JP4196890B2 - Vapor compression refrigerator - Google Patents

Vapor compression refrigerator Download PDF

Info

Publication number
JP4196890B2
JP4196890B2 JP2004193983A JP2004193983A JP4196890B2 JP 4196890 B2 JP4196890 B2 JP 4196890B2 JP 2004193983 A JP2004193983 A JP 2004193983A JP 2004193983 A JP2004193983 A JP 2004193983A JP 4196890 B2 JP4196890 B2 JP 4196890B2
Authority
JP
Japan
Prior art keywords
refrigerant
expander
radiator
operation mode
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004193983A
Other languages
Japanese (ja)
Other versions
JP2006017352A (en
Inventor
淳 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004193983A priority Critical patent/JP4196890B2/en
Publication of JP2006017352A publication Critical patent/JP2006017352A/en
Application granted granted Critical
Publication of JP4196890B2 publication Critical patent/JP4196890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、熱エネルギを回収するランキンサイクルを備える蒸気圧縮式冷凍機に関するもので、車両用空調装置に適用して有効である。   The present invention relates to a vapor compression refrigerator having a Rankine cycle for recovering thermal energy, and is effective when applied to a vehicle air conditioner.

本発明者らは、特願2003−410094号の特許出願において、車両に搭載されるエンジンの廃熱から熱エネルギを回収するランキンサイクルを備える車両用空調装置を提案している(以下、先願例と称す)。   In the patent application of Japanese Patent Application No. 2003-410094, the present inventors have proposed a vehicle air conditioner including a Rankine cycle that recovers thermal energy from waste heat of an engine mounted on a vehicle (hereinafter referred to as a prior application). Referred to as an example).

この図4の先願例には、冷媒を膨張機一体型圧縮機100→放熱器11→気液分離器12→減圧器13→蒸発器14の順に流す空調運転モードが備えられている。   The prior application example of FIG. 4 is provided with an air conditioning operation mode in which the refrigerant flows in the order of the expander-integrated compressor 100 → the radiator 11 → the gas-liquid separator 12 → the decompressor 13 → the evaporator 14.

さらに、気液分離器12の液相側と蒸気発生器30とを接続する液相配管31と、液相配管31に配置され、液相冷媒を蒸気発生器30に送る液ポンプ32とを備え、冷媒を液ポンプ32→蒸気発生器30→膨張機一体型圧縮機100→放熱器11の順に流す廃熱回収運転モード(ランキンサイクル)が備えられている。   Furthermore, the liquid phase piping 31 which connects the liquid phase side of the gas-liquid separator 12 and the steam generator 30, and the liquid pump 32 which is arrange | positioned at the liquid phase piping 31 and sends a liquid phase refrigerant | coolant to the steam generator 30 are provided. , A waste heat recovery operation mode (Rankine cycle) in which the refrigerant flows in the order of the liquid pump 32 → the steam generator 30 → the expander-integrated compressor 100 → the radiator 11 is provided.

これにより、空調運転モード時には車室内空間の空調ができ、廃熱回収運転モード時にはエンジン20の廃熱を膨張機一体型圧縮機100で回収することができる。   Thereby, the vehicle interior space can be air-conditioned in the air-conditioning operation mode, and the waste heat of the engine 20 can be recovered by the expander-integrated compressor 100 in the waste heat recovery operation mode.

ところで、空調運転モード時における蒸発器14の冷媒流れ下流側には、空調運転モードから廃熱回収運転モードに切り替わった時に蒸発器14に冷媒流れが逆流することを防止する逆止弁14aが配置されている。空調運転モード時から廃熱回収運転モードに切り替わった時の逆止弁14aの蒸発器側(図4中の左側)の圧力は、蒸発器と反対側(図4中の右側)の圧力よりも小さいため、冷媒流れの逆流を防止できる。   By the way, a check valve 14a for preventing the refrigerant flow from flowing back to the evaporator 14 when switching from the air conditioning operation mode to the waste heat recovery operation mode is arranged on the downstream side of the refrigerant flow of the evaporator 14 in the air conditioning operation mode. Has been. The pressure on the evaporator side (left side in FIG. 4) of the check valve 14a when switching from the air conditioning operation mode to the waste heat recovery operation mode is higher than the pressure on the opposite side (right side in FIG. 4) of the evaporator. Since it is small, reverse flow of the refrigerant flow can be prevented.

しかし、先願例では減圧器13の種類が特定されていないため、例えば減圧器13がキャピラリチューブなどの固定絞りの場合には、廃熱回収運転モード(ランキンサイクル)を稼動すると、放熱器11と蒸発器14がキャピラリチューブ13を介して連通してしまう。したがって、廃熱回収運転モード(ランキンサイクル)を連続使用すると蒸発器14内の圧力が徐々に逆止弁14aの蒸発器と反対側(図4中の右側)の圧力まで上昇し、最悪の場合には蒸発器14または配管などが破損するという問題がある。   However, since the type of the decompressor 13 is not specified in the prior application example, for example, when the decompressor 13 is a fixed throttle such as a capillary tube, when the waste heat recovery operation mode (Rankine cycle) is operated, the radiator 11 And the evaporator 14 communicate with each other through the capillary tube 13. Therefore, when the waste heat recovery operation mode (Rankine cycle) is continuously used, the pressure in the evaporator 14 gradually increases to the pressure on the side opposite to the evaporator of the check valve 14a (right side in FIG. 4). Has a problem that the evaporator 14 or the piping is damaged.

また、蒸発器14の圧力が高くなると、当然に逆止弁14aの蒸発器側(図4中の左側)圧力と、反対側(図4中の右側)圧力との差圧が無くなるため、逆止弁14aが正常に作動しなくなり、廃熱回収運転モード(ランキンサイクル)が正常に機能しなくなってしまう。   Further, when the pressure of the evaporator 14 is increased, the pressure difference between the pressure on the evaporator side (left side in FIG. 4) and the pressure on the opposite side (right side in FIG. 4) of the check valve 14a is naturally eliminated. The stop valve 14a does not operate normally, and the waste heat recovery operation mode (Rankine cycle) does not function normally.

本発明は、上記点に鑑み、廃熱回収運転モード(ランキンサイクル)を備える蒸気圧縮式冷凍機において、廃熱回収運転モード時における蒸発器の圧力上昇を防止することを目的とする。   In view of the above points, an object of the present invention is to prevent an increase in the pressure of an evaporator in a waste heat recovery operation mode in a vapor compression refrigerator having a waste heat recovery operation mode (Rankine cycle).

上記目的を達成するため、請求項1に記載の発明では、冷媒を吸入圧縮する圧縮機(10)としての機能および冷媒を膨脹させて冷媒の熱エネルギを回収するエネルギ回収機(33)としての機能を兼ね備える膨脹機一体型圧縮機(100)と、冷媒を冷却する放熱器(11)と、放熱器(11)から流出した冷媒を減圧する減圧手段(13、15a)と、減圧手段(13、15a)にて減圧された冷媒を蒸発させる蒸発器(14)とを備え、
蒸発器(14)にて冷凍能力を発揮させる空調運転モードでは、膨脹機一体型圧縮機(100)にて吸入圧縮された冷媒を放熱器(11)→減圧手段(13、15a)→蒸発器(14)→膨脹機一体型圧縮機(100)の順に循環させる蒸気圧縮式冷凍機において、
膨張機一体型圧縮機(100)と放熱器(11)とを繋ぐ冷媒回路に配置されて、液相冷媒を加熱して過熱蒸気を発生させるとともに、発生させた過熱蒸気を膨張機一体型圧縮機(100)へ供給する蒸気発生器(30)と、放熱器(11)から流出した液相冷媒を蒸気発生器(30)に送る冷媒供給手段(32)と、蒸発器(14)への冷媒の流入を遮断する冷媒遮断手段(14a、15a、16)と、蒸気発生器(30)と放熱器(11)との間に配置されて、膨脹機一体型圧縮機(100)と放熱器(11)と間の冷媒の流れを遮断可能な第1冷媒遮断手段(35)と、冷媒の流れを放熱器(11)と減圧手段(13、15a)との間の分岐部で分岐し、第1冷媒遮断手段(35)をバイパスして蒸気発生器(30)へ導く第1バイパス回路(31)と、膨脹機一体型圧縮機(100)が冷媒を膨張させる廃熱回収運転モードにおける膨脹機一体型圧縮機(100)冷媒出口側および廃熱回収運転モードにおける放熱器(11)冷媒入口側とを接続する第2バイパス回路(34)と、第2バイパス回路(34)に配置されて、廃熱回収運転モードにおける膨脹機一体型圧縮機(100)冷媒出口側から廃熱回収運転モードにおける放熱器(11)冷媒入口側へのみ冷媒が流れることを許容する第2逆止弁(34a)とを備え、
膨脹機一体型圧縮機(100)は、その内部における空調運転モードでの冷媒流れ方向が、廃熱回収運転モードでの冷媒流れ方向に対して、逆転するように構成されており、冷媒供給手段(32)は、第1バイパス回路(31)に配置されており、冷媒遮断手段(14a、15a、16)は、空調運転モードにおける蒸発器(14)の冷媒流れ下流側に配置されて、蒸発器(14)に冷媒流れが逆流することを防止する第1逆止弁(14a)、および、空調運転モードにおける分岐部と蒸発器(14)との間に配置され、冷媒流れを遮断する第2冷媒遮断手段(15b、16)で構成されており、廃熱回収運転モードでは、冷媒遮断手段(14a、15a、16)が蒸発器(14)への冷媒の流入を遮断するとともに、第1冷媒遮断手段(35)が空調運転モードにおける膨脹機一体型圧縮機(100)の冷媒吐出側から放熱器(11)間の冷媒の流れを遮断することによって、冷媒供給手段(32)により冷媒を蒸気発生器(30)→膨脹機一体型圧縮機(100)→第2バイパス回路(34)→放熱器(11)→第1バイパス回路(31)→冷媒供給手段(32)の順に循環させることを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, a function as a compressor (10 ) for sucking and compressing refrigerant and an energy recovery machine (33) for recovering thermal energy of the refrigerant by expanding the refrigerant are provided. fluid machine having both functions (100), a radiator for cooling the refrigerant (11), a radiator (11) decompression means for decompressing the outflow refrigerant from the (13,15A), decompression means ( An evaporator (14) for evaporating the refrigerant depressurized in 13, 15a),
In the air-conditioning operation mode in which the refrigerating capacity is exhibited by the evaporator (14), the refrigerant sucked and compressed by the expander- integrated compressor (100) is discharged from the radiator (11) → the pressure reducing means (13, 15a) → the evaporator. (14) In the vapor compression refrigerator that circulates in the order of the expander-integrated compressor (100) ,
Are arranged in the refrigerant circuit connecting the expander-integrated compressor (100) and the radiator (11), Rutotomoni to generate superheated steam by heating the liquid phase refrigerant, the expander-integrated superheated steam generated To the steam generator (30 ) to be supplied to the compressor (100), the refrigerant supply means (32) for sending the liquid phase refrigerant flowing out from the radiator (11) to the steam generator (30), and the evaporator (14) The refrigerant shut-off means (14a, 15a, 16) for blocking the refrigerant inflow, and the steam generator (30) and the radiator (11) are disposed between the expander-integrated compressor (100) and the heat radiation. A first refrigerant shut-off means (35) capable of shutting off the flow of the refrigerant between the radiator (11) and the branch of the refrigerant between the radiator (11) and the decompression means (13, 15a). The first bypass that bypasses the first refrigerant shut-off means (35) and leads to the steam generator (30) The circuit (31) and the expander-integrated compressor (100) expand the refrigerant, and the expander-integrated compressor (100) in the waste heat recovery operation mode and the radiator (11) in the waste heat recovery operation mode A second bypass circuit (34) connecting the refrigerant inlet side and a second bypass circuit (34) disposed in the second bypass circuit (34) to recover waste heat from the expander-integrated compressor (100) refrigerant outlet side in the waste heat recovery operation mode A radiator (11) in the operation mode, and a second check valve (34a) that allows the refrigerant to flow only to the refrigerant inlet side ,
The expander-integrated compressor (100) is configured such that the refrigerant flow direction in the air-conditioning operation mode in the expander is reversed with respect to the refrigerant flow direction in the waste heat recovery operation mode. (32) is arranged in the first bypass circuit (31), and the refrigerant blocking means (14a, 15a, 16) is arranged on the downstream side of the refrigerant flow of the evaporator (14) in the air-conditioning operation mode to evaporate. A first check valve (14a) for preventing the refrigerant flow from flowing back into the condenser (14), and a first check valve (14a) disposed between the branching portion and the evaporator (14) in the air-conditioning operation mode to block the refrigerant flow. In the waste heat recovery operation mode, the refrigerant blocking means (14a, 15a, 16) blocks the inflow of the refrigerant to the evaporator (14) and the first refrigerant blocking means (15b, 16) . Refrigerant blocking means (3 ) Is the radiator from the refrigerant discharge side of the fluid machine (100) in the air conditioning operation mode (11) by blocking the flow of refrigerant between the steam generator coolant by the refrigerant supply means (32) (30 ) → Expander-integrated compressor (100) → second bypass circuit (34) → radiator (11) → first bypass circuit (31) → refrigerant supply means (32) .

これによると、冷媒遮断手段(14a、15a、16)が蒸発器(14)への冷媒の流入を遮断した後に冷媒供給手段が冷媒を循環させるため、当然に蒸発器(14)には冷媒が流入しない。つまり、蒸発器(14)内の圧力が上昇しないため、図4の先願例のように蒸発器(14)に冷媒が流入することにより蒸発器(14)内の圧力が上昇して蒸発器(14)や配管などの破損を防止できる。   According to this, since the refrigerant supply means circulates the refrigerant after the refrigerant blocking means (14a, 15a, 16) blocks the inflow of the refrigerant to the evaporator (14), naturally, the evaporator (14) has no refrigerant. Does not flow. That is, since the pressure in the evaporator (14) does not increase, the refrigerant flows into the evaporator (14) as in the prior application example of FIG. (14) Damage to pipes and the like can be prevented.

ところで、図4の先願例では蒸発器(14)にて冷凍能力を発揮させる場合の蒸発器(14)内の圧力、つまり第1逆止弁(14a)の蒸発器側の圧力は、膨脹機一体型圧縮機(100)にてエネルギを回収する場合の第1逆止弁(14a)の蒸発器と反対側の圧力よりも低圧である。第1逆止弁(14a)は、この差圧によりエネルギを回収する場合に冷媒が蒸発器(14)へ逆流することを防止している。 By the way, in the prior application example of FIG. 4, the pressure in the evaporator (14) when the refrigeration capacity is exhibited in the evaporator (14), that is, the pressure on the evaporator side of the first check valve (14a) is the expansion. The pressure is lower than the pressure on the side opposite to the evaporator of the first check valve (14a) when energy is recovered by the compressor integrated compressor (100) . The first check valve (14a) prevents the refrigerant from flowing back to the evaporator (14) when energy is recovered by this differential pressure.

しかし、本実施形態では、膨脹機一体型圧縮機(100)にてエネルギを回収する場合には、第2冷媒遮断手段(15b、16)が分岐部から蒸発器(14)間の冷媒の流れを遮断する。したがって、図4の先願例のように放熱器(11)と蒸発器(14)は連通しない。これにより、エネルギを回収する作動を連続的に行っても蒸発器(14)内の圧力は増加せず蒸発器(14)または配管などの破損を防止できる。 However, in the present embodiment, when energy is recovered by the expander- integrated compressor (100) , the second refrigerant blocking means (15b, 16) flows the refrigerant between the branch portion and the evaporator (14). Shut off. Therefore, unlike the prior application example of FIG. 4, the radiator (11) and the evaporator (14) do not communicate with each other. Thereby, even if the operation | movement which collect | recovers energy is performed continuously, the pressure in an evaporator (14) does not increase, and damage to an evaporator (14) or piping can be prevented.

また、蒸発器(14)の圧力が増加しないため、当然に逆流防止手段(14a)の蒸発器側圧力と、反対側圧力との差圧は無くならない。つまり、逆流防止手段(14a)の作動不良が起きないため、エネルギを回収する作動のサイクルが異常を起こすことを防止できる。   Further, since the pressure of the evaporator (14) does not increase, naturally, the differential pressure between the evaporator side pressure of the backflow prevention means (14a) and the opposite side pressure is not lost. That is, since the malfunction of the backflow prevention means (14a) does not occur, it is possible to prevent the operation cycle for recovering energy from becoming abnormal.

また、請求項に記載の発明のように、請求項に記載の蒸気圧縮式冷凍機において、第2冷媒遮断手段を、冷媒通路を遮断状態または全開状態にする開閉弁(16)としてもよい。 Further, as in the invention described in claim 2 , in the vapor compression refrigerator as set forth in claim 1 , the second refrigerant shut-off means may be an on-off valve (16) that shuts off or fully opens the refrigerant passage. Good.

また、請求項に記載の発明のように、請求項に記載の蒸気圧縮式冷凍機において、開閉弁を通電により冷媒通路の開閉を行う電磁弁(16)としてもよい。 It is preferable as defined in claim 3, in the vapor compression refrigerating machine according to claim 2, or the opening and closing valve as an electromagnetic valve for opening and closing the refrigerant passage (16) when energized.

また、請求項に記載の発明のように、請求項に記載の蒸気圧縮式冷凍機において、第2冷媒遮断手段を蒸発器(14)の出口冷媒の過熱度が低い場合には冷媒通路の開度を遮断側に調節し、出口冷媒の過熱度が高い場合には冷媒通路の開度を全開側に調節する流量調節部(15b)とし、減圧手段を、冷媒を減圧する減圧部(15a)とし、
流量調節部(15b)と減圧部(15a)とが一体となった温度式膨張弁(15)を備えれば、膨脹機一体型圧縮機(100)が吸入を停止すると、蒸発器(14)出口の圧力はごく短時間で蒸発器温度の飽和圧力となる。この時、温度式膨張弁(15)は全閉状態となり、冷媒流路を遮断する。これにより、請求項2と同様にエネルギ回収機(33、100)にてエネルギを回収する場合に蒸発器(14)内の圧力の上昇を防止することができる。
It is preferable as defined in claim 4, in the vapor compression refrigerating machine according to claim 1, the refrigerant passage when a low degree of superheat of the refrigerant at the outlet of the evaporator and the second refrigerant shutoff means (14) Is adjusted to the shut-off side, and when the degree of superheat of the outlet refrigerant is high, the flow rate adjustment unit (15b) is used to adjust the opening of the refrigerant passage to the fully open side, and the decompression means is a decompression unit (10 15a)
If the temperature type expansion valve (15) in which the flow rate adjusting part (15b) and the pressure reducing part (15a) are integrated is provided, the evaporator (14) is stopped when the expander- integrated compressor (100) stops the suction. The outlet pressure becomes the saturation pressure of the evaporator temperature in a very short time. At this time, the temperature type expansion valve (15) is fully closed and the refrigerant flow path is shut off. Thereby, similarly to claim 2, when energy is recovered by the energy recovery machine (33, 100), an increase in pressure in the evaporator (14) can be prevented.

また、請求項に記載の発明では、請求項に記載の蒸気圧縮式冷凍機において、放熱器(11)と温度式膨張弁(15)との間に配置され、放熱器(11)から流出した冷媒を気相冷媒と液相冷媒とに分離する気液分離器(12)とを備え、
分岐部は、液相冷媒の蓄液部に接続される液相配管(31)と、蓄液部の冷媒を蒸発器(14)側へ導く冷媒通路とで構成されていることを特徴とする。
Moreover, in invention of Claim 5 , in the vapor compression type refrigerator of Claim 4 , it arrange | positions between a heat radiator (11) and a temperature type expansion valve (15), and from a heat radiator (11). A gas-liquid separator (12) that separates outflowed refrigerant into gas-phase refrigerant and liquid-phase refrigerant,
The branch portion is composed of a liquid phase pipe (31) connected to the liquid storage portion of the liquid phase refrigerant and a refrigerant passage that guides the refrigerant of the liquid storage portion to the evaporator (14) side. .

これによると、図4の先願例のように放熱器(11)と蒸発器(14)は連通しない。したがって、請求項1と同様の理由により、エネルギを回収する作動を連続的に行っても蒸発器(14)内の圧力は増加せず蒸発器(14)または配管などの破損の防止、および逆流防止手段(14a)の作動不良を防止できる。   According to this, the radiator (11) and the evaporator (14) do not communicate with each other as in the prior application example of FIG. Therefore, for the same reason as in claim 1, even if the operation of recovering energy is continuously performed, the pressure in the evaporator (14) does not increase, and the evaporator (14) or piping is prevented from being damaged, and the reverse flow The malfunction of the prevention means (14a) can be prevented.

請求項6に記載の発明では、冷媒を吸入圧縮する圧縮機(10)としての機能および冷媒を膨脹させて冷媒の熱エネルギを回収するエネルギ回収機(33)としての機能を兼ね備える膨脹機一体型圧縮機(100)と、冷媒を冷却する放熱器(11)と、放熱器(11)から流出した冷媒を減圧する減圧手段(13、15a)と、減圧手段(13、15a)にて減圧された冷媒を蒸発させる蒸発器(14)とを備え、
蒸発器(14)にて冷凍能力を発揮させる空調運転モードでは、膨脹機一体型圧縮機(100)にて吸入圧縮された冷媒を放熱器(11)→減圧手段(13、15a)→蒸発器(14)→膨脹機一体型圧縮機(100)の順に循環させる蒸気圧縮式冷凍機において、
膨張機一体型圧縮機(100)と放熱器(11)とを繋ぐ冷媒回路に配置されて、液相冷媒を加熱して過熱蒸気を発生させるとともに、発生させた過熱蒸気を膨張機一体型圧縮機(100)へ供給する蒸気発生器(30)と、放熱器(11)から流出した液相冷媒を蒸気発生器(30)に送る冷媒供給手段(32)と、蒸発器(14)への冷媒の流入を遮断する冷媒遮断手段(14a、15a、16)と、蒸気発生器(30)と放熱器(11)との間に配置されて、膨脹機一体型圧縮機(100)と放熱器(11)と間の冷媒の流れを遮断可能な第1冷媒遮断手段(35)と、冷媒の流れを放熱器(11)と減圧手段(13、15a)との間の分岐部で分岐し、第1冷媒遮断手段(35)をバイパスして蒸気発生器(30)へ導く第1バイパス回路(31)と、膨脹機一体型圧縮機(100)が冷媒を膨張させる廃熱回収運転モードにおける膨脹機一体型圧縮機(100)冷媒出口側および廃熱回収運転モードにおける放熱器(11)冷媒入口側とを接続する第2バイパス回路(34)と、第2バイパス回路(34)に配置されて、廃熱回収運転モードにおける膨脹機一体型圧縮機(100)冷媒出口側から廃熱回収運転モードにおける放熱器(11)冷媒入口側へのみ冷媒が流れることを許容する第2逆止弁(34a)とを備え、
膨脹機一体型圧縮機(100)は、その内部における空調運転モードでの冷媒流れ方向が、廃熱回収運転モードでの冷媒流れ方向に対して、逆転するように構成されており、冷媒供給手段(32)は、第1バイパス回路(31)に配置されており、冷媒遮断手段(14a、15a、16)は、空調運転モードにおける蒸発器(14)の冷媒流れ下流側に配置されて、蒸発器(14)に冷媒流れが逆流することを防止する第1逆止弁(14a)、および、空調運転モードにおける分岐部と蒸発器(14)との間に配置され、冷媒流れを遮断する第2冷媒遮断手段(15b、16)で構成されており、第2冷媒遮断手段は、冷媒通路を遮断状態または全開状態にする開閉弁(16)であり、廃熱回収運転モードでは、冷媒遮断手段(14a、15a、16)が蒸発器(14)への冷媒の流入を遮断するとともに、第1冷媒遮断手段(35)が空調運転モードにおける膨脹機一体型圧縮機(100)の冷媒吐出側から放熱器(11)間の冷媒の流れを遮断することによって、冷媒供給手段(32)により冷媒を蒸気発生器(30)→膨脹機一体型圧縮機(100)→第2バイパス回路(34)→放熱器(11)→第1バイパス回路(31)→冷媒供給手段(32)の順に循環させることを特徴とする。
これにより、請求項1と同様の効果を得ることができる。
請求項7に記載の発明では、冷媒を吸入圧縮する圧縮機(10)としての機能および冷媒を膨脹させて冷媒の熱エネルギを回収するエネルギ回収機(33)としての機能を兼ね備える膨脹機一体型圧縮機(100)と、冷媒を冷却する放熱器(11)と、放熱器(11)から流出した冷媒を減圧する減圧手段(13、15a)と、減圧手段(13、15a)にて減圧された冷媒を蒸発させる蒸発器(14)とを備え、
蒸発器(14)にて冷凍能力を発揮させる空調運転モードでは、膨脹機一体型圧縮機(100)にて吸入圧縮された冷媒を放熱器(11)→減圧手段(13、15a)→蒸発器(14)→膨脹機一体型圧縮機(100)の順に循環させる蒸気圧縮式冷凍機において、
膨張機一体型圧縮機(100)と放熱器(11)とを繋ぐ冷媒回路に配置されて、液相冷媒を加熱して過熱蒸気を発生させるとともに、発生させた過熱蒸気を膨張機一体型圧縮機(100)へ供給する蒸気発生器(30)と、放熱器(11)から流出した液相冷媒を蒸気発生器(30)に送る冷媒供給手段(32)と、蒸発器(14)への冷媒の流入を遮断する冷媒遮断手段(14a、15a、16)と、蒸気発生器(30)と放熱器(11)との間に配置されて、膨脹機一体型圧縮機(100)と放熱器(11)と間の冷媒の流れを遮断可能な第1冷媒遮断手段(35)と、冷媒の流れを放熱器(11)と減圧手段(13、15a)との間の分岐部で分岐し、第1冷媒遮断手段(35)をバイパスして蒸気発生器(30)へ導く第1バイパス回路(31)と、膨脹機一体型圧縮機(100)が冷媒を膨張させる廃熱回収運転モードにおける膨脹機一体型圧縮機(100)冷媒出口側および廃熱回収運転モードにおける放熱器(11)冷媒入口側とを接続する第2バイパス回路(34)と、第2バイパス回路(34)に配置されて、廃熱回収運転モードにおける膨脹機一体型圧縮機(100)冷媒出口側から廃熱回収運転モードにおける放熱器(11)冷媒入口側へのみ冷媒が流れることを許容する第2逆止弁(34a)とを備え、
膨脹機一体型圧縮機(100)は、その内部における空調運転モードでの冷媒流れ方向が、廃熱回収運転モードでの冷媒流れ方向に対して、逆転するように構成されており、冷媒供給手段(32)は、第1バイパス回路(31)に配置されており、冷媒遮断手段(14a、15a、16)は、空調運転モードにおける蒸発器(14)の冷媒流れ下流側に配置されて、蒸発器(14)に冷媒流れが逆流することを防止する第1逆止弁(14a)、および、空調運転モードにおける分岐部と蒸発器(14)との間に配置され、冷媒流れを遮断する第2冷媒遮断手段(15b、16)で構成されており、第2冷媒遮断手段は、蒸発器(14)の出口冷媒の過熱度が低い場合には冷媒通路の開度を遮断側に調節し、出口冷媒の過熱度が高い場合には冷媒通路の開度を全開側に調節する流量調節部(15b)であり、減圧手段は、冷媒を減圧する減圧部(15a)であり、流量調節部(15b)および減圧部(15a)は、温度式膨張弁(15)として一体に構成されており、廃熱回収運転モードでは、冷媒遮断手段(14a、15a、16)が蒸発器(14)への冷媒の流入を遮断するとともに、第1冷媒遮断手段(35)が空調運転モードにおける膨脹機一体型圧縮機(100)の冷媒吐出側から放熱器(11)間の冷媒の流れを遮断することによって、冷媒供給手段(32)により冷媒を蒸気発生器(30)→膨脹機一体型圧縮機(100)→第2バイパス回路(34)→放熱器(11)→第1バイパス回路(31)→冷媒供給手段(32)の順に循環させることを特徴とする。
これにより、請求項1と同様の効果を得ることができる。
In the invention described in claim 6, the expander-integrated type has both the function as the compressor (10) for sucking and compressing the refrigerant and the function as the energy recovery machine (33) for expanding the refrigerant and recovering the heat energy of the refrigerant. The pressure is reduced by the compressor (100), the radiator (11) for cooling the refrigerant, the decompression means (13, 15a) for decompressing the refrigerant flowing out from the radiator (11), and the decompression means (13, 15a). An evaporator (14) for evaporating the refrigerant,
In the air-conditioning operation mode in which the refrigerating capacity is exhibited by the evaporator (14), the refrigerant sucked and compressed by the expander-integrated compressor (100) is discharged from the radiator (11) → the pressure reducing means (13, 15a) → the evaporator. (14) In the vapor compression refrigerator that circulates in the order of the expander-integrated compressor (100),
Arranged in the refrigerant circuit connecting the expander-integrated compressor (100) and the radiator (11), the liquid-phase refrigerant is heated to generate superheated steam, and the generated superheated steam is compressed by the expander-integrated compression A steam generator (30) to be supplied to the machine (100), a refrigerant supply means (32) for sending the liquid phase refrigerant flowing out from the radiator (11) to the steam generator (30), and an evaporator (14) A refrigerant shut-off means (14a, 15a, 16) for shutting down the inflow of the refrigerant, and an expander-integrated compressor (100) and a radiator disposed between the steam generator (30) and the radiator (11). A first refrigerant blocking means (35) capable of blocking the refrigerant flow between (11) and the refrigerant flow at a branching portion between the radiator (11) and the pressure reducing means (13, 15a), The first bypass that bypasses the first refrigerant shut-off means (35) and leads to the steam generator (30). The circuit (31) and the expander-integrated compressor (100) expand the refrigerant, and the expander-integrated compressor (100) in the waste heat recovery operation mode and the radiator (11) in the waste heat recovery operation mode A second bypass circuit (34) connecting the refrigerant inlet side and a second bypass circuit (34) disposed in the second bypass circuit (34) to recover waste heat from the expander-integrated compressor (100) refrigerant outlet side in the waste heat recovery operation mode A radiator (11) in the operation mode, and a second check valve (34a) that allows the refrigerant to flow only to the refrigerant inlet side,
The expander-integrated compressor (100) is configured such that the refrigerant flow direction in the air-conditioning operation mode in the expander is reversed with respect to the refrigerant flow direction in the waste heat recovery operation mode. (32) is arranged in the first bypass circuit (31), and the refrigerant blocking means (14a, 15a, 16) is arranged on the downstream side of the refrigerant flow of the evaporator (14) in the air-conditioning operation mode to evaporate. A first check valve (14a) for preventing the refrigerant flow from flowing back into the condenser (14), and a first check valve (14a) disposed between the branching portion and the evaporator (14) in the air-conditioning operation mode to block the refrigerant flow. 2 refrigerant blocking means (15b, 16), the second refrigerant blocking means is an on-off valve (16) for blocking or fully opening the refrigerant passage, and in the waste heat recovery operation mode, the refrigerant blocking means (14a, 15 16) shuts off the inflow of the refrigerant to the evaporator (14), and the first refrigerant shut-off means (35) is connected to the radiator (11) from the refrigerant discharge side of the expander-integrated compressor (100) in the air conditioning operation mode. ) Between the steam generator (30), the expander-integrated compressor (100), the second bypass circuit (34), and the radiator (11). ) → first bypass circuit (31) → refrigerant supply means (32) in this order.
Thereby, the same effect as that of claim 1 can be obtained.
In the invention described in claim 7, the expander-integrated type has both the function as the compressor (10) for sucking and compressing the refrigerant and the function as the energy recovery machine (33) for expanding the refrigerant and recovering the heat energy of the refrigerant. The pressure is reduced by the compressor (100), the radiator (11) for cooling the refrigerant, the decompression means (13, 15a) for decompressing the refrigerant flowing out from the radiator (11), and the decompression means (13, 15a). An evaporator (14) for evaporating the refrigerant,
In the air-conditioning operation mode in which the refrigerating capacity is exhibited by the evaporator (14), the refrigerant sucked and compressed by the expander-integrated compressor (100) is discharged from the radiator (11) → the pressure reducing means (13, 15a) → the evaporator. (14) In the vapor compression refrigerator that circulates in the order of the expander-integrated compressor (100),
Arranged in the refrigerant circuit connecting the expander-integrated compressor (100) and the radiator (11), the liquid-phase refrigerant is heated to generate superheated steam, and the generated superheated steam is compressed by the expander-integrated compression A steam generator (30) to be supplied to the machine (100), a refrigerant supply means (32) for sending the liquid phase refrigerant flowing out from the radiator (11) to the steam generator (30), and an evaporator (14) A refrigerant shut-off means (14a, 15a, 16) for shutting down the inflow of the refrigerant, and an expander-integrated compressor (100) and a radiator disposed between the steam generator (30) and the radiator (11). A first refrigerant blocking means (35) capable of blocking the refrigerant flow between (11) and the refrigerant flow at a branching portion between the radiator (11) and the pressure reducing means (13, 15a), The first bypass that bypasses the first refrigerant shut-off means (35) and leads to the steam generator (30). The circuit (31) and the expander-integrated compressor (100) expand the refrigerant, and the expander-integrated compressor (100) in the waste heat recovery operation mode and the radiator (11) in the waste heat recovery operation mode A second bypass circuit (34) connecting the refrigerant inlet side and a second bypass circuit (34) disposed in the second bypass circuit (34) to recover waste heat from the expander-integrated compressor (100) refrigerant outlet side in the waste heat recovery operation mode A radiator (11) in the operation mode, and a second check valve (34a) that allows the refrigerant to flow only to the refrigerant inlet side,
The expander-integrated compressor (100) is configured such that the refrigerant flow direction in the air-conditioning operation mode in the expander is reversed with respect to the refrigerant flow direction in the waste heat recovery operation mode. (32) is arranged in the first bypass circuit (31), and the refrigerant blocking means (14a, 15a, 16) is arranged on the downstream side of the refrigerant flow of the evaporator (14) in the air-conditioning operation mode to evaporate. A first check valve (14a) for preventing the refrigerant flow from flowing back into the condenser (14), and a first check valve (14a) disposed between the branching portion and the evaporator (14) in the air-conditioning operation mode to block the refrigerant flow. 2 refrigerant blocking means (15b, 16), the second refrigerant blocking means adjusts the opening of the refrigerant passage to the blocking side when the degree of superheat of the outlet refrigerant of the evaporator (14) is low, If the outlet refrigerant has a high degree of superheat, The flow rate adjustment unit (15b) adjusts the opening of the passage to the fully open side, the decompression means is a decompression unit (15a) that decompresses the refrigerant, and the flow rate adjustment unit (15b) and the decompression unit (15a) In the waste heat recovery operation mode, the refrigerant shut-off means (14a, 15a, 16) shuts off the flow of the refrigerant into the evaporator (14) and the first refrigerant. The blocking means (35) blocks the refrigerant flow between the radiator (11) from the refrigerant discharge side of the expander-integrated compressor (100) in the air-conditioning operation mode, so that the refrigerant is vaporized by the refrigerant supply means (32). Circulating in the order of generator (30) → expander-integrated compressor (100) → second bypass circuit (34) → radiator (11) → first bypass circuit (31) → refrigerant supply means (32) Features.
Thereby, the same effect as that of claim 1 can be obtained.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は、本発明の蒸気圧縮式冷凍機を車両用空調装置に適用した第1実施形態を示している。本実施形態の車両用空調装置は、走行用動力を発生させる熱機関であるエンジン20で発生した廃熱からエネルギを回収するとともに、蒸気圧縮式冷凍機で発生した冷熱および温熱を車室内空間の空調に利用するものである。
(First embodiment)
FIG. 1 shows a first embodiment in which a vapor compression refrigerator of the present invention is applied to a vehicle air conditioner. The vehicle air conditioner according to the present embodiment recovers energy from waste heat generated by the engine 20, which is a heat engine that generates driving power, and cools and heats generated by the vapor compression refrigerator in the vehicle interior space. It is used for air conditioning.

図1に示す膨張機一体型圧縮機100は、冷媒を吸入圧縮する圧縮機10としての機能と、過熱蒸気を等エントロピ的に膨張させて動力を取り出す膨張機33としての機能とを兼ね備える流体機械である。モータジェネレータ100aは、膨張機一体型圧縮機100を圧縮機として稼動させる場合には、膨張機一体型圧縮機100に動力(回転力)を与える動力源として稼動する。一方、膨張機一体型圧縮機100を膨張機として稼動させる場合には、膨張機、つまり膨張機一体型圧縮機100にて回収された動力にて電力を発させる発電機として稼動する回転電機である。なお、膨張機一体型圧縮機100の構造については、後述する。 An expander-integrated compressor 100 shown in FIG. 1 has both a function as a compressor 10 that sucks and compresses refrigerant and a function as an expander 33 that expands superheated steam isentropically to extract power. It is. When the expander-integrated compressor 100 is operated as a compressor, the motor generator 100a operates as a power source that gives power (rotational force) to the expander-integrated compressor 100. On the other hand, when operating the expander-integrated compressor 100 as the expander, the rotary electric machine to operate as an expander, that is the generator to occur with power by the recovered power by the expander-compressor unit 100 It is. The structure of the expander-integrated compressor 100 will be described later.

放熱器11は、膨張機一体型圧縮機100が圧縮機として稼動するときの吐出側に接続されており、外気に冷媒を放熱させる、つまり外気で冷媒を冷却する放冷器である。放熱器11から流出した冷媒は、気相冷媒と液相冷媒とに分離する気液分離器12(レシーバ)に流入する。   The radiator 11 is connected to the discharge side when the expander-integrated compressor 100 operates as a compressor, and is a cooler that radiates the refrigerant to the outside air, that is, cools the refrigerant with the outside air. The refrigerant that has flowed out of the radiator 11 flows into the gas-liquid separator 12 (receiver) that separates the gas-phase refrigerant and the liquid-phase refrigerant.

温度式膨張弁15は、気液分離器12で分離された液相冷媒を減圧膨張させる減圧部15aと、蒸発器出口温度の検知部15cで検知した温度に応じて冷媒流量を遮断状態から全開状態まで調節する流量調節部15bとを備えている。本実施形態では周知の感温筒15c側の圧力と蒸発器出口圧力との差に基づいて弁の開度を調節するダイヤフラムを使用した温度式膨張弁を使用している。これによると、蒸発器14の出口圧力(出口冷媒の過熱度)が低い場合には冷媒通路の開度を遮断側にし、出口圧力(出口冷媒の過熱度)が高い場合には冷媒通路の開度を全開側に調節できる。   The temperature type expansion valve 15 fully opens the refrigerant flow rate from the shut-off state according to the temperature detected by the decompression unit 15a that decompresses and expands the liquid-phase refrigerant separated by the gas-liquid separator 12 and the evaporator outlet temperature detection unit 15c. And a flow rate adjusting unit 15b for adjusting the state. In this embodiment, a temperature type expansion valve using a diaphragm for adjusting the opening degree of the valve based on the difference between the pressure on the well-known temperature sensing cylinder 15c side and the evaporator outlet pressure is used. According to this, when the outlet pressure of the evaporator 14 (the degree of superheat of the outlet refrigerant) is low, the opening of the refrigerant passage is set to the shut-off side, and when the outlet pressure (the degree of superheat of the outlet refrigerant) is high, the refrigerant passage is opened. The degree can be adjusted to the fully open side.

蒸発器14は、減圧部15aにて減圧された冷媒を蒸発させて吸熱作用を発揮させる吸熱器である。蒸発器14から流出した冷媒は再び膨張機一体型圧縮機100に流入する。このように、圧縮機(膨張機一体型圧縮機100)、放熱器11、気液分離器12、減圧部15aおよび蒸発器14等にて低温側の熱を高温側に移動させる蒸気圧縮式冷凍機(冷凍サイクル)が構成される。   The evaporator 14 is a heat absorber that evaporates the refrigerant decompressed by the decompression unit 15a and exerts an endothermic effect. The refrigerant that has flowed out of the evaporator 14 flows into the expander-integrated compressor 100 again. As described above, the vapor compression refrigeration in which the low-temperature side heat is moved to the high-temperature side by the compressor (expander-integrated compressor 100), the radiator 11, the gas-liquid separator 12, the decompression unit 15a, the evaporator 14, and the like. Machine (refrigeration cycle) is configured.

ところで、本実施形態では発熱体であるエンジン20を冷却するための冷却水が巡回するエンジン冷却回路が備えられている。エンジン冷却回路に配置される水ポンプ22は、エンジン冷却水を循環させるものであり、ラジエータ23はエンジン冷却水と外気とを熱交換してエンジン冷却水を冷却する熱交換器である。冷却水バイパス回路24は、ラジエータ23を迂回させて冷却水を流す迂回路であり、サーモスタット25は冷却水バイパス回路24に流す冷却水量とラジエータ23に流す冷却水量とを調節する流量調整弁である。   By the way, in this embodiment, the engine cooling circuit in which the cooling water for cooling the engine 20 which is a heat generating body circulates is provided. The water pump 22 arranged in the engine cooling circuit circulates the engine cooling water, and the radiator 23 is a heat exchanger that cools the engine cooling water by exchanging heat between the engine cooling water and the outside air. The cooling water bypass circuit 24 is a bypass circuit that bypasses the radiator 23 and flows cooling water, and the thermostat 25 is a flow rate adjustment valve that adjusts the cooling water amount that flows to the cooling water bypass circuit 24 and the cooling water amount that flows to the radiator 23. .

因みに、水ポンプ22はエンジン20から動力を得て稼動する機械式のポンプであるが、電動モータにて駆動される電動ポンプを用いてもよいことは言うまでもない。   Incidentally, although the water pump 22 is a mechanical pump that operates by obtaining power from the engine 20, it goes without saying that an electric pump driven by an electric motor may be used.

また、エンジン冷却回路におけるエンジン20の冷媒流れ下流側部位、かつ冷凍サイクルにおける膨張機一体型圧縮機100と放熱器11とを繋ぐ冷媒回路には、蒸気発生器30が配置されている。この蒸気発生器30は、冷媒回路を流れる冷媒とエンジン20の廃熱を回収したエンジン冷却水とを熱交換することにより冷媒を加熱するものである。   Further, a steam generator 30 is disposed in a refrigerant flow downstream portion of the engine 20 in the engine cooling circuit and in the refrigerant circuit connecting the expander-integrated compressor 100 and the radiator 11 in the refrigeration cycle. The steam generator 30 heats the refrigerant by exchanging heat between the refrigerant flowing through the refrigerant circuit and the engine coolant that has recovered the waste heat of the engine 20.

また、エンジン冷却回路において、三方弁21はエンジン20から流出したエンジン冷却水を蒸気発生器30に循環させる場合と循環させない場合とを切り替えるものである。なお、本実施形態では三方弁21の作動は、電子制御装置により制御されている。   Further, in the engine cooling circuit, the three-way valve 21 switches between the case where the engine cooling water flowing out from the engine 20 is circulated to the steam generator 30 and the case where it is not circulated. In the present embodiment, the operation of the three-way valve 21 is controlled by an electronic control device.

ところで、液相配管である第1バイパス回路31は、気液分離器12で分離された液相冷媒を蒸気発生器30のうち放熱器11側の冷媒出入口側に導く冷媒通路である。この第1バイパス回路31には、液相冷媒を循環させるための液ポンプ32および気液分離器12側から蒸気発生器30側にのみ冷媒が流れることを許容する逆止弁31aが設けられている。なお、本実施形態では、液ポンプ32は電動式のポンプであり、液ポンプ32の作動は電子制御装置(図示せず)により制御されている。   By the way, the 1st bypass circuit 31 which is liquid phase piping is a refrigerant path which guide | induces the liquid phase refrigerant | coolant isolate | separated by the gas-liquid separator 12 to the refrigerant | coolant inlet / outlet side by the side of the radiator 11 among the steam generators 30. FIG. The first bypass circuit 31 is provided with a liquid pump 32 for circulating the liquid-phase refrigerant and a check valve 31a that allows the refrigerant to flow only from the gas-liquid separator 12 side to the steam generator 30 side. Yes. In the present embodiment, the liquid pump 32 is an electric pump, and the operation of the liquid pump 32 is controlled by an electronic control device (not shown).

また、第2バイパス回路34は、膨張機一体型圧縮機100が膨張機として稼動するときの冷媒出口側と放熱器11の冷媒入口側とを繋ぐ冷媒通路であり、この第2バイパス回路34には、膨張機一体型圧縮機100が膨張機と稼動するときの冷媒出口側から放熱器11の冷媒入口側にのみ冷媒が流れることを許容する逆止弁34aが設けられている。   The second bypass circuit 34 is a refrigerant passage that connects the refrigerant outlet side and the refrigerant inlet side of the radiator 11 when the expander-integrated compressor 100 operates as an expander. Is provided with a check valve 34a that allows the refrigerant to flow only from the refrigerant outlet side to the refrigerant inlet side of the radiator 11 when the expander-integrated compressor 100 operates with the expander.

なお、逆止弁14aは蒸発器14の冷媒出口側から圧縮機10の吸入側にのみ冷媒が流れることを許容するものである。また、蒸気発生器30と放熱器11との間に配置される第1開閉弁35は、電子制御装置(図示せず)によりその開閉が制御されるものである。さらに、制御弁36は、膨張機一体型圧縮機100が圧縮機として作動する時には吐出弁、つまり逆止弁として作動し、膨張機として作動する時には開状態となるバルブであり、この制御弁36の作動も電子制御装置(図示せず)により制御されている。このように、冷媒が膨脹機一体型圧縮機100、凝縮器11、気液分離器12、液ポンプ32等を流れるランキンサイクルが構成される。   The check valve 14 a allows the refrigerant to flow only from the refrigerant outlet side of the evaporator 14 to the suction side of the compressor 10. Moreover, the opening / closing of the first opening / closing valve 35 disposed between the steam generator 30 and the radiator 11 is controlled by an electronic control device (not shown). Furthermore, the control valve 36 is a valve that operates as a discharge valve, that is, a check valve when the expander-integrated compressor 100 operates as a compressor, and opens when the expander-integrated compressor 100 operates as an expander. Is also controlled by an electronic control unit (not shown). In this way, a Rankine cycle is formed in which the refrigerant flows through the expander-integrated compressor 100, the condenser 11, the gas-liquid separator 12, the liquid pump 32, and the like.

また、電子制御装置には、エンジン20からの吸熱後のエンジン冷却水の温度を検出する水温センサの検出温度Tw、空調装置用の電子制御装置から発せられる空調装置稼動信号(A/C稼動要求信号)が入力される入力部が設けられている。   The electronic control unit also includes a detection temperature Tw of a water temperature sensor that detects the temperature of engine cooling water after absorbing heat from the engine 20, an air conditioner operation signal (A / C operation request) issued from the electronic control unit for the air conditioner. An input section to which a signal) is input is provided.

電子制御装置は、水温センサの検出温度、つまり廃熱温度TwおよびA/C稼動要求信号の有無等に基づいて予め記憶されたプログラムに従って制御弁36、液ポンプ32および三方弁21等の作動を制御する。   The electronic control unit operates the control valve 36, the liquid pump 32, the three-way valve 21 and the like according to a program stored in advance based on the detected temperature of the water temperature sensor, that is, the waste heat temperature Tw and the presence / absence of an A / C operation request signal. Control.

次に、膨脹機一体型圧縮機10の概略構造およびその作動を述べる。   Next, the schematic structure and operation of the expander-integrated compressor 10 will be described.

図2(a)は膨張機一体型圧縮機100が圧縮機として作動する場合を示し、図2(b)は膨張機一体型圧縮機100が膨張機として作動する場合を示すものであり、本実施形態では、周知のベーン型の流体機械にて膨張機一体型圧縮機100を構成している。   FIG. 2A shows a case where the expander-integrated compressor 100 operates as a compressor, and FIG. 2B shows a case where the expander-integrated compressor 100 operates as an expander. In the embodiment, the expander-integrated compressor 100 is configured by a well-known vane-type fluid machine.

そして、膨張機一体型圧縮機100を圧縮機として作動する際には、モータジェネレータ100aにてロータ100bを回転させて冷媒を吸入圧縮するとともに、制御弁36にて吐出された高圧冷媒がロータ100b側に逆流することが阻止される。   When the expander-integrated compressor 100 is operated as a compressor, the motor generator 100a rotates the rotor 100b to suck and compress the refrigerant, and the high-pressure refrigerant discharged from the control valve 36 becomes the rotor 100b. Backflow to the side is prevented.

また、膨脹機一体型圧縮機100を膨張機として稼動させる際には、制御弁36を開いて蒸気発生器30にて生成された過熱蒸気を膨脹機一体型圧縮機100内に導入してロータ100bを回転させて熱エネルギを機械的エネルギに変換する。   Further, when the expander-integrated compressor 100 is operated as an expander, the control valve 36 is opened and superheated steam generated by the steam generator 30 is introduced into the expander-integrated compressor 100 so as to be rotor. 100b is rotated to convert thermal energy into mechanical energy.

次に、本実施形態に係るランキンサイクルを備える蒸気圧縮式冷凍機(空調装置)の作動について述べる。本実施形態のランキンサイクルを有する蒸気圧縮式冷凍機は、以下の運転モードをA/C稼動要求信号の有無および廃熱温度Twに基づいて制御手段が切り換え制御するものであり、まず、空調運転モードおよび廃熱回収運転モードについて説明する。   Next, the operation of the vapor compression refrigerator (air conditioner) including the Rankine cycle according to the present embodiment will be described. The vapor compression refrigerator having the Rankine cycle of the present embodiment is one in which the control means switches and controls the following operation modes based on the presence / absence of an A / C operation request signal and the waste heat temperature Tw. The mode and the waste heat recovery operation mode will be described.

1.空調運転モード
この運転モードは、蒸発器14にて冷凍能力を発揮させながら放熱器11にて冷媒を放冷する運転モードである。なお、本実施形態では、蒸気圧縮式冷凍機で発生する冷熱、つまり吸熱作用を利用した冷房運転および除湿運転にのみ蒸気圧縮式冷凍機を稼動させており、放熱器11で発生する温熱を利用した暖房運転は行っていないが、暖房運転時であっても蒸気圧縮式冷凍機の作動は冷房運転および除湿運転時と同じである。
1. Air-conditioning operation mode This operation mode is an operation mode in which the refrigerant is allowed to cool by the radiator 11 while the evaporator 14 exhibits the refrigerating capacity. In this embodiment, the vapor compression refrigerator is operated only for the cooling generated by the vapor compression refrigerator, that is, the cooling operation and the dehumidification operation using the endothermic effect, and the warm heat generated by the radiator 11 is used. Although the heating operation is not performed, the operation of the vapor compression refrigerator is the same as that during the cooling operation and the dehumidifying operation even during the heating operation.

具体的には、液ポンプ32を停止させた状態、かつ制御弁36を逆止弁として機能させた状態でモータジェネレータ100aに通電してロータ100bを回転させるとともに、三方弁21を図1の破線で示すように作動させて蒸気発生器30を迂回させて冷却水を循環させるものである。   Specifically, the motor generator 100a is energized to rotate the rotor 100b in a state where the liquid pump 32 is stopped and the control valve 36 functions as a check valve, and the three-way valve 21 is moved to the broken line in FIG. It is operated as shown in Fig. 5 to bypass the steam generator 30 and circulate the cooling water.

これにより、冷媒は、膨脹機一体型圧縮機(圧縮機)100→蒸気発生器30→放熱器11→気液分離器12→減圧部15a→蒸発器14→膨脹機一体型圧縮機(圧縮機)100の順に循環する。なお、蒸気発生器30にはエンジン冷却水が循環しないので、蒸気発生器30にて冷媒は加熱されず、蒸気発生器30は単なる冷媒通路として機能する。   As a result, the refrigerant is expanded into an expander-integrated compressor (compressor) 100 → steam generator 30 → radiator 11 → gas-liquid separator 12 → decompression unit 15a → evaporator 14 → expander-integrated compressor (compressor). ) It circulates in order of 100. In addition, since engine cooling water does not circulate through the steam generator 30, the refrigerant is not heated by the steam generator 30, and the steam generator 30 functions as a simple refrigerant passage.

したがって、減圧部15aにて減圧された低圧冷媒は、室内に吹き出す空気から吸熱して蒸発し、この蒸発した気相冷媒は圧縮機100にて圧縮されて高温となって放熱器11にて室外空気にて冷却されて凝縮する。   Therefore, the low-pressure refrigerant decompressed by the decompression unit 15a absorbs heat from the air blown into the room and evaporates, and the vapor-phase refrigerant thus evaporated is compressed by the compressor 100 to become a high temperature and is outdoors in the radiator 11. Cools with air and condenses.

なお、本実施形態では、冷媒としてフロン(HFC134a)を利用しているが、高圧
側にて冷媒が液化する冷媒であれば、HFC134aに限定されるものではない。
In the present embodiment, chlorofluorocarbon (HFC134a) is used as the refrigerant. However, the refrigerant is not limited to HFC134a as long as the refrigerant is liquefied on the high-pressure side.

2.廃熱回収運転モード
この運転モードは、空調装置、つまり圧縮機100を停止させてエンジン20の廃熱を利用可能なエネルギとして回収するモードである。
2. Waste Heat Recovery Operation Mode This operation mode is a mode in which the air conditioner, that is, the compressor 100 is stopped and the waste heat of the engine 20 is recovered as usable energy.

具体的には、第1開閉弁35が冷媒通路を遮断し状態、かつ制御弁36が開いた状態で液ポンプ32を稼動させるとともに、三方弁21を図1の実線で示すように作動させてエンジン20から流出したエンジン冷却水を蒸気発生器30に循環させるものである。 Specifically, the state first on-off valve 35 is cut off the refrigerant passage, and causes a state where the control valve 36 is opened by operating the liquid pump 32, actuates the three-way valve 21 as indicated by the solid line in FIG. 1 Then, the engine cooling water flowing out from the engine 20 is circulated to the steam generator 30.

これにより、冷媒は、気液分離器12→第1バイパス回路31→蒸気発生器30→膨脹機一体型圧縮機(膨張機)100→第2バイパス回路34→放熱器11→気液分離器12の順に循環する。   As a result, the refrigerant is gas-liquid separator 12 → first bypass circuit 31 → steam generator 30 → expander-integrated compressor (expander) 100 → second bypass circuit 34 → radiator 11 → gas-liquid separator 12 It circulates in the order.

したがって、膨脹機一体型圧縮機100、つまり膨張機には、蒸気発生器30にて加熱された過熱蒸気が流入し、膨脹機一体型圧縮機100に流入した蒸気冷媒は、膨脹機一体型圧縮機100内で等エントロピ的に膨張しながらそのエンタルピを低下させていく。このため、膨脹機一体型圧縮機100は、低下したエンタルピに相当する機械的エネルギをモータジェネレータ100aに与え、モータジェネレータ100aにより発電された電力は、バッテリやキャパシタ等の蓄電器に蓄えられる。   Therefore, the superheated steam heated by the steam generator 30 flows into the expander-integrated compressor 100, that is, the expander, and the steam refrigerant flowing into the expander-integrated compressor 100 is expanded by the expander-integrated compression. The enthalpy is lowered while expanding in the machine 100 in an isentropic manner. Therefore, the expander-integrated compressor 100 gives mechanical energy corresponding to the lowered enthalpy to the motor generator 100a, and the electric power generated by the motor generator 100a is stored in a battery or a capacitor such as a capacitor.

また、膨脹機一体型圧縮機100から流出した冷媒は、放熱器11にて冷却されて凝縮し、気液分離器12に蓄えられ、気液分離器12内の液相冷媒は、液ポンプ32にて蒸気発生器30側に送られる。   The refrigerant flowing out of the expander-integrated compressor 100 is cooled and condensed by the radiator 11 and stored in the gas-liquid separator 12. The liquid-phase refrigerant in the gas-liquid separator 12 is the liquid pump 32. Is sent to the steam generator 30 side.

以上に述べたように、廃熱回収運転モードでは、ラジエータ23にて熱として大気中に捨てられていた熱エネルギを電力等の容易に利用することができるエネルギに変換するので、車両の燃費、つまりエンジン20の燃料消費量を低減することができ得る。   As described above, in the waste heat recovery operation mode, the heat energy discarded in the atmosphere as heat by the radiator 23 is converted into energy that can be easily used, such as electric power. That is, the fuel consumption of the engine 20 can be reduced.

また、廃熱回収運転モードでは、エンジン20の廃熱により発電するので、オルタネータ等の発電機をエンジン20にて駆動する必要性が低減し、エンジン20の燃料消費量をさらに低減することができる。   Further, in the waste heat recovery operation mode, power is generated by the waste heat of the engine 20, so that the necessity of driving a generator such as an alternator with the engine 20 is reduced, and the fuel consumption of the engine 20 can be further reduced. .

次に、第1実施形態による作用効果を列挙すると、(1)廃熱回収運転モード時に、温度式膨張弁15の流量調節部15bが気液分離器12から蒸発器14間の冷媒の流れを遮断するため、廃熱回収運転を連続的に行っても蒸発器14内の圧力は増加せず蒸発器14または配管などの破損を防止できる。   Next, the effects of the first embodiment are listed. (1) In the waste heat recovery operation mode, the flow rate adjustment unit 15b of the temperature type expansion valve 15 changes the flow of the refrigerant between the gas-liquid separator 12 and the evaporator 14. Therefore, even if the waste heat recovery operation is continuously performed, the pressure in the evaporator 14 does not increase, and damage to the evaporator 14 or piping can be prevented.

ところで、空調運転モード時の蒸発器14内の圧力、つまり逆止弁14aの蒸発器側の圧力(本実施形態では約0.3MPa)は、膨張機一体型圧縮機100にてエネルギを回収する場合の逆止弁14aの蒸発器と反対側の圧力(本実施形態では、約1MPa)よりも低圧である。逆止弁14aは、この差圧により廃熱回収運転モード時に冷媒が蒸発器14へ逆流することを防止している。   By the way, the pressure in the evaporator 14 in the air-conditioning operation mode, that is, the pressure on the evaporator side of the check valve 14a (about 0.3 MPa in this embodiment) recovers energy in the expander-integrated compressor 100. In this case, the pressure is lower than the pressure on the side opposite to the evaporator of the check valve 14a (in this embodiment, about 1 MPa). The check valve 14a prevents the refrigerant from flowing back to the evaporator 14 in the waste heat recovery operation mode due to this differential pressure.

図4の先願例のように放熱器11と蒸発器14が連通している場合には、廃熱回収運転モードを連続することにより、蒸発器14側、つまり蒸発器内圧力(本実施形態では約0.3MPa)が蒸発器と反対側の圧力(本実施形態では、約1MPa)まで上昇する場合がある。   When the radiator 11 and the evaporator 14 are in communication as in the prior application example of FIG. 4, the waste heat recovery operation mode is continued, whereby the evaporator 14 side, that is, the evaporator internal pressure (this embodiment) , About 0.3 MPa) may rise to the pressure opposite to the evaporator (in this embodiment, about 1 MPa).

しかし、圧縮機が吸入を停止すると、エバポレータ出口の圧力はごく短時間でエバポレータ温度の飽和圧力となり、温度式膨張弁は全閉状態となって冷媒流路を遮断する。   However, when the compressor stops sucking, the pressure at the outlet of the evaporator becomes the saturation pressure of the evaporator temperature in a very short time, and the temperature expansion valve is fully closed to shut off the refrigerant flow path.

これにより、エネルギを回収する作動を連続的に行っても蒸発器14内の圧力は増加せず蒸発器14または配管などの破損を防止できる。   Thereby, even if the operation | movement which collect | recovers energy is performed continuously, the pressure in the evaporator 14 does not increase, and damage to the evaporator 14 or piping can be prevented.

また、蒸発器14の圧力が増加しないため、当然に逆止弁14aの蒸発器側圧力と、反対側圧力との差圧は無くならい。つまり、逆止弁(差圧弁)14aの図1中、左右の圧力差が無くなり、逆止弁14aの作動不良が起きることが無いため、エネルギ回収運転モード(ランキンサイクル)が異常を起こすことを防止できる。   Further, since the pressure of the evaporator 14 does not increase, naturally, the differential pressure between the evaporator side pressure of the check valve 14a and the opposite side pressure does not disappear. In other words, the pressure difference between the left and right sides in FIG. 1 of the check valve (differential pressure valve) 14a disappears, and the check valve 14a does not malfunction, so that the energy recovery operation mode (Rankine cycle) is abnormal. Can be prevented.

さらに、空調運転モードを再起動する時に、蒸発器14に溜まった高圧の液冷媒を膨張機一体型圧縮機100が吸入しなくてよいため、膨張機一体型圧縮機100の動力負荷を小さくでき、冷房能力を発揮するまでの時間を短くすることができる。   Furthermore, when the air-conditioning operation mode is restarted, the high-pressure liquid refrigerant accumulated in the evaporator 14 does not have to be sucked by the expander-integrated compressor 100, so that the power load on the expander-integrated compressor 100 can be reduced. The time until the cooling ability is exhibited can be shortened.

(2)圧縮機10とエネルギ回収機33が一体となった膨脹機一体型圧縮機100を使用しているため、別体の圧縮機10とエネルギ回収機33を配置する場合に比べてより少ないスペースで圧縮機機能とエネルギ回収機能を備えることができる。   (2) Since the compressor-integrated compressor 100 in which the compressor 10 and the energy recovery machine 33 are integrated is used, the number of compressors 10 and the energy recovery machine 33 is smaller than when separate compressors 10 and the energy recovery machine 33 are arranged. A compressor function and an energy recovery function can be provided in space.

さらに、圧縮機10とエネルギ回収機33を配置するには、圧縮機10とエネルギ回収機33の作動に応じて、圧縮機10とエネルギ回収機33が配置される配管の開閉を制御する開閉弁を備えなければならない。しかし、膨脹機一体型圧縮機100では、配管と弁を半減できるため、蒸気圧縮式冷凍機全体としてのコストを低減することができる。   Furthermore, in order to arrange the compressor 10 and the energy recovery machine 33, an on-off valve that controls the opening and closing of a pipe in which the compressor 10 and the energy recovery machine 33 are arranged according to the operation of the compressor 10 and the energy recovery machine 33. Must be provided. However, in the expander-integrated compressor 100, the piping and valves can be halved, so that the cost of the entire vapor compression refrigerator can be reduced.

(第2実施形態)
図3の本実施形態は、第1実施形態とほぼ同構成であるが空調運転モード時の放熱器11の冷媒流れ下流側に配置されていた気液分離器12(レシーバ)が蒸発器14の冷媒流れ下流側に配置されている点が異なる。また、第1実施形態のおける減圧手段および遮断手段であった温度式膨張弁15に換えて、電磁弁16とキャピラリチューブ13が配置されている。
(Second Embodiment)
The present embodiment in FIG. 3 has substantially the same configuration as the first embodiment, but the gas-liquid separator 12 (receiver) disposed on the downstream side of the refrigerant flow of the radiator 11 in the air conditioning operation mode is the evaporator 14. The difference is that it is arranged downstream of the refrigerant flow. Further, an electromagnetic valve 16 and a capillary tube 13 are arranged in place of the temperature type expansion valve 15 which was the pressure reducing means and the blocking means in the first embodiment.

そして、廃熱回収運転モード時には、第1開閉弁35と電磁弁16が冷媒通路を遮断して、液ポンプ32が冷媒を蒸気発生器30→膨張機一体型圧縮機100→放熱器11→蒸気発生器30の順に循環させる。
Then, when the waste heat recovery operation mode, the first on-off valve 35 and the solenoid valve 16 shuts off the refrigerant passage, vapor refrigerant is liquid pump 32 generator 30 → the expander-compressor unit 100 → the radiator 11 → The steam generator 30 is circulated in this order.

これによると、第1実施形態の作用効果(1)と同様の理由により、蒸発器14または配管などの破損と、エネルギ回収運転モード(ランキンサイクル)が異常を起こすことを防止できる。   According to this, for the same reason as the operational effect (1) of the first embodiment, it is possible to prevent the evaporator 14 or the piping from being damaged and the energy recovery operation mode (Rankine cycle) from being abnormal.

また、電磁弁16が確実に冷媒通路を遮断するため、減圧手段13の種類が温度式膨張弁15に限定されなくなり、安価なキャピラリチューブなどを使用することができる。さらに、空調運転モード時における蒸発器14の冷媒流れ下流側部位に気液分離器(アキュムレータ)17を配置したアキュムレータサイクルにも第1実施形態の作用効果(1)を発揮させることができる。   Further, since the solenoid valve 16 reliably blocks the refrigerant passage, the type of the decompression means 13 is not limited to the temperature type expansion valve 15, and an inexpensive capillary tube or the like can be used. Furthermore, the effect (1) of the first embodiment can be exhibited also in the accumulator cycle in which the gas-liquid separator (accumulator) 17 is arranged in the refrigerant flow downstream side portion of the evaporator 14 in the air conditioning operation mode.

なお、本実施形態においても当然に第1実施形態で述べた作用効果(2)を発揮させることができる。   In the present embodiment, the function and effect (2) described in the first embodiment can naturally be exhibited.

(他の実施形態)
上述の実施形態では、膨脹機一体型圧縮機100にて回収したエネルギを蓄電器にて蓄えたが、フライホィールによる運動エネルギ又はバネにより弾性エネルギ等の機械的エネルギとして蓄えてもよい。
(Other embodiments)
In the above-described embodiment, the energy recovered by the expander-integrated compressor 100 is stored in the battery, but may be stored as mechanical energy such as elastic energy by kinetic energy by a flywheel or a spring.

また、第1、第2実施形態(図1、図3)では、加熱器30を放熱器11と膨脹機一体型圧縮機100との間に直列に配置したが、加熱器30にて冷媒を加熱するのは、廃熱回収運転時のみであることから、加熱器30を放熱器11と膨脹機一体型圧縮機100との間に並列に配置してもランキンサイクルを稼動させることができる。   In the first and second embodiments (FIGS. 1 and 3), the heater 30 is arranged in series between the radiator 11 and the expander-integrated compressor 100. Since the heating is performed only during the waste heat recovery operation, the Rankine cycle can be operated even if the heater 30 is disposed in parallel between the radiator 11 and the expander-integrated compressor 100.

また、冷媒を加熱する熱源として、車両に搭載された各種機器から発生する廃熱、例えば、ターボの吸気熱、インバーター、燃料電池(FC)の発生熱、補機の廃熱を用いてもよい。そして、1つの熱源のみを用いて冷媒を加熱してもよいし、複数の熱源を併用して冷媒を加熱してもよい。   Further, as heat sources for heating the refrigerant, waste heat generated from various devices mounted on the vehicle, for example, intake heat of a turbo, generated heat of an inverter, a fuel cell (FC), and waste heat of an auxiliary machine may be used. . The refrigerant may be heated using only one heat source, or the refrigerant may be heated using a plurality of heat sources in combination.

また、上述の実施形態では、膨脹機一体型圧縮機100、圧縮機および膨張機としてベーン型の流体機械を用いたが、本発明はこれに限定されるものではない。   In the above-described embodiment, the expander-integrated compressor 100 and the vane type fluid machine are used as the compressor and the expander. However, the present invention is not limited to this.

また、本発明の適用は、車両用の空調装置に限定されるものではなく、定置用の冷凍サイクル(冷凍機)にも適用できる。   The application of the present invention is not limited to a vehicle air conditioner, and can be applied to a stationary refrigeration cycle (refrigerator).

また、上述の実施形態では圧縮機と膨張機とが一体となった膨脹機一体型圧縮機10を用いたが、圧縮機と膨張機をそれぞれ独立して設けてもよい。   In the above-described embodiment, the expander-integrated compressor 10 in which the compressor and the expander are integrated is used, but the compressor and the expander may be provided independently.

また、上述の実施形態では、感温筒の温度と蒸発器出口温度とに基づいて、冷媒流量を調節する温度式膨張弁の例を示したが、温度式膨張弁はこれに限られるものではなく、例えば温度検知部にサーミスタなどを使用し、検知温度に基づいてアクチュエータが冷媒通路の開度を調節する流量調節部を有する電子式膨張弁であってもよい。   Moreover, in the above-mentioned embodiment, although the example of the temperature type expansion valve which adjusts a refrigerant | coolant flow volume based on the temperature of a temperature sensing cylinder and the evaporator exit temperature was shown, a temperature type expansion valve is not restricted to this. Alternatively, for example, an electronic expansion valve may be used that uses a thermistor or the like for the temperature detection unit and the actuator has a flow rate adjustment unit that adjusts the opening of the refrigerant passage based on the detected temperature.

また、本発明は、特許請求の範囲に記載された発明の趣旨に合致するものであればよく、上述の実施形態に限定されるものではない。   Further, the present invention is not limited to the above-described embodiment as long as it matches the gist of the invention described in the claims.

本発明の第1実施形態に係る蒸気圧縮式冷凍機の模式図である。It is a mimetic diagram of a vapor compression refrigeration machine concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る膨脹機一体型圧縮機の図である。It is a figure of the expander integrated compressor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る蒸気圧縮式冷凍機の模式図である。It is a schematic diagram of the vapor compression refrigerator which concerns on 2nd Embodiment of this invention. 先願例に係る蒸気圧縮式冷凍機の模式図である。It is a schematic diagram of a vapor compression refrigerator according to a prior application example.

符号の説明Explanation of symbols

10…圧縮機、11…放熱器、12…気液分離器、
13…キャピラリチューブ(減圧手段)、14…蒸発器、14a…逆止弁、
15…温度式膨張弁、15a…減圧部(減圧手段)、
15b…流量調節部(第2冷媒遮断手段)、
16…電磁弁(第2冷媒遮断手段、開閉弁)、30…蒸気発生器、
31…第1バイパス回路(液相配管)、32…液ポンプ(冷媒供給手段)、
33…エネルギ回収機、35…第1開閉弁(第1冷媒遮断手段)、
100…膨張機一体型圧縮機(圧縮機、膨張機)。
10 ... compressor, 11 ... radiator, 12 ... gas-liquid separator,
13 ... Capillary tube (pressure reduction means), 14 ... Evaporator, 14a ... Check valve,
15 ... temperature type expansion valve, 15a ... pressure reducing part (pressure reducing means),
15b ... Flow rate adjusting part (second refrigerant blocking means),
16 ... Solenoid valve (second refrigerant shut-off means, on-off valve), 30 ... steam generator,
31 ... 1st bypass circuit (liquid phase piping), 32 ... Liquid pump (refrigerant supply means),
33 ... Energy recovery machine, 35 ... First on-off valve (first refrigerant shut-off means),
100: An expander-integrated compressor (compressor, expander).

Claims (7)

冷媒を吸入圧縮する圧縮機(10)としての機能および冷媒を膨脹させて冷媒の熱エネルギを回収するエネルギ回収機(33)としての機能を兼ね備える膨脹機一体型圧縮機(100)と、
媒を冷却する放熱器(11)と、
前記放熱器(11)から流出した冷媒を減圧する減圧手段(13、15a)と、
前記減圧手段(13、15a)にて減圧された冷媒を蒸発させる蒸発器(14)とを備え、
前記蒸発器(14)にて冷凍能力を発揮させる空調運転モードでは、前記膨脹機一体型圧縮機(100)にて吸入圧縮された冷媒を前記放熱器(11)→前記減圧手段(13、15a)→前記蒸発器(14)→前記膨脹機一体型圧縮機(100)の順に循環させる蒸気圧縮式冷凍機において、
前記膨張機一体型圧縮機(100)と前記放熱器(11)とを繋ぐ冷媒回路に配置されて、液相冷媒を加熱して過熱蒸気を発生させるとともに、発生させた前記過熱蒸気を前記膨張機一体型圧縮機(100)へ供給する蒸気発生器(30)と、
前記放熱器(11)から流出した液相冷媒を前記蒸気発生器(30)に送る冷媒供給手段(32)と、
前記蒸発器(14)への冷媒の流入を遮断する冷媒遮断手段(14a、15a、16)と、
前記蒸気発生器(30)と前記放熱器(11)との間に配置されて、前記膨脹機一体型圧縮機(100)と前記放熱器(11)と間の冷媒の流れを遮断可能な第1冷媒遮断手段(35)と、
冷媒の流れを前記放熱器(11)と前記減圧手段(13、15a)との間の分岐部で分岐し、前記第1冷媒遮断手段(35)をバイパスして前記蒸気発生器(30)へ導く第1バイパス回路(31)と、
前記膨脹機一体型圧縮機(100)が冷媒を膨張させる廃熱回収運転モードにおける前記膨脹機一体型圧縮機(100)冷媒出口側および前記廃熱回収運転モードにおける前記放熱器(11)冷媒入口側とを接続する第2バイパス回路(34)と、
前記第2バイパス回路(34)に配置されて、前記廃熱回収運転モードにおける前記膨脹機一体型圧縮機(100)冷媒出口側から前記廃熱回収運転モードにおける前記放熱器(11)冷媒入口側へのみ冷媒が流れることを許容する第2逆止弁(34a)とを備え、
前記膨脹機一体型圧縮機(100)は、その内部における前記空調運転モードでの冷媒流れ方向が、前記廃熱回収運転モードでの冷媒流れ方向に対して、逆転するように構成されており、
前記冷媒供給手段(32)は、前記第1バイパス回路(31)に配置されており、
前記冷媒遮断手段(14a、15a、16)は、前記空調運転モードにおける前記蒸発器(14)の冷媒流れ下流側に配置されて、前記蒸発器(14)に冷媒流れが逆流することを防止する第1逆止弁(14a)、および、前記空調運転モードにおける前記分岐部と前記蒸発器(14)との間に配置され、冷媒流れを遮断する第2冷媒遮断手段(15b、16)で構成されており、
前記廃熱回収運転モードでは、前記冷媒遮断手段(14a、15a、16)が前記蒸発器(14)への冷媒の流入を遮断するとともに、前記第1冷媒遮断手段(35)が前記空調運転モードにおける前記膨脹機一体型圧縮機(100)の冷媒吐出側から前記放熱器(11)間の冷媒の流れを遮断することによって、前記冷媒供給手段(32)により冷媒を前記蒸気発生器(30)→前記膨脹機一体型圧縮機(100)→前記第2バイパス回路(34)→前記放熱器(11)→前記第1バイパス回路(31)→前記冷媒供給手段(32)の順に循環させることを特徴とする蒸気圧縮式冷凍機。
An expander-integrated compressor (100) having both a function as a compressor (10 ) for sucking and compressing refrigerant and an energy recovery machine (33) for expanding the refrigerant and recovering heat energy of the refrigerant;
Radiator for cooling the refrigerant (11),
Decompression means (13, 15a) for decompressing the refrigerant flowing out of the radiator (11);
An evaporator (14) for evaporating the refrigerant decompressed by the decompression means (13, 15a),
In the air-conditioning operation mode in which the evaporator (14) exhibits the refrigerating capacity, the refrigerant sucked and compressed by the expander- integrated compressor (100) is converted into the radiator (11) → the pressure reducing means (13, 15a). ) → the evaporator (14) → the vapor compression refrigerator that circulates in the order of the expander- integrated compressor (100) ,
Wherein arranged in the refrigerant circuit connecting the expander-integrated compressor (100) and the radiator (11), said Rutotomoni, the superheated steam generated by generating superheated steam by heating the liquid-phase refrigerant A steam generator (30) for supplying to the expander-integrated compressor (100) ;
Refrigerant supply means (32) for sending liquid phase refrigerant flowing out of the radiator (11) to the steam generator (30);
Refrigerant blocking means (14a, 15a, 16) for blocking the flow of refrigerant into the evaporator (14);
It is arranged between the steam generator (30) and the heat radiator (11), and is capable of blocking the flow of refrigerant between the expander-integrated compressor (100) and the heat radiator (11). 1 refrigerant blocking means (35);
The flow of the refrigerant is branched at a branch portion between the radiator (11) and the decompression means (13, 15a), bypasses the first refrigerant blocking means (35), and goes to the steam generator (30). A first bypass circuit (31) leading;
The expander-integrated compressor (100) expands the refrigerant. The expander-integrated compressor (100) refrigerant outlet side in the waste heat recovery operation mode and the radiator (11) refrigerant inlet in the waste heat recovery operation mode. A second bypass circuit (34) connecting the sides;
Arranged in the second bypass circuit (34), from the refrigerant outlet side of the expander-integrated compressor (100) in the waste heat recovery operation mode to the radiator (11) refrigerant inlet side in the waste heat recovery operation mode A second check valve (34a) that allows the refrigerant to flow only to
The expander-integrated compressor (100) is configured such that the refrigerant flow direction in the air conditioning operation mode inside thereof is reversed with respect to the refrigerant flow direction in the waste heat recovery operation mode,
The refrigerant supply means (32) is disposed in the first bypass circuit (31),
The refrigerant shut-off means (14a, 15a, 16) is disposed on the downstream side of the refrigerant flow of the evaporator (14) in the air conditioning operation mode, and prevents the refrigerant flow from flowing back to the evaporator (14). A first check valve (14a) and a second refrigerant shut-off means (15b, 16) arranged between the branch portion and the evaporator (14) in the air-conditioning operation mode and blocking the refrigerant flow. Has been
In the waste heat recovery operation mode, the refrigerant shut-off means (14a, 15a, 16) shuts off the inflow of refrigerant to the evaporator (14), and the first refrigerant shut-off means (35) is in the air-conditioning operation mode. The refrigerant supply means (32) supplies the refrigerant to the steam generator (30) by blocking the refrigerant flow between the radiator (11) from the refrigerant discharge side of the expander-integrated compressor (100 ). → the expander- integrated compressor (100) → the second bypass circuit (34) → the radiator (11) → the first bypass circuit (31) → the refrigerant supply means (32) A featured vapor compression refrigerator.
前記第2冷媒遮断手段は、冷媒通路を遮断状態または全開状態にする開閉弁(16)であることを特徴とする請求項に記載の蒸気圧縮式冷凍機。 The vapor compression refrigerator according to claim 1 , wherein the second refrigerant blocking means is an on-off valve (16) for blocking or fully opening the refrigerant passage. 前記開閉弁は、通電により冷媒通路の開閉を行う電磁弁(16)であることを特徴とする請求項に記載の蒸気圧縮式冷凍機。 The vapor compression refrigerator according to claim 2 , wherein the on-off valve is an electromagnetic valve (16) that opens and closes the refrigerant passage when energized. 前記第2冷媒遮断手段は、前記蒸発器(14)の出口冷媒の過熱度が低い場合には冷媒通路の開度を遮断側に調節し、出口冷媒の過熱度が高い場合には冷媒通路の開度を全開側に調節する流量調節部(15b)であり、
前記減圧手段は、冷媒を減圧する減圧部(15a)であり、
前記流量調節部(15b)と前記減圧部(15a)とが一体となった温度式膨張弁(15)を備えることを特徴とする請求項に記載の蒸気圧縮式冷凍機。
The second refrigerant shut-off means adjusts the opening degree of the refrigerant passage to the shut-off side when the degree of superheat of the outlet refrigerant of the evaporator (14) is low, and adjusts the degree of refrigerant passage when the degree of superheat of the outlet refrigerant is high. A flow rate adjustment unit (15b) for adjusting the opening to the fully open side;
The decompression means is a decompression section (15a) for decompressing the refrigerant,
The vapor compression refrigerator according to claim 1 , further comprising a temperature type expansion valve (15) in which the flow rate adjusting unit (15b) and the pressure reducing unit (15a) are integrated.
前記放熱器(11)と前記温度式膨張弁(15)との間に配置され、前記放熱器(11)から流出した冷媒を気相冷媒と液相冷媒とに分離する気液分離器(12)とを備え、
前記分岐部は、前記液相冷媒の蓄液部に接続される前記液相配管(31)と、前記蓄液部の冷媒を前記蒸発器(14)側へ導く冷媒通路とで構成されていることを特徴とする請求項に記載の蒸気圧縮式冷凍機。
A gas-liquid separator (12) that is disposed between the radiator (11) and the temperature type expansion valve (15) and separates the refrigerant flowing out of the radiator (11) into a gas-phase refrigerant and a liquid-phase refrigerant. )
The branch portion includes the liquid phase pipe (31) connected to the liquid storage portion of the liquid phase refrigerant, and a refrigerant passage that guides the refrigerant of the liquid storage portion to the evaporator (14) side. The vapor compression refrigerator according to claim 4 .
冷媒を吸入圧縮する圧縮機(10)としての機能および冷媒を膨脹させて冷媒の熱エネルギを回収するエネルギ回収機(33)としての機能を兼ね備える膨脹機一体型圧縮機(100)と、An expander-integrated compressor (100) having a function as a compressor (10) for sucking and compressing refrigerant and an energy recovery machine (33) for expanding the refrigerant and recovering heat energy of the refrigerant;
冷媒を冷却する放熱器(11)と、A radiator (11) for cooling the refrigerant;
前記放熱器(11)から流出した冷媒を減圧する減圧手段(13、15a)と、Decompression means (13, 15a) for decompressing the refrigerant flowing out of the radiator (11);
前記減圧手段(13、15a)にて減圧された冷媒を蒸発させる蒸発器(14)とを備え、An evaporator (14) for evaporating the refrigerant decompressed by the decompression means (13, 15a),
前記蒸発器(14)にて冷凍能力を発揮させる空調運転モードでは、前記膨脹機一体型圧縮機(100)にて吸入圧縮された冷媒を前記放熱器(11)→前記減圧手段(13、15a)→前記蒸発器(14)→前記膨脹機一体型圧縮機(100)の順に循環させる蒸気圧縮式冷凍機において、In the air-conditioning operation mode in which the evaporator (14) exhibits the refrigerating capacity, the refrigerant sucked and compressed by the expander-integrated compressor (100) is converted into the radiator (11) → the pressure reducing means (13, 15a). ) → the evaporator (14) → the vapor compression refrigerator that circulates in the order of the expander-integrated compressor (100),
前記膨張機一体型圧縮機(100)と前記放熱器(11)とを繋ぐ冷媒回路に配置されて、液相冷媒を加熱して過熱蒸気を発生させるとともに、発生させた前記過熱蒸気を前記膨張機一体型圧縮機(100)へ供給する蒸気発生器(30)と、Arranged in a refrigerant circuit connecting the expander-integrated compressor (100) and the radiator (11), the liquid phase refrigerant is heated to generate superheated steam, and the generated superheated steam is expanded. A steam generator (30) to be supplied to the machine-integrated compressor (100);
前記放熱器(11)から流出した液相冷媒を前記蒸気発生器(30)に送る冷媒供給手段(32)と、Refrigerant supply means (32) for sending liquid phase refrigerant flowing out of the radiator (11) to the steam generator (30);
前記蒸発器(14)への冷媒の流入を遮断する冷媒遮断手段(14a、15a、16)と、Refrigerant blocking means (14a, 15a, 16) for blocking the flow of refrigerant into the evaporator (14);
前記蒸気発生器(30)と前記放熱器(11)との間に配置されて、前記膨脹機一体型圧縮機(100)と前記放熱器(11)と間の冷媒の流れを遮断可能な第1冷媒遮断手段(35)と、It is arranged between the steam generator (30) and the heat radiator (11), and is capable of blocking the flow of refrigerant between the expander-integrated compressor (100) and the heat radiator (11). 1 refrigerant blocking means (35);
冷媒の流れを前記放熱器(11)と前記減圧手段(13、15a)との間の分岐部で分岐し、前記第1冷媒遮断手段(35)をバイパスして前記蒸気発生器(30)へ導く第1バイパス回路(31)と、The flow of the refrigerant is branched at a branch portion between the radiator (11) and the decompression means (13, 15a), bypasses the first refrigerant blocking means (35), and goes to the steam generator (30). A first bypass circuit (31) leading;
前記膨脹機一体型圧縮機(100)が冷媒を膨張させる廃熱回収運転モードにおける前記膨脹機一体型圧縮機(100)冷媒出口側および前記廃熱回収運転モードにおける前記放熱器(11)冷媒入口側とを接続する第2バイパス回路(34)と、The expander-integrated compressor (100) expands the refrigerant. The expander-integrated compressor (100) refrigerant outlet side in the waste heat recovery operation mode and the radiator (11) refrigerant inlet in the waste heat recovery operation mode. A second bypass circuit (34) connecting the sides;
前記第2バイパス回路(34)に配置されて、前記廃熱回収運転モードにおける前記膨脹機一体型圧縮機(100)冷媒出口側から前記廃熱回収運転モードにおける前記放熱器(11)冷媒入口側へのみ冷媒が流れることを許容する第2逆止弁(34a)とを備え、Arranged in the second bypass circuit (34), from the refrigerant outlet side of the expander-integrated compressor (100) in the waste heat recovery operation mode to the radiator (11) refrigerant inlet side in the waste heat recovery operation mode A second check valve (34a) that allows the refrigerant to flow only to
前記膨脹機一体型圧縮機(100)は、その内部における前記空調運転モードでの冷媒流れ方向が、前記廃熱回収運転モードでの冷媒流れ方向に対して、逆転するように構成されており、The expander-integrated compressor (100) is configured such that the refrigerant flow direction in the air conditioning operation mode inside thereof is reversed with respect to the refrigerant flow direction in the waste heat recovery operation mode,
前記冷媒供給手段(32)は、前記第1バイパス回路(31)に配置されており、The refrigerant supply means (32) is disposed in the first bypass circuit (31),
前記冷媒遮断手段(14a、15a、16)は、前記空調運転モードにおける前記蒸発器(14)の冷媒流れ下流側に配置されて、前記蒸発器(14)に冷媒流れが逆流することを防止する第1逆止弁(14a)、および、前記空調運転モードにおける前記分岐部と前記蒸発器(14)との間に配置され、冷媒流れを遮断する第2冷媒遮断手段(15b、16)で構成されており、The refrigerant shut-off means (14a, 15a, 16) is disposed on the downstream side of the refrigerant flow of the evaporator (14) in the air conditioning operation mode, and prevents the refrigerant flow from flowing back to the evaporator (14). A first check valve (14a) and a second refrigerant shut-off means (15b, 16) arranged between the branch portion and the evaporator (14) in the air-conditioning operation mode and blocking the refrigerant flow. Has been
前記第2冷媒遮断手段は、冷媒通路を遮断状態または全開状態にする開閉弁(16)であり、The second refrigerant shut-off means is an on-off valve (16) that shuts off or fully opens the refrigerant passage,
前記廃熱回収運転モードでは、前記冷媒遮断手段(14a、15a、16)が前記蒸発器(14)への冷媒の流入を遮断するとともに、前記第1冷媒遮断手段(35)が前記空調運転モードにおける前記膨脹機一体型圧縮機(100)の冷媒吐出側から前記放熱器(11)間の冷媒の流れを遮断することによって、前記冷媒供給手段(32)により冷媒を前記蒸気発生器(30)→前記膨脹機一体型圧縮機(100)→前記第2バイパス回路(34)→前記放熱器(11)→前記第1バイパス回路(31)→前記冷媒供給手段(32)の順に循環させることを特徴とする蒸気圧縮式冷凍機。In the waste heat recovery operation mode, the refrigerant shut-off means (14a, 15a, 16) shuts off the inflow of refrigerant to the evaporator (14), and the first refrigerant shut-off means (35) is in the air-conditioning operation mode. The refrigerant supply means (32) supplies the refrigerant to the steam generator (30) by blocking the refrigerant flow between the radiator (11) from the refrigerant discharge side of the expander-integrated compressor (100). → The expander-integrated compressor (100) → the second bypass circuit (34) → the radiator (11) → the first bypass circuit (31) → the refrigerant supply means (32) A featured vapor compression refrigerator.
冷媒を吸入圧縮する圧縮機(10)としての機能および冷媒を膨脹させて冷媒の熱エネルギを回収するエネルギ回収機(33)としての機能を兼ね備える膨脹機一体型圧縮機(100)と、An expander-integrated compressor (100) having a function as a compressor (10) for sucking and compressing refrigerant and an energy recovery machine (33) for expanding the refrigerant and recovering heat energy of the refrigerant;
冷媒を冷却する放熱器(11)と、A radiator (11) for cooling the refrigerant;
前記放熱器(11)から流出した冷媒を減圧する減圧手段(13、15a)と、Decompression means (13, 15a) for decompressing the refrigerant flowing out of the radiator (11);
前記減圧手段(13、15a)にて減圧された冷媒を蒸発させる蒸発器(14)とを備え、An evaporator (14) for evaporating the refrigerant decompressed by the decompression means (13, 15a),
前記蒸発器(14)にて冷凍能力を発揮させる空調運転モードでは、前記膨脹機一体型圧縮機(100)にて吸入圧縮された冷媒を前記放熱器(11)→前記減圧手段(13、15a)→前記蒸発器(14)→前記膨脹機一体型圧縮機(100)の順に循環させる蒸気圧縮式冷凍機において、In the air-conditioning operation mode in which the evaporator (14) exhibits the refrigerating capacity, the refrigerant sucked and compressed by the expander-integrated compressor (100) is converted into the radiator (11) → the pressure reducing means (13, 15a). ) → the evaporator (14) → the vapor compression refrigerator that circulates in the order of the expander-integrated compressor (100),
前記膨張機一体型圧縮機(100)と前記放熱器(11)とを繋ぐ冷媒回路に配置されて、液相冷媒を加熱して過熱蒸気を発生させるとともに、発生させた前記過熱蒸気を前記膨張機一体型圧縮機(100)へ供給する蒸気発生器(30)と、Arranged in a refrigerant circuit connecting the expander-integrated compressor (100) and the radiator (11), the liquid phase refrigerant is heated to generate superheated steam, and the generated superheated steam is expanded. A steam generator (30) to be supplied to the machine-integrated compressor (100);
前記放熱器(11)から流出した液相冷媒を前記蒸気発生器(30)に送る冷媒供給手段(32)と、Refrigerant supply means (32) for sending liquid phase refrigerant flowing out of the radiator (11) to the steam generator (30);
前記蒸発器(14)への冷媒の流入を遮断する冷媒遮断手段(14a、15a、16)と、Refrigerant blocking means (14a, 15a, 16) for blocking the flow of refrigerant into the evaporator (14);
前記蒸気発生器(30)と前記放熱器(11)との間に配置されて、前記膨脹機一体型圧縮機(100)と前記放熱器(11)と間の冷媒の流れを遮断可能な第1冷媒遮断手段(35)と、It is arranged between the steam generator (30) and the heat radiator (11), and is capable of blocking the flow of refrigerant between the expander-integrated compressor (100) and the heat radiator (11). 1 refrigerant blocking means (35);
冷媒の流れを前記放熱器(11)と前記減圧手段(13、15a)との間の分岐部で分岐し、前記第1冷媒遮断手段(35)をバイパスして前記蒸気発生器(30)へ導く第1バイパス回路(31)と、The flow of the refrigerant is branched at a branch portion between the radiator (11) and the decompression means (13, 15a), bypasses the first refrigerant blocking means (35), and goes to the steam generator (30). A first bypass circuit (31) leading;
前記膨脹機一体型圧縮機(100)が冷媒を膨張させる廃熱回収運転モードにおける前記膨脹機一体型圧縮機(100)冷媒出口側および前記廃熱回収運転モードにおける前記放熱器(11)冷媒入口側とを接続する第2バイパス回路(34)と、The expander-integrated compressor (100) expands the refrigerant. The expander-integrated compressor (100) refrigerant outlet side in the waste heat recovery operation mode and the radiator (11) refrigerant inlet in the waste heat recovery operation mode. A second bypass circuit (34) connecting the sides;
前記第2バイパス回路(34)に配置されて、前記廃熱回収運転モードにおける前記膨脹機一体型圧縮機(100)冷媒出口側から前記廃熱回収運転モードにおける前記放熱器(11)冷媒入口側へのみ冷媒が流れることを許容する第2逆止弁(34a)とを備え、Arranged in the second bypass circuit (34), from the refrigerant outlet side of the expander-integrated compressor (100) in the waste heat recovery operation mode to the radiator (11) refrigerant inlet side in the waste heat recovery operation mode A second check valve (34a) that allows the refrigerant to flow only to
前記膨脹機一体型圧縮機(100)は、その内部における前記空調運転モードでの冷媒流れ方向が、前記廃熱回収運転モードでの冷媒流れ方向に対して、逆転するように構成されており、The expander-integrated compressor (100) is configured such that the refrigerant flow direction in the air conditioning operation mode inside thereof is reversed with respect to the refrigerant flow direction in the waste heat recovery operation mode,
前記冷媒供給手段(32)は、前記第1バイパス回路(31)に配置されており、The refrigerant supply means (32) is disposed in the first bypass circuit (31),
前記冷媒遮断手段(14a、15a、16)は、前記空調運転モードにおける前記蒸発器(14)の冷媒流れ下流側に配置されて、前記蒸発器(14)に冷媒流れが逆流することを防止する第1逆止弁(14a)、および、前記空調運転モードにおける前記分岐部と前記蒸発器(14)との間に配置され、冷媒流れを遮断する第2冷媒遮断手段(15b、16)で構成されており、The refrigerant shut-off means (14a, 15a, 16) is disposed on the downstream side of the refrigerant flow of the evaporator (14) in the air conditioning operation mode, and prevents the refrigerant flow from flowing back to the evaporator (14). A first check valve (14a) and a second refrigerant shut-off means (15b, 16) arranged between the branch portion and the evaporator (14) in the air-conditioning operation mode and blocking the refrigerant flow. Has been
前記第2冷媒遮断手段は、前記蒸発器(14)の出口冷媒の過熱度が低い場合には冷媒通路の開度を遮断側に調節し、出口冷媒の過熱度が高い場合には冷媒通路の開度を全開側に調節する流量調節部(15b)であり、The second refrigerant shut-off means adjusts the opening degree of the refrigerant passage to the shut-off side when the degree of superheat of the outlet refrigerant of the evaporator (14) is low, and adjusts the degree of refrigerant passage when the degree of superheat of the outlet refrigerant is high. A flow rate adjustment unit (15b) for adjusting the opening to the fully open side;
前記減圧手段は、冷媒を減圧する減圧部(15a)であり、The decompression means is a decompression section (15a) for decompressing the refrigerant,
前記流量調節部(15b)および前記減圧部(15a)は、温度式膨張弁(15)として一体に構成されており、The flow rate adjusting unit (15b) and the pressure reducing unit (15a) are integrally configured as a temperature type expansion valve (15),
前記廃熱回収運転モードでは、前記冷媒遮断手段(14a、15a、16)が前記蒸発器(14)への冷媒の流入を遮断するとともに、前記第1冷媒遮断手段(35)が前記空調運転モードにおける前記膨脹機一体型圧縮機(100)の冷媒吐出側から前記放熱器(11)間の冷媒の流れを遮断することによって、前記冷媒供給手段(32)により冷媒を前記蒸気発生器(30)→前記膨脹機一体型圧縮機(100)→前記第2バイパス回路(34)→前記放熱器(11)→前記第1バイパス回路(31)→前記冷媒供給手段(32)の順に循環させることを特徴とする蒸気圧縮式冷凍機。In the waste heat recovery operation mode, the refrigerant shut-off means (14a, 15a, 16) shuts off the inflow of refrigerant to the evaporator (14), and the first refrigerant shut-off means (35) is in the air-conditioning operation mode. The refrigerant supply means (32) supplies the refrigerant to the steam generator (30) by blocking the refrigerant flow between the radiator (11) from the refrigerant discharge side of the expander-integrated compressor (100). → The expander-integrated compressor (100) → the second bypass circuit (34) → the radiator (11) → the first bypass circuit (31) → the refrigerant supply means (32) A featured vapor compression refrigerator.
JP2004193983A 2004-06-30 2004-06-30 Vapor compression refrigerator Expired - Fee Related JP4196890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193983A JP4196890B2 (en) 2004-06-30 2004-06-30 Vapor compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193983A JP4196890B2 (en) 2004-06-30 2004-06-30 Vapor compression refrigerator

Publications (2)

Publication Number Publication Date
JP2006017352A JP2006017352A (en) 2006-01-19
JP4196890B2 true JP4196890B2 (en) 2008-12-17

Family

ID=35791804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193983A Expired - Fee Related JP4196890B2 (en) 2004-06-30 2004-06-30 Vapor compression refrigerator

Country Status (1)

Country Link
JP (1) JP4196890B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4588644B2 (en) * 2006-02-06 2010-12-01 株式会社デンソー Refrigeration equipment with waste heat utilization device
KR100992840B1 (en) 2008-06-19 2010-11-08 김영득 Natural Circulation and Vapor Condensing Type Air Conditioning Apparatus
JP5163620B2 (en) * 2009-10-15 2013-03-13 株式会社豊田自動織機 Waste heat regeneration system
CN104279791B (en) * 2014-10-16 2016-08-24 珠海格力电器股份有限公司 Air conditioning system and the control method for air conditioning system
JP7187942B2 (en) * 2018-09-28 2022-12-13 いすゞ自動車株式会社 Rankine cycle system

Also Published As

Publication number Publication date
JP2006017352A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US7178358B2 (en) Vapor-compression refrigerant cycle system with refrigeration cycle and Rankine cycle
JP4654655B2 (en) Vapor compression refrigerator
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
US6928820B2 (en) Waste heat collecting system having rankine cycle and heating cycle
US7152422B2 (en) Vapor compression refrigerator
US7730729B2 (en) Refrigerating machine
US20110088394A1 (en) Waste heat regeneration system
JP5389184B2 (en) Refrigeration cycle equipment
JP2007009897A (en) Heat cycle device, and high pressure protective device
JP2006017108A (en) Heat cycle device
JP2007225141A (en) Gas heat pump type air conditioner and its starting method
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2007327668A (en) Refrigerating device comprising waste heat utilization device
JP4078994B2 (en) Fluid machinery and waste heat recovery system
JP4196890B2 (en) Vapor compression refrigerator
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP4016882B2 (en) Rankine cycle
JP4631426B2 (en) Vapor compression refrigerator
JP4196817B2 (en) Vapor compression refrigerator
JP4463660B2 (en) Refrigeration equipment
JP4773637B2 (en) Multi-type gas heat pump type air conditioner
JP2006010101A (en) Vapor compression type refrigeration machine
JPH07248163A (en) Air conditioner
JP2012247097A (en) Refrigerating cycle apparatus
JP3626927B2 (en) Gas heat pump type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees