B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382025A JP4197251B2 (ja) 2002-12-27 2002-12-27 光源駆動装置と情報記録装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382025A JP4197251B2 (ja) 2002-12-27 2002-12-27 光源駆動装置と情報記録装置

Publications (2)

Publication Number Publication Date
JP2004213763A JP2004213763A (ja) 2004-07-29
JP4197251B2 true JP4197251B2 (ja) 2008-12-17

Family

ID=32817765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382025A Expired - Fee Related JP4197251B2 (ja) 2002-12-27 2002-12-27 光源駆動装置と情報記録装置

Country Status (1)

Country Link
JP (1) JP4197251B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11729880B1 (en) * 2020-08-31 2023-08-15 Apple Inc. Arbitrary waveform generator for current-controlled elements in portable electronic devices
US11843387B1 (en) 2020-08-31 2023-12-12 Apple Inc. Tx-Rx synchronization for reflective optoelectronic systems in portable electronic devices

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310256B2 (ja) 2004-10-22 2009-08-05 株式会社日立製作所 光ディスク記録装置、レーザダイオード駆動装置および記録信号発生装置
KR100688571B1 (ko) * 2005-09-07 2007-03-02 삼성전자주식회사 광 디스크 기록 전략 데이터 보정방법 및 이를 적용하는 광디스크 구동장치
JP5314331B2 (ja) * 2008-06-18 2013-10-16 アスモ株式会社 モータ制御装置
JP2009080928A (ja) * 2008-11-26 2009-04-16 Hitachi Ltd 光ディスク記録装置、レーザダイオード駆動装置および記録信号発生装置
US20220268900A1 (en) * 2019-09-23 2022-08-25 Sony Semiconductor Solutions Corporation Ranging system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11729880B1 (en) * 2020-08-31 2023-08-15 Apple Inc. Arbitrary waveform generator for current-controlled elements in portable electronic devices
US11843387B1 (en) 2020-08-31 2023-12-12 Apple Inc. Tx-Rx synchronization for reflective optoelectronic systems in portable electronic devices

Also Published As

Publication number Publication date
JP2004213763A (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
US7573790B2 (en) Light source driving unit and optical storage apparatus
US8199625B2 (en) Laser driving device and method with control signal patterns, reference pulses, and changing pulses
US8369368B2 (en) Laser driving device, laser driving method, optical unit, and light device
JP4197251B2 (ja) 光源駆動装置と情報記録装置
US8228773B2 (en) Laser driving device and optical apparatus
US8107342B2 (en) Laser driving device, optical unit, and light device which can change the setting information for a sampling pulse
JP4004937B2 (ja) 光源駆動装置と情報記録装置
US6552987B1 (en) Optical disk apparatus wherein recording clock signal is stopped being supplied to semiconductor laser drive circuit on optical pickup during reproduction operation
JP3875533B2 (ja) 光源駆動装置
JP2004362629A (ja) 光源駆動装置と光源駆動装置におけるスキュー調整方法と光源駆動装置における変調信号調整方法と情報記録装置
US6831885B2 (en) Optical disk apparatus wherein recording clock signal is stopped being supplied to semiconductor laser drive circuit on optical pickup during reproduction operation
JP4187958B2 (ja) 光源駆動装置とその光源駆動装置を備えた光情報記録再生装置
JP4145519B2 (ja) 光源駆動装置
JP3875534B2 (ja) 光情報記録装置
JP3839300B2 (ja) 光情報記録装置
JP4380527B2 (ja) 記録装置及び信号記録方法
JP2004273036A (ja) パワー制御方法、パワー制御装置及び情報記録装置
JP2006048836A (ja) 情報記録方法とレーザ駆動回路と情報記録装置
JP2004005781A (ja) 情報記録装置
JP2005122817A (ja) 光学的情報記録装置及び半導体回路デバイス
JP2004013932A (ja) 光源駆動装置と情報記録装置
JP2005228373A (ja) 光情報記録装置及び光情報記録方法
JP2008269709A (ja) 情報記録装置
JP2004273049A (ja) 光情報記録装置と光情報記録方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees