JP4196797B2 - Magnetic encoder substrate and manufacturing method thereof - Google Patents

Magnetic encoder substrate and manufacturing method thereof Download PDF

Info

Publication number
JP4196797B2
JP4196797B2 JP2003325540A JP2003325540A JP4196797B2 JP 4196797 B2 JP4196797 B2 JP 4196797B2 JP 2003325540 A JP2003325540 A JP 2003325540A JP 2003325540 A JP2003325540 A JP 2003325540A JP 4196797 B2 JP4196797 B2 JP 4196797B2
Authority
JP
Japan
Prior art keywords
magnetic
substrate
linear
encoder
substrate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003325540A
Other languages
Japanese (ja)
Other versions
JP2005091183A (en
Inventor
義博 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003325540A priority Critical patent/JP4196797B2/en
Publication of JP2005091183A publication Critical patent/JP2005091183A/en
Application granted granted Critical
Publication of JP4196797B2 publication Critical patent/JP4196797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は磁気式エンコーダに用いる磁気式エンコーダ用基板およびその製造方法に関する。   The present invention relates to a magnetic encoder substrate used for a magnetic encoder and a method for manufacturing the same.

エンコーダは回転モータ、リニアモータ等の回転あるいは直線運動量を検出するセンサの一種である。エンコーダには、センサ部の検出方法による違いから、光学式と磁気式とがある。磁気式エンコーダは、光学式エンコーダに比べてセンサ部にごみ、汚れ等が付着しても感度に影響を及ぼさない、発光のための電力を消費しない、比較的堅牢である、発光素子を必要としないためコンパクトである、などの利点を有しており、広く利用されている。   An encoder is a type of sensor that detects rotation or linear momentum of a rotary motor, linear motor, or the like. There are two types of encoders, optical and magnetic, depending on the detection method of the sensor unit. The magnetic encoder does not affect the sensitivity even if dirt or dirt adheres to the sensor compared to the optical encoder, does not consume power for light emission, and is relatively robust, and requires a light emitting element. Therefore, it has advantages such as being compact and widely used.

この磁気式エンコーダには、ロータリーエンコーダとリニアエンコーダがある。ロータリーエンコーダは別名シャフトエンコーダとも呼ばれ、回転軸の回転変位をディジタル量に変換するものである。したがって、ロータリーエンコーダは各種回転モータ、自動車タイヤ、アクチュエータ、フロッピーディスクドライブ、マウス等の回転機構を有する装置の回転数や回転角度の検出に用いられている。一方、リニアエンコーダは、直線上の変位位置をディジタル量に変換するものである。したがって、リニアステッピングモータ等のリニア駆動装置の位置検出センサとして用いられている。   The magnetic encoder includes a rotary encoder and a linear encoder. The rotary encoder is also called a shaft encoder, and converts the rotational displacement of the rotary shaft into a digital quantity. Therefore, the rotary encoder is used for detecting the number of rotations and the rotation angle of a device having a rotation mechanism such as various rotation motors, automobile tires, actuators, floppy disk drives, and mice. On the other hand, the linear encoder converts a displacement position on a straight line into a digital quantity. Therefore, it is used as a position detection sensor for a linear drive device such as a linear stepping motor.

従来、磁気式ロータリーエンコーダとしては、例えば、回転モータの回転軸を包囲するように取付けられた円筒状の多極磁石と、該多極磁石が回転することにより交番する磁気を検出するホール素子やMR素子とで構成されるエンコーダが知られている。また、磁気式リニアエンコーダとしては、リニア駆動部に取付けられたテープ状や棒状の多極磁石と、リニア駆動部が直線運動することにより交番する磁気を検出するホール素子やMR素子とで構成されるエンコーダが知られている。上記エンコーダに使用される多極磁石は、磁性材料の表面にN極およびS極が交互に連続して現れるように着磁したものが用いられている。また、特開昭59−72017号公報、特開平4−355319号公報および特開平9−21652号公報などには、磁気検出素子を配置する側でN極もしくはS極のいずれか一方の磁極しか現れない構成の磁石が示されている。
特開昭59−72017号公報 特開平4−355319号公報 特開平9−21652号公報
Conventionally, as a magnetic rotary encoder, for example, a cylindrical multipole magnet attached so as to surround a rotating shaft of a rotary motor, and a Hall element that detects magnetism that alternates when the multipole magnet rotates, An encoder composed of an MR element is known. The magnetic linear encoder is composed of a tape-like or pole-like multipole magnet attached to the linear drive unit, and a Hall element or MR element that detects alternating magnetism when the linear drive unit linearly moves. Encoders are known. The multipole magnet used in the encoder is magnetized so that N poles and S poles appear alternately and continuously on the surface of the magnetic material. Further, in Japanese Patent Application Laid-Open Nos. 59-72017, 4-355319, and 9-21652, only one of the N pole and the S pole is provided on the side where the magnetic detection element is disposed. A magnet that does not appear is shown.
JP 59-72017 JP-A-4-355319 Japanese Patent Laid-Open No. 9-21652

前記N極およびS極が交互に連続して現れるように着磁した多極着磁磁石では、磁石の極数が多くかつ細かくなると着磁に時間を要し、コストアップとなる。加えて磁力の大きな希土類系磁石材料を用いる場合は、より細かな位置検出を行うために磁極数を増やそうとすると、より細かな磁極を形成するための着磁が難かしくなってくるという問題がある。一方、特開昭59−72017号公報、特開平4−355319号公報および特開平9−21652号公報などには磁気検出素子を配置する側でN極もしくはS極のいずれかしか現れない構成が示されている。特に特開平9−21652号公報では、前記希土類系磁石材料を用いた場合でも細かな着磁が行えることが示されている。   In a multipolar magnetized magnet that is magnetized so that the N and S poles appear alternately and continuously, if the number of poles of the magnet is large and fine, it takes time to magnetize and the cost increases. In addition, when using a rare earth magnet material with a large magnetic force, if the number of magnetic poles is increased in order to perform finer position detection, it is difficult to magnetize to form finer magnetic poles. is there. On the other hand, JP-A-59-72017, JP-A-4-355319, and JP-A-9-21652 have a configuration in which only the N pole or the S pole appears on the side where the magnetic detection element is arranged. It is shown. In particular, Japanese Patent Application Laid-Open No. 9-21652 shows that fine magnetization can be performed even when the rare earth magnet material is used.

しかしながら、いずれの場合も磁気検出素子を配置する側の磁場の変化は、特開平9−21652号公報の第14図の如く、ゼロを横切らない変化となる。磁気検出素子には磁気抵抗素子、ホール素子、ホールICなどが用いられる。スイッチング動作するホールICを用いた場合は、片側動作タイプのホールICが選択されるが、基板と素子のギャップ変動や線形磁区の幅に因ってはホールICの信号反転のための磁場強度が得られない可能性があるという問題がある。一方、ホール素子、磁気抵抗素子を用いた場合は、得られたアナログ信号をディジタル信号に変換するための電気回路が別途必要となり、エンコーダの大型化、コストアップ、SN比の低下を引き起こすという課題を有していた。   However, in either case, the change in the magnetic field on the side where the magnetic detection element is arranged is a change that does not cross zero as shown in FIG. 14 of Japanese Patent Laid-Open No. 9-216252. As the magnetic detection element, a magnetoresistive element, a Hall element, a Hall IC, or the like is used. When a Hall IC that performs switching operation is used, a one-side operation type Hall IC is selected. However, the magnetic field strength for signal inversion of the Hall IC depends on the gap variation between the substrate and the element and the width of the linear magnetic domain. There is a problem that it may not be obtained. On the other hand, when a Hall element or a magnetoresistive element is used, a separate electric circuit for converting the obtained analog signal into a digital signal is required, which leads to an increase in encoder size, cost increase, and SN ratio reduction. Had.

本発明の第1の発明は、磁気式エンコーダ用基板の線形磁区と相対して設けられた磁気検出素子を有する磁気式エンコーダに用いられる磁気式エンコーダ用基板において、線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に磁性材が塗布または充填されて形成された線形磁区が一方向に着磁されて製造された磁気式エンコーダ用基板材を貼り合わせて構成されている磁気式エンコーダ用基板であって、
磁気式エンコーダ用基板が、少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、もう一つの少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材B)が貼り合わされ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対であり、線形磁区の数は同数であり、該線形磁区の基板面における面積が概同じであり、線形磁区の厚みが基板材Aの線形磁区厚さよりも薄く、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせてあり、前記磁気式エンコーダ用基板材(基板材B)側が磁気検出素子側に面して配置されていることを特徴とする。
According to a first aspect of the present invention, there is provided a magnetic encoder substrate used in a magnetic encoder having a magnetic detection element provided opposite to a linear magnetic domain of the magnetic encoder substrate. A magnetic encoder substrate base material, which is produced by magnetizing a linear magnetic domain formed by applying or filling a magnetic material to a magnetic encoder substrate base material, in which a pattern is formed in advance, is bonded in one direction. A magnetic encoder board ,
The magnetic encoder substrate includes a magnetic encoder substrate material (substrate material A) having at least one linear magnetic domain, and the magnetic encoder substrate material (substrate material) including at least one linear magnetic domain. B) is bonded, the magnetization direction of the linear magnetic domains of the substrate material B is substantially opposite to the magnetization direction of the linear magnetic domains of the substrate material A, and the number of linear magnetic domains is the same, and the substrate surface of the linear magnetic domain area is approximate the same in, thinner than the linear domains thickness of the linear domains of thick board material a, Ri Awasetea attached to the linear domain and linear domains in the substrate material B of the substrate material a are not overlapped, the magnetic wherein the encoder substrate material (substrate material B) side is characterized that you have been placed facing the magnetic sensor side.

本発明の第2の発明は、磁気式エンコーダ用基板の線形磁区と相対して設けられた磁気検出素子を有する磁気式エンコーダに用いられる磁気式エンコーダ用基板において、線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に磁性材が塗布または充填されて形成された線形磁区が一方向に着磁されて製造された磁気式エンコーダ用基板材を貼り合わせて構成されている磁気式エンコーダ用基板であって、
磁気式エンコーダ用基板が、少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、もう一つの少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材B)が貼り合わされ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対であり、線形磁区の数は同数であり、該線形磁区の厚さが概同じであり、該線形磁区の基板面における面積が基板材Aの線形磁区面積よりも小さく、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせてあり、前記磁気式エンコーダ用基板材(基板材B)側が磁気検出素子側に面して配置されていることを特徴とする。
According to a second aspect of the present invention, there is provided a magnetic encoder substrate used in a magnetic encoder having a magnetic detection element provided opposite to a linear magnetic domain of the magnetic encoder substrate. A magnetic encoder substrate base material, which is produced by magnetizing a linear magnetic domain formed by applying or filling a magnetic material to a magnetic encoder substrate base material, in which a pattern is formed in advance, is bonded in one direction. A magnetic encoder board,
The magnetic encoder substrate includes a magnetic encoder substrate material (substrate material A) having at least one linear magnetic domain, and the magnetic encoder substrate material (substrate material) including at least one linear magnetic domain. B) is bonded, the magnetization direction of the linear magnetic domains of the substrate material B is substantially opposite to the magnetization direction of the linear magnetic domains of the substrate material A, the number of linear magnetic domains is the same, and the thickness of the linear magnetic domain There are approximate same, less than the linear domain area area board material a in the substrate surface of the linear domain, Yes bonded to the linear domain and linear domains in the substrate material B of the substrate material a are not overlapped, the magnetic encoder substrate material (substrate material B) side is characterized that you have been placed facing the magnetic sensor side.

本発明の第3の発明は、第1または第2の発明において磁気式エンコーダ用基板ベース材が強磁性体で構成されることを特徴とするAccording to a third aspect of the present invention, in the first or second aspect, the magnetic encoder substrate base material is made of a ferromagnetic material .

本発明の第4の発明は、第1または第2の発明において、磁気式エンコーダ用基板材の線形磁区がSmCo5系磁性粉、Sm2Co17系磁性粉、SmFeN系磁性粉およびNdFeB系磁性粉からなる群から選ばれる少なくとも1種の磁性粉を含有する組成物からなることを特徴とするA fourth aspect of the present invention, in the first or second aspect of the invention, the linear magnetic domain SmCo5-based magnetic powder of the substrate material for a magnetic encoder, Sm2Co17 magnetic powder, the group consisting of SmFeN-based magnetic powder and NdFeB magnetic powder It consists of the composition containing the at least 1 sort (s) of magnetic powder chosen from these .

本発明の第5の発明は、第1または第2の発明において、磁気式エンコーダ用基板材の線形磁区が基板材平面に対し概垂直方向に着磁されていることを特徴とするAccording to a fifth aspect of the present invention, in the first or second aspect, the linear magnetic domain of the magnetic encoder substrate material is magnetized in a direction substantially perpendicular to the substrate material plane .

本発明の第6の発明の磁気式エンコーダ用基板の製造方法は、線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に磁性粉を含有する樹脂バインダー組成物を塗布もしくは充填する工程、その後、塗布もしくは充填した組成物を硬化もしくは固化する工程、さらに磁場中で前記の硬化もしくは固化した組成物を有する磁気式エンコーダ用基板材に一方向に着磁処理する工程、その後、同様に一方向に着磁された複数個の磁気式エンコーダ用基板材を接着もしくは接合する工程で、少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、もう一つの少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材B)を貼り合わせ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対とし、線形磁区の数は同数であり、該線形磁区の基板面における面積が概同じであり、線形磁区の厚みが基板材Aの線形磁区厚さよりも薄く、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせることを特徴とする
本発明の第7の発明の磁気式エンコーダ用基板の製造方法線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に磁性粉を含有する樹脂バインダー組成物を塗布もしくは充填する工程、その後、塗布もしくは充填した組成物を硬化もしくは固化する工程、さらに磁場中で前記の硬化もしくは固化した組成物を有する磁気式エンコーダ用基板材に一方向に着磁処理する工程、その後、同様に一方向に着磁された複数個の磁気式エンコーダ用基板材を接着もしくは接合する工程で、
少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、もう一つの少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材B)が貼り合わされ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対であり、線形磁区の数は同数であり、該線形磁区の厚さが概同じであり、該線形磁区の基板面における面積が基板材Aの線形磁区面積よりも小さく、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせることを特徴とする。
According to a sixth aspect of the present invention, there is provided a method for producing a magnetic encoder substrate comprising: a resin binder composition containing magnetic powder in a magnetic encoder substrate base material in which linear magnetic domain through holes or concave patterns are formed in advance. A step of applying or filling, a step of curing or solidifying the applied or filled composition, and a step of magnetizing the substrate material for a magnetic encoder having the cured or solidified composition in a magnetic field in one direction. Thereafter, in the step of bonding or joining a plurality of magnetic encoder substrate materials similarly magnetized in one direction, a magnetic encoder substrate material (substrate material A) having at least one linear magnetic domain, Then, another magnetic encoder substrate material (substrate material B) having at least one linear magnetic domain is bonded, and the magnetization direction of the linear magnetic domain of the substrate material B is based on The direction of magnetization of the linear magnetic domains of the material A is generally opposite, the number of linear magnetic domains is the same, the area of the linear magnetic domains on the substrate surface is approximately the same, and the thickness of the linear magnetic domain is the linear magnetic domain thickness of the substrate material A The linear magnetic domains of the substrate material A and the linear magnetic domains of the substrate material B are bonded so as not to overlap each other .
According to a seventh aspect of the present invention, there is provided a method for manufacturing a magnetic encoder substrate comprising: a resin binder composition containing magnetic powder in a magnetic encoder substrate base material in which linear magnetic domain through holes or concave patterns are formed in advance. A step of applying or filling, a step of curing or solidifying the applied or filled composition, and a step of magnetizing the substrate material for a magnetic encoder having the cured or solidified composition in a magnetic field in one direction. Then, in the step of bonding or joining a plurality of magnetic encoder substrate materials similarly magnetized in one direction ,
A magnetic encoder substrate material (substrate material A) provided with at least one linear magnetic domain and another magnetic encoder substrate material (substrate material B) provided with at least one linear magnetic domain are bonded together, The magnetization direction of the linear magnetic domains of the substrate material B is substantially opposite to the magnetization direction of the linear magnetic domains of the substrate material A, the number of linear magnetic domains is the same, and the thickness of the linear magnetic domains is approximately the same, The linear magnetic domain has a smaller area on the substrate surface than the linear magnetic domain area of the substrate material A, and the linear magnetic domains of the substrate material A and the substrate material B are bonded so that they do not overlap.

本発明の磁気式エンコーダ用基板は、微細な着磁パターンを有する磁性部材を備えた小型で軽量の磁気式エンコーダ用基板であり、加えて該エンコーダ用基板の製造は、量産性に優れ、かつ磁気検出素子に、安価でギャップに対する信号変化の少ない素子を用いることが可能となるため、本発明の磁気式エンコーダ用基板を用いることにより微細な着磁パターンを有する磁気式エンコーダを安価に製造することができる。   The magnetic encoder substrate of the present invention is a small and lightweight magnetic encoder substrate provided with a magnetic member having a fine magnetization pattern. In addition, the manufacture of the encoder substrate is excellent in mass productivity, and Since it is possible to use an inexpensive element with little signal change with respect to the gap, a magnetic encoder having a fine magnetization pattern can be manufactured at low cost by using the magnetic encoder substrate of the present invention. be able to.

(1)基板ベース材
本発明の磁気式エンコーダ用基板では、線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材を用いる。基板ベース材としては、アルミニウム板、シリコンウエハ非磁性体のみならず、常磁性体、強磁性体などを用いることができる。特に、SUS430、鉄、ニッケルなどの強磁性体は、磁気式エンコーダ用基板ベース材が強磁性体で構成されることにより、磁気回路を構成してパーミアンスを高くできることから、基板から放出される磁力が増し、信号の安定化を図ることができるので、好ましい。
(2)磁性材
本発明の磁気式エンコーダ用基板では、線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に、磁性粉を含有する樹脂バインダー組成物を塗布もしくは充填し、塗布もしくは充填した組成物を硬化もしくは固化して線形磁区を形成する。
(1) Substrate base material In the magnetic encoder substrate of the present invention, a magnetic encoder substrate base material in which through holes or concave patterns for linear magnetic domains are formed in advance is used. As the substrate base material, not only an aluminum plate and a silicon wafer nonmagnetic material, but also a paramagnetic material, a ferromagnetic material, and the like can be used. In particular, ferromagnetic materials such as SUS430, iron, and nickel can form a magnetic circuit and increase permeance by forming the magnetic encoder substrate base material from a ferromagnetic material. Is increased, and the signal can be stabilized, which is preferable.
(2) Magnetic material In the magnetic encoder substrate of the present invention, a resin binder composition containing magnetic powder is applied to a magnetic encoder substrate base material in which through holes or concave patterns for linear magnetic domains are formed in advance. Fill and apply or fill the composition to cure or solidify to form linear domains.

線形磁区を形成するために磁性粉を含有する樹脂バインダー組成物が用いられる。磁性粉には、従来用いられている磁石材料粉が、特に制限無く用いられる。好ましくは、SmCo系磁性粉、Sm2Co17系磁性粉、SmFeN系磁性粉およびNdFeB系磁性粉からなる群から選ばれる少なくとも1種の磁性粉が用いられる。上記磁性粉を用いれば、残留磁束密度が大きいことから、磁気検出素子で検出される磁束は一層強くなり、エンコーダ用基板と磁気検出素子とのギャップがより広くなっても安定したディジタル信号が得られる。
(3)樹脂バインダー、磁性組成物
上記磁性材を含有する樹脂バインダー組成物を得るには、樹脂バインダーとして、例えばエポキシ樹脂で代表される熱硬化性樹脂が使用される。例えば、分子量約400のエポキシ樹脂50〜200重量部、磁性粉(NdFeB系)600〜900重量部およびエポキシ樹脂硬化剤50〜200重量部を回転型ミキサー、万能攪拌器等で均一に攪拌混合した組成物を作製する。
In order to form a linear magnetic domain, a resin binder composition containing magnetic powder is used. As magnetic powder, conventionally used magnetic material powder is used without any particular limitation. Preferably, SmCo 5 based magnetic powder, Sm2Co 17 based magnetic powder, at least one magnetic powder selected from the group consisting of SmFeN-based magnetic powder and NdFeB magnetic powder is used. If the above magnetic powder is used, the magnetic flux detected by the magnetic detection element becomes stronger because the residual magnetic flux density is large, and a stable digital signal can be obtained even if the gap between the encoder substrate and the magnetic detection element becomes wider. It is done.
(3) Resin binder and magnetic composition In order to obtain a resin binder composition containing the magnetic material, a thermosetting resin represented by, for example, an epoxy resin is used as the resin binder. For example, 50 to 200 parts by weight of an epoxy resin having a molecular weight of about 400, 600 to 900 parts by weight of magnetic powder (NdFeB) and 50 to 200 parts by weight of an epoxy resin curing agent were uniformly stirred and mixed with a rotary mixer, a universal stirrer, or the like. A composition is made.

上記範囲をはずれて磁性材重量が少ないと磁力不足が生じて良好な検出が困難であり、多いと樹脂バインダーの流動性が悪くなり、塗布、充填が困難となるという問題がある。
(4)エンコーダ用基板材とシート基板材
磁気式エンコーダ用基板は、磁気検出素子を配置した位置で、該磁気式エンコーダ用基板の回転に伴い交番する磁場が得られるように複数の磁気式エンコーダ用基板材を配置し、接着、貼り合わせして作製することができる。また、小型の磁気式エンコーダ用基板は、例えば図3に示すように、スリット12を有するエンコーダ用基板材10が多数個形成されたシート基板材(図4に示す)を磁気検出素子側と反対側に配置する磁気式エンコーダ用基板材(基板材A)と、磁気検出素子側に配置する磁気式エンコーダ用基板材(基板材B)の2種を作製し、各基板材のスリット部に上記磁性材を含有する樹脂バインダー組成物を充填し、シート基板材を貼りあわせ、接着することで、一度に多数個を作製でき、好ましい。
If the magnetic material weight is small outside the above range, the magnetic force is insufficient and good detection is difficult. If the magnetic material weight is large, the fluidity of the resin binder is deteriorated, and coating and filling are difficult.
(4) Encoder substrate material and sheet substrate material The magnetic encoder substrate has a plurality of magnetic encoders so that an alternating magnetic field can be obtained in accordance with the rotation of the magnetic encoder substrate at a position where the magnetic detection element is disposed. It can be produced by arranging a substrate material for adhesion, bonding and bonding. Further, for example, as shown in FIG. 3, a small magnetic encoder substrate is a sheet substrate material (shown in FIG. 4) on which a large number of encoder substrate materials 10 having slits 12 are formed. The magnetic encoder substrate material (substrate material A) to be arranged on the side and the magnetic encoder substrate material (substrate material B) to be arranged on the magnetic detection element side are prepared, and the above-mentioned slit portion of each substrate material A resin binder composition containing a magnetic material is filled, and a sheet substrate material is bonded and bonded together.

また、他の場合として、磁気検出素子を配置した位置で、直線運動などの磁気検出素子と該磁気式エンコーダ用基板の相対的変位に伴い交番する磁場が得られるように複数の磁気式エンコーダ用基板材を配置し、接着、貼り合わせして作製することもできる。   In another case, for a plurality of magnetic encoders, a magnetic field alternating with the relative displacement between the magnetic detection element such as linear motion and the magnetic encoder substrate can be obtained at the position where the magnetic detection element is disposed. A substrate material can also be arranged, bonded, and bonded together.

磁気式エンコーダ基板材の配置は、図1に示すように、磁気式エンコーダ用基板が、磁気検出素子側と反対側に配置する少なくとも1個の線形磁区14を備えた磁気式エンコーダ用基板材(基板材A)と、磁気検出素子側に配置する磁気式エンコーダ用基板材(基板材B)が貼り合わされ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対であり、線形磁区の数(実施例では16個)は同数であり、該線形磁区の基板面における面積が概同じであり、線形磁区の厚みが基板材Aの線形磁区厚さよりも薄く、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせる。   As shown in FIG. 1, the magnetic encoder substrate material is arranged such that the magnetic encoder substrate includes at least one linear magnetic domain 14 disposed on the side opposite to the magnetic detection element side ( The substrate material A) and the magnetic encoder substrate material (substrate material B) disposed on the magnetic detection element side are bonded together, and the magnetization direction of the linear magnetic domain of the substrate material B is the magnetization direction of the linear magnetic domain of the substrate material A The number of linear magnetic domains (16 in the embodiment) is the same, the area of the linear magnetic domains on the substrate surface is approximately the same, and the thickness of the linear magnetic domain is larger than the linear magnetic domain thickness of the substrate material A. The substrate material A is bonded so that the linear magnetic domain of the substrate material A and the linear magnetic domain of the substrate material B do not overlap.

また、磁気式エンコーダ用基板が、磁気検出素子側と反対側に配置する少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、磁気検出素子側に配置する磁気式エンコーダ用基板材(基板材B)が貼り合わされ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対であり、線形磁区の数は同数であり、該線形磁区の厚さが概同じであり、該線形磁区の基板面における面積が基板材Aの線形磁区面積よりも小さく、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせる。   The magnetic encoder substrate includes at least one linear magnetic domain disposed on the side opposite to the magnetic detection element side, and the magnetic encoder substrate material (substrate material A) disposed on the magnetic detection element side. The substrate material for the encoder (substrate material B) is bonded, the magnetization direction of the linear magnetic domains of the substrate material B is approximately opposite to the magnetization direction of the linear magnetic domains of the substrate material A, and the number of linear magnetic domains is the same. The linear magnetic domains have approximately the same thickness, the area of the linear magnetic domain on the substrate surface is smaller than the linear magnetic domain area of the substrate material A, and the linear magnetic domains of the substrate material A and the substrate material B do not overlap. Paste to.

上記配置をとることによって、磁気式エンコーダ用基板は、磁気検出素子を配置した位置で、該磁気式エンコーダ用基板の回転、直線運動などの磁気検出素子と該磁気式エンコーダ用基板の相対的変位に伴い交番する磁場が得られる。
(5)充填と硬化
線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に、磁性粉を含有する樹脂バインダー組成物を塗布もしくは充填し、塗布もしくは充填した組成物を硬化もしくは固化して線形磁区を形成する。例えば、予め基板に形成した所定形状の凹部に、あるいは貫通孔の場合は基板ベース材の下にシートを敷き、磁石組成物を充填するか、または基板ベース材に磁石組成物を所定のパターンで印刷した後、加熱固化させることもできる。
By adopting the above arrangement, the magnetic encoder substrate is positioned at the position where the magnetic detection element is disposed, and the relative displacement between the magnetic detection element and the magnetic encoder substrate, such as rotation and linear motion of the magnetic encoder substrate. As a result, an alternating magnetic field is obtained.
(5) A composition in which a resin binder composition containing magnetic powder is applied or filled to a substrate base material for a magnetic encoder in which through holes or concave patterns for filling and curing linear magnetic domains are formed in advance, and then applied or filled. Is hardened or solidified to form a linear magnetic domain. For example, in a predetermined recess formed in the substrate in advance, or in the case of a through hole, a sheet is placed under the substrate base material and filled with the magnet composition, or the magnet composition is applied to the substrate base material in a predetermined pattern. After printing, it can be heated and solidified.

前記で、樹脂バインダー組成物を塗布もしくは充填する方法としては、例えばスクリーン印刷などの印刷方法、ディスペンサを用いる方法、射出成形方法などがある。塗布もしくは充填した組成物を硬化もしくは固化する方法は、加熱、紫外線照射、加圧冷却などがある。上記塗布もしくは充填する方法および硬化もしくは固化する方法はいずれも樹脂バインダー組成物の構成により適時選択する。
(6)着磁
線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に充填、硬化した、磁性粉を含有する樹脂バインダー組成物を線形磁区とし、該線形磁区を一方向に着磁して使用する。
Examples of the method for applying or filling the resin binder composition include a printing method such as screen printing, a method using a dispenser, and an injection molding method. Methods for curing or solidifying the applied or filled composition include heating, ultraviolet irradiation, and pressure cooling. The method of applying or filling and the method of curing or solidifying are appropriately selected depending on the structure of the resin binder composition.
(6) Magnetization A resin binder composition containing magnetic powder, which is filled and cured in a magnetic encoder substrate base material in which through holes or concave patterns for linear magnetic domains are formed in advance, is used as linear magnetic domains. Magnetized in one direction.

本発明では、磁気検出素子側と反対側に配置する少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、磁気検出素子側に配置する磁気式エンコーダ用基板材(基板材B)が貼り合わせ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対とすることが、磁気検出素子を配置した位置で、該磁気式エンコーダ用基板の回転、直線運動などの磁気検出素子と該磁気式エンコーダ用基板の相対的変位に伴い交番する磁場が得られるようにするために必要である。例えば、一方の基板材Aは、磁気検出素子と対向する基板材表面側がN極及びその反対側(基板材裏面側)がS極となるように配向させ、他方の基板材Bを、基板表面側がN極及びその反対側(基板Aと接着させる側)がS極となるように配向させて着磁する。つまり、各基板材の線形磁区が、互いに反対となる方向に、かつ基板面に概ね垂直な方向にそれぞれ着磁されている。   In the present invention, a magnetic encoder substrate material (substrate material A) having at least one linear magnetic domain disposed on the side opposite to the magnetic detection element side, and a magnetic encoder substrate material disposed on the magnetic detection element side (substrate material A). At the position where the magnetic detection element is disposed, the magnetic material is arranged such that the substrate material B) is bonded, and the magnetization direction of the linear magnetic domain of the substrate material B is substantially opposite to the magnetization direction of the linear magnetic domain of the substrate material A. This is necessary in order to obtain a magnetic field that alternates with the relative displacement of the magnetic encoder substrate and the magnetic detection element such as rotation and linear motion of the encoder substrate. For example, one substrate material A is oriented so that the surface of the substrate material facing the magnetic detection element is an N pole and the opposite side (the substrate material back side) is an S pole, and the other substrate material B is The magnet is oriented and magnetized so that the side is the N pole and the opposite side (side to be bonded to the substrate A) is the S pole. That is, the linear magnetic domains of the respective substrate materials are magnetized in directions opposite to each other and in a direction substantially perpendicular to the substrate surface.

磁場中で、硬化もしくは固化した組成物を有する基板に一方向に行う着磁方法としては、例えば空芯コイルとパルス着磁器との組み合わせがある。20kG(2T)以上の着磁磁場で、線形磁区に対して一方向に着磁する。   As a magnetization method performed in one direction on a substrate having a cured or solidified composition in a magnetic field, for example, there is a combination of an air-core coil and a pulse magnetizer. A linear magnetic domain is magnetized in one direction with a magnetization magnetic field of 20 kG (2T) or more.

着磁は基板を1枚ずつ着磁しても良いが、本発明の特徴でもある単極着磁では複数の基板を重ねて一度で着磁する、あるいは硬化もしくは固化した複数個の基板を有するシート状基板を着磁することで着磁工程に要する時間を大幅に短縮することができる。
(7)シート基板の接着
着磁後の2枚のエンコーダ用基板材、シート基板材を、前記エンコーダ基板2枚のN極S極が、前述の着磁(6)に記載の配置となるよう、例えば図1に示すように線形磁区の配置が交互になるよう構成されて、エポキシ樹脂系接着剤、アクリル樹脂系接着剤、アクリル樹脂嫌気性接着剤等を用いて接着される。その後多数個のエンコーダ用基板をシート基板材から取り外し、磁気式エンコーダ用基板を作製した。前記シート状基板のまま接着もしくは接合し、その後1枚ずつに基板を分離することで接着工程に要する時間を大幅に短縮することができる。
(8)磁気式エンコーダ
上記作製方法で得られた磁気式エンコーダ用基板の着磁方向、例えば、基板平面に対して概垂直に着磁した場合は、基板平面よりより0.1mm〜1mm上面に磁気検出素子を配置し、磁気式エンコーダ用基板の回転、直線運動などの磁気検出素子と該磁気式エンコーダ用基板の相対的変位に伴って該磁気検出素子で得られる信号を使用する。上記基板平面と磁気検出素子の間隔は基板に設けた線形磁区の間隔により適時選択する。安定した信号を得るためには、好ましくは、線形磁区の間隔の50%以下にすると良い。
Magnetization may magnetize the substrates one by one, but single-polar magnetization, which is also a feature of the present invention, has a plurality of substrates that are stacked and magnetized at one time, or have a plurality of cured or solidified substrates. By magnetizing the sheet-like substrate, the time required for the magnetizing step can be greatly shortened.
(7) Adhesion of sheet substrate The two encoder substrate materials and the sheet substrate material after magnetization are arranged such that the N poles and S poles of the two encoder substrates are arranged as described in the aforementioned magnetization (6). For example, as shown in FIG. 1, the arrangement of the linear magnetic domains is alternated and bonded using an epoxy resin adhesive, an acrylic resin adhesive, an acrylic resin anaerobic adhesive, or the like. Thereafter, a large number of encoder substrates were removed from the sheet substrate material to produce a magnetic encoder substrate. By bonding or joining the sheet-like substrates as they are, and then separating the substrates one by one, the time required for the bonding process can be greatly reduced.
(8) Magnetic encoder When the magnetization direction of the magnetic encoder substrate obtained by the above production method is magnetized substantially perpendicular to the substrate plane, it is 0.1 mm to 1 mm above the substrate plane. A magnetic detection element is disposed, and a signal obtained by the magnetic detection element according to relative displacement between the magnetic detection element such as rotation and linear motion of the magnetic encoder board and the magnetic encoder board is used. The distance between the substrate plane and the magnetic detection element is appropriately selected according to the distance between the linear magnetic domains provided on the substrate. In order to obtain a stable signal, the distance between linear magnetic domains is preferably 50% or less.

0.1mmより狭いと磁気検出素子の配置精度、エンコーダ寸法精度の向上等が必要となりコストアップにつながり、1mmより広いと、得られる信号が小さくなり検出精度が悪化したり、またエンコーダが大型化してしまい好ましくない。   If it is narrower than 0.1 mm, it will be necessary to improve the accuracy of magnetic detection element placement and encoder dimensional accuracy, leading to an increase in cost. If it is wider than 1 mm, the signal obtained will be smaller and the detection accuracy will deteriorate, and the encoder will become larger. This is not preferable.

磁気検出素子には、磁気抵抗素子、ホール素子、ホールICなどが用いられる。スイッチング動作するホールICを用いた場合は、片側動作タイプのホールICが選択されるが、基板と素子のギャップ変動や線形磁区の幅に因ってはホールICの信号反転のための磁場強度が得られない可能性があったが、本発明の磁気式エンコ−ダにおいては、両側動作タイプのホールICの選択が可能となり、ギャップ変動に対して信号反転のバラツキが少なく良好である。また、ホール素子、磁気抵抗素子を用いた場合は、得られたアナログ信号をディジタル信号に変換するための電気回路が別途必要となるが、S/N比が十分確保できる場合にはこれら素子を用いることも可能である。   As the magnetic detection element, a magnetoresistive element, a Hall element, a Hall IC, or the like is used. When a Hall IC that performs switching operation is used, a one-side operation type Hall IC is selected. However, the magnetic field strength for signal inversion of the Hall IC depends on the gap variation between the substrate and the element and the width of the linear magnetic domain. Although the magnetic encoder of the present invention may not be obtained, it is possible to select a double-sided operation type Hall IC, which is favorable with little variation in signal inversion with respect to gap variation. In addition, when a Hall element or a magnetoresistive element is used, an electric circuit for converting the obtained analog signal into a digital signal is required. However, if a sufficient S / N ratio can be secured, these elements are not used. It is also possible to use it.

本発明の磁気式エンコーダ用基板を用いれば、基板の回転や直線運動などの磁気検出素子と該磁気式エンコーダ用基板の相対的変位に伴い交番する磁場が得られ、それに対応してゼロクロスする交番電圧信号が得られる。更に後述の実施例1の場合の構成では、該エンコーダ基板とホール素子の間隔を0.6mmまで離してもゼロクロスする交番電圧信号が得られる。磁気式エンコーダ基板材を1枚用いて、磁気式エンコーダを構成することもでき、図7に示すように交番する磁場が得られ、それに対応してゼロクロスする交番電圧信号が得られるが、前記間隔を離していくと本発明の構成に比べてゼロクロスしなくなる前記間隔が狭く、前記間隔の変動に対する信号の安定性という点で劣っており、好ましくない。モータ等の回転機器にエンコーダを取り付けて使用する場合、負荷の変動によりモータの軸方向に僅かながら位置の変化が生じる。本磁気式エンコーダの構成では、前記軸方向の位置の変化はエンコーダ基板とホール素子の間隔の変化につながる。磁気式エンコーダ基板材を1枚用い、かつ検出素子にホールICを用いて磁気式エンコーダを構成した場合、前記のようにゼロクロスしなくなる前記間隔が狭いため、それ以上の軸方向の位置の変化が生じた場合にはホールICはスイッチング動作をしなくなり、パルス抜けが生じる。パルス抜けが生じない場合でも、スイッチング動作により得られたON−OFFの信号の間隔、すなわちデューティ比は交番磁場のN極側とS極側の対称性が大きくずれて、スイッチングするタイミングが変わり、50:50から離れたバラツキの大きい信号となる。   By using the magnetic encoder substrate of the present invention, a magnetic field alternating with the relative displacement of the magnetic detection element such as rotation and linear motion of the substrate and the magnetic encoder substrate can be obtained, and the corresponding alternating zero crossing is obtained. A voltage signal is obtained. Further, in the configuration in the case of Example 1 described later, an alternating voltage signal that crosses zero is obtained even if the distance between the encoder board and the Hall element is increased to 0.6 mm. The magnetic encoder can also be configured by using one magnetic encoder substrate material, and an alternating magnetic field is obtained as shown in FIG. 7, and an alternating voltage signal that is zero-crossed correspondingly is obtained. When the distance is increased, the interval at which zero crossing does not occur is narrower than in the configuration of the present invention, which is not preferable in terms of signal stability against variations in the interval. When an encoder is attached to a rotating device such as a motor, the position changes slightly in the axial direction of the motor due to load fluctuations. In the configuration of the magnetic encoder, the change in the axial position leads to the change in the distance between the encoder board and the Hall element. When a magnetic encoder substrate material is used and a magnetic encoder is configured by using a Hall IC as a detection element, the distance at which the zero cross does not occur is narrow as described above. When this occurs, the Hall IC does not perform a switching operation and a pulse drop occurs. Even when no missing pulse occurs, the ON-OFF signal interval obtained by the switching operation, that is, the duty ratio, the symmetry between the N pole side and the S pole side of the alternating magnetic field greatly deviates, and the switching timing changes. It becomes a signal with large variation far from 50:50.

分子量約400のエポキシ樹脂100重量部、磁性粉(NdFeB系)800重量部およびエポキシ樹脂硬化剤100重量部を回転型ミキサーで均一に攪拌混合した組成物を作製し、図3に示すような、φ9×φ1.2で16個のスリットを有するエンコーダ基板が193個形成された厚さ0.3mmのSUS430製シート基板(図4に示す)のスリット部に充填した。充填後のシート基板に120°C、8時間の熱処理を行って組成物の硬化を行った。該シート基板をパルス着磁器を用いて20kG(2T)以上の着磁磁場でアキシャル方向に一様な着磁を施した。   A composition in which 100 parts by weight of an epoxy resin having a molecular weight of about 400, 800 parts by weight of magnetic powder (NdFeB system) and 100 parts by weight of an epoxy resin curing agent were uniformly stirred and mixed with a rotary mixer, as shown in FIG. A slit portion of a 0.3 mm thick SUS430 sheet substrate (shown in FIG. 4) in which 193 encoder substrates having φ9 × φ1.2 and 16 slits were formed was filled. The sheet substrate after filling was subjected to heat treatment at 120 ° C. for 8 hours to cure the composition. The sheet substrate was uniformly magnetized in the axial direction with a magnetizing magnetic field of 20 kG (2T) or more using a pulse magnetizer.

同様に、前記16個のスリットを有するエンコーダ基板と半ピッチずれたエンコーダ基板193個が形成された厚さ0.3mmのSUS430製シート基板に、前記組成物の充填、硬化、着磁処理を行った。   Similarly, the 0.3 mm thick SUS430 sheet substrate on which 193 encoder substrates having 16 slits and 193 encoder substrates shifted by a half pitch are filled, cured, and magnetized. It was.

着磁後の2枚のシート基板を、前記エンコーダ基板2枚のNSが図1に示す構成になるようにエポキシ樹脂系接着剤を用いて接着し、その後193個のエンコーダ基板をシート基板から取り外し、図1に示す磁気式エンコーダ基板を作製した。   The two sheet substrates after magnetization are bonded using an epoxy resin adhesive so that the NS of the two encoder substrates has the configuration shown in FIG. 1, and then 193 encoder substrates are removed from the sheet substrate. A magnetic encoder substrate shown in FIG. 1 was produced.

上記磁気式エンコーダ基板のアキシャル方向、基板より0.1mm上面にホール素子を配置し、該ホール素子により生じる信号を観察したところ、交番する磁場に対応して、ゼロクロスする図2に示す交番電圧信号を得た。更に該エンコーダ基板とホール素子の間隔を0.6mmまで離してもゼロクロスする交番電圧信号を得た。次いで検出素子を旭化成電子製交番磁界動作型ホールIC、EW−410を用いた。この素子では、エンコーダ基板とホール素子の間隔が0.5mm以内でON−OFFのディジタル信号が得られた。   When the Hall element is arranged in the axial direction of the magnetic encoder board, 0.1 mm above the board, and a signal generated by the Hall element is observed, the alternating voltage signal shown in FIG. 2 crosses zero according to the alternating magnetic field. Got. Further, an alternating voltage signal that crosses zero even when the distance between the encoder substrate and the Hall element is increased to 0.6 mm was obtained. Next, an alternating magnetic field operation type Hall IC, EW-410 manufactured by Asahi Kasei Electronics was used as the detection element. With this element, an ON-OFF digital signal was obtained when the distance between the encoder board and the Hall element was within 0.5 mm.

分子量約400のエポキシ樹脂100重量部、磁性粉(SmFeN系)800重量部および不飽和ポリエステル樹脂と該硬化剤100重量部を回転型ミキサーで均一に攪拌混合した組成物を作製し、図3に示すような、φ9×φ2.5で16個のスリットを有するエンコーダ基板が193個形成された厚さ0.3mmのSUS430製シート基板(図4に示す)のスリット部に充填した。充填後の基板に150°C、10分間の磁場中熱処理を行って組成物の硬化を行った。該シート基板をパルス着磁器を用いて20kG(2T)以上の着磁磁場でアキシャル方向に一様な着磁を施した。   A composition was prepared by uniformly stirring and mixing 100 parts by weight of an epoxy resin having a molecular weight of about 400, 800 parts by weight of magnetic powder (SmFeN) and 100 parts by weight of an unsaturated polyester resin and the curing agent with a rotary mixer. As shown in the drawing, the slit portion of a SUS430 sheet substrate (shown in FIG. 4) having a thickness of 0.3 mm in which 193 encoder substrates having φ9 × φ2.5 and 16 slits were formed was filled. The substrate after filling was subjected to heat treatment in a magnetic field at 150 ° C. for 10 minutes to cure the composition. The sheet substrate was uniformly magnetized in the axial direction with a magnetizing magnetic field of 20 kG (2T) or more using a pulse magnetizer.

同様に、前記16個のスリットを有するエンコーダ基板と半ピッチずれたエンコーダ基板が193個形成された厚さ0.3mmのSUS430製シート基板に前記組成物の充填、硬化、着磁処理を行った。   Similarly, the SUS430 sheet substrate having a thickness of 0.3 mm on which 193 encoder substrates each having a half pitch difference from the encoder substrate having the 16 slits were filled, cured, and magnetized. .

着磁後の2枚のシート基板を、前記エンコーダ基板2枚のNSが図1に示す構成になるようにエポキシ樹脂系接着剤を用いて接着し、その後193個のエンコーダ基板をシート基板から取り外し、図1に示す磁気式エンコーダ基板を作製した。   The two sheet substrates after magnetization are bonded using an epoxy resin adhesive so that the NS of the two encoder substrates has the configuration shown in FIG. 1, and then 193 encoder substrates are removed from the sheet substrate. A magnetic encoder substrate shown in FIG. 1 was produced.

上記磁気式エンコーダ基板のアキシャル方向、基板より0.2mm上面に交番磁場でコンパレートする機能を有するアレグロ社製ホールICを配置し、該ホールICにより生じる信号を観察したところ、交番する磁場に対応して、ON―OFFの図5に示すディジタル電圧信号が得られた。更に該ホールICにより生じるディジタル信号は前記エンコーダ基板とホールICの間隔を0.2mm〜0.6mmと変えてもパルス抜け、デューティ比の変化は殆ど生じない信号であった。   The Hall IC made by Allegro, which has the function of comparing with an alternating magnetic field, is placed 0.2 mm above the substrate in the axial direction of the magnetic encoder board, and the signals generated by the Hall IC are observed. Thus, the digital voltage signal shown in FIG. Further, the digital signal generated by the Hall IC was a signal with little change in the duty ratio, even when the distance between the encoder board and the Hall IC was changed to 0.2 mm to 0.6 mm.

分子量約400のエポキシ樹脂100重量部、磁性粉(SmCo系)800重量部およびエポキシ系樹脂と該硬化剤100重量部を回転型ミキサーで均一に攪拌混合した組成物を作製し、図3に示すような、φ9×φ2.5で16個のスリットを有するエンコーダ基板が193個形成された厚さ0.3mmのSUS430製シート基板(図4に示す)のスリット部に充填した。充填後の基板に120℃、6時間の磁場中熱処理を行って組成物の硬化を行った。該シート基板をパルス着磁器を用いて20kG(2T)以上の着磁磁場でアキシャル方向に一様な着磁を施した。 A composition in which 100 parts by weight of an epoxy resin having a molecular weight of about 400, 800 parts by weight of magnetic powder (SmCo 5 series), and 100 parts by weight of an epoxy resin and the curing agent was uniformly stirred and mixed with a rotary mixer was prepared. As shown in the drawing, the slit portion of a SUS430 sheet substrate (shown in FIG. 4) having a thickness of 0.3 mm in which 193 encoder substrates having φ9 × φ2.5 and 16 slits were formed was filled. The substrate after filling was subjected to heat treatment in a magnetic field at 120 ° C. for 6 hours to cure the composition. The sheet substrate was uniformly magnetized in the axial direction with a magnetizing magnetic field of 20 kG (2T) or more using a pulse magnetizer.

同様に、前記16個のスリットを有するエンコーダ基板と半ピッチずれたエンコーダ基板193個が形成された厚さ0.3mmのSUS430製シート基板に前記組成物の充填、硬化、着磁処理を行った。   Similarly, filling, curing, and magnetizing treatment of the composition were performed on a 0.3 mm thick SUS430 sheet substrate on which 193 encoder substrates having half slit pitches and encoder substrates having 16 slits were formed. .

着磁後の2枚のシート基板を、前記エンコーダ基板2枚のNSが図1に示す構成になるようにエポキシ樹脂系接着剤を用いて接着し、その後193個のエンコーダ基板をシート基板から取り外し、図1に示す磁気式エンコーダ基板を作製した。   The two sheet substrates after magnetization are bonded using an epoxy resin adhesive so that the NS of the two encoder substrates has the configuration shown in FIG. 1, and then 193 encoder substrates are removed from the sheet substrate. A magnetic encoder substrate shown in FIG. 1 was produced.

上記磁気式エンコーダ基板のアキシャル方向、基板より0.2mm上面に交番磁場でコンパレートする機能を有するアレグロ社製ホールICを配置し、該ホールICにより生じる信号を観察したところ、交番する磁場に対応して、ON―OFFの図5に示すディジタル電圧信号と同等の信号が得られた。更に該ホールICにより生じるディジタル信号は前記エンコーダ基板とホールICの間隔を0.2mm〜0.4mmと変えてもパルス抜け、デューティ比の変化は生じない信号であった。   The Hall IC made by Allegro, which has the function of comparing with an alternating magnetic field, is placed 0.2 mm above the substrate in the axial direction of the magnetic encoder board, and the signals generated by the Hall IC are observed. Thus, a signal equivalent to the digital voltage signal shown in FIG. Furthermore, the digital signal generated by the Hall IC was a signal that did not lose its pulse and did not change its duty ratio even when the distance between the encoder substrate and the Hall IC was changed from 0.2 mm to 0.4 mm.

分子量約400のエポキシ樹脂100重量部、磁性粉(Sm2Co17系)800重量部およびエポキシ系樹脂と該硬化剤100重量部を回転型ミキサーで均一に攪拌混合した組成物を作製し、図3に示すような、φ9×φ2.5で16個のスリットを有するエンコーダ基板が193個形成された厚さ0.3mmのSUS430製シート基板(図4に示す)のスリット部に充填した。充填後の基板に120°C、6時間の磁場中熱処理を行って組成物の硬化を行った。該シート基板をパルス着磁器を用いて20kG(2T)以上の着磁磁場でアキシャル方向に一様な着磁を施した。 A composition in which 100 parts by weight of an epoxy resin having a molecular weight of about 400, 800 parts by weight of magnetic powder (Sm2Co 17 series), and 100 parts by weight of an epoxy resin and the curing agent was uniformly stirred and mixed with a rotary mixer was prepared. As shown in the drawing, the slit portion of a SUS430 sheet substrate (shown in FIG. 4) having a thickness of 0.3 mm in which 193 encoder substrates having φ9 × φ2.5 and 16 slits were formed was filled. The substrate after filling was subjected to heat treatment in a magnetic field at 120 ° C. for 6 hours to cure the composition. The sheet substrate was uniformly magnetized in the axial direction with a magnetizing magnetic field of 20 kG (2T) or more using a pulse magnetizer.

同様に、前記16個のスリットを有するエンコーダ基板と半ピッチずれたエンコーダ基板193個が形成された厚さ0.3mmのSUS430製シート基板に前記組成物の充填、硬化、着磁処理を行った。   Similarly, filling, curing, and magnetizing treatment of the composition were performed on a 0.3 mm thick SUS430 sheet substrate on which 193 encoder substrates having a half-pitch deviation from the encoder substrate having the 16 slits were formed. .

着磁後の2枚のシート基板を、前記エンコーダ基板2枚のNSが図1に示す構成になるようにエポキシ樹脂系接着剤を用いて接着し、その後193個のエンコーダ基板をシート基板から取り外し、図1に示す磁気式エンコーダ基板を作製した。   The two sheet substrates after magnetization are bonded using an epoxy resin adhesive so that the NS of the two encoder substrates has the configuration shown in FIG. 1, and then 193 encoder substrates are removed from the sheet substrate. A magnetic encoder substrate shown in FIG. 1 was produced.

上記磁気式エンコーダ基板のアキシャル方向、基板より0.2mm上面に交番磁場でコンパレートする機能を有するアレグロ社製ホールICを配置し、該ホールICにより生じる信号を観察したところ、交番する磁場に対応して、ON―OFFの図5に示すディジタル電圧信号と同等の信号が得られた。更に該ホールICにより生じるディジタル信号は前記エンコーダ基板とホールICの間隔を0.2mm〜0.5mmと変えてもパルス抜け、デューティ比の変化は生じない信号であった。   The Hall IC made by Allegro, which has the function of comparing with an alternating magnetic field, is placed 0.2 mm above the substrate in the axial direction of the magnetic encoder board, and the signals generated by the Hall IC are observed. Thus, a signal equivalent to the digital voltage signal shown in FIG. Further, the digital signal generated by the Hall IC was a signal that did not lose its pulse and did not change its duty ratio even when the distance between the encoder board and the Hall IC was changed from 0.2 mm to 0.5 mm.

分子量400のエポキシ樹脂100重量部、磁性粉(NdFeB系)800重量部およびエポキシ樹脂硬化剤100重量部を回転型ミキサーで均一に攪拌混合した組成物を作製し、図8に示すような、100×30mmで4種類のスリットを有するエンコーダ基板が形成された厚さ0.2mmのSUS430製シート基板のスリット部に充填した。充填後のシート基板に120°C、8時間の熱処理を行って組成物の硬化を行った。該シート基板をパルス着磁器を用いて20KG(2T)以上の着磁磁場でアキシャル方向に一様な着磁を施した。   A composition in which 100 parts by weight of an epoxy resin having a molecular weight of 400, 800 parts by weight of magnetic powder (NdFeB series) and 100 parts by weight of an epoxy resin curing agent were uniformly stirred and mixed with a rotary mixer was prepared. As shown in FIG. The slit part of the sheet substrate made of SUS430 having a thickness of 0.2 mm on which an encoder substrate having 4 types of slits of × 30 mm was formed was filled. The sheet substrate after filling was subjected to heat treatment at 120 ° C. for 8 hours to cure the composition. The sheet substrate was uniformly magnetized in the axial direction with a magnetizing magnetic field of 20 KG (2T) or more using a pulse magnetizer.

同様に、前記複数個のスリットを有するエンコーダ基板と半ピッチずれたエンコーダ基板が形成された厚さ0.1mmのSUS430製シート基板に、前記組成物の充填、硬化、着磁処理を行った。   Similarly, the SUS430 sheet substrate having a thickness of 0.1 mm on which the encoder substrate having the plurality of slits and the encoder substrate shifted by a half pitch was filled, cured, and magnetized.

着磁後の2枚のシート基板を、前記エンコーダ基板2枚の線形磁区が重ならないように、かつ、該線形磁区の着磁方向が概反対となるように図1に示す構成になるようにエポキシ樹脂系接着剤を用いて接着し、その後エンコーダ基板をシート基板から取り外し、図8に示す磁気式エンコーダ基板を作製した。   The two sheet substrates after magnetization are configured as shown in FIG. 1 so that the linear magnetic domains of the two encoder substrates do not overlap and the magnetization directions of the linear magnetic domains are approximately opposite to each other. Adhesion was performed using an epoxy resin adhesive, and then the encoder substrate was removed from the sheet substrate to produce a magnetic encoder substrate shown in FIG.

上記磁気式エンコーダ基板のアキシャル方向、基板より0.1mm上面にホール素子を配置し,該ホール素子により生じる信号を観察したところ、交番する磁場に対応した、ゼロクロスする交番電圧信号を得た。これは前記4種類のスリットのいずれにおいても得られた。   When a Hall element was arranged in the axial direction of the magnetic encoder substrate and 0.1 mm above the substrate, and a signal generated by the Hall element was observed, an alternating voltage signal crossing zero corresponding to the alternating magnetic field was obtained. This was obtained in any of the four types of slits.

比較例Comparative example

分子量約400のエポキシ樹脂100重量部、磁性粉(NdFeB系)800重量部およびエポキシ樹脂硬化剤100重量部を回転型ミキサーで均一に攪拌混合した組成物を作製し、図3に示すような、φ9×φ1.2で16個のスリットを有するエンコーダ基板が193個形成された厚さ0.5mmのSUS430製シート基板(図4に示す)のスリット部に充填した。充填後の基板に120℃、8時間の熱処理を行って組成物の硬化を行った。該シート基板をパルス着磁器を用いて20kG(2T)以上の着磁磁場でアキシャル方向に一様な着磁を施した後、193個のエンコーダ基板をシート基板から取り外し、加えて信号検出面の対面に厚さ0.3mmの電磁鋼板を貼り付けて図6に示す磁気式エンコーダ基板を得た。   A composition in which 100 parts by weight of an epoxy resin having a molecular weight of about 400, 800 parts by weight of magnetic powder (NdFeB) and 100 parts by weight of an epoxy resin curing agent was uniformly stirred and mixed with a rotary mixer was prepared, as shown in FIG. The slit portion of a 0.5 mm thick SUS430 sheet substrate (shown in FIG. 4) in which 193 encoder substrates having φ9 × φ1.2 and 16 slits were formed was filled. The filled substrate was subjected to heat treatment at 120 ° C. for 8 hours to cure the composition. After the sheet substrate is uniformly magnetized in the axial direction with a magnetizing magnetic field of 20 kG (2T) or more using a pulse magnetizer, 193 encoder substrates are removed from the sheet substrate and added to the signal detection surface. A magnetic encoder board shown in FIG. 6 was obtained by attaching a 0.3 mm thick electromagnetic steel plate to the opposite surface.

上記磁気式エンコーダ基板のアキシャル方向、基板より0.1mm上面にホール素子を配置し、該ホール素子により生じる信号を観察したところ、図7に示す交番する磁場に対応して、ゼロクロスする交番電圧信号を得たが、エンコーダ基板とホール素子の間隔が0.4mmよりも大きくなると交番電圧信号とはならなかった。次いで検出素子を旭化成電子製交番磁界動作型ホールIC、EW−410を用いた。この素子では、エンコーダ基板とホール素子の間隔が0.3mm以内でON−OFFのディジタル信号が得られたが、それ以上離すとパルス抜けが生じて良好な信号が得られなかった。   When a Hall element is arranged in the axial direction of the magnetic encoder board, 0.1 mm above the board, and a signal generated by the Hall element is observed, an alternating voltage signal that crosses zero corresponding to the alternating magnetic field shown in FIG. However, when the distance between the encoder board and the Hall element was larger than 0.4 mm, an alternating voltage signal was not obtained. Next, an alternating magnetic field operation type Hall IC, EW-410 manufactured by Asahi Kasei Electronics was used as the detection element. With this element, an ON-OFF digital signal was obtained when the distance between the encoder board and the Hall element was within 0.3 mm. However, if the element was further separated, a pulse loss occurred and a good signal could not be obtained.

本発明の構成をとることにより、磁気式エンコーダ用基板と磁気検出素子の間隔を広くとっても、交番する磁場に対応して、ゼロクロスする交番電圧信号が得られ、スイッチング動作するホールIC、片側動作タイプのホールICが選択されるが、基板と素子のギャップ変動や線形磁区の幅に因らず安定して検出することができる。また、磁気式エンコーダ用基板と磁気検出素子の間隔を広くとっても、検出精度を低下させること無く検出できるので、より安価で信頼性の高い磁気式エンコ−ダを提供できる。   By adopting the configuration of the present invention, even if the distance between the magnetic encoder substrate and the magnetic detection element is wide, a zero-crossing alternating voltage signal is obtained corresponding to the alternating magnetic field, and the switching IC is operated as a one-side operation type. However, it is possible to detect the Hall IC stably regardless of the gap variation between the substrate and the element and the width of the linear magnetic domain. In addition, even if the gap between the magnetic encoder substrate and the magnetic detection element is wide, detection can be performed without degrading the detection accuracy, so that a cheaper and more reliable magnetic encoder can be provided.

本発明の磁気式エンコーダ基板を例示する実施例1〜4の構成図である。It is a lineblock diagram of Examples 1-4 which illustrate a magnetic encoder board of the present invention. 本発明の磁気式エンコーダ基板を用いて得られる実施例1の磁場信号の例である。It is an example of the magnetic field signal of Example 1 obtained using the magnetic encoder board | substrate of this invention. 本発明の磁気式エンコーダ基板の片側基板の実施例1〜4の構成図である。It is a block diagram of Examples 1-4 of the one side board | substrate of the magnetic encoder board | substrate of this invention. 本発明の磁気式エンコーダ基板を有する基板シートの実施例1〜4の構成図例である。It is an example of a lineblock diagram of Examples 1-4 of a substrate sheet which has a magnetic encoder board of the present invention. 本発明の実施例2〜4で得られるホールIC出力信号例である。It is an example of a Hall IC output signal obtained in Examples 2 to 4 of the present invention. 本発明の比較例で用いた磁気式エンコーダ基板を例示する構成図である。It is a block diagram which illustrates the magnetic encoder board | substrate used in the comparative example of this invention. 本発明の比較例で用いた磁気式エンコーダ基板の磁場信号の例である。It is an example of the magnetic field signal of the magnetic encoder board | substrate used in the comparative example of this invention. 本発明の磁気式エンコーダ基板を片側基板の実施例5の構成図である。It is a block diagram of Example 5 of the one side board | substrate of the magnetic encoder board | substrate of this invention.

符号の説明Explanation of symbols

10 磁気式エンコーダ基板材
12 スリット
14 磁性材





10 Magnetic encoder board material 12 Slit 14 Magnetic material





Claims (7)

磁気式エンコーダ用基板の線形磁区と相対して設けられた磁気検出素子を有する磁気式エンコーダに用いられる磁気式エンコーダ用基板において、線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に磁性材が塗布または充填されて形成された線形磁区が一方向に着磁されて製造された磁気式エンコーダ用基板材を貼り合わせて構成されている磁気式エンコーダ用基板であって、
磁気式エンコーダ用基板が、少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、もう一つの少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材B)が貼り合わされ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対であり、線形磁区の数は同数であり、該線形磁区の基板面における面積が概同じであり、線形磁区の厚みが基板材Aの線形磁区厚さよりも薄く、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせてあり、前記磁気式エンコーダ用基板材(基板材B)側が磁気検出素子側に面して配置されていることを特徴とする磁気式エンコーダ用基板。
Magnetic encoder in which through holes or concave patterns for linear magnetic domains are formed in advance in a magnetic encoder substrate used in a magnetic encoder having a magnetic detecting element provided opposite to the linear magnetic domains of the magnetic encoder substrate This is a magnetic encoder substrate that is formed by laminating a magnetic encoder substrate material produced by magnetizing a linear magnetic domain formed by applying or filling a magnetic material to a substrate base material in one direction. And
The magnetic encoder substrate includes a magnetic encoder substrate material (substrate material A) having at least one linear magnetic domain, and the magnetic encoder substrate material (substrate material) including at least one linear magnetic domain. B) is bonded, the magnetization direction of the linear magnetic domains of the substrate material B is substantially opposite to the magnetization direction of the linear magnetic domains of the substrate material A, and the number of linear magnetic domains is the same, and the substrate surface of the linear magnetic domain in area is approximate the same, thinner than the linear domains thickness of the linear domains of thick board material a, Yes bonded to the linear domain and linear domains in the substrate material B of the substrate material a are not overlapped, the magnetic substrate for a magnetic encoder encoder board material (substrate material B) side is characterized that you have been placed facing the magnetic sensor side.
磁気式エンコーダ用基板の線形磁区と相対して設けられた磁気検出素子を有する磁気式エンコーダに用いられる磁気式エンコーダ用基板において、線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に磁性材が塗布または充填されて形成された線形磁区が一方向に着磁されて製造された磁気式エンコーダ用基板材を貼り合わせて構成されている磁気式エンコーダ用基板であって、
磁気式エンコーダ用基板が、少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、もう一つの少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材B)が貼り合わされ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対であり、線形磁区の数は同数であり、該線形磁区の厚さが概同じであり、該線形磁区の基板面における面積が基板材Aの線形磁区面積よりも小さく、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせてあり、前記磁気式エンコーダ用基板材(基板材B)側が磁気検出素子側に面して配置されていることを特徴とする磁気式エンコーダ用基板。
Magnetic encoder in which through holes or concave patterns for linear magnetic domains are formed in advance in a magnetic encoder substrate used in a magnetic encoder having a magnetic detecting element provided opposite to the linear magnetic domains of the magnetic encoder substrate This is a magnetic encoder substrate that is formed by laminating a magnetic encoder substrate material produced by magnetizing a linear magnetic domain formed by applying or filling a magnetic material to a substrate base material in one direction. And
The magnetic encoder substrate includes a magnetic encoder substrate material (substrate material A) having at least one linear magnetic domain, and the magnetic encoder substrate material (substrate material) including at least one linear magnetic domain. B) is bonded, the magnetization direction of the linear magnetic domains of the substrate material B is substantially opposite to the magnetization direction of the linear magnetic domains of the substrate material A, the number of linear magnetic domains is the same, and the thickness of the linear magnetic domain There are approximate same, less than the linear domain area area board material a in the substrate surface of the linear domain, Yes bonded to the linear domain and linear domains in the substrate material B of the substrate material a are not overlapped, the substrate for a magnetic encoder magnetic encoder substrate material (substrate material B) side is characterized that you have been placed facing the magnetic sensor side.
磁気式エンコーダ用基板ベース材が強磁性体で構成されることを特徴とする請求項1、2に記載の磁気式エンコーダ用基板。   3. The magnetic encoder substrate according to claim 1, wherein the magnetic encoder substrate base material is made of a ferromagnetic material. 磁気式エンコーダ用基板材の線形磁区がSmCo5系磁性粉、Sm2Co17系磁性粉、SmFeN系磁性粉およびNdFeB系磁性粉からなる群から選ばれる少なくとも1種の磁性粉を含有する組成物からなることを特徴とする請求項1または2に記載の磁気式エンコーダ用基板。 The linear magnetic domain of the magnetic encoder substrate material is composed of a composition containing at least one magnetic powder selected from the group consisting of SmCo5-based magnetic powder, Sm2Co17-based magnetic powder, SmFeN-based magnetic powder and NdFeB-based magnetic powder. magnetic substrate encoder according to claim 1 or 2, characterized. 磁気式エンコーダ用基板材の線形磁区が基板材平面に対し概垂直方向に着磁されていることを特徴とする請求項1または2に記載の磁気式エンコーダ用基板。 Magnetic magnetic substrate encoder according to claim 1 or 2 linear domain encoder substrate material is characterized in that it is magnetized in the approximate direction perpendicular to the substrate material plane. 線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に磁性粉を含有する樹脂バインダー組成物を塗布もしくは充填する工程、その後、塗布もしくは充填した組成物を硬化もしくは固化する工程、さらに磁場中で前記の硬化もしくは固化した組成物を有する磁気式エンコーダ用基板材に一方向に着磁処理する工程、その後、同様に一方向に着磁された複数個の磁気式エンコーダ用基板材を接着もしくは接合する工程で、少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、もう一つの少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材B)を貼り合わせ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対とし、線形磁区の数は同数であり、該線形磁区の基板面における面積が概同じであり、線形磁区の厚みが基板材Aの線形磁区厚さよりも薄く、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせることを特徴とする磁気式エンコーダ用基板の製造方法。 A step of applying or filling a resin binder composition containing magnetic powder to a substrate base material for a magnetic encoder in which through holes or concave patterns for linear magnetic domains are formed in advance, and then curing or solidifying the applied or filled composition A step of magnetizing the substrate material for the magnetic encoder having the cured or solidified composition in a magnetic field in one direction, and then a plurality of magnetic encoders similarly magnetized in one direction. In the step of bonding or joining the substrate material for a magnetic substrate, the substrate for a magnetic encoder (substrate material A) having at least one linear magnetic domain and the base for a magnetic encoder having at least one other linear magnetic domain A plate material (substrate material B) is bonded, and the magnetization direction of the linear magnetic domains of the substrate material B is approximately opposite to the magnetization direction of the linear magnetic domains of the substrate material A. The number of linear magnetic domains is The linear magnetic domains have substantially the same area on the substrate surface, the thickness of the linear magnetic domain is thinner than the linear magnetic domain thickness of the substrate material A, and the linear magnetic domains of the substrate material A and the linear magnetic domain of the substrate material B do not overlap. A method of manufacturing a magnetic encoder substrate, characterized by being bonded together . 線形磁区用の貫通孔あるいは凹状パターンが予め形成された磁気式エンコーダ用基板ベース材に磁性粉を含有する樹脂バインダー組成物を塗布もしくは充填する工程、その後、塗布もしくは充填した組成物を硬化もしくは固化する工程、さらに磁場中で前記の硬化もしくは固化した組成物を有する磁気式エンコーダ用基板材に一方向に着磁処理する工程、その後、同様に一方向に着磁された複数個の磁気式エンコーダ用基板材を接着もしくは接合する工程で、A step of applying or filling a resin binder composition containing magnetic powder to a substrate base material for a magnetic encoder in which through holes or concave patterns for linear magnetic domains are formed in advance, and then curing or solidifying the applied or filled composition A step of magnetizing the substrate material for the magnetic encoder having the cured or solidified composition in a magnetic field in one direction, and then a plurality of magnetic encoders similarly magnetized in one direction. In the process of bonding or joining the substrate material for
少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材A)と、もう一つの少なくとも1個の線形磁区を備えた磁気式エンコーダ用基板材(基板材B)が貼り合わされ、該基板材Bの線形磁区の着磁方向が基板材Aの線形磁区の着磁方向とは概反対であり、線形磁区の数は同数であり、該線形磁区の厚さが概同じであり、該線形磁区の基板面における面積が基板材Aの線形磁区面積よりも小さく、基板材Aの線形磁区と基板材Bの線形磁区が重ならないように貼り合わせることを特徴とする磁気式エンコーダ用基板の製造方法。A magnetic encoder substrate material (substrate material A) provided with at least one linear magnetic domain and another magnetic encoder substrate material (substrate material B) provided with at least one linear magnetic domain are bonded together, The magnetization direction of the linear magnetic domains of the substrate material B is substantially opposite to the magnetization direction of the linear magnetic domains of the substrate material A, the number of linear magnetic domains is the same, and the thickness of the linear magnetic domains is approximately the same, An area of a linear magnetic domain on a substrate surface is smaller than a linear magnetic domain area of a substrate material A, and is bonded so that the linear magnetic domains of the substrate material A and the linear magnetic domains of the substrate material B do not overlap. Production method.
JP2003325540A 2003-09-18 2003-09-18 Magnetic encoder substrate and manufacturing method thereof Expired - Fee Related JP4196797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325540A JP4196797B2 (en) 2003-09-18 2003-09-18 Magnetic encoder substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325540A JP4196797B2 (en) 2003-09-18 2003-09-18 Magnetic encoder substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005091183A JP2005091183A (en) 2005-04-07
JP4196797B2 true JP4196797B2 (en) 2008-12-17

Family

ID=34455949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325540A Expired - Fee Related JP4196797B2 (en) 2003-09-18 2003-09-18 Magnetic encoder substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4196797B2 (en)

Also Published As

Publication number Publication date
JP2005091183A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
CA1266877A (en) Electronically commutated dc machine and use thereof
TWI579533B (en) Absolute encoder devices and motors
JP4868753B2 (en) Multi-rotation encoder and manufacturing method thereof
EP0650635B1 (en) Method for the fabrication of multipole magnets
KR100796183B1 (en) Magnetic encoder
CN1428915A (en) Rotor, method for mfg. fotor and rotating machinery
US7586283B2 (en) Magnetic encoder device and actuator
JPH09159684A (en) Magnetic rotary detection device
JP5091837B2 (en) Resolver
JP2007225536A (en) Device for detecting rotary motion
JP4196797B2 (en) Magnetic encoder substrate and manufacturing method thereof
JP2003527744A (en) Method of producing and magnetizing a single magnet part, assembling for producing a miniaturized magnet system and its magnet system
JP2005351656A (en) Magnetism detector
Luo et al. Multi-pole magnetization of high resolution magnetic encoder
JP2000193407A (en) Magnetic positioning device
JPH02271216A (en) Magnetic encoder
JP2002228486A (en) Magnetic encoder
CN1777816A (en) Magnetically sensitive element having its control element integrated therewith
JP2009264866A (en) Magnetic sensor and manufacturing method of the same
JP3185199B2 (en) Multipole magnetized magnet and its magnetizing method
US20230387758A1 (en) N-phase electric machine
JP2001041769A (en) Magnetic potentiometer
JP4154524B2 (en) Rotary magnetic sensor
JP2014120600A (en) Magnetization method and magnetization device
JPH10227805A (en) Rotation sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees