JP4194880B2 - Fiber molded body and method for producing the same - Google Patents

Fiber molded body and method for producing the same Download PDF

Info

Publication number
JP4194880B2
JP4194880B2 JP2003142008A JP2003142008A JP4194880B2 JP 4194880 B2 JP4194880 B2 JP 4194880B2 JP 2003142008 A JP2003142008 A JP 2003142008A JP 2003142008 A JP2003142008 A JP 2003142008A JP 4194880 B2 JP4194880 B2 JP 4194880B2
Authority
JP
Japan
Prior art keywords
fiber
density layer
pieces
thick
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003142008A
Other languages
Japanese (ja)
Other versions
JP2004346436A (en
Inventor
哲也 中村
和雄 棚部
倫太郎 妹尾
知彦 石原
達夫 坂本
敬章 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakagawa Sangyo Co Ltd
Toyota Boshoku Corp
Toyota Motor Corp
Original Assignee
Nakagawa Sangyo Co Ltd
Toyota Boshoku Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakagawa Sangyo Co Ltd, Toyota Boshoku Corp, Toyota Motor Corp filed Critical Nakagawa Sangyo Co Ltd
Priority to JP2003142008A priority Critical patent/JP4194880B2/en
Priority to US10/848,819 priority patent/US20050020164A1/en
Priority to CNB2004100456222A priority patent/CN100447325C/en
Publication of JP2004346436A publication Critical patent/JP2004346436A/en
Application granted granted Critical
Publication of JP4194880B2 publication Critical patent/JP4194880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に太い繊維によって粗く形成された低密度層が主に細い繊維によって緻密に形成された高密度層によって挟まれる構成の繊維成形体及びその製造方法に関する。
【0002】
【従来の技術】
この種の繊維成形体及びその製造方法が特許文献1に記載されている。
前記繊維成形体Aは、図5に示すように、主として太い無機繊維(17μm)によって粗く形成された低密度の芯層51と、その芯層51の両面に、主として細い無機繊維(10μm)によって緻密に形成された高密度の表層53,55とを備えている。
繊維成形体Aを製造するには、先ず、芯層51と、上側の表層53と、下側の表層55とをそれぞれ別々の機械で製造した後、重ね合わせ、ニードルパンチでパンチングすることにより、繊維マットを製造する。次に、その繊維マットの両面に樹脂フィルムを積層して加熱し、加熱プレスによって加圧する。これによって、繊維間が溶融した樹脂によって接着され、繊維成形体Aが得られる。
【0003】
【特許文献1】
特開平6−200460号公報
【0004】
【発明が解決しようとする課題】
しかし、上記した繊維成形体Aの製造方法では、各層51,53,55を別々の機械で製造するため機械台数が多くなり、設備コストが高くなる。また、各層51,53,55毎に重ね合わせて連結する必要があるため、製造効率が良くない。
【0005】
本発明は、上記問題点を解決するためになされたものであり、本発明が解決しようとする課題は、設備コストを抑えた状態で、効率的に繊維成形体を製造することである。
【0006】
【課題を解決するための手段】
上記した課題は、各請求項の発明によって解決される。
請求項1の発明は、主に太い繊維によって粗く形成された低密度層が主に細い繊維によって緻密に形成された高密度層によって挟まれる構成の繊維成形体の製造方法であって、
多数の太い繊維片と、1本当たりの重量がその太い繊維片より小さく設定されている多数の細い繊維片とを混ぜ合わせる混繊工程と、混繊された太い繊維片と細い繊維片とを回転ローラの外周面に保持して、その回転ローラと共に回転させる工程と、前記回転ローラの回転力を利用して、太い繊維片と細い繊維片とをその回転ローラの外周面から平らな繊維受け面まで飛ばし、その繊維受け面上に主として前記太い繊維片によって粗く形成された低密度層と、主として前記細い繊維片によって緻密に形成された高密度層とを備える繊維マットを形成する工程と、前記繊維マットを形成する工程によって得られた第1の繊維マットと第2の繊維マットとの低密度層どうしを重ね合わせた状態で、それらの繊維マットを互いに連結するとともに、各々の前記繊維片を互いに接着する工程とを有し、前記太い繊維片として、繊維径が 80 μm〜 250 μmの天然繊維片が使用され、前記細い繊維片として、繊維径が約 15 μm〜 17 μmの熱可塑性樹脂繊維片が使用されることを特徴とする。
【0007】
本発明によると、回転ローラの回転力を利用して、太い繊維片と細い繊維片とをその回転ローラの外周面から平らな繊維受け面まで飛ばすため、重い方の太い繊維片が細い繊維片よりも先に繊維受け面に到達し易くなる。このため、平らな繊維受け面上には、主として太い繊維片によって粗く低密度層が形成され、その上に中間層を介して主として前記細い繊維片によって緻密に高密度層が形成される。即ち、平らな繊維受け面上には、一工程で低密度層と高密度層とを備える繊維マットが形成される。
そして、前記繊維マットを形成する工程によって得られた第1の繊維マットと第2の繊維マットとの低密度層どうしが重ね合わされて連結され、さらに各々の前記繊維片が互いに接着されることで、低密度層が高密度層によって挟まれる構成の繊維成形体が形成される。
このように、一工程で低密度層と高密度層とを備える繊維マットを形成できるため、従来のように、低密度層と、表側の高密度層と、裏側の高密度層とをそれぞれ別々の機械で製造する方式と比べて機械台数を少なくでき、設備コストを抑えることができる。また、一工程で低密度層と高密度層とを備える繊維マットを形成できるため、繊維成形体の製造効率も向上する。
【0008】
請求項2の発明は、低密度層が上になるように第1の繊維マットを平らな繊維受け面上に設置する工程と、その第1の繊維マットの上に回転ローラの外周面から太い繊維片と細い繊維片とを飛ばし、低密度層と高密度層とを備える第2の繊維マットを積層する工程とを有している。
このため、第2の繊維マットを製造する際に、その第2の繊維マットを第1の繊維マットに積層できるようになり、繊維成形体の製造効率がさらに向上する。
【0009】
請求項3の発明は、主に太い繊維によって粗く形成された低密度層が主に細い繊維によって緻密に形成された高密度層によって挟まれる構成で、前記低密度層と前記高密度層との間が中間層となっている繊維成形体であって、太い繊維として、繊維径が 80 μ m 250 μ m の天然繊維が使用され、前記細い繊維として、繊維径が約 15 μm〜 17 μmの熱可塑性樹脂繊維が使用されており、前記中間層では、前記高密度層に近づくにつれて前記熱可塑性樹脂繊維の割合が大きくなり、前記低密度層に近づくにつれて前記天然繊維の割合が大きくなることを特徴とする。
このように、太い繊維は繊維径が80μm以上であるため、低密度層によって繊維成形体の厚みや剛性を確保できるようになる。また、太い繊維の繊維径が250μm以下であるため、低密度層が変形し難くなることがなく、繊維成形体の成形性の悪化を防止できる。
ここで、太い繊維には、請求項4に示すように、サイザル麻繊維を使用するのが好ましい。
【0010】
【発明の実施の形態】
(実施形態1)
以下、図1〜図4に基づいて本発明の実施形態1に係る繊維成形体及びその製造方法の説明を行う。本実施形態に係る繊維成形体は、自動車用天井材の基材として使用される板状体であり、図1、図2に繊維成形体の素材である繊維マットの製造方法が示されている。また、図3には、繊維成形体を使用した自動車用天井材の製造方法が示されている。
【0011】
繊維成形体10は、図2(B)に示すように、二枚の繊維マット20を使用して製造される。繊維マット20は、約25質量%の天然繊維片と、約25質量%の無機繊維片と、約50質量%の熱可塑性樹脂繊維片とから構成される。天然繊維片としては、例えば、サイザル麻繊維片が使用される。サイザル麻繊維片は太さ寸法が約150〜160μmであり、長さ寸法が約150mmに設定されている。また、サイザル麻繊維片の1本当たりの平均重量は約0.082gである。
【0012】
無機繊維片としては、例えば、カーボン繊維片が使用される。カーボン繊維片は太さ寸法(直径)が約7μmであり、長さ寸法が約100mmに設定されている。また、カーボン繊維片の1本当たりの平均重量は約0.0001gである。
熱可塑性樹脂繊維片は、無機繊維片と無機繊維片、及び無機繊維片と天然繊維片等とを互いに接着するために使用される繊維であり、例えば、ポリプロピレン繊維片が好適に使用される。ポリプロピレン繊維片は太さ寸法(直径)が約15〜17μmであり、長さ寸法が約64mmに設定されている。また、ポリプロピレン繊維片の1本当たりの平均重量は約0.00002gである。
【0013】
繊維マット20の表面側は、図1、図2に示すように、主として細くて軽いカーボン繊維片及び熱可塑性樹脂繊維片によって緻密に形成された高密度層と22となっている。また、繊維マット20の裏面側は、主として太くて重いサイザル麻繊維片によって粗く形成された低密度層24となっている。さらに、高密度層22と低密度層24との境界は存在せず、両層22,24の間に中間層23が形成されている。中間層23では、通常、高密度層22に近づくにつれてカーボン繊維片及び熱可塑性樹脂繊維片の割合が大きくなり、低密度層24に近づくにつれてサイザル麻繊維片の割合が大きくなる。
【0014】
繊維マット20は二枚一組で使用され、第1の繊維マット20の低密度層24に第2の繊維マット20の低密度層24が重ね合わされた状態で、両繊維マット20がニードルパンチ(図示されていない)によってパンチングされる。ここで、二枚重ね合わされた繊維マット20の目付けは約450g/m2〜600g/ m2の間に設定されている。
即ち、前記サイザル麻繊維片が本発明の太い繊維片に相当し、カーボン繊維片及び熱可塑性樹脂繊維片が本発明の細い繊維片に相当する。
【0015】
次に、繊維マット20の製造機30について説明した後、その繊維マット20を使用した繊維成形体10の製造方法、及び繊維成形体10を使用した自動車用天井材の製造方法について説明する。
繊維マット20の製造機30は、多数のサイザル麻繊維片、カーボン繊維片及び熱可塑性樹脂繊維片(以下、繊維片Fという)を外周面に保持して、それらの繊維片Fを回転させる回転ローラ32を備えている。回転ローラ32は、図1(A)に示すように、水平に保持されており、その外周面34には繊維片を保持するための複数の針体36が形成されている。
【0016】
また、回転ローラ32の上方には、その回転ローラ32の外周面34に沿って円周方向に複数の補助ローラ38が設置されている。補助ローラ38は、回転ローラ32の外周面34に保持された繊維片Fを押さえるローラであり、回転ローラ32と平行に配置されている。さらに、それらの補助ローラ38の外周面38rと回転ローラ32の外周面34との間隔が所定寸法に保持されている。補助ローラ38は、回転ローラ32に対して逆方向に回転するように構成されており、回転ローラ32の外周面34に保持された繊維片Fがそれらの補助ローラ38の下側を通過できるようになっている。
【0017】
回転ローラ32は、図1(A)において左回転することで繊維片Fに回転力(遠心力及び慣性力)を加える構成であり、その回転ローラ32の斜め右上に繊維片供給機35が設置されている。
繊維片供給機35は、予めほぼ均一に混ぜられたサイザル麻繊維片、カーボン繊維片及び熱可塑性樹脂繊維片を貯留する貯留槽35hと、貯留された繊維片Fを一定量づつ回転ローラ32の外周面34に供給する供給機構35fとから構成されている。
【0018】
また、回転ローラ32の下側には、ほぼ水平に繊維片受けコンベヤ31が設置されている。繊維片受けコンベヤ31は、回転ローラ32の運転と同期して運転されるコンベヤであり、回転ローラ32の外周面34から回転力で下方に飛ばされた繊維片Fを受けて、その繊維片Fを定速で前方(図1(A)において右方向)に搬送する。これによって、繊維片受けコンベヤ31上には、ほぼ一定の厚みで繊維片Fが積層されるようになる。なお、繊維片受けコンベヤ31の速度を調整することで、積層される繊維片Fの厚みを調整することが可能になる。
即ち、繊維片受けコンベヤ31の上面が本発明の繊維受け面に相当する。
【0019】
次に、製造機30の動作を説明しながら、繊維マット20の製造方法、及びその繊維マット20を使用した繊維成形体10の製造方法について説明する。
先ず、図1(A)に示すように、回転ローラ32が左回転方向に駆動され、補助ローラ38が右回転方向に駆動される。さらに、回転ローラ32等に合わせて繊維片受けコンベヤ31が駆動される。
回転ローラ32、補助ローラ38及び繊維片受けコンベヤ31がそれぞれ所定速度で運転している状態で、繊維片供給機35から回転ローラ32の外周面34に一定量づつ繊維片Fが供給される。
【0020】
回転ローラ32の外周面34に供給された繊維片Fは、複数の針体36によってその外周面34に保持された状態で回転ローラ32と共に回転する。前述のように、回転ローラ32の上方には、その回転ローラ32の外周面34に沿って円周方向に複数の補助ローラ38が設置されている。このため、回転ローラ32と共に回転する繊維片Fは補助ローラ38に押さえられ、遠心力が加わっても、上方に飛び出すことがない。回転ローラ32の外周面34に保持された繊維片Fが各々の補助ローラ38の下を通過して、その回転ローラ32の下側まで到達すると、繊維片Fは回転ローラ32の回転力(遠心力及び慣性力)で下方に飛ばされる。
【0021】
前述のように、繊維片Fは、太くて重いサイザル麻繊維片と、細くて軽いカーボン繊維片、ポリプロピレン繊維片とを混繊したものである。このため、繊維片Fが回転ローラ32の回転力で下方に飛ばされると、太くて重いサイザル麻繊維片が細くて軽いカーボン繊維片、ポリプロピレン繊維片よりも先に繊維片受けコンベヤ31に到達し易くなる。
【0022】
これによって、繊維片受けコンベヤ31上には、図1(B)に示すように、主として太くて重いサイザル繊維片によって粗く低密度層24が形成され、その上に中間層23を介し、主としてカーボン繊維片及びポリプロピレン繊維によって緻密な高密度層22が形成される。即ち、繊維片受けコンベヤ31上には、低密度層24を下にした状態で、所定厚み寸法の繊維マット20が形成される。ここで、繊維片受けコンベヤ31の速度は、繊維マット20の目付けが約225 g/m2〜300g/m2 の間となるように調整されている。
【0023】
次に、製造機30によって製造された二枚の繊維マット20、即ち、第1の繊維マット20と第2の繊維マット20とが、図2(A)(B)に示すように、低密度層24どうしで重ね合わされ、ニードルパンチ(図示されていない)によってパンチングされることで連結される。
【0024】
パンチングされた両繊維マット20は、ポリプロピレン繊維片が熱溶融するまで加熱された後、図3(A)(B)に示すように、表裏両面に接着フィルムを介して表皮材26が重ね合わされる。そして、この状態で、ホットプレス装置43によって加圧される。これによって、熱溶融した両繊維マット20のポリプロピレン樹脂が高密度層22及び低密度層24に含浸されてカーボン繊維片どうしを接着するとともに、カーボン繊維片とサイザル麻繊維片とを接着する。さらに、ポリプロピレン樹脂及び接着フィルムによって表皮材26が表裏の両繊維マット20の高密度層22に接着される。
【0025】
次に、図3(C)に示すように、ホットプレス装置43の圧力が解除され、表皮材26が接着された両繊維マット20が所定時間だけ静置される。そして、両繊維マット20の厚み寸法が主としてサイザル麻繊維片からなる低密度層24の復元力によって所定寸法まで回復した状態で繊維成形体10が完成する。
次に、図3(D)に示すように、繊維成形体10がコールドプレス装置45にセットされ、自動車用天井材の形状に成形される。
本実施形態に係る繊維成形体10(目付けが約450g/m2〜550g/m2)を使用した場合、自動車用天井材の板厚寸法は約3.5mm〜4.5mmとなり、同じ目付けで均一密度の繊維成形体(厚み寸法 約3mm)と比べて厚み寸法を大きくすることができる。
【0026】
上記したように、本実施形態に係る繊維成形体10の製造方法によると、低密度層24、中間層23及び高密度層22からなる繊維マット20を一台の製造機30によって一工程で形成し、第1の繊維マット20と第2の繊維マット20との低密度層24どうしを重ね合わせて繊維成形体10を製造する。このため、低密度層と、表側の高密度層と、裏側の高密度層とをそれぞれ別々の機械で製造する従来の方法と比べ、機械台数が少なくて済み、設備コストを抑えることができる。また、一工程で低密度層24、中間層23及び高密度層22からなる繊維マット20を形成できるため、繊維成形体10の製造効率も向上する。
【0027】
また、低密度層24の主材料にはサイザル麻繊維片が使用され、その繊維径が150μm以上に設定されているため、低密度層24によって繊維成形体10の厚みや剛性を確保できるようになる。また、サイザル麻繊維片の繊維径が160μm以下であるため、低密度層が比較的変形し易く、繊維成形体10の成形性の悪化を防止できる。なお、サイザル麻繊維片の繊維径は、80μm以上であれば、ある程度、繊維成形体10の厚みや剛性を確保できる。また、サイザル麻繊維片の繊維径が250μm以下であれば、ある程度、繊維成形体10の成形性の悪化を防止できる。
【0028】
また、本実施形態に係る繊維成形体10には、主として太い繊維片により形成された低密度層24があるため、同じ目付けで均一密度の繊維成形体と比べて厚み寸法を大きくすることができる。このため、コールドプレス装置45による成形の場合に型クリアランスを大きくとれ、自動車用天井材の板厚寸法を大きくできる。
また、同じ目付けの場合、自動車用天井材の板厚寸法を大きくできるため、剛性が高くなるとともに、吸音性能も向上する。
【0029】
図4(A)は、第1の繊維マット20と第2の繊維マット20とを連続的に形成するとともに、それらの繊維マット20を自動的に重ね合わせることが可能な繊維マット製造設備1を表す模式図である。
繊維マット製造設備1は、第1の繊維マット20を製造する第1製造機30aと第2の繊維マット20を製造する第2製造機30bとを備えている。ここで、第1製造機30a及び第2製造機30bの構造は、先に説明した製造機30とほぼ等しい構造のため、同じ部材については同一番号を付して説明を省略する。
【0030】
第1製造機30aの回転ローラ32は右回転することで繊維片に回転力を加える構成である。第1製造機30aの回転ローラ32の下方には、その回転ローラ32から下方に飛ばされた繊維片を受ける第1繊維受けコンベヤ31aがほぼ水平に設置されており、第1の繊維マット20を後方(図中左側)に搬送できるように構成されている。
第2製造機30bは、第1製造機30aの前方(図中右側)に設置されており、その第2製造機30bの回転ローラ32が左回転することで繊維片に回転力を加える構成である。
【0031】
第1繊維受けコンベヤ31a及び第2製造機30bの回転ローラ32の下方には、その第1繊維受けコンベヤ31aから落下する第1の繊維マット20と、第2製造機30bの回転ローラ32から落下する繊維片F2(第2の繊維マット20)とを受ける第2繊維受けコンベヤ31bがほぼ水平に設置されている。第2繊維受けコンベヤ31bは、第1の繊維マット20と第2の繊維マット20とを前方(図中右側)に搬送できるように構成されている。
【0032】
第1製造機30aの回転ローラ32によって下方に飛ばされた繊維片F1は、前述のように、第1繊維受けコンベヤ31aで受けられる。これによって、第1繊維受けコンベヤ31a上には低密度層24を下にした状態で第1の繊維マット20が積層される。第1の繊維マット20は、第1繊維受けコンベヤ31aによって後方(図4において左方向)に搬送された後、その第1繊維受けコンベヤ31aの搬送端で第2繊維受けコンベヤ31bに移される。ここで、第2繊維受けコンベヤ31bの搬送方向は第1繊維受けコンベヤ31aの搬送方向と逆であるため、第1の繊維マット20は第1繊維受けコンベヤ31aから第2繊維受けコンベヤ31bに移される際に裏表が逆転する。
【0033】
即ち、第2繊維受けコンベヤ31b上には、図4(B)に示すように、高密度層22を下にした状態で第1の繊維マット20が載置される。この状態で、第1の繊維マット20は、第2繊維受けコンベヤ31bによって前方(図4において右方向)に搬送される。そして、第1の繊維マット20が第2製造機30bの下を定速で通過することにより、その第1の繊維マット20の上には、その第2製造機30bの回転ローラ32によって下方に飛ばされた繊維片F2がほぼ均等な厚みで積層される。即ち、第1の繊維マット20の低密度層24の上に、図4(C)に示すように、第2の繊維マット20の低密度層24、中間層23及び高密度層24が積層されるようになる。
次に、低密度層24どうしが重ね合わされた第1の繊維マット20と第2の繊維マット20とがニードルパンチ(図示されていない)によってパンチングされることで連結される。なお、パンチング後、繊維成形体10が製造されるまでの工程は、前述の通りである。
【0034】
このように、第1の繊維マット20と第2の繊維マット20とを連続的に製造しながら、両繊維マット20を自動的に重ね合わせることができるため、繊維成形体10の製造効率がさらに向上する。
【0035】
ここで、本実施形態では、低密度層24を構成する天然繊維にサイザル麻繊維を使用する例を示したが、サイザル麻繊維の代わりにケナフやしゅろ繊維等を使用することも可能である。
また、高密度層24を構成する無機繊維にカーボン繊維を使用する例を示したが、カーボン繊維の代わりにガラス繊維や金属繊維等を使用することも可能である。
また、熱可塑性樹脂繊維にポリプロピレン樹脂繊維を使用する例を示したが、ポリプロピレン樹脂繊維の代わりにポリエチレン、ポリブデン等のオレフィン樹脂を使用することも可能である。
【0036】
ここで、実施形態に記載された発明のうちで特許請求の範囲には記載されていない発明を以下に列記する。
(1) 請求項1に記載の繊維成形体の製造方法であって、
細い繊維片は、無機繊維片と、繊維片を互いに接着するために使用される熱可塑性樹脂繊維片とから構成されていることを特徴とする繊維成形体の製造方法。
(2)(1)において、熱可塑性樹脂繊維片には、直径約15μm〜17μmのポリプロピレン繊維が使用されることを特徴とする繊維成形体の製造方法。
(3)(1)において、無機繊維片には、直径約10μm以下のカーボン繊維が使用されることを特徴とする繊維成形体の製造方法。
【0037】
【発明の効果】
本発明によると、設備コストを抑えることができるとともに、繊維成形体の製造効率も向上する。
【図面の簡単な説明】
【図1】本発明の実施形態1に係る繊維成形体の素材である繊維マットの製造方法を表す模式側面図(A図)及び繊維マットの模式縦断面図(B図)である。
【図2】第1の繊維マットと第2の繊維マットとを重ね合わせて繊維成形体を製造する様子を表す模式縦断面図(A図)(B図)である。
【図3】繊維マットから繊維成形体を製造する方法を表す模式図(A図〜C図)、及び繊維成形体から自動車用天井材を製造する方法を表す模式図(D図)である。
【図4】繊維マットの別の製造方法を表す模式側面図(A図)、繊維マットの模式縦断面図(B図、C図)である。
【図5】従来の繊維成形体を表す模式縦断面図である。
【符号の説明】
10 繊維成形体
20 繊維マット
22 高密度層
23 中間層
24 低密度層
31 繊維片受けコンベヤ
32 回転ローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber molded body having a structure in which a low-density layer roughly formed mainly by thick fibers is sandwiched by high-density layers mainly formed densely by thin fibers, and a method for producing the same.
[0002]
[Prior art]
This type of fiber molded body and its manufacturing method are described in Patent Document 1.
As shown in FIG. 5, the fiber molded body A includes a low-density core layer 51 formed roughly by thick inorganic fibers (17 μm), and mainly thin inorganic fibers (10 μm) on both surfaces of the core layer 51. And densely formed high density surface layers 53 and 55.
To manufacture the fiber molded body A, first, the core layer 51, the upper surface layer 53, and the lower surface layer 55 are manufactured by separate machines, respectively, and then overlapped and punched by a needle punch. A fiber mat is manufactured. Next, a resin film is laminated on both sides of the fiber mat, heated, and pressurized by a hot press. As a result, the fibers are bonded by the molten resin, and the fiber molded body A is obtained.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 6-200460
[Problems to be solved by the invention]
However, in the manufacturing method of the above-described fiber molded body A, the layers 51, 53, and 55 are manufactured by separate machines, so that the number of machines increases and the equipment cost increases. Moreover, since it is necessary to connect each layer 51, 53, 55 in an overlapping manner, the production efficiency is not good.
[0005]
The present invention has been made to solve the above-mentioned problems, and the problem to be solved by the present invention is to efficiently produce a fiber molded body with reduced equipment costs.
[0006]
[Means for Solving the Problems]
The above-described problems are solved by the inventions of the claims.
The invention of claim 1 is a method for producing a fiber molded body having a structure in which a low-density layer roughly formed mainly by thick fibers is sandwiched by high-density layers mainly formed densely by thin fibers,
A blending process in which a large number of thick fiber pieces are mixed with a large number of thin fiber pieces whose weight per fiber is set to be smaller than that of the thick fiber pieces, and the mixed thick fiber pieces and thin fiber pieces A process of holding the outer peripheral surface of the rotating roller and rotating the rotating roller together with the rotating roller, and using the rotational force of the rotating roller, a thick fiber piece and a thin fiber piece are received from the outer peripheral surface of the rotating roller by a flat fiber receiver. A step of forming a fiber mat comprising a low-density layer roughly formed by the thick fiber pieces and a high-density layer mainly formed by the fine fiber pieces on the fiber receiving surface. In a state where the low-density layers of the first fiber mat and the second fiber mat obtained by the step of forming the fiber mat are overlapped with each other, the fiber mats are connected to each other, And a step of bonding the fiber pieces together, said as a thick fiber pieces, natural fiber pieces having a fiber diameter of 80 [mu] m to 250 [mu] m is used, the as a narrow fiber pieces having a fiber diameter of about 15 [mu] m to 17 [mu] m These thermoplastic resin fiber pieces are used .
[0007]
According to the present invention, since the thick fiber pieces and the thin fiber pieces are blown from the outer peripheral surface of the rotary roller to the flat fiber receiving surface using the rotational force of the rotary roller, the thicker fiber pieces are the thin fiber pieces. It becomes easy to reach the fiber receiving surface earlier. For this reason, on the flat fiber receiving surface, a coarse and low-density layer is formed mainly by thick fiber pieces, and a high-density layer is formed densely mainly by the thin fiber pieces on the intermediate layer. That is, a fiber mat having a low density layer and a high density layer is formed in one step on a flat fiber receiving surface.
Then, the low-density layers of the first fiber mat and the second fiber mat obtained by the step of forming the fiber mat are overlapped and connected, and each of the fiber pieces is bonded to each other. A fiber molded body having a configuration in which the low density layer is sandwiched between the high density layers is formed.
As described above, since the fiber mat including the low density layer and the high density layer can be formed in one step, the low density layer, the front side high density layer, and the back side high density layer are separately provided as in the past. The number of machines can be reduced and the equipment cost can be reduced as compared with the method of manufacturing with this machine. Moreover, since the fiber mat provided with the low density layer and the high density layer can be formed in one step, the production efficiency of the fiber molded body is also improved.
[0008]
The invention of claim 2 is the step of installing the first fiber mat on a flat fiber receiving surface so that the low-density layer is on top, and is thick on the first fiber mat from the outer peripheral surface of the rotating roller. A step of skipping fiber pieces and thin fiber pieces and laminating a second fiber mat including a low density layer and a high density layer.
For this reason, when the second fiber mat is manufactured, the second fiber mat can be laminated on the first fiber mat, and the manufacturing efficiency of the fiber molded body is further improved.
[0009]
According to a third aspect of the present invention, a low density layer roughly formed by thick fibers is sandwiched between high density layers mainly formed by fine fibers , and the low density layer and the high density layer during is a fiber molded body which is the intermediate layer, thick as a fiber, the fiber diameter is used natural fibers 80 μ m ~ 250 μ m, the as fine fibers, the fiber diameter of about 15 [mu] m to 17 [mu] m In the intermediate layer, the proportion of the thermoplastic resin fiber increases as it approaches the high-density layer, and the proportion of the natural fiber increases as it approaches the low-density layer. It is characterized by.
Thus, since the thick fiber has a fiber diameter of 80 μm or more, the thickness and rigidity of the fiber molded body can be secured by the low density layer. Further, since the fiber diameter of the thick fibers is 250 μm or less, the low density layer is not easily deformed, and deterioration of the moldability of the fiber molded body can be prevented.
Here, it is preferable to use a sisal fiber as a thick fiber as shown in claim 4.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Hereinafter, based on FIGS. 1-4, the fiber molded object which concerns on Embodiment 1 of this invention, and its manufacturing method are demonstrated. The fiber molded body according to the present embodiment is a plate-like body used as a base material for automobile ceiling materials, and FIGS. 1 and 2 show a method of manufacturing a fiber mat that is a material of the fiber molded body. . Further, FIG. 3 shows a method for manufacturing an automotive ceiling material using a fiber molded body.
[0011]
The fiber molded body 10 is manufactured by using two fiber mats 20 as shown in FIG. The fiber mat 20 is composed of about 25% by mass of natural fiber pieces, about 25% by mass of inorganic fiber pieces, and about 50% by mass of thermoplastic resin fiber pieces. As the natural fiber piece, for example, a sisal fiber piece is used. The sisal fiber piece has a thickness of about 150 to 160 μm and a length of about 150 mm. Moreover, the average weight per sisal fiber piece is about 0.082 g.
[0012]
As the inorganic fiber piece, for example, a carbon fiber piece is used. The carbon fiber piece has a thickness (diameter) of about 7 μm and a length of about 100 mm. Moreover, the average weight per one piece of carbon fiber is about 0.0001 g.
The thermoplastic resin fiber piece is a fiber used for bonding an inorganic fiber piece and an inorganic fiber piece, and an inorganic fiber piece and a natural fiber piece to each other. For example, a polypropylene fiber piece is preferably used. The polypropylene fiber piece has a thickness (diameter) of about 15 to 17 μm and a length of about 64 mm. The average weight per piece of polypropylene fiber piece is about 0.00002 g.
[0013]
As shown in FIGS. 1 and 2, the surface side of the fiber mat 20 is composed of a high-density layer 22 and a dense layer mainly formed of thin and light carbon fiber pieces and thermoplastic resin fiber pieces. Moreover, the back surface side of the fiber mat 20 is a low-density layer 24 which is roughly formed mainly by thick and heavy sisal fiber pieces. Further, there is no boundary between the high-density layer 22 and the low-density layer 24, and an intermediate layer 23 is formed between the layers 22 and 24. In the intermediate layer 23, the ratio of the carbon fiber pieces and the thermoplastic resin fiber pieces generally increases as the high-density layer 22 is approached, and the ratio of the sisal fiber pieces increases as the low-density layer 24 is approached.
[0014]
The fiber mats 20 are used in pairs, and the two fiber mats 20 are needle punched (with the low density layer 24 of the second fiber mat 20 superimposed on the low density layer 24 of the first fiber mat 20). (Not shown). Here, the basis weight of the two superposed fiber mat 20 is set between about 450g / m 2 ~600g / m 2 .
That is, the sisal fiber piece corresponds to the thick fiber piece of the present invention, and the carbon fiber piece and the thermoplastic resin fiber piece correspond to the thin fiber piece of the present invention.
[0015]
Next, after describing the fiber mat 20 manufacturing machine 30, a method for manufacturing the fiber molded body 10 using the fiber mat 20 and a method for manufacturing an automotive ceiling material using the fiber molded body 10 will be described.
The machine 30 for manufacturing the fiber mat 20 rotates a number of sisal fiber pieces, carbon fiber pieces, and thermoplastic resin fiber pieces (hereinafter referred to as fiber pieces F) on the outer peripheral surface and rotates the fiber pieces F. A roller 32 is provided. As shown in FIG. 1A, the rotating roller 32 is held horizontally, and a plurality of needle bodies 36 for holding fiber pieces are formed on the outer peripheral surface 34 thereof.
[0016]
A plurality of auxiliary rollers 38 are installed in the circumferential direction along the outer peripheral surface 34 of the rotating roller 32 above the rotating roller 32. The auxiliary roller 38 is a roller that presses the fiber piece F held on the outer peripheral surface 34 of the rotating roller 32, and is arranged in parallel with the rotating roller 32. Further, the distance between the outer peripheral surface 38r of the auxiliary roller 38 and the outer peripheral surface 34 of the rotating roller 32 is maintained at a predetermined dimension. The auxiliary roller 38 is configured to rotate in the reverse direction with respect to the rotating roller 32, so that the fiber pieces F held on the outer peripheral surface 34 of the rotating roller 32 can pass below the auxiliary roller 38. It has become.
[0017]
The rotating roller 32 is configured to apply a rotating force (centrifugal force and inertial force) to the fiber piece F by rotating counterclockwise in FIG. 1 (A), and a fiber piece feeder 35 is installed diagonally to the upper right of the rotating roller 32. Has been.
The fiber piece feeder 35 includes a storage tank 35h for storing sisal fiber pieces, carbon fiber pieces, and thermoplastic resin fiber pieces, which are mixed almost uniformly in advance, and a rotating roller 32 for storing the stored fiber pieces F by a certain amount. A supply mechanism 35f that supplies the outer peripheral surface 34 is configured.
[0018]
A fiber piece receiving conveyor 31 is installed almost horizontally below the rotating roller 32. The fiber piece receiving conveyor 31 is a conveyor that is operated in synchronism with the operation of the rotating roller 32. The fiber piece receiving conveyor 31 receives the fiber piece F blown downward by the rotational force from the outer peripheral surface 34 of the rotating roller 32, and the fiber piece F Is conveyed forward (rightward in FIG. 1A) at a constant speed. Accordingly, the fiber pieces F are stacked on the fiber piece receiving conveyor 31 with a substantially constant thickness. In addition, it becomes possible to adjust the thickness of the fiber piece F laminated | stacked by adjusting the speed of the fiber piece receiving conveyor 31. FIG.
That is, the upper surface of the fiber piece receiving conveyor 31 corresponds to the fiber receiving surface of the present invention.
[0019]
Next, a method for manufacturing the fiber mat 20 and a method for manufacturing the fiber molded body 10 using the fiber mat 20 will be described while explaining the operation of the manufacturing machine 30.
First, as shown in FIG. 1A, the rotation roller 32 is driven in the left rotation direction, and the auxiliary roller 38 is driven in the right rotation direction. Further, the fiber piece receiving conveyor 31 is driven in accordance with the rotating roller 32 or the like.
While the rotary roller 32, the auxiliary roller 38, and the fiber piece receiving conveyor 31 are operating at predetermined speeds, the fiber pieces F are supplied to the outer peripheral surface 34 of the rotary roller 32 by a certain amount from the fiber piece feeder 35.
[0020]
The fiber piece F supplied to the outer peripheral surface 34 of the rotating roller 32 rotates together with the rotating roller 32 while being held on the outer peripheral surface 34 by the plurality of needle bodies 36. As described above, a plurality of auxiliary rollers 38 are installed above the rotating roller 32 in the circumferential direction along the outer peripheral surface 34 of the rotating roller 32. For this reason, the fiber piece F that rotates together with the rotating roller 32 is pressed by the auxiliary roller 38 and does not jump upward even if a centrifugal force is applied. When the fiber piece F held on the outer peripheral surface 34 of the rotating roller 32 passes under each auxiliary roller 38 and reaches the lower side of the rotating roller 32, the fiber piece F is rotated by the rotational force (centrifugal) of the rotating roller 32. Force and inertial force).
[0021]
As described above, the fiber piece F is a mixture of a thick and heavy sisal fiber piece, a thin and light carbon fiber piece, and a polypropylene fiber piece. For this reason, when the fiber piece F is blown downward by the rotational force of the rotating roller 32, the thick and heavy sisal fiber piece reaches the fiber piece receiving conveyor 31 before the thin and light carbon fiber piece and polypropylene fiber piece. It becomes easy.
[0022]
As a result, as shown in FIG. 1B, a coarse and low-density layer 24 is mainly formed by thick and heavy sisal fiber pieces on the fiber piece receiving conveyor 31, and the carbon layer is mainly carbonized via the intermediate layer 23 thereon. A dense high-density layer 22 is formed by the fiber pieces and the polypropylene fibers. That is, the fiber mat 20 having a predetermined thickness is formed on the fiber piece receiving conveyor 31 with the low density layer 24 facing down. Here, the speed of the fiber pieces receiving conveyor 31 is adjusted so that the basis weight of the fiber mat 20 is between about 225 g / m 2 ~300g / m 2.
[0023]
Next, the two fiber mats 20 manufactured by the manufacturing machine 30, that is, the first fiber mat 20 and the second fiber mat 20 are low in density as shown in FIGS. The layers 24 are overlapped and connected by being punched by a needle punch (not shown).
[0024]
Both the punched fiber mats 20 are heated until the polypropylene fiber pieces are melted by heat, and then, as shown in FIGS. 3 (A) and 3 (B), the skin material 26 is superimposed on both the front and back surfaces via an adhesive film. . In this state, pressure is applied by the hot press device 43. Accordingly, the high-density layer 22 and the low-density layer 24 are impregnated with the heat-melted polypropylene resin of both fiber mats 20 to bond the carbon fiber pieces to each other, and to bond the carbon fiber pieces and the sisal fiber pieces. Further, the skin material 26 is bonded to the high-density layer 22 of both the front and back fiber mats 20 by a polypropylene resin and an adhesive film.
[0025]
Next, as shown in FIG. 3C, the pressure of the hot press device 43 is released, and both fiber mats 20 to which the skin material 26 is bonded are allowed to stand for a predetermined time. And the fiber molded object 10 is completed in the state which the thickness dimension of both the fiber mats 20 recovered | restored to the predetermined dimension by the restoring force of the low-density layer 24 which consists mainly of sisal fiber pieces.
Next, as shown in FIG. 3 (D), the fiber molded body 10 is set in a cold press device 45 and molded into the shape of an automotive ceiling material.
When the fiber molded body 10 according to the present embodiment (weight is about 450 g / m 2 to 550 g / m 2 ) is used, the thickness of the ceiling material for automobiles is about 3.5 mm to 4.5 mm, and uniform density with the same weight. The thickness dimension can be increased compared to the fiber molded product (thickness dimension: about 3 mm).
[0026]
As described above, according to the method for manufacturing the fiber molded body 10 according to the present embodiment, the fiber mat 20 including the low density layer 24, the intermediate layer 23, and the high density layer 22 is formed in one process by the single manufacturing machine 30. Then, the low-density layers 24 of the first fiber mat 20 and the second fiber mat 20 are overlapped to manufacture the fiber molded body 10. For this reason, compared with the conventional method which manufactures a low-density layer, a front-side high-density layer, and a back-side high-density layer with separate machines, respectively, the number of machines can be reduced, and the equipment cost can be suppressed. Moreover, since the fiber mat 20 which consists of the low density layer 24, the intermediate | middle layer 23, and the high density layer 22 can be formed in 1 process, the manufacturing efficiency of the fiber molded object 10 also improves.
[0027]
Further, sisal fiber pieces are used as the main material of the low density layer 24, and the fiber diameter is set to 150 μm or more, so that the thickness and rigidity of the fiber molded body 10 can be secured by the low density layer 24. Become. Moreover, since the fiber diameter of the sisal fiber piece is 160 μm or less, the low density layer is relatively easily deformed, and deterioration of the moldability of the fiber molded body 10 can be prevented. In addition, if the fiber diameter of the sisal fiber piece is 80 μm or more, the thickness and rigidity of the fiber molded body 10 can be secured to some extent. Moreover, if the fiber diameter of a sisal fiber piece is 250 micrometers or less, the deterioration of the moldability of the fiber molded object 10 can be prevented to some extent.
[0028]
In addition, since the fiber molded body 10 according to the present embodiment has the low density layer 24 mainly formed of thick fiber pieces, the thickness can be increased as compared with the fiber molded body of uniform density with the same basis weight. . For this reason, in the case of molding by the cold press device 45, the mold clearance can be increased, and the thickness of the automobile ceiling material can be increased.
Further, in the case of the same basis weight, the plate thickness dimension of the automotive ceiling material can be increased, so that the rigidity is increased and the sound absorbing performance is also improved.
[0029]
FIG. 4A shows a fiber mat manufacturing facility 1 that can continuously form a first fiber mat 20 and a second fiber mat 20 and can automatically superimpose those fiber mats 20. It is a schematic diagram to represent.
The fiber mat manufacturing facility 1 includes a first manufacturing machine 30 a that manufactures the first fiber mat 20 and a second manufacturing machine 30 b that manufactures the second fiber mat 20. Here, since the structures of the first manufacturing machine 30a and the second manufacturing machine 30b are substantially the same as the manufacturing machine 30 described above, the same members are denoted by the same reference numerals and description thereof is omitted.
[0030]
The rotating roller 32 of the first manufacturing machine 30a is configured to apply a rotational force to the fiber piece by rotating to the right. Below the rotating roller 32 of the first manufacturing machine 30a, a first fiber receiving conveyor 31a that receives the fiber pieces blown downward from the rotating roller 32 is installed substantially horizontally. It is configured so that it can be conveyed backward (left side in the figure).
The second manufacturing machine 30b is installed in front of the first manufacturing machine 30a (right side in the drawing), and the rotation roller 32 of the second manufacturing machine 30b rotates counterclockwise to apply a rotational force to the fiber pieces. is there.
[0031]
The first fiber mat 20 falling from the first fiber receiving conveyor 31a and the rotating roller 32 of the second manufacturing machine 30b fall below the rotating roller 32 of the first fiber receiving conveyor 31a and the second manufacturing machine 30b. The second fiber receiving conveyor 31b that receives the fiber piece F2 (second fiber mat 20) to be performed is installed substantially horizontally. The second fiber receiving conveyor 31b is configured to be able to convey the first fiber mat 20 and the second fiber mat 20 forward (right side in the figure).
[0032]
As described above, the fiber piece F1 that has been blown downward by the rotating roller 32 of the first manufacturing machine 30a is received by the first fiber receiving conveyor 31a. As a result, the first fiber mat 20 is laminated on the first fiber receiving conveyor 31a with the low density layer 24 facing down. After the first fiber mat 20 is conveyed rearward (leftward in FIG. 4) by the first fiber receiving conveyor 31a, the first fiber mat 20 is transferred to the second fiber receiving conveyor 31b at the conveying end of the first fiber receiving conveyor 31a. Here, since the conveying direction of the second fiber receiving conveyor 31b is opposite to the conveying direction of the first fiber receiving conveyor 31a, the first fiber mat 20 is moved from the first fiber receiving conveyor 31a to the second fiber receiving conveyor 31b. The front and back are reversed.
[0033]
That is, as shown in FIG. 4B, the first fiber mat 20 is placed on the second fiber receiving conveyor 31b with the high-density layer 22 facing down. In this state, the first fiber mat 20 is conveyed forward (rightward in FIG. 4) by the second fiber receiving conveyor 31b. Then, when the first fiber mat 20 passes under the second manufacturing machine 30b at a constant speed, the first fiber mat 20 is lowered on the first fiber mat 20 by the rotating roller 32 of the second manufacturing machine 30b. The skipped fiber pieces F2 are stacked with a substantially uniform thickness. That is, on the low density layer 24 of the first fiber mat 20, as shown in FIG. 4C, the low density layer 24, the intermediate layer 23, and the high density layer 24 of the second fiber mat 20 are laminated. Become so.
Next, the first fiber mat 20 and the second fiber mat 20 on which the low density layers 24 are overlapped are connected by being punched by a needle punch (not shown). In addition, the process until the fiber molded body 10 is manufactured after punching is as described above.
[0034]
As described above, since the first fiber mat 20 and the second fiber mat 20 can be continuously manufactured while the two fiber mats 20 can be automatically overlapped, the manufacturing efficiency of the fiber molded body 10 is further increased. improves.
[0035]
Here, in this embodiment, although the example which uses a sisal fiber for the natural fiber which comprises the low density layer 24 was shown, it is also possible to use a kenaf, a swarf fiber, etc. instead of a sisal fiber. .
Moreover, although the example which uses a carbon fiber for the inorganic fiber which comprises the high-density layer 24 was shown, it is also possible to use a glass fiber, a metal fiber, etc. instead of a carbon fiber.
Moreover, although the example which uses a polypropylene resin fiber for a thermoplastic resin fiber was shown, it is also possible to use olefin resins, such as polyethylene and a polybudene, instead of a polypropylene resin fiber.
[0036]
Here, among the inventions described in the embodiments, the inventions not described in the claims are listed below.
(1) A method for producing a fiber molded body according to claim 1,
The thin fiber piece is composed of an inorganic fiber piece and a thermoplastic resin fiber piece used for bonding the fiber pieces to each other.
(2) The method for producing a fiber molded body according to (1), wherein a polypropylene fiber having a diameter of about 15 μm to 17 μm is used for the thermoplastic resin fiber piece.
(3) The method for producing a fiber molded body according to (1), wherein carbon fibers having a diameter of about 10 μm or less are used for the inorganic fiber piece.
[0037]
【The invention's effect】
According to the present invention, the equipment cost can be reduced, and the production efficiency of the fiber molded body is improved.
[Brief description of the drawings]
FIG. 1 is a schematic side view (FIG. A) showing a method for producing a fiber mat that is a material of a fiber molded body according to Embodiment 1 of the present invention, and a schematic longitudinal sectional view (FIG. B) of the fiber mat.
FIGS. 2A and 2B are schematic longitudinal sectional views (FIG. 2A) and FIG. 2B showing how a fiber molded body is manufactured by superimposing a first fiber mat and a second fiber mat.
FIG. 3 is a schematic diagram (A to C) illustrating a method for manufacturing a fiber molded body from a fiber mat, and a schematic diagram (D diagram) illustrating a method for manufacturing a ceiling material for an automobile from the fiber molded body.
FIG. 4 is a schematic side view (A diagram) showing another manufacturing method of the fiber mat, and a schematic longitudinal sectional view (B diagram, C diagram) of the fiber mat.
FIG. 5 is a schematic longitudinal sectional view showing a conventional fiber molded body.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Fiber molded body 20 Fiber mat 22 High density layer 23 Intermediate layer 24 Low density layer 31 Fiber piece receiving conveyor 32 Rotating roller

Claims (4)

主に太い繊維によって粗く形成された低密度層が主に細い繊維によって緻密に形成された高密度層によって挟まれる構成の繊維成形体の製造方法であって、
多数の太い繊維片と、1本当たりの重量がその太い繊維片より小さく設定されている多数の細い繊維片とを混ぜ合わせる混繊工程と、
混繊された太い繊維片と細い繊維片とを回転ローラの外周面に保持して、その回転ローラと共に回転させる工程と、
前記回転ローラの回転力を利用して、太い繊維片と細い繊維片とをその回転ローラの外周面から平らな繊維受け面まで飛ばし、その繊維受け面上に主として前記太い繊維片によって粗く形成された低密度層と、主として前記細い繊維片によって緻密に形成された高密度層とを備える繊維マットを形成する工程と、
前記繊維マットを形成する工程によって得られた第1の繊維マットと第2の繊維マットとの低密度層どうしを重ね合わせた状態で、それらの繊維マットを互いに連結するとともに、各々の前記繊維片を互いに接着する工程とを有し、
前記太い繊維片として、繊維径が 80 μm〜 250 μmの天然繊維片が使用され、前記細い繊維片として、繊維径が約 15 μm〜 17 μmの熱可塑性樹脂繊維片が使用されることを特徴とする繊維成形体の製造方法。
A method for producing a fiber molded body having a structure in which a low-density layer roughly formed mainly by thick fibers is sandwiched between high-density layers mainly formed densely by thin fibers,
A fiber blending process in which a large number of thick fiber pieces are mixed with a large number of thin fiber pieces whose weight is set to be smaller than that of the thick fiber pieces;
Holding the mixed thick fiber pieces and thin fiber pieces on the outer peripheral surface of the rotating roller, and rotating with the rotating roller;
By using the rotational force of the rotating roller, thick fiber pieces and thin fiber pieces are blown from the outer peripheral surface of the rotating roller to a flat fiber receiving surface, and are formed roughly on the fiber receiving surface mainly by the thick fiber pieces. Forming a fiber mat comprising a low-density layer and a high-density layer formed mainly by the fine fiber pieces;
In a state where the low-density layers of the first fiber mat and the second fiber mat obtained by the step of forming the fiber mat are overlapped, the fiber mats are connected to each other, and each of the fiber pieces Adhering to each other , and
A natural fiber piece having a fiber diameter of 80 μm to 250 μm is used as the thick fiber piece, and a thermoplastic resin fiber piece having a fiber diameter of about 15 μm to 17 μm is used as the thin fiber piece. A method for producing a fiber molded body.
請求項1に記載の繊維成形体の製造方法であって、
低密度層が上になるように第1の繊維マットを平らな繊維受け面上に設置する工程と、
その第1の繊維マットの上に回転ローラの外周面から太い繊維片と細い繊維片とを飛ばし、低密度層と高密度層とを備える第2の繊維マットを積層する工程と、
を有することを特徴とする繊維成形体の製造方法。
It is a manufacturing method of the fiber fabrication object according to claim 1,
Placing the first fiber mat on a flat fiber receiving surface with the low density layer on top;
A step of flying a thick fiber piece and a thin fiber piece from the outer peripheral surface of the rotating roller on the first fiber mat, and laminating a second fiber mat comprising a low density layer and a high density layer;
The manufacturing method of the fiber molded object characterized by having.
主に太い繊維によって粗く形成された低密度層が主に細い繊維によって緻密に形成された高密度層によって挟まれる構成で、前記低密度層と前記高密度層との間が中間層となっている繊維成形体であって、
太い繊維として、繊維径が 80 μ m 250 μ m の天然繊維が使用され、前記細い繊維として、繊維径が約 15 μm〜 17 μmの熱可塑性樹脂繊維が使用されており、
前記中間層では、前記高密度層に近づくにつれて前記熱可塑性樹脂繊維の割合が大きくなり、前記低密度層に近づくにつれて前記天然繊維の割合が大きくなることを特徴とする繊維成形体。
A structure in which a low-density layer roughly formed mainly by thick fibers is sandwiched by high-density layers mainly formed densely by thin fibers, and an intermediate layer is formed between the low-density layer and the high-density layer. A fiber molded body comprising:
As thick fibers, fiber diameter natural fibers 80 μ m ~ 250 μ m is used, the as thin fibers, thermoplastic resin fibers having a fiber diameter of about 15 [mu] m to 17 [mu] m are used,
In the intermediate layer, the proportion of the thermoplastic resin fibers increases as it approaches the high-density layer, and the proportion of the natural fibers increases as it approaches the low-density layer .
請求項3に記載の繊維成形体であって、
太い繊維には、サイザル麻繊維が使用されていることを特徴とする繊維成形体。
The fiber molded body according to claim 3,
A fiber molded body characterized in that sisal fiber is used for thick fibers.
JP2003142008A 2003-05-20 2003-05-20 Fiber molded body and method for producing the same Expired - Fee Related JP4194880B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003142008A JP4194880B2 (en) 2003-05-20 2003-05-20 Fiber molded body and method for producing the same
US10/848,819 US20050020164A1 (en) 2003-05-20 2004-05-19 Fibrous formed products and methods for manufacturing such fibrous formed products
CNB2004100456222A CN100447325C (en) 2003-05-20 2004-05-20 Fiber shaped body and method for making said fiber shaped body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142008A JP4194880B2 (en) 2003-05-20 2003-05-20 Fiber molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004346436A JP2004346436A (en) 2004-12-09
JP4194880B2 true JP4194880B2 (en) 2008-12-10

Family

ID=33530212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142008A Expired - Fee Related JP4194880B2 (en) 2003-05-20 2003-05-20 Fiber molded body and method for producing the same

Country Status (3)

Country Link
US (1) US20050020164A1 (en)
JP (1) JP4194880B2 (en)
CN (1) CN100447325C (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521386B2 (en) * 2004-02-07 2009-04-21 Milliken & Company Moldable heat shield
MXPA06012600A (en) * 2004-05-07 2007-01-31 Milliken & Co Heat and flame shield.
US7696112B2 (en) 2005-05-17 2010-04-13 Milliken & Company Non-woven material with barrier skin
US7651964B2 (en) 2005-08-17 2010-01-26 Milliken & Company Fiber-containing composite and method for making the same
US7605097B2 (en) * 2006-05-26 2009-10-20 Milliken & Company Fiber-containing composite and method for making the same
JP4984672B2 (en) * 2006-06-20 2012-07-25 トヨタ紡織株式会社 Fiber molded body and method for producing the same
JP4939192B2 (en) * 2006-12-05 2012-05-23 ユニ・チャーム株式会社 Nonwoven fabric, method for producing nonwoven fabric, and absorbent article
US7825050B2 (en) 2006-12-22 2010-11-02 Milliken & Company VOC-absorbing nonwoven composites
CZ200727A3 (en) * 2007-01-11 2008-07-23 Elmarco, S. R. O. Process for producing bonded sound-absorbing non-woven fabric
CN101238946B (en) * 2007-02-05 2012-12-26 株式会社进富 Manufacturing method of base material for ground cushion and base material for ground cushion
US20100112881A1 (en) * 2008-11-03 2010-05-06 Pradip Bahukudumbi Composite material and method for manufacturing composite material
JP2011089420A (en) * 2009-10-20 2011-05-06 Nakagawa Sangyo Kk Heat insulating body for vehicle exhaust pipe, and method for manufacturing the same
DE102010034777A1 (en) * 2010-08-18 2012-02-23 Hubert Hergeth Nonwoven laying machine and method for laying a nonwoven
BR112013019395B1 (en) * 2011-02-01 2021-04-06 Teijin Limited RANDOMIC MAT, METHOD TO PRODUCE RANDOMIC MAT AND COMPOSITE MATERIAL REINFORCED WITH CARBON FIBER
KR101150820B1 (en) * 2011-09-28 2012-07-03 주식회사에너씨스 Functional non-woven fabric for various purpose and method for producing thereof
EP2695982A1 (en) * 2012-08-06 2014-02-12 Oskar Dilo Maschinenfabrik KG Device and method for equalizing or providing a profile to a mat of flocked fibers
JP6413522B2 (en) * 2014-09-09 2018-10-31 セイコーエプソン株式会社 Sheet manufacturing apparatus, sheet manufacturing method, sheet manufactured by these, composite used for these, and container for the same
JP6091692B1 (en) * 2016-09-20 2017-03-08 サン−ゴバン イゾベール Inorganic fiber laminate, vacuum heat insulating material using the same, and method for producing the same
FR3120372B1 (en) * 2021-03-02 2024-06-21 Saint Gobain Isover MINERAL WOOL MANUFACTURING FACILITY

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018646A (en) * 1973-05-09 1977-04-19 Johnson & Johnson Nonwoven fabric
US5194462A (en) * 1989-04-27 1993-03-16 Nkk Corporation Fiber reinforced plastic sheet and producing the same
JPH0671767B2 (en) * 1992-03-27 1994-09-14 工業技術院長 Method for manufacturing material for graded composite material
JP3128368B2 (en) * 1992-12-28 2001-01-29 積水化学工業株式会社 Fiber composite
JP4132304B2 (en) * 1998-11-05 2008-08-13 トヨタ紡織株式会社 Fiber laminate board and manufacturing method thereof
CN1119237C (en) * 1998-12-28 2003-08-27 帝人株式会社 Method and apparatus for moulding fibre mixture
JP4376439B2 (en) * 2000-09-27 2009-12-02 トヨタ紡織株式会社 FIBER LAYER, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE

Also Published As

Publication number Publication date
CN1550601A (en) 2004-12-01
JP2004346436A (en) 2004-12-09
US20050020164A1 (en) 2005-01-27
CN100447325C (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP4194880B2 (en) Fiber molded body and method for producing the same
US6287678B1 (en) Composite structural panel with thermoplastic foam core and natural fibers, and method and apparatus for producing the same
JP4154638B2 (en) Manufacturing method for interior materials
WO2013089235A1 (en) Fibre-reinforced resin moulding, and vehicle interior material using same
JP6132186B2 (en) Manufacturing method and apparatus for preform manufacturing base material, and manufacturing method of preform and fiber reinforced plastic
JP2002234094A (en) Built-in thermoplastic felt laminated article for automobile
US11633939B2 (en) Method for producing a planar composite component and composite component produced thereby
KR20080027656A (en) Internal panel for car and the manufacturing method of the same
JP2023002513A5 (en) Method for manufacturing plate-like composite member and composite member manufactured by the method
US7772143B2 (en) Multilayer, composite, fleece material and a method for manufacturing a multilayer, composite, fleece material
JPH02269131A (en) Raw material for light-weight structure, and method and device for producing honeycomb structure therefrom
EP0908303A2 (en) Vehicle interior panel and method of manufacture
JP4728127B2 (en) Method for manufacturing substrate with protrusion, and apparatus for manufacturing substrate with protrusion
JP3966125B2 (en) Production method of soundproofing material
JP2005513286A (en) Moldable composite material and manufacturing method thereof
JP7228242B2 (en) Composite molded article and its manufacturing method
JPH07256760A (en) Production of fiber-coated plastic component part
US20210370624A1 (en) Method for producing a thermoplastically deformable, fiber-reinforced flat semi-finished product
JPH08169074A (en) Heat-resistant cushion material and production thereof
JP2974581B2 (en) Manufacturing method of molded ceiling base material for automobile
CN216006211U (en) Carbon fiber template and manufacturing system thereof
JP3677514B2 (en) Car carpet
WO2006043789A1 (en) Method and apparatus for manufacturing noise-absorbent fabric, and the fabric
EP3749509A1 (en) Method for manufacturing a prepreg made of a composite material
US9085116B2 (en) Method for manufacturing honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees