JP4194648B2 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP4194648B2
JP4194648B2 JP2000023059A JP2000023059A JP4194648B2 JP 4194648 B2 JP4194648 B2 JP 4194648B2 JP 2000023059 A JP2000023059 A JP 2000023059A JP 2000023059 A JP2000023059 A JP 2000023059A JP 4194648 B2 JP4194648 B2 JP 4194648B2
Authority
JP
Japan
Prior art keywords
gas
cylindrical portion
side wall
cylindrical
gas inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000023059A
Other languages
Japanese (ja)
Other versions
JP2001099807A (en
Inventor
圭祐 牧野
真也 粟野
三徳 大井
敬 中尾
哲平 大川
浩一 高橋
誠 久米
孝夫 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000023059A priority Critical patent/JP4194648B2/en
Publication of JP2001099807A publication Critical patent/JP2001099807A/en
Application granted granted Critical
Publication of JP4194648B2 publication Critical patent/JP4194648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸素センサ、HCセンサ、NOxセンサなど、測定対象となるガス中の被検出成分を検出するためのガスセンサに関する。
【0002】
【従来の技術】
上述のようなガスセンサとして、被検出成分を検出する検出部が前端に形成された棒状ないし筒状の検出素子を、金属製のケーシングの内側に配置した構造のものが知られている。このようなガスセンサにおいては、測定雰囲気中に位置する検出部を覆うプロテクタが設けられている。プロテクタの側壁部にはガス流通孔が形成され、排気ガス等の被測定ガスはこのガス流通孔からプロテクタ内に導かれて検出部と接触させられる。
【0003】
自動車用の各種ガスセンサにおいて最近では、被測定ガス中の水滴や油滴あるいは汚れ等に対して、さらにプロテクタの壁部表面や内部空間で凝縮した凝縮水の侵入に対して検出部の保護機能を高めるため、該プロテクタを内外2つの筒状部からなる二重構造としたものも多く使用されている。図10に示すように従来は、このような二重構造のプロテクタ106においては、内外の筒状部106a、106bの側壁部にそれぞれガス入口163,161を形成し、被測定ガスはまず外側の筒状部106aのガス入口163を通り、次いで内側の筒状部106bのガス入口161を通って検出部102に到達する形となる。
【0004】
【発明が解決しようとする課題】
ところで、上記のような二重構造のプロテクタにおいては、検出部の保護機能は高められるが、壁部が二重となる分だけガス流通に対する抵抗が増大し、例えばプロテクタ外側とプロテクタ内部空間との間での被測定ガスの交換速度も小さくなることが多い。そのため、測定雰囲気中の被測定成分の濃度が急激に変化した場合等においては、応答に遅れが出やすいという構造上の問題がある。
【0005】
さらにこの場合、例えば図10のように検出部102において、特に積層体の一方の面にのみガス検知面DPが形成されていると次のような問題が生ずる。すなわち、排気ガス等の被測定ガスEGがガス検知面DPの側からプロテクタ106内に流れ込んだ場合は、ガス流はガス検知面DPに比較的直接的に到達しやすいためにガス中の被検出成分の濃度等が変化したときの検出応答性は比較的良好となるが、例えばこれと反対側から流れ込んだ場合は、検出部102の検知面DPとは反対側の面にガス流が当たるため、検出応答遅れが生じやすくなる。このように、プロテクタに対する被測定ガス流の方向に応じてセンサの応答性や出力特性が変化しやすい欠点(方向依存性)がある。
【0006】
なお、プロテクタを一重構造とすれば、プロテクタ内外のガスの交換速度が高められるので、センサの応答性は良好となるが、検出部に対する保護機能は当然のことながら悪くなる。また、急激にガス流速が大きくなったりガス温が低下したりすると検出部の温度が低下し、例えば酸素濃淡電池素子が不活性化して検出感度が低下したり検出出力が途切れたりする問題を生ずる。なお、ガスの交換速度を高めるために、二重構造のプロテクタのガス入口の寸法を大きくする方法もあるが、この場合も程度の差はあれ上記一重構造プロテクタと同様の問題が避け難く、応答性と保護機能とを両立させることは困難であった。
【0007】
本発明の課題は、多重構造プロテクタが本来的に具備する検出部の保護機能をさらに高め、しかもセンサ応答特性に被測定ガス流の方向依存性が生じにくく、ひいては適切なレベルにて均一な応答性あるいは出力特性が得られるガスセンサを提供することにある。
【0008】
【課題を解決するための手段及び作用・効果】
上記課題を解決するために、本発明のガスセンサは、
検出素子の前端側に形成された検出部を覆うプロテクタが、第一筒状部と、該第一筒状部の外側に略同軸状に配置される第二筒状部とを備え、
前記第一筒状部の側壁部に第一側ガス入口が周方向に沿って複数形成されるとともに、前記第二筒状部の側壁部に第二側ガス入口が形成され、
該第二側ガス入口に、被測定ガスを前記第一筒状部と前記第二筒状部との間に導入し、かつ前記第一筒状部の側壁部外面を取り囲む旋回流を発生させるためのガイド体を配置し
前記第二側ガス入口を含む軸直交断面において、前記ガイド体のガス導入面の前記被測定ガス導入方向への延長線(以下、ガス導入線という)が、前記第一筒状部の側壁部外面よりも径方向外側に離間して位置するように、前記第一筒状部の前端側の側壁部が軸方向前端側ほど小径となる縮径部に形成されたことを特徴とする。
【0009】
上記本発明のガスセンサにおいては、そのプロテクタが内側の第一筒状部と外側の第二筒状部とを有する少なくとも二重構造とされ、かつ、第二筒状部の側壁部に形成される第二側ガス入口にガイド体が配置されている。このガイド体は、被測定ガスを第一筒状部の側壁部外面を取り囲む状態で旋回流を生じさせる機能を有し、この旋回流に伴い発生する遠心力により、相対的に重い水滴・油滴等は相対的に軽いガス分と分離されて第二筒状部の側壁部内面に押し付けられる。したがって、被測定ガス中に水滴・油滴等が含まれる場合にもそれら水滴・油滴等が第一筒状部の内側(検出部)へ侵入しにくくなり、検出部に対する保護機能がさらに向上する。
【0010】
被測定ガスは、第二側ガス入口のガイド体により第一筒状部の側壁部外面を取り囲む状態で旋回流を形成しながら、第一筒状部の側壁部に周方向に沿って複数形成されたそれぞれの第一側ガス入口から第一筒状部の内側に流入することになる。その結果、プロテクタの軸線周りにおいてどのような角度で被測定ガス流が当たっても、被測定ガス流の方向によらず均一な応答性あるいは出力が得られる。このことは特に検出部の外周面に対し、その周方向の一部区間に沿ってガス検知面が形成されている場合や、板状で片側にガス検知面を形成している場合においては、特に有利な効果として働く。
【0011】
ここでガイド体は、第二筒状部の側壁部から径方向内側に向けて一体的に延出されていることが好ましい。このガイド体の構成によって、プロテクタ内側へ被測定ガス中の水滴・油滴等が侵入しにくく、かつ被測定ガスの流通を阻害しにくくなるので、検出部に対する保護機能及びセンサ応答特性が一層向上する。このようなガイド体としては、第二筒状部の側壁部において、湾曲した切れ目を作成し、この切れ目により生ずる爪状部を径方向内側に折り曲げることで構成できる。
【0012】
さらに本発明では、第一側ガス入口を第二側ガス入口よりも軸方向後端側に配置することができる。このように、第一側ガス入口と第二側ガス入口とが軸方向に離間して形成されているので、第一筒状部内側へ被測定ガス中の水滴・油滴等が侵入しにくくなり、かつ第二筒状部内部で発生する凝縮水が第一筒状部の内側(検出部)に流入しにくくなり、もって検出部に対する保護機能がさらに向上する。
【0013】
また本発明では、第二側ガス入口を含む軸直交断面において、ガイド体のガス導入面の被測定ガス導入方向への延長線(以下、ガス導入線という)が、第一筒状部の側壁部外面よりも径方向外側に離間して位置するとよい。つまり、ガス導入線が第一筒状部の側壁部外面に接したり交差したりしないので、旋回流に伴い発生する遠心力により、相対的に重い水滴・油滴等は第二筒状部の側壁部内面に押し付けられ壁面に沿って流下し、一方残りの相対的に軽いガス分は水滴・油滴等とは分離されて第一筒状部の内側(検出部)へ導入され(遠心分離作用)、被測定ガス中の水滴・油滴等の第一筒状部内部への侵入を効果的に防止し得る。また、ガス導入線が第一筒状部の側壁部外面に接したり交差したりしないので、被測定ガス中の水分が第一筒状部の側壁部外表面で凝縮しにくく、凝縮水の第一筒状部内部への侵入を防止し得る。これらの諸作用によって、検出部に対する保護機能が強化される。
【0014】
本発明のガス導入線は、第二側ガス入口を含む軸直交断面において、ガイド体のガス導入面の被測定ガス導入方向への延長線として規定される。ここで、ガイド体のガス導入面が単一の平面(軸直交断面においては単一の直線)で構成されるときは、ガス導入線は一義的に定められる。一方、ガイド体のガス導入面が複数の平面若しくは単一又は複数の曲面で構成されるときは、ガス導入線は一義的に定められない場合があり、本発明においては種々の表現方法が選択できる。ここでは、ガス導入線の表現方法として比較的一般的な次の2法を例示した。
(1)ガス導入線は、第二側ガス入口を含む軸直交断面において、ガイド体のガス導入面の先端における接線で表される。
(2)ガス導入線は、第二側ガス入口を含む軸直交断面において、ガイド体のガス導入面の基部が第二筒状部の側壁部外面と接する点と、ガス導入面の先端とを結ぶ直線で表される。
【0015】
また本発明は、第二側ガス入口を含む軸直交断面において、ガス導入線が第一筒状部の側壁部外面よりも径方向外側に離間して位置するように、第一筒状部の前端側の側壁部を、軸方向前端側ほど小径となる縮径部に形成することができる。第二側ガス入口に対向する第一筒状部の前端側を縮径部に形成することによって、ガス導入線が第一筒状部の側壁部外面に接するまでの第二側ガス入口の開口幅を広くとれ、被測定ガスの交換速度(流通量)を大きくできるので、センサ応答特性を改善することができる。
【0016】
次に、本発明の第一筒状部の前端側の側壁部には、軸方向前端側ほど小径となる縮径部が形成されるとともに、第一筒状部の前端面に第一側ガス出口を形成することができる。被測定ガス流が第一筒状部の側壁部外面を取り囲んで旋回しながら縮径部を軸方向前端側に向かって流れることにより、第一側ガス出口側に負圧が生じて第一筒状部内が減圧状態となり、第一側ガス入口から被測定ガスが速やかに吸入されるので、多重構造プロテクタにも関わらず十分な応答性を確保できる。
【0017】
なお、本発明において「縮径部」は、第一筒状部を軸線を含む平面で切断したときに、その縮径部の断面が直線状に形成されていてもよいし、外向き又は内向きの曲面形状に形成されていてもよい。
【0018】
具体的には、第一筒状部は、円筒状の本体部の先端側に、円錐台状の縮径部が一体化されたものとして構成することができる。例えば第一筒状部の全長が規定される場合に、その後端側に形成する円筒状の本体部の長さを調整することにより、縮径部外面の傾斜角度を、例えば第一側ガス出口に負圧を生じさせるのに好都合な値に容易に設定することが可能となる。
【0019】
そして、本発明の第二側ガス入口は、第一筒状部の縮径部と対向する位置に配置することができる。第二筒状部の側壁部において、縮径部に対向する位置に第二側ガス入口が形成され、第二側ガス入口から流入する被測定ガスが縮径部の側壁部外面を取り囲んで旋回しながら軸方向前端側に向かって流れるようになっている。この構成では、第二側ガス入口と縮径部とが対向して配置され、縮径部を取り囲んで旋回しながら軸方向前端側に向かって流れる被測定ガスの流速が高められるので、第一側ガス出口側に生じる負圧をより大きくすることができる。その結果、第一側ガス入口からの被測定ガスの吸入速度、ひいては第一筒状部内の被測定ガスの交換速度が向上して、検出応答性あるいは濃度変化に対する出力追従性が一層良好となる。
【0020】
なお、上記第二側ガス入口、第一筒状部の縮径部の前端よりも軸方向前端寄りの位置に配置する場合には、第二側ガス入口を含む軸直交断面においては、第二側ガス入口に対応する第一筒状部(縮径部)が存在しなくなるので、第二側ガス入口の開口幅を広く設定して、被測定ガスの交換速度(流通量)を増大することができ、センサ応答特性を大幅に改善することが可能となる。
【0021】
さらに、本発明の第二筒状部の前端面に第二側ガス出口を形成するときは、第一筒状部の側壁部外面を取り囲んで旋回しながら軸方向前端側に向かって流れる被測定ガス流を第二側ガス出口からスムーズに排出することができ、安定したセンサ応答特性が確保される。
【0022】
また、軸直交断面において、本発明の第二筒状部の第二側ガス出口は、第一筒状部の前端面に形成される第一側ガス出口に対して径方向に離間して位置させることができる。仮に被測定ガス中の水滴・油滴等が第二側ガス出口から侵入した場合でも、第一側ガス出口は第二側ガス出口と軸直交断面において重なっていないので、第一側ガス出口を通ってさらに内部の検出部に侵入する恐れは少なく、検出部に対する保護機能が発揮される。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面に示す実施例を参照して説明する。
図1には、この発明のガスセンサの一実施例として、自動車等の排気ガス中の酸素濃度を検出する酸素センサ1を示している。この酸素センサはλ型酸素センサと通称されるもので、細長い板状のセラミック素子2(検出素子)が主体金具3に固定された構造を有している。そして、該主体金具3の外周面に形成された取り付けネジ部3aにより、前端側の検出部Dが排気管内に位置するように取り付けられ、該排気管内を流れる被測定ガスとしての高温の排気ガスEGに晒される。なお、本明細書では、主体金具3の軸線方向において検出部Dの突出側を「前方側(あるいは前端側)」、これと反対側を「後方側(あるいは後端側)」として説明を行う。
【0024】
セラミック素子2は方形状の軸断面を有し、図2(a)に示すように、それぞれ横長板状に形成された酸素濃淡電池素子21と、該酸素濃淡電池素子21を所定の活性化温度に加熱するヒータ22とが積層されたものとして構成されている。なお、酸素濃淡電池素子21は、ジルコニア等を主体とする酸素イオン伝導性固体電解質により構成されている。他方、ヒータ22は公知のセラミックヒータで構成されている。
【0025】
酸素濃淡電池素子21において多孔質電極25,26には、その長手方向に沿って酸素センサ1の取付基端側に向けて延びる電極リード部25a,26aがそれぞれ一体化されている。このうち、ヒータ22と対向しない側の電極25からの電極リード部25aは、その末端が電極端子部7として使用される。一方、ヒータ22に対向する側の電極26の電極リード部26aは、図2(c)に示すように、酸素濃淡電池素子21を厚さ方向に横切るビア26bにより反対側の素子面に形成された電極端子部7と接続されている。すなわち、酸素濃淡電池素子21は、両多孔質電極25,26の電極端子部7が電極25側の板面末端に並んで形成される形となっている。上記各電極、電極端子部及びビアは、Pt又はPt合金など、酸素分子解離反応の触媒活性を有した金属粉末のペーストを用いてスクリーン印刷等によりパターン形成し、これを焼成することにより得られるものである。
【0026】
一方、ヒータ22の抵抗発熱体パターン23に通電するためのリード部23a,23aも、図2(d)に示すように、ヒータ22の酸素濃淡電池素子21と対向しない側の板面末端に形成された電極端子部7,7に、それぞれビア23bを介して接続されている。酸素濃淡電池素子21とヒータ22とは、図2(b)に示すように、ZrO系セラミックあるいはAl系セラミック等のセラミック層27を介して互いに接合される。そして、酸素濃淡電池素子21は、接合側の多孔質電極(酸素基準側多孔質電極)26が、微小なポンピング電流の印加により酸素基準電極として機能する一方、反対側の多孔質電極25が排気ガスと接触する検出側電極となり、その表面がガス検知面となる。
【0027】
図1に戻りセラミック素子2は、主体金具3の内側に配置された絶縁体4の挿通孔30に挿通され、前端側の検出部Dが、排気管に固定される主体金具3の前端より突出した状態で絶縁体4内に固定される。絶縁体4には、その軸線方向において挿通孔30の後端に一端が連通し、他端が絶縁体4の後端面に開口するとともに軸断面が該挿通孔30よりも大径の空隙部31が形成されている。そして、その空隙部31の内面とセラミック素子2の外面との間は、ガラス(例えば結晶化亜鉛シリカホウ酸系ガラス)を主体に構成される封着材層32により封着されている。
【0028】
絶縁体4と主体金具3との間には、軸線方向に隣接してタルクリング36と加締めリング37とがはめ込まれ、主体金具3の後端側外周部を加締めリング37を介して絶縁体4側に加締めることにより、絶縁体4と主体金具3とが固定されている。
【0029】
また、外筒18の後端部内側にはセラミックセパレータ16及びグロメット15が嵌め込まれ、これらに続いてそのさらに内方側にコネクタ部13が設けられている。リード線14の後端側はセラミックセパレータ16を貫通して外部に延びている。一方、リード線14の前端側は、コネクタ部13を介して図2に示すセラミック素子2の各電極端子部7(4極を総称する)に電気的に接続されている。
【0030】
主体金具3の前端には、セラミック素子2の突出部分、すなわち検出部Dを覆うプロテクタ6が取り付けられている。該プロテクタ6は内側の第一筒状部6bと外側の第二筒状部6aとを有し、略同軸状に配置される二重構造を有する。図3に示すように、第一筒状部6bは検出素子2の軸線周りにおいて検出部Dを取り囲む筒状に形成され、その側壁部には軸方向に所定の間隔で複数の第一ガス入口60,61が形成される一方、該側壁部の軸方向前端側にテーパ状の縮径部6tが形成され、その縮径部6tの前端面中心部に第一ガス出口62が形成されている。具体的には、縮径部6tは円筒状の本体部6sの前端側に一体的に円錐台状に形成されている。そして、第一ガス入口60,61は本体部6sの周方向に沿ってほぼ等間隔で並ぶ孔の組(60及び61)を複数組含んでいる。本実施例では、後述の第一側爪状部6b3を形成した孔を4個含む後方側の孔の組60と、円状開口形態の孔を4個含む前方側の孔の組61とが、本体部6sの軸線方向において2列形成されている。
【0031】
また、第二筒状部6aは第一筒状部6bの外側において該第一筒状部6bとの間に所定量の隙間Gを形成する形で配置される筒状形態をなし、その前端が第一筒状部6bの前端よりも前方側に位置している。第二筒状部6aの前端面には所定のピッチ円上に等間隔で配置された複数個(本実施例では4個)の第二側ガス出口64が形成されている。この第二側ガス出口64のそれぞれは、第一筒状部6bの前端面中心部に形成された第一側ガス出口62とは、軸直交断面において互いに径方向に離間して位置している。第一側ガス出口62と第二側ガス出口64とをこのように配置することによって、中心部に形成された第一側ガス出口62からの被測定ガスEGの排出に支障を来すこともなく、第二側ガス出口64から侵入した被測定ガスEG中の水滴・油滴等が、第一側ガス出口62を通って内部の検出部Dに侵入する恐れが減少する。
【0032】
さらに、第二筒状部6aは前端に底部6fが形成される円筒状に形成され、その側壁部前端寄りであって第一筒状部6bを構成する縮径部6tに対応する位置に、周方向ほぼ等間隔で第二側ガス入口63が複数個(本実施例では6個)形成されている。ここで第二側ガス入口63は、第一側ガス入口60,61とのいずれに対しても向かい合うことのない位置関係にある。これにより被測定ガスEGは、第二筒状部6aにより第一側ガス入口60,61に直接流れ込むことが阻止されるようになっている。
【0033】
なお、第一側ガス入口を形成する2列の孔の組60,61のうち、前方側のもの(61)が検出部Dよりも軸線方向前端側で、かつ第二側ガス入口63よりも軸線方向後端側に位置し、後方側のもの(60)は検出部Dを取り囲むような形態で位置している。ところで排気ガス流EGには、凝縮水の水滴の他、燐、硫黄、シリコン等の被毒物質が含まれている場合がある。しかし、このような排気ガス流EGが孔列60あるいは61を通して第一筒状部6b内に入り込むことがあったとしても、孔列61から入り込むものは、そのままガス流に乗って第一側ガス出口62から排出される確率が高く、水滴や被毒物質が分散されることになり検出部Dの保護機能を高めることができるようになる。
【0034】
次に、図1に示すように、主体金具3の取付ネジ部3aよりも前端側が少し縮径されて小径部3bが形成されている。そして、図3のように、その小径部3bの前端面には、その開口周縁部から突出する筒状の位置決め突出部3cが形成されている。第一筒状部6bは、位置決め突出部3cにより位置決めされつつ、開口側に形成された拡径部6gが主体金具3の小径部3bの外側に嵌め込まれている。一方第二筒状部6aは、その後端側開口部において第一筒状部6bの拡径部6gの外側から主体金具3の小径部3bに嵌め込まれ、拡径部6gとともに周方向の溶接部65(例えば断続的に形成されるスポット溶接部、あるいは連続環状に形成されるレーザー溶接部)により、小径部3bに固定される。
【0035】
酸素センサ1は、取付ねじ部3aにおいて車両の排気管に固定される。その検出部Dが排気ガスEGに晒されると、酸素濃淡電池素子21の多孔質電極25(図2)が排気ガスEGと接触し、酸素濃淡電池素子21には該排気ガスEG中の酸素濃度に応じた酸素濃淡電池起電力が生じる。この起電力がセンサ出力として取り出される。そのプロテクタ6は、上記のように2重構造とされていることから、検出部Dに対する保護機能に優れる。
【0036】
再び図3に戻り、第二筒状部6aの側壁部において、湾曲した形状(一方の基端部6a0から延びて方向変換部6a1により方向変換した後、他方の基端部6a0’へ至る形状)の切れ目(第二側切れ目)6a2を、カッター切断、金型打抜等により作成し、この切れ目6a2により生ずる第二側爪状部6a3(爪状部)を径方向内側に折り曲げてガイド体となし、同時に第二筒状部の側壁部に第二側ガス入口63が形成される。第二側ガス入口63を含む軸直交断面(図3(b))において、第二側爪状部6a3のガス導入面Sが、第二側ガス入口63の開口に向かって凸形態の曲面で構成され、ガス導入線Lは、第一筒状部6bの側壁部外面(側壁部外形線)Lbよりも径方向外側に離間して位置している。
【0037】
一方、第一筒状部6bの側壁部においても、湾曲した形状(一方の基端部6b0から延びて方向変換部6b1により方向変換した後、他方の基端部6b0’へ至る形状)の切れ目(第一側切れ目)6b2を、カッター切断、金型打抜等により作成し、この第一側切れ目6b2により生ずる第一側爪状部6b3を径方向内側に折り曲げて、第一側ガス入口60,61の内、後方側の孔の組60が形成される。第一側ガス入口60を含む軸直交断面(図3(c))において、第一側爪状部6b3のガス導入面S’が、第一側ガス入口60の開口に向かって凸形態の曲面で構成され、ガス導入線L’は、検出部Dの側壁部外面よりも径方向外側に離間して位置している。
【0038】
ここで、プロテクタ6内での排気ガスEGの流れについて言及する。第二側ガス入口63からプロテクタ6内に導入された排気ガスEGは、第一筒状部6bの縮径部6tの外面に沿って後端側から前端側に向けて流れた後、第二側ガス出口64から流出する。このため、縮径部6tに沿ったガスの流速が高められるので、第一側ガス出口62に生じる負圧をより大きくすることができる。その結果、第一側ガス入口60,61からの排気ガスEGの吸入速度、ひいては第一筒状部6b内の排気ガスEGの交換速度が向上して、検出応答性あるいは濃度変化に対する出力追従性が一層良好となる。また、第二側ガス入口63から導入される排気ガス流EGは、第二側爪状部6a3により旋回流を生じ、この旋回流は第一筒状部6bの縮径部6tを取り囲むように流れて、第二側ガス出口64から流出することになる。この旋回流の発生により、第一筒状部6b内側へ水滴・油滴等が侵入しにくくなり、検出部Dに対する保護機能に優れる。
【0039】
第一側ガス出口62に生じる負圧により、第一筒状部6b内が吸引され、このとき排気ガスEGは、第一側爪状部6b3により、第一筒状部6bの側壁部に沿う旋回流となって略等方的に吸入される。その結果、プロテクタ6の軸線周りにおいて検出部Dを取り囲むように均一な排気ガスEGの旋回流が生成され、均一な応答性あるいは出力が得られる。また、第一側爪状部6b3は、第一側ガス入口60に対してフラップ状に重なり合うので、第一筒状部6b内側へ水滴・油滴等が侵入しにくい。さらに、検出部Dを取り囲む旋回流により、第一筒状部6b内側へ水滴・油滴等が侵入した場合にも検出部Dに直接接触しにくくなり、検出部Dに対する保護機能に優れる。
【0040】
このような排気ガス流EGが形成される結果、プロテクタ6の軸線周りにおいてどのような角度で排気ガス流EGが当たっても、検出部Dに対しては略等方的に排気ガスEGが供給されるので、排気ガス流EGの方向によらず均一な応答性あるいは出力特性が得られる。また、第一側ガス出口62が負圧となることで、第一側ガス入口60,61から吸入される排気ガスEGにより、検出側多孔質電極25の表面(ガス検知面)に沿って比較的大きな排気ガス流EGを形成することができるので、リッチ雰囲気からリーン雰囲気に転じる場合でも良好な出力追従性が得られる。
【0041】
なお、第二側又は第一側切れ目6a2,6b2の形状をU字状、コ字状等に適宜変更できる。また、これらの切れ目6a2,6b2の個数、折り曲げ線の位置や折り曲げ方向等についても変更が可能である。さらに、第一側爪状部6b3は、第一側ガス入口60,61の内、検出部Dに対向する形態で配置される組の孔60に加えて、あるいはその孔60に代えて、検出部Dの前端よりも軸線方向前端側に位置する組の孔61に形成してもよい。
【0042】
ここで、ガイド体(第二側爪状部6a3)のガス導入面Sとガス導入線Lについて、図3(b)の拡大図である図4により説明する。本明細書においてガス導入線Lは、「第二側ガス入口63を含む軸直交断面において、第二側爪状部6a3(ガイド体)のガス導入面Sの排気ガスEG(被測定ガス)導入方向への延長線」と定義される。ところでこのガス導入線Lは、「第二側ガス入口63を含む軸直交断面において、第二側ガス入口63を通り第二側爪状部6a3のガス導入面Sに沿って第一筒状部6bと第二筒状部6aとの間に流入する排気ガスEGが描く軌跡」と言い換えることができる。
【0043】
そして図4において、ガス導入線Lは次の2つの方法により表現されている。(1)ガス導入線Lは、第二側ガス入口63を含む軸直交断面において、第二側爪状部6a3のガス導入面Sの先端P1における接線L1(以下、接線L1という)で表される。
(2)ガス導入線Lは、第二側ガス入口63を含む軸直交断面において、第二側爪状部6a3のガス導入面Sの基部が第二筒状部6aの側壁部外面Laと接する点P2と、ガス導入面Sの先端P1とを結ぶ直線L2(以下、直線L2という)で表される。
【0044】
図4では第二側爪状部6a3のガス導入面Sが複数の曲面で構成されているので、接線L1と直線L2とは異なる線で表されるが、仮に第二側爪状部6a3のガス導入面Sが単一の平面(軸直交断面図上では単一の直線)で構成されるときは、図4上で接線L1と直線L2とは一致することになる。一般的に直線L2は、排気ガスEGの入口方向線と出口方向線の平均として表される(このうちの出口方向線が接線L1に該当する)ので、直線L2は、接線L1に比べて第一筒状部6bの側壁部外面Lbよりも径方向のより外側に離間して(つまり第二筒状部6aの側壁部内面により近づいて)位置する場合が多い。
【0045】
いずれにしても、図4に見る通り、ガス導入線L(接線L1又は直線L2)は、第一筒状部6bの側壁部外面Lbよりも径方向外側に離間して位置している。このことは、次のような機能を果たしている。すなわち、ガス導入線L(接線L1又は直線L2)が第一筒状部6bの側壁部外面Lbに接したり交差したりしないので、第一筒状部6bの側壁部外面を取り囲む旋回流に伴い発生する遠心力により、相対的に重い水滴・油滴等WDは第二筒状部6aの側壁部内面に押し付けられ壁面に沿って流下し、一方残りの相対的に軽いガス分は水滴・油滴等WDとは分離されて第一筒状部6bの内側(検出部D)へ導入され(遠心分離作用)、排気ガスEG中の水滴・油滴等WDのプロテクタ6内部への侵入を効果的に防止し得る。また、ガス導入線L(接線L1又は直線L2)が第一筒状部6bの側壁部外面Lbに接したり交差したりしないので、排気ガスEG中の水分が第一筒状部6bの側壁部外表面で凝縮しにくく、凝縮水のプロテクタ6内部への侵入を防止し得る。これらの諸作用によって、検出部Dに対する保護機能が強化される。
【0046】
図5に、ガイド体(第二側爪状部6a3)の軸直交断面形状を例示する。
図5(a)のように第二側爪状部6a3のガス導入面Sが単一の平面(軸直交断面図上では単一の直線)で構成される場合には、接線L1と直線L2とは一致することになる。次に、図5(b)のように第二側爪状部6a3のガス導入面Sが球面弧等の単一の曲面(軸直交断面図上では円弧等の単一の曲線)で構成される場合には、直線L2が接線L1よりも径方向外側へ開く形態となる。
【0047】
さらに、図5(c)のように第二側爪状部6a3のガス導入面Sが先端ほど径方向内側に折れ曲がる複数の平面(軸直交断面図上では複数の直線)又は複数の曲面(軸直交断面図上では複数の曲線)で構成される場合も、直線L2が接線L1よりも径方向外側へ開く形態となる。ただし、第二側切れ目6a2を作成するカッターの形状等によっては、図5(d)のように第二側爪状部6a3のガス導入面Sは、先端部のみが径方向内側に急激に折れ曲がるような、複数の平面又は複数の曲面で構成される場合がある。このような場合において、第二側爪状部6a3のガス導入面S上にある水滴・油滴等WDが、排気ガスEGとともに現在乗っているガス導入面Sの延長線上を吹き飛ばされる状況であれば、先端折れ曲がり部6a3’はガス導入面Sとして考慮しなくてもよい。
【0048】
また、図5(e)のように第二側爪状部6a3のガス導入面Sが途中から先端ほど径方向外側に折れ曲がる複数の平面(軸直交断面図上では複数の直線)又は複数の曲面(軸直交断面図上では複数の曲線)で構成される場合には、接線L1が直線L2よりも径方向外側へ開く形態となる。ただし、第二側切れ目6a2を作成するカッターの形状等によっては、図5(f)のように第二側爪状部6a3のガス導入面Sは、先端部のみが径方向外側に急激に折れ曲がったりバリとして突出するような、複数の平面又は複数の曲面で構成される場合がある。このような場合において、第二側爪状部6a3のガス導入面S上にある水滴・油滴等WDが、排気ガスEGとともに現在乗っているガス導入面Sの延長線上を吹き飛ばされる状況であれば、先端折れ曲がり部又はバリ部分6a3”はガス導入面Sとして考慮しなくてもよい。
【0049】
以上ガイド体(第二側爪状部6a3)の形状について図5により説明したが、実際の第二側爪状部6a3はさらに複雑な形状を呈する場合があり、また第二筒状部6aの側壁部外面Laが真円でない場合もある。特に、第二側爪状部6a3のガス導入面Sの先端P1(以下、先端P1という)及び/又は、第二側爪状部6a3のガス導入面Sの基部が第二筒状部6aの側壁部外面Laと接する点P2(以下、接点P2という)を定めにくいときには、接線L1や直線L2が引けなくなるケースも想定される。そこでこのようなときには、例えば以下に述べる円近似によって先端P1及び接点P2を求めることができる。
【0050】
図11において、第二筒状部6aの側壁部外面Laに最も近似したサーチ円C(例えば側壁部外面Laの外接円を選定でき、サーチ円中心をO、サーチ円半径をRとする)を描き、この側壁部外面Laとガス導入面Sの基部との接近位置において、ガス導入面S上でサーチ円半径Rの例えば98%をもって接点P2と定めることができる。一方、第二側爪状部6a3の先端にバリ部分6a3”が径方向外側に向けて突出形成されている場合、バリ部分6a3”の基部とガス導入面Sとの結合部を先端P1と定めることができる。したがって、先端P1を通る接線L1と、先端P1と接点P2とを結ぶ直線L2とがそれぞれ求められる。
【0051】
以下、プロテクタ6の変形例について説明する。なお、図3の実施例と共通する部分には同一符号を付して説明を省略する。
【0052】
まず、図6はプロテクタ6の第一変形例を示している。図6の実施例では、第二筒状部6aの側壁部に8個の第二側ガス入口63が周方向に略等間隔で形成されている。各第二側ガス入口63に形成される第二側爪状部6a3のガス導入面Sは図3の実施例に比べて平坦な形状を有している(ただし平面ではなく、緩やかな曲面で構成される)ので、ガス導入線Lは第一筒状部6bの側壁部外面Lbに対して図3よりもさらに径方向外側に離間して位置している。したがって、旋回流に伴い発生する遠心力がより大きくなり水滴・油滴等が素早く分離され、また被測定ガスEG中の水分が第一筒状部6bの側壁部外表面で一層凝縮しにくくなる。なお、図6の実施例では第一側ガス入口の内、前方側の孔の組61は省略されているので、この孔の組61から第一筒状部6bの内部に流れ込む被測定ガスEGの流れはない。
【0053】
次に、図7はプロテクタ6の第二変形例を示している。図7の実施例では、第二側ガス入口63が第一筒状部6bの縮径部6tの前端よりも軸方向前端寄りの位置に形成されているので、図7(b)で表される第二側ガス入口63を含む軸直交断面において、第二側ガス入口63に対応する第一筒状部6b(縮径部6t)が存在しなくなる。そこで第二側爪状部6a3を図3の実施例よりも径方向内側へ大きく折り曲げて、ガス導入線Lがプロテクタ6の軸心近くを通るように設定できる。その結果、第二側ガス入口63の開口幅が広くなり、被測定ガスEGの交換速度(流通量)が増大する。
【0054】
また、図8及び図9にプロテクタ6のその他のいくつかの変形例を示す。なお、図3の実施例と共通する部分には同一符号を付して説明を省略する。
【0055】
図8(a)のプロテクタ6においては、縮径部6tに対応する位置において、第二側ガス入口は63bと63aとの2列形成されている。これにより、縮径部6tの外面に沿うガスの流れがスムーズとなり、応答性が改善されるほか、ガス流の方向による影響も受けにくくなる。なお、図8(a)においては、周方向の段部6hにより第一筒状部6bの前端側を径小とし、それによって第二筒状部6aとの間に隙間Gを形成している。また、第一筒状部6bの後端部は主体金具3の径小部3bに嵌め込まれている。そして、第二筒状部6aの後端部はその外側に重ね合わされる形で嵌め込まれ、該重なり部において第一筒状部6bとともに図示しない溶接部により径小部3bに対して固定されている。
【0056】
図8(b)では、第一筒状部6bと第二筒状部6aとの間において、第一側ガス入口60(後端側に1列のみ形成)を覆う形で第三の筒状部6cを設けた3重構造となっている。これにより、第一筒状部6bの内側への水滴、油あるいは汚れ等の侵入が一層起こりにくくなる。
【0057】
また、図8(c)では、第二筒状部6aの外側においてその後端側を覆うとともに、第二側ガス入口63は覆わない形態で第三筒状部6cが配置されている。これにより、ガス流速が急上昇したりした場合に、検出部Dの温度低下がさらに効果的に防止される。さらに、図8(d)では、第三筒状部6cを第二側ガス入口63の位置まで延長し、対応する位置に第三側ガス入口66を形成している。これにより、第一筒状部6bの内側への水滴、油あるいは汚れ等の侵入が一層起こりにくくなる。
【0058】
図8(e)は、第二側ガス入口63の周縁に沿って第二筒状部6aの側壁部内面から内向きに突出する形態で、気流ガイド6w(ガイド体)を形成した例を示している。これにより、排気ガスEGを第一筒状部6bと第二筒状部6aとの間に導入し、かつ縮径部6tの周囲を回る旋回流を発生させることができ、プロテクタ6内での排気ガスEGの流れが乱れにくくなり、センサ1の応答性が排気ガス流EGの方向の影響を一層受けにくくなる。
【0059】
図8(f)は、第二筒状部6aの前端側にも縮径部6uを形成した例である。これにより、プロテクタ6内に流入したガスの吸引効果が高められ、センサ1の応答性が排気ガス流EGの方向の影響を一層受けにくくなる。
【0060】
また、図9(g)に示すように、第一筒状部6bの縮径部6tの前端側に、さらに円筒状の直線部6vを形成してもよい。他方、第二筒状部6aは、図9(h)に示すように、軸断面を多角形状に形成してもよい。
【0061】
また、図9(i)及び(j)に示すように、第一筒状部6bは、その外面のほぼ全体を縮径部6tとしてもよい。なお、縮径部6tは、図9(i)のように、断面が略直線状(この場合、縮径部6tの外面形状は円錐台状のものとなる)となっていてもよいし、図9(j)のように、外向きに突出する曲面状(この場合、縮径部6tの外面形状は紡錘状のものとなる)となっていてもよい。さらに、図9(k)のように第一筒状部6bの縮径部6tの前端側を、第二筒状部6aの底部6fから突出させるようにしてもよい。この場合、第二側ガス出口64は、縮径部6tの外面と底部6fの開口内縁との間に環状に形成される。
【0062】
さらに、図9(l)の実施例では、第一筒状部6bの先端部外径が本体部6s外径と同径に形成されている。また、第一側ガス入口は3列の孔の組60,61a,61bから構成され、このうち後方側のもの(60)は検出部Dに対向する形態で配置されている。そして、前方側の孔の組は、第二側ガス入口63に対向する形態で配置されるもの(61a)と、上記2つの孔の組(60)(61a)の中間部に配置されるもの(61b)とで構成される。
【0063】
なお、図8(a)の変形例において、前後2列の第二側ガス入口63a,63bのうち少なくとも一方望ましくは両方に、前述の第二側切れ目6a2及び第二側爪状部6a3(ガイド体)が図3と同様に形成されているが、図示を省略した。また、図8(b)〜図8(d)、図8(f)、図9(g)及び図9(i)〜図9(k)の各変形例においても、第二側ガス入口63に第二側切れ目6a2及び第二側爪状部6a3(ガイド体)が図3と同様に形成されているが、いずれも図示を省略した。
【0064】
以上説明した本発明のセンサの構造は、酸素センサ以外のガスセンサ、例えばHCセンサやNOxセンサなどにも同様に適用することができる。
【図面の簡単な説明】
【図1】本発明のガスセンサの一例を示す酸素センサの正面図及び縦断面図。
【図2】その検出素子としてのセラミック素子の構造を示す説明図。
【図3】図1のプロテクタの構造の詳細を示す部分縦断面図、X−X軸断面図及びY−Y軸断面図。
【図4】ガイド体の作用を示す図3(b)の拡大説明図。
【図5】ガイド体の形状を示す説明図。
【図6】プロテクタの第一変形例を示す部分縦断面図、X−X軸断面図及びY−Y軸断面図。
【図7】プロテクタの第二変形例を示す部分縦断面図、X−X軸断面図及びY−Y軸断面図。
【図8】プロテクタの他のいくつかの変形例を示す縦断面図。
【図9】プロテクタの別のいくつかの変形例を示す縦断面図((e)〜(g),(i)〜(l))及び軸断面図((h))。
【図10】従来のプロテクタの構造を示す断面図。
【図11】円近似による先端P1及び接点P2を求める方法を例示する説明図。
【符号の説明】
1 酸素センサ(ガスセンサ)
2 セラミック素子(検出素子)
D 検出部
6 プロテクタ
6a 第二筒状部
6a2 第二側切れ目(切れ目)
6a3 第二側爪状部(爪状部;ガイド体)
6b 第一筒状部
6b2 第一側切れ目
6b3 第一側爪状部
6s 本体部
6t 縮径部
60,61,61a,61b 第一側ガス入口
62 第一側ガス出口
63,63a,63b 第二側ガス入口
64 第二側ガス出口
EG 排気ガス(被測定ガス)
S ガス導入面
L ガス導入線
L1 ガイド体のガス導入面の先端における接線
L2 ガイド体のガス導入面の基部が第二筒状部の側壁部外面と接する点 と、ガス導入面の先端とを結ぶ直線
La 第二筒状部の側壁部外面
Lb 第一筒状部の側壁部外面
P1 ガイド体のガス導入面の先端
P2 ガイド体のガス導入面の基部が第二筒状部の側壁部外面と接する点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas sensor for detecting a component to be detected in a gas to be measured, such as an oxygen sensor, an HC sensor, and a NOx sensor.
[0002]
[Prior art]
As a gas sensor as described above, one having a structure in which a rod-like or cylindrical detection element having a detection part for detecting a component to be detected formed at the front end is arranged inside a metal casing is known. Such a gas sensor is provided with a protector that covers a detection unit located in the measurement atmosphere. A gas flow hole is formed in the side wall portion of the protector, and a gas to be measured such as exhaust gas is guided from the gas flow hole into the protector and brought into contact with the detector.
[0003]
Recently, in various gas sensors for automobiles, the detector has a protection function against water droplets, oil droplets, dirt, etc. in the measured gas, and against the intrusion of condensed water condensed on the surface of the protector wall or inside the protector. In order to increase the height, a protector having a double structure consisting of two cylindrical parts inside and outside is often used. As shown in FIG. 10, conventionally, in such a protector 106 having a double structure, gas inlets 163 and 161 are formed in the side walls of the inner and outer cylindrical portions 106a and 106b, respectively, and the gas to be measured is first placed on the outer side. It passes through the gas inlet 163 of the cylindrical part 106a and then reaches the detection unit 102 through the gas inlet 161 of the inner cylindrical part 106b.
[0004]
[Problems to be solved by the invention]
By the way, in the protector of the double structure as described above, the protection function of the detection unit is enhanced, but the resistance to the gas flow increases by the double wall part, for example, between the outside of the protector and the protector internal space. In many cases, the exchange rate of the gas to be measured becomes low. For this reason, when the concentration of the component to be measured in the measurement atmosphere changes abruptly, there is a structural problem that the response tends to be delayed.
[0005]
Furthermore, in this case, for example, as shown in FIG. 10, if the gas detection surface DP is formed only on one surface of the laminated body, the following problem occurs. That is, when the measurement gas EG such as exhaust gas flows into the protector 106 from the gas detection surface DP side, the gas flow is likely to reach the gas detection surface DP relatively directly, so that the detection target in the gas is detected. The detection response when the concentration of the component is changed is relatively good. However, for example, when flowing from the opposite side, the gas flow strikes the surface opposite to the detection surface DP of the detection unit 102. Detection response delay is likely to occur. As described above, there is a defect (direction dependency) that the responsiveness and output characteristics of the sensor are likely to change depending on the direction of the gas flow to be measured with respect to the protector.
[0006]
If the protector has a single structure, the exchange rate of the gas inside and outside the protector can be increased, so that the response of the sensor is good, but the protection function for the detector is naturally deteriorated. In addition, if the gas flow rate suddenly increases or the gas temperature decreases, the temperature of the detection unit decreases, causing problems such as inactivation of the oxygen concentration cell element, decreasing detection sensitivity, and interruption of detection output. . In order to increase the gas exchange rate, there is a method of increasing the size of the gas inlet of the double structure protector. However, in this case as well, the same problem as the single structure protector is difficult to avoid. It has been difficult to achieve both compatibility and protective function.
[0007]
The object of the present invention is to further improve the protection function of the detector inherently provided in the multi-structure protector, and to make the sensor response characteristic less dependent on the direction of the gas flow to be measured, and thus to achieve a uniform response at an appropriate level. It is an object of the present invention to provide a gas sensor capable of obtaining the characteristics or output characteristics.
[0008]
[Means for solving the problems and actions / effects]
  In order to solve the above problems, the gas sensor of the present invention provides:
  A protector that covers the detection portion formed on the front end side of the detection element includes a first cylindrical portion and a second cylindrical portion that is disposed substantially coaxially outside the first cylindrical portion,
  A plurality of first side gas inlets are formed along the circumferential direction in the side wall portion of the first cylindrical portion, and a second side gas inlet is formed in the side wall portion of the second cylindrical portion,
  A gas to be measured is introduced into the second side gas inlet between the first cylindrical portion and the second cylindrical portion, and a swirling flow surrounding the outer surface of the side wall portion of the first cylindrical portion is generated. Place a guide body for,
  In a cross section perpendicular to the axis including the second side gas inlet, an extension line (hereinafter referred to as a gas introduction line) of the gas introduction surface of the guide body in the measurement gas introduction direction is a side wall portion of the first cylindrical portion. The side wall portion on the front end side of the first cylindrical portion is formed in a reduced diameter portion having a smaller diameter toward the front end side in the axial direction so as to be spaced apart from the outer surface in the radial direction.It is characterized by that.
[0009]
In the gas sensor of the present invention, the protector has at least a double structure having an inner first cylindrical portion and an outer second cylindrical portion, and is formed on a side wall portion of the second cylindrical portion. A guide body is disposed at the second side gas inlet. The guide body has a function of generating a swirling flow in a state in which the gas to be measured surrounds the outer surface of the side wall portion of the first cylindrical portion, and relatively heavy water droplets / oil are generated by the centrifugal force generated by the swirling flow. Drops and the like are separated from a relatively light gas component and pressed against the inner surface of the side wall portion of the second cylindrical portion. Therefore, even when water or oil droplets are contained in the gas to be measured, these water or oil droplets are less likely to enter the inside of the first cylindrical part (detection part), further improving the protection function for the detection part. To do.
[0010]
A plurality of measured gases are formed along the circumferential direction on the side wall portion of the first cylindrical portion while forming a swirling flow in a state of surrounding the outer surface of the side wall portion of the first cylindrical portion by the guide body of the second side gas inlet From the respective first side gas inlets thus formed, it flows into the inside of the first cylindrical portion. As a result, regardless of the angle of the gas flow to be measured about the axis of the protector, a uniform response or output can be obtained regardless of the direction of the gas flow to be measured. This is especially when the gas detection surface is formed along a part of the circumferential direction of the outer peripheral surface of the detection unit, or when the gas detection surface is formed on one side in a plate shape. It works as a particularly advantageous effect.
[0011]
Here, it is preferable that the guide body is integrally extended toward the radially inner side from the side wall portion of the second cylindrical portion. The structure of this guide body makes it difficult for water and oil droplets in the gas to be measured to enter the protector and prevents the flow of the gas to be measured, thus further improving the protection function and sensor response characteristics for the detector. To do. Such a guide body can be configured by creating a curved cut in the side wall portion of the second cylindrical portion and bending the claw-like portion generated by the cut inward in the radial direction.
[0012]
Furthermore, in this invention, a 1st side gas inlet can be arrange | positioned in the axial direction rear end side rather than a 2nd side gas inlet. Thus, since the first side gas inlet and the second side gas inlet are formed apart from each other in the axial direction, it is difficult for water droplets / oil droplets or the like in the measured gas to enter the first cylindrical portion. In addition, the condensed water generated inside the second cylindrical portion is less likely to flow into the inner side (detecting portion) of the first cylindrical portion, thereby further improving the protection function for the detecting portion.
[0013]
In the present invention, in the cross section perpendicular to the axis including the second side gas inlet, an extension line (hereinafter referred to as a gas introduction line) of the gas introduction surface of the guide body in the measurement gas introduction direction is a side wall of the first cylindrical portion. It is good to be located away from the outer surface in the radial direction. That is, since the gas introduction line does not touch or intersect the outer surface of the side wall portion of the first cylindrical portion, relatively heavy water droplets, oil droplets, etc. are caused by the centrifugal force generated with the swirling flow in the second cylindrical portion. It is pressed against the inner surface of the side wall and flows down along the wall surface, while the remaining relatively light gas component is separated from water and oil droplets and introduced into the inside (detection unit) of the first cylindrical part (centrifugation) Action), water droplets, oil droplets, etc. in the gas to be measured can be effectively prevented from entering the inside of the first cylindrical portion. In addition, since the gas introduction line does not contact or intersect the outer surface of the side wall portion of the first cylindrical portion, the moisture in the gas to be measured is unlikely to condense on the outer surface of the side wall portion of the first cylindrical portion. Intrusion into the inside of one cylindrical part can be prevented. These various functions enhance the protection function for the detection unit.
[0014]
The gas introduction line of the present invention is defined as an extension line of the gas introduction surface of the guide body in the measurement gas introduction direction in an axial orthogonal cross section including the second side gas inlet. Here, when the gas introduction surface of the guide body is constituted by a single plane (a single straight line in the axial orthogonal cross section), the gas introduction line is uniquely defined. On the other hand, when the gas introduction surface of the guide body is composed of a plurality of planes or a single or a plurality of curved surfaces, the gas introduction line may not be uniquely defined, and various expression methods are selected in the present invention. it can. Here, the following two methods that are relatively general are exemplified as a method for expressing the gas introduction line.
(1) The gas introduction line is represented by a tangent at the tip of the gas introduction surface of the guide body in an axial orthogonal cross section including the second side gas inlet.
(2) The gas introduction line includes a point where the base of the gas introduction surface of the guide body is in contact with the outer surface of the side wall of the second cylindrical portion and the tip of the gas introduction surface in an axial orthogonal section including the second side gas inlet. Represented by a straight line connecting.
[0015]
Further, the present invention provides the first cylindrical portion of the first cylindrical portion so that the gas introduction line is positioned radially outward from the outer surface of the side wall portion of the first cylindrical portion in the axial orthogonal cross section including the second side gas inlet. The side wall portion on the front end side can be formed into a reduced diameter portion having a smaller diameter toward the front end side in the axial direction. By forming the front end side of the first cylindrical portion facing the second side gas inlet as a reduced diameter portion, the opening of the second side gas inlet until the gas introduction line contacts the outer surface of the side wall portion of the first cylindrical portion. Since the width can be increased and the exchange rate (circulation amount) of the gas to be measured can be increased, the sensor response characteristics can be improved.
[0016]
Next, in the side wall portion on the front end side of the first cylindrical portion of the present invention, a reduced diameter portion having a smaller diameter toward the front end in the axial direction is formed, and the first side gas is formed on the front end surface of the first cylindrical portion. An outlet can be formed. The measured gas flow surrounds the outer surface of the side wall portion of the first cylindrical portion and turns while flowing in the reduced diameter portion toward the front end side in the axial direction. Since the inside of the shaped portion is in a reduced pressure state and the gas to be measured is rapidly sucked from the first side gas inlet, sufficient responsiveness can be ensured regardless of the multiple structure protector.
[0017]
In the present invention, the “reduced diameter portion” means that when the first cylindrical portion is cut along a plane including the axis, the cross section of the reduced diameter portion may be formed linearly or outward or inward. You may form in the curved surface shape of direction.
[0018]
Specifically, the first cylindrical portion can be configured as a truncated cone-shaped reduced diameter portion integrated with the distal end side of the cylindrical main body portion. For example, when the total length of the first cylindrical portion is defined, the inclination angle of the outer surface of the reduced diameter portion is adjusted, for example, by the first side gas outlet by adjusting the length of the cylindrical main body portion formed on the rear end side. It is possible to easily set a value convenient for generating a negative pressure in
[0019]
And the 2nd side gas inlet_port | entrance of this invention can be arrange | positioned in the position facing the reduced diameter part of a 1st cylindrical part. A second side gas inlet is formed at a position facing the reduced diameter portion in the side wall portion of the second cylindrical portion, and the gas to be measured flowing from the second side gas inlet surrounds the outer surface of the side wall portion of the reduced diameter portion. However, it flows toward the front end side in the axial direction. In this configuration, the second side gas inlet and the reduced diameter portion are arranged to face each other, and the flow velocity of the gas to be measured flowing toward the front end in the axial direction while turning around the reduced diameter portion is increased. The negative pressure generated on the side gas outlet side can be further increased. As a result, the suction speed of the gas to be measured from the first side gas inlet, and hence the exchange speed of the gas to be measured in the first cylindrical portion, are improved, and the detection response or the output follow-up performance with respect to the concentration change is further improved. .
[0020]
  In addition,the aboveSecond side gas inletThe, Arranged at a position closer to the front end in the axial direction than the front end of the reduced diameter portion of the first cylindrical portionDoIn this case, since the first cylindrical portion (reduced diameter portion) corresponding to the second side gas inlet does not exist in the axis orthogonal cross section including the second side gas inlet, the opening width of the second side gas inlet is increased. By setting it widely, the exchange speed (circulation amount) of the gas to be measured can be increased, and the sensor response characteristics can be greatly improved.
[0021]
Furthermore, when the second side gas outlet is formed on the front end surface of the second cylindrical portion of the present invention, the measurement target flows toward the front end in the axial direction while turning around the outer surface of the side wall portion of the first cylindrical portion. The gas flow can be smoothly discharged from the second side gas outlet, and a stable sensor response characteristic is ensured.
[0022]
In addition, in the cross section orthogonal to the axis, the second side gas outlet of the second cylindrical portion of the present invention is located radially away from the first side gas outlet formed on the front end surface of the first cylindrical portion. Can be made. Even if water droplets, oil droplets, etc. in the gas to be measured enter from the second side gas outlet, the first side gas outlet does not overlap with the second side gas outlet in the cross section perpendicular to the axis. There is little risk of passing through and entering the internal detection unit, and the protection function for the detection unit is exhibited.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to examples shown in the drawings.
FIG. 1 shows an oxygen sensor 1 for detecting the oxygen concentration in exhaust gas of an automobile or the like as an embodiment of the gas sensor of the present invention. This oxygen sensor is commonly called a λ-type oxygen sensor, and has a structure in which an elongated plate-like ceramic element 2 (detection element) is fixed to the metal shell 3. A high-temperature exhaust gas serving as a gas to be measured flowing in the exhaust pipe is attached so that the front end side detection part D is positioned in the exhaust pipe by an attachment screw part 3a formed on the outer peripheral surface of the metal shell 3. Be exposed to EG. In the present specification, the projecting side of the detection portion D in the axial direction of the metal shell 3 is described as “front side (or front end side)” and the opposite side is described as “rear side (or rear end side)”. .
[0024]
The ceramic element 2 has a rectangular axial cross section, and as shown in FIG. 2A, each of the oxygen concentration cell element 21 formed in a horizontally long plate shape and the oxygen concentration cell element 21 at a predetermined activation temperature. The heater 22 for heating is laminated. The oxygen concentration cell element 21 is composed of an oxygen ion conductive solid electrolyte mainly composed of zirconia or the like. On the other hand, the heater 22 is composed of a known ceramic heater.
[0025]
In the oxygen concentration cell element 21, electrode leads 25 a and 26 a extending toward the attachment base end side of the oxygen sensor 1 along the longitudinal direction are integrated with the porous electrodes 25 and 26, respectively. Among these, the terminal end of the electrode lead portion 25 a from the electrode 25 on the side not facing the heater 22 is used as the electrode terminal portion 7. On the other hand, as shown in FIG. 2C, the electrode lead portion 26a of the electrode 26 on the side facing the heater 22 is formed on the element surface on the opposite side by a via 26b that crosses the oxygen concentration cell element 21 in the thickness direction. The electrode terminal portion 7 is connected. In other words, the oxygen concentration cell element 21 is formed such that the electrode terminal portions 7 of the porous electrodes 25 and 26 are formed side by side at the end of the plate surface on the electrode 25 side. Each of the electrodes, electrode terminal portions, and vias is obtained by forming a pattern by screen printing or the like using a metal powder paste having catalytic activity of oxygen molecule dissociation reaction, such as Pt or Pt alloy, and firing the pattern. Is.
[0026]
On the other hand, lead portions 23a and 23a for energizing the resistance heating element pattern 23 of the heater 22 are also formed at the end of the plate surface on the side not facing the oxygen concentration cell element 21 of the heater 22, as shown in FIG. The electrode terminal portions 7 and 7 are connected via vias 23b. As shown in FIG. 2B, the oxygen concentration cell element 21 and the heater 22 are made of ZrO.2Ceramic or Al2O3They are bonded to each other via a ceramic layer 27 such as a system ceramic. In the oxygen concentration cell element 21, the porous electrode (oxygen reference side porous electrode) 26 on the joining side functions as an oxygen reference electrode by applying a minute pumping current, while the porous electrode 25 on the opposite side exhausts. It becomes a detection side electrode which contacts gas, The surface becomes a gas detection surface.
[0027]
Returning to FIG. 1, the ceramic element 2 is inserted into the insertion hole 30 of the insulator 4 disposed inside the metal shell 3, and the detection portion D on the front end side protrudes from the front end of the metal shell 3 fixed to the exhaust pipe. In this state, it is fixed in the insulator 4. One end of the insulator 4 communicates with the rear end of the insertion hole 30 in the axial direction, the other end opens at the rear end surface of the insulator 4, and the axial section has a larger gap 31 than the insertion hole 30. Is formed. And between the inner surface of the space | gap part 31 and the outer surface of the ceramic element 2, it seals with the sealing material layer 32 comprised mainly by glass (for example, crystallized zinc silica boric acid type glass).
[0028]
A talc ring 36 and a caulking ring 37 are fitted between the insulator 4 and the metal shell 3 so as to be adjacent to each other in the axial direction, and the rear end side outer peripheral portion of the metal shell 3 is insulated via the caulking ring 37. The insulator 4 and the metal shell 3 are fixed by caulking to the body 4 side.
[0029]
In addition, a ceramic separator 16 and a grommet 15 are fitted inside the rear end portion of the outer cylinder 18, and subsequently, a connector portion 13 is provided further inwardly thereof. The rear end side of the lead wire 14 extends through the ceramic separator 16 to the outside. On the other hand, the front end side of the lead wire 14 is electrically connected to each electrode terminal portion 7 (four electrodes are collectively referred to) of the ceramic element 2 shown in FIG.
[0030]
A protector 6 that covers the protruding portion of the ceramic element 2, that is, the detection portion D, is attached to the front end of the metal shell 3. The protector 6 has an inner first cylindrical portion 6b and an outer second cylindrical portion 6a, and has a double structure arranged substantially coaxially. As shown in FIG. 3, the first cylindrical portion 6 b is formed in a cylindrical shape surrounding the detection portion D around the axis of the detection element 2, and a plurality of first gas inlets are provided in the side wall portion at predetermined intervals in the axial direction. On the other hand, a tapered diameter-reduced portion 6t is formed on the axially front end side of the side wall portion, and a first gas outlet 62 is formed at the center of the front end face of the reduced-diameter portion 6t. . Specifically, the reduced diameter portion 6t is integrally formed in a truncated cone shape on the front end side of the cylindrical main body portion 6s. The first gas inlets 60 and 61 include a plurality of sets of holes (60 and 61) arranged at almost equal intervals along the circumferential direction of the main body 6s. In the present embodiment, a rear-side hole set 60 including four holes in which a first-side claw-like portion 6b3 described later is formed, and a front-side hole set 61 including four circular openings are provided. Two rows are formed in the axial direction of the main body 6s.
[0031]
Further, the second cylindrical portion 6a has a cylindrical shape that is disposed outside the first cylindrical portion 6b so as to form a predetermined amount of gap G between the second cylindrical portion 6b and the first cylindrical portion 6b. Is located in front of the front end of the first cylindrical portion 6b. A plurality of (four in this embodiment) second-side gas outlets 64 are formed on the front end face of the second cylindrical portion 6a at regular intervals on a predetermined pitch circle. Each of the second side gas outlets 64 is located radially away from the first side gas outlet 62 formed at the center of the front end face of the first cylindrical portion 6b in the axial orthogonal cross section. . By disposing the first side gas outlet 62 and the second side gas outlet 64 in this manner, it may hinder the discharge of the measurement gas EG from the first side gas outlet 62 formed at the center. In addition, the possibility that water droplets / oil droplets or the like in the measurement gas EG entering from the second side gas outlet 64 will enter the internal detection unit D through the first side gas outlet 62 is reduced.
[0032]
Further, the second cylindrical portion 6a is formed in a cylindrical shape having a bottom portion 6f formed at the front end, and is located near the front end of the side wall portion and corresponding to the reduced diameter portion 6t constituting the first cylindrical portion 6b. A plurality (six in this embodiment) of second gas inlets 63 are formed at substantially equal intervals in the circumferential direction. Here, the second side gas inlet 63 is in a positional relationship that does not face any of the first side gas inlets 60 and 61. Thus, the gas to be measured EG is prevented from flowing directly into the first gas inlets 60 and 61 by the second cylindrical portion 6a.
[0033]
Of the two rows of hole sets 60, 61 forming the first gas inlet, the front one (61) is closer to the front end side in the axial direction than the detector D and more than the second gas inlet 63. It is located on the rear end side in the axial direction, and the rear one (60) is located so as to surround the detection part D. Incidentally, the exhaust gas flow EG may contain poisonous substances such as phosphorus, sulfur, and silicon in addition to water droplets of condensed water. However, even if such an exhaust gas flow EG may enter the first cylindrical portion 6b through the hole row 60 or 61, the gas that enters from the hole row 61 is carried on the gas flow as it is. The probability of being discharged from the outlet 62 is high, and water droplets and poisonous substances are dispersed, so that the protection function of the detection unit D can be enhanced.
[0034]
Next, as shown in FIG. 1, the front end side of the metal shell 3 is slightly reduced in diameter relative to the mounting screw portion 3a to form a small diameter portion 3b. And as shown in FIG. 3, the cylindrical positioning protrusion part 3c which protrudes from the opening peripheral part is formed in the front-end surface of the small diameter part 3b. The first cylindrical portion 6b is positioned by the positioning protrusion 3c, and the enlarged diameter portion 6g formed on the opening side is fitted outside the small diameter portion 3b of the metal shell 3. On the other hand, the second cylindrical portion 6a is fitted into the small-diameter portion 3b of the metal shell 3 from the outside of the large-diameter portion 6g of the first cylindrical portion 6b in the rear end side opening, and is welded in the circumferential direction together with the large-diameter portion 6g. It is fixed to the small diameter portion 3b by 65 (for example, a spot welded portion formed intermittently or a laser welded portion formed in a continuous annular shape).
[0035]
The oxygen sensor 1 is fixed to the exhaust pipe of the vehicle at the mounting screw portion 3a. When the detection part D is exposed to the exhaust gas EG, the porous electrode 25 (FIG. 2) of the oxygen concentration cell element 21 comes into contact with the exhaust gas EG, and the oxygen concentration cell element 21 has an oxygen concentration in the exhaust gas EG. Oxygen concentration cell electromotive force is generated according to the above. This electromotive force is taken out as a sensor output. Since the protector 6 has a double structure as described above, it has an excellent protection function for the detection unit D.
[0036]
Returning to FIG. 3 again, in the side wall portion of the second cylindrical portion 6a, a curved shape (a shape extending from one base end portion 6a0 and changing direction by the direction changing portion 6a1 and then reaching the other base end portion 6a0 ′). ) Cut (second side cut) 6a2 is created by cutter cutting, die punching, etc., and the second claw-like portion 6a3 (claw-like portion) generated by this cut 6a2 is bent inward in the radial direction. At the same time, the second side gas inlet 63 is formed in the side wall portion of the second cylindrical portion. In the axial orthogonal cross section including the second gas inlet 63 (FIG. 3B), the gas introduction surface S of the second claw-like portion 6a3 is a curved surface that is convex toward the opening of the second gas inlet 63. The gas introduction line L is configured to be spaced apart radially outward from the side wall outer surface (side wall outline) Lb of the first cylindrical portion 6b.
[0037]
On the other hand, also in the side wall portion of the first cylindrical portion 6b, a cut of a curved shape (a shape extending from one base end portion 6b0 and changing direction by the direction changing portion 6b1 and then reaching the other base end portion 6b0 ′). (First side cut) 6b2 is formed by cutter cutting, die punching, etc., and the first claw-like portion 6b3 generated by the first side cut 6b2 is bent radially inward to form the first side gas inlet 60. , 61, a rear hole set 60 is formed. In the cross-section perpendicular to the axis including the first gas inlet 60 (FIG. 3C), the gas introduction surface S ′ of the first claw-shaped portion 6b3 is a convex curved surface toward the opening of the first gas inlet 60. The gas introduction line L ′ is positioned so as to be spaced radially outward from the outer surface of the side wall of the detection unit D.
[0038]
Here, the flow of the exhaust gas EG in the protector 6 will be mentioned. After the exhaust gas EG introduced into the protector 6 from the second side gas inlet 63 flows from the rear end side toward the front end side along the outer surface of the reduced diameter portion 6t of the first cylindrical portion 6b, It flows out from the side gas outlet 64. For this reason, since the flow velocity of the gas along the reduced diameter portion 6t is increased, the negative pressure generated at the first side gas outlet 62 can be further increased. As a result, the suction speed of the exhaust gas EG from the first side gas inlets 60 and 61, and hence the replacement speed of the exhaust gas EG in the first cylindrical portion 6b are improved, and the detection response or the output follow-up performance with respect to the concentration change. Is even better. Further, the exhaust gas flow EG introduced from the second side gas inlet 63 generates a swirling flow by the second side claw-shaped portion 6a3, and this swirling flow surrounds the reduced diameter portion 6t of the first cylindrical portion 6b. It flows and flows out from the second side gas outlet 64. Due to the generation of this swirling flow, water droplets, oil droplets and the like are less likely to enter the inside of the first cylindrical portion 6b, and the protection function for the detection portion D is excellent.
[0039]
The inside of the first cylindrical portion 6b is sucked by the negative pressure generated at the first side gas outlet 62, and at this time, the exhaust gas EG is along the side wall portion of the first cylindrical portion 6b by the first side claw-like portion 6b3. It is swirled and sucked approximately isotropically. As a result, a uniform swirling flow of the exhaust gas EG is generated so as to surround the detection unit D around the axis of the protector 6, and uniform response or output is obtained. In addition, since the first claw-shaped portion 6b3 overlaps the first-side gas inlet 60 in a flap shape, it is difficult for water droplets / oil droplets or the like to enter the first cylindrical portion 6b. Further, the swirl flow surrounding the detection unit D makes it difficult to directly contact the detection unit D even when water droplets, oil droplets, or the like enter the inside of the first cylindrical portion 6b, and the protection function for the detection unit D is excellent.
[0040]
As a result of the formation of the exhaust gas flow EG, the exhaust gas EG is supplied to the detector D in a substantially isotropic manner regardless of the angle of the exhaust gas flow EG around the axis of the protector 6. Therefore, uniform response or output characteristics can be obtained regardless of the direction of the exhaust gas flow EG. Further, since the first side gas outlet 62 becomes negative pressure, the exhaust gas EG sucked from the first side gas inlets 60 and 61 makes a comparison along the surface (gas detection surface) of the detection side porous electrode 25. Since a large exhaust gas flow EG can be formed, good output followability can be obtained even when the rich atmosphere is changed to the lean atmosphere.
[0041]
The shape of the second side or first side cuts 6a2 and 6b2 can be appropriately changed to a U shape, a U shape, or the like. Further, the number of the cut lines 6a2 and 6b2, the position of the folding line, the folding direction, and the like can be changed. Further, the first claw-like portion 6b3 is detected in addition to or in place of the set of holes 60 arranged in a form facing the detection portion D in the first side gas inlets 60 and 61. You may form in the hole 61 of a group located in the axial direction front end side rather than the front end of the part D. FIG.
[0042]
Here, the gas introduction surface S and the gas introduction line L of the guide body (second claw-like portion 6a3) will be described with reference to FIG. 4 which is an enlarged view of FIG. In this specification, the gas introduction line L refers to “introduction of exhaust gas EG (measured gas) on the gas introduction surface S of the second claw-shaped portion 6a3 (guide body) in the cross-section perpendicular to the axis including the second gas inlet 63”. Defined as "extension line in direction". By the way, this gas introduction line L is "the first cylindrical part along the gas introduction surface S of the second claw-like part 6a3 through the second side gas inlet 63 in the axial orthogonal cross section including the second side gas inlet 63. In other words, it can be referred to as a “trajectory drawn by the exhaust gas EG flowing between 6b and the second cylindrical portion 6a”.
[0043]
In FIG. 4, the gas introduction line L is expressed by the following two methods. (1) The gas introduction line L is represented by a tangent L1 (hereinafter referred to as a tangent L1) at the tip P1 of the gas introduction surface S of the second claw-like portion 6a3 in an axial orthogonal cross section including the second side gas inlet 63. The
(2) The gas introduction line L has a base portion of the gas introduction surface S of the second claw-shaped portion 6a3 in contact with the outer surface La of the side wall portion of the second cylindrical portion 6a in an axial orthogonal cross section including the second side gas inlet 63. It is represented by a straight line L2 (hereinafter referred to as a straight line L2) connecting the point P2 and the tip P1 of the gas introduction surface S.
[0044]
In FIG. 4, since the gas introduction surface S of the second claw-shaped portion 6a3 is composed of a plurality of curved surfaces, the tangent L1 and the straight line L2 are represented by different lines. When the gas introduction surface S is constituted by a single plane (a single straight line on the axial orthogonal cross-sectional view), the tangent line L1 and the straight line L2 coincide with each other in FIG. Generally, the straight line L2 is expressed as an average of the inlet direction line and the outlet direction line of the exhaust gas EG (the outlet direction line corresponds to the tangent line L1). In many cases, the cylindrical portion 6b is positioned farther outward in the radial direction than the outer surface Lb of the side wall portion (that is, closer to the inner surface of the side wall portion of the second cylindrical portion 6a).
[0045]
In any case, as shown in FIG. 4, the gas introduction line L (tangent line L1 or straight line L2) is located farther outward in the radial direction than the side wall portion outer surface Lb of the first cylindrical portion 6b. This fulfills the following functions. That is, since the gas introduction line L (tangent line L1 or straight line L2) does not touch or cross the side wall portion outer surface Lb of the first cylindrical portion 6b, accompanying the swirling flow surrounding the side wall portion outer surface of the first cylindrical portion 6b. Due to the generated centrifugal force, relatively heavy water droplets, oil droplets, etc. WD are pressed against the inner surface of the side wall of the second cylindrical portion 6a and flow down along the wall surface, while the remaining relatively light gas component is water droplets / oil. Drops and other WDs are separated and introduced to the inside (detection part D) of the first cylindrical part 6b (centrifugal action), and the effect of intrusion of WD such as water and oil drops in the exhaust gas EG into the protector 6 is effective. Can be prevented. Further, since the gas introduction line L (tangent L1 or straight line L2) does not contact or intersect the outer surface Lb of the side wall portion of the first cylindrical portion 6b, the moisture in the exhaust gas EG does not cross the side wall portion of the first cylindrical portion 6b. It is difficult to condense on the outer surface, and condensate water can be prevented from entering the protector 6. By these various actions, the protection function for the detection unit D is strengthened.
[0046]
FIG. 5 illustrates an axial orthogonal cross-sectional shape of the guide body (second claw-like portion 6a3).
When the gas introduction surface S of the second claw-like portion 6a3 is formed by a single plane (single straight line on the axial orthogonal sectional view) as shown in FIG. 5A, the tangent line L1 and the straight line L2 Will match. Next, as shown in FIG. 5B, the gas introduction surface S of the second claw-like portion 6a3 is formed of a single curved surface such as a spherical arc (a single curve such as an arc on the axis orthogonal sectional view). In this case, the straight line L2 opens outward in the radial direction from the tangent line L1.
[0047]
Further, as shown in FIG. 5C, the gas introduction surface S of the second claw-shaped portion 6a3 is bent to the inner side in the radial direction toward the distal end (a plurality of straight lines on the axial orthogonal sectional view) or a plurality of curved surfaces (the shafts). In the case of being configured with a plurality of curves on the orthogonal sectional view, the straight line L2 opens outward in the radial direction from the tangent line L1. However, depending on the shape and the like of the cutter that creates the second side cut 6a2, only the tip of the gas introduction surface S of the second side claw-like portion 6a3 is bent sharply inward in the radial direction as shown in FIG. In some cases, it may be composed of a plurality of flat surfaces or a plurality of curved surfaces. In such a case, water droplets, oil droplets, etc. WD on the gas introduction surface S of the second claw-like portion 6a3 are blown off on the extension line of the gas introduction surface S that is currently on, together with the exhaust gas EG. For example, the bent end portion 6a3 ′ may not be considered as the gas introduction surface S.
[0048]
Further, as shown in FIG. 5 (e), a plurality of planes (a plurality of straight lines in the cross-sectional view orthogonal to the axis) or a plurality of curved surfaces in which the gas introduction surface S of the second claw-shaped portion 6a3 is bent radially outward from the middle to the tip. In the case of being configured by (a plurality of curves on the axial orthogonal cross-sectional view), the tangent line L1 opens outward in the radial direction from the straight line L2. However, depending on the shape of the cutter that creates the second side cut 6a2, only the tip of the gas introduction surface S of the second claw-like portion 6a3 bends radially outward as shown in FIG. 5 (f). In some cases, it may be composed of a plurality of flat surfaces or a plurality of curved surfaces that protrude as burrs. In such a case, water droplets, oil droplets, etc. WD on the gas introduction surface S of the second claw-like portion 6a3 are blown off on the extension line of the gas introduction surface S that is currently on, together with the exhaust gas EG. For example, the bent end portion or the burr portion 6a3 ″ may not be considered as the gas introduction surface S.
[0049]
Although the shape of the guide body (second claw-like portion 6a3) has been described with reference to FIG. 5, the actual second claw-like portion 6a3 may have a more complicated shape, and the second cylindrical portion 6a may have a more complicated shape. The side wall portion outer surface La may not be a perfect circle. In particular, the tip P1 (hereinafter referred to as the tip P1) of the gas introduction surface S of the second claw-like portion 6a3 and / or the base of the gas introduction surface S of the second claw-like portion 6a3 is the second cylindrical portion 6a. When it is difficult to determine a point P2 (hereinafter referred to as a contact P2) that contacts the side wall portion outer surface La, there may be a case where the tangent line L1 or the straight line L2 cannot be drawn. Therefore, in such a case, for example, the tip P1 and the contact point P2 can be obtained by circular approximation described below.
[0050]
In FIG. 11, a search circle C that is closest to the side wall portion outer surface La of the second cylindrical portion 6a (for example, a circumscribed circle of the side wall portion outer surface La can be selected, O being the center of the search circle and R being the search circle radius). The contact point P2 can be defined as 98% of the search circle radius R on the gas introduction surface S at the approach position between the side wall portion outer surface La and the base portion of the gas introduction surface S. On the other hand, when a burr portion 6a3 ″ is formed projecting radially outward at the tip of the second claw-like portion 6a3, the joint between the base portion of the burr portion 6a3 ″ and the gas introduction surface S is defined as the tip P1. be able to. Therefore, a tangent line L1 passing through the tip P1 and a straight line L2 connecting the tip P1 and the contact point P2 are obtained.
[0051]
Hereinafter, modified examples of the protector 6 will be described. In addition, the same code | symbol is attached | subjected to the part which is common in the Example of FIG. 3, and description is abbreviate | omitted.
[0052]
First, FIG. 6 shows a first modification of the protector 6. In the embodiment of FIG. 6, eight second side gas inlets 63 are formed at substantially equal intervals in the circumferential direction on the side wall portion of the second cylindrical portion 6a. The gas introduction surface S of the second claw-like portion 6a3 formed in each second gas inlet 63 has a flat shape as compared with the embodiment of FIG. 3 (however, it is not a flat surface but a gentle curved surface). Therefore, the gas introduction line L is located farther radially outward than FIG. 3 with respect to the outer surface Lb of the side wall portion of the first cylindrical portion 6b. Therefore, the centrifugal force generated with the swirling flow becomes larger, so that water droplets / oil droplets are quickly separated, and the moisture in the gas EG to be measured becomes more difficult to condense on the outer surface of the side wall portion of the first cylindrical portion 6b. . In the embodiment of FIG. 6, the front-side hole set 61 in the first-side gas inlet is omitted, so the gas to be measured EG that flows from the hole-set 61 into the first cylindrical portion 6b. There is no flow.
[0053]
Next, FIG. 7 shows a second modification of the protector 6. In the embodiment of FIG. 7, the second side gas inlet 63 is formed at a position closer to the front end in the axial direction than the front end of the reduced diameter portion 6t of the first cylindrical portion 6b. In the axial orthogonal cross section including the second side gas inlet 63, the first cylindrical portion 6b (the reduced diameter portion 6t) corresponding to the second side gas inlet 63 does not exist. Therefore, the second claw-like portion 6a3 can be set so that the gas introduction line L passes near the axial center of the protector 6 by bending the second claw-like portion 6a3 greatly inward in the radial direction as compared with the embodiment of FIG. As a result, the opening width of the second side gas inlet 63 is widened, and the exchange rate (circulation amount) of the measurement gas EG is increased.
[0054]
8 and 9 show some other modifications of the protector 6. In addition, the same code | symbol is attached | subjected to the part which is common in the Example of FIG. 3, and description is abbreviate | omitted.
[0055]
In the protector 6 of FIG. 8A, the second side gas inlet is formed in two rows of 63b and 63a at a position corresponding to the reduced diameter portion 6t. As a result, the gas flow along the outer surface of the reduced diameter portion 6t becomes smooth, the response is improved, and it is less susceptible to the influence of the direction of the gas flow. In FIG. 8A, the diameter of the front end side of the first cylindrical portion 6b is reduced by the circumferential step portion 6h, thereby forming a gap G between the second cylindrical portion 6a. . The rear end portion of the first cylindrical portion 6 b is fitted into the small diameter portion 3 b of the metal shell 3. Then, the rear end portion of the second cylindrical portion 6a is fitted so as to be overlapped on the outer side, and is fixed to the small diameter portion 3b by a welding portion (not shown) together with the first cylindrical portion 6b in the overlapping portion. Yes.
[0056]
In FIG. 8B, a third cylindrical shape is formed so as to cover the first side gas inlet 60 (only one row is formed on the rear end side) between the first cylindrical portion 6b and the second cylindrical portion 6a. It has a triple structure provided with a portion 6c. Thereby, intrusion of water droplets, oil, dirt, or the like into the inside of the first cylindrical portion 6b is further less likely to occur.
[0057]
Moreover, in FIG.8 (c), while covering the back end side in the outer side of the 2nd cylindrical part 6a, the 3rd cylindrical part 6c is arrange | positioned in the form which does not cover the 2nd side gas inlet 63. FIG. Thereby, when the gas flow rate rises rapidly, the temperature drop of the detection part D is prevented more effectively. Furthermore, in FIG.8 (d), the 3rd cylindrical part 6c is extended to the position of the 2nd side gas inlet 63, and the 3rd side gas inlet 66 is formed in the corresponding position. Thereby, intrusion of water droplets, oil, dirt, or the like into the inside of the first cylindrical portion 6b is further less likely to occur.
[0058]
FIG. 8E shows an example in which the airflow guide 6w (guide body) is formed in a form protruding inward from the inner surface of the side wall portion of the second cylindrical portion 6a along the peripheral edge of the second side gas inlet 63. ing. As a result, the exhaust gas EG can be introduced between the first cylindrical portion 6b and the second cylindrical portion 6a, and a swirling flow around the reduced diameter portion 6t can be generated. The flow of the exhaust gas EG is less likely to be disturbed, and the responsiveness of the sensor 1 is further less affected by the direction of the exhaust gas flow EG.
[0059]
FIG. 8F shows an example in which a reduced diameter portion 6u is also formed on the front end side of the second cylindrical portion 6a. Thereby, the suction effect of the gas flowing into the protector 6 is enhanced, and the responsiveness of the sensor 1 becomes less susceptible to the influence of the direction of the exhaust gas flow EG.
[0060]
Moreover, as shown in FIG.9 (g), you may form the cylindrical linear part 6v further in the front-end side of the diameter reducing part 6t of the 1st cylindrical part 6b. On the other hand, as shown in FIG.9 (h), the 2nd cylindrical part 6a may form an axial cross section in polygonal shape.
[0061]
Moreover, as shown to FIG. 9 (i) and (j), the 1st cylindrical part 6b is good also considering the substantially whole outer surface as the reduced diameter part 6t. As shown in FIG. 9I, the reduced diameter portion 6t may have a substantially linear cross section (in this case, the outer surface shape of the reduced diameter portion 6t is a truncated cone shape), As shown in FIG. 9 (j), it may be a curved surface projecting outward (in this case, the outer surface shape of the reduced diameter portion 6t is spindle-shaped). Furthermore, as shown in FIG. 9 (k), the front end side of the reduced diameter portion 6t of the first cylindrical portion 6b may be protruded from the bottom portion 6f of the second cylindrical portion 6a. In this case, the second side gas outlet 64 is formed in an annular shape between the outer surface of the reduced diameter portion 6t and the opening inner edge of the bottom portion 6f.
[0062]
Further, in the embodiment of FIG. 9 (l), the outer diameter of the distal end portion of the first cylindrical portion 6b is formed to be the same diameter as the outer diameter of the main body portion 6s. Further, the first side gas inlet is composed of a set of three rows of holes 60, 61a, 61b, of which the rear side (60) is arranged in a form facing the detector D. The front hole group is arranged in a form facing the second gas inlet 63 (61a) and the middle hole between the two hole groups (60) and 61a. (61b).
[0063]
In addition, in the modification of FIG. 8A, the above-mentioned second side cut 6a2 and second side claw-like portion 6a3 (guide) are provided in at least one, preferably both, of the two front and rear rows of the second side gas inlets 63a and 63b. The body) is formed in the same manner as in FIG. 3, but the illustration is omitted. 8B to 8D, FIG. 8F, FIG. 9G, and FIG. 9I to FIG. 9K, the second side gas inlet 63 is also used. Further, the second side cut 6a2 and the second side claw-like portion 6a3 (guide body) are formed in the same manner as in FIG.
[0064]
The structure of the sensor of the present invention described above can be similarly applied to gas sensors other than oxygen sensors, such as HC sensors and NOx sensors.
[Brief description of the drawings]
FIG. 1 is a front view and a longitudinal sectional view of an oxygen sensor showing an example of a gas sensor of the present invention.
FIG. 2 is an explanatory view showing the structure of a ceramic element as the detection element.
3 is a partial longitudinal sectional view showing details of the structure of the protector shown in FIG. 1, an XX axis sectional view, and a YY axis sectional view.
FIG. 4 is an enlarged explanatory view of FIG. 3B showing the operation of the guide body.
FIG. 5 is an explanatory view showing the shape of a guide body.
FIG. 6 is a partial vertical cross-sectional view, a cross-sectional view along the XX axis, and a cross-sectional view along the Y-Y axis showing a first modification of the protector.
FIG. 7 is a partial vertical cross-sectional view, a cross-sectional view along the XX axis, and a cross-sectional view along the Y-Y axis showing a second modification of the protector.
FIG. 8 is a longitudinal sectional view showing some other modifications of the protector.
FIG. 9 is a longitudinal sectional view ((e) to (g), (i) to (l)) and an axial sectional view ((h)) showing another modification of the protector.
FIG. 10 is a cross-sectional view showing the structure of a conventional protector.
FIG. 11 is an explanatory diagram illustrating a method for obtaining a tip P1 and a contact P2 by circular approximation.
[Explanation of symbols]
1 Oxygen sensor (gas sensor)
2 Ceramic element (detection element)
D detector
6 Protector
6a Second cylindrical part
6a2 Second side cut (cut)
6a3 2nd claw-shaped part (claw-shaped part; guide body)
6b 1st cylindrical part
6b2 First side cut
6b3 first claw-shaped part
6s body part
6t reduced diameter part
60, 61, 61a, 61b First side gas inlet
62 First side gas outlet
63, 63a, 63b Second side gas inlet
64 Second side gas outlet
EG Exhaust gas (measured gas)
S Gas introduction surface
L Gas introduction line
L1 Tangent at the tip of the gas introduction surface of the guide body
L2 A straight line connecting the point where the base of the gas introduction surface of the guide body is in contact with the outer surface of the side wall of the second cylindrical portion and the tip of the gas introduction surface
La Side wall outer surface of the second cylindrical part
Lb Side wall outer surface of the first cylindrical part
P1 Tip of gas introduction surface of guide body
The base of the gas introduction surface of the P2 guide body is in contact with the outer surface of the side wall of the second cylindrical portion.

Claims (8)

検出素子の前端側に形成された検出部を覆うプロテクタが、第一筒状部と、該第一筒状部の外側に略同軸状に配置される第二筒状部とを備え、
前記第一筒状部の側壁部に第一側ガス入口が周方向に沿って複数形成されるとともに、前記第二筒状部の側壁部に第二側ガス入口が形成され、
該第二側ガス入口に、被測定ガスを前記第一筒状部と前記第二筒状部との間に導入し、かつ前記第一筒状部の側壁部外面を取り囲む旋回流を発生させるためのガイド体を配置し
前記第二側ガス入口を含む軸直交断面において、前記ガイド体のガス導入面の前記被測定ガス導入方向への延長線(以下、ガス導入線という)が、前記第一筒状部の側壁部外面よりも径方向外側に離間して位置するように、前記第一筒状部の前端側の側壁部が軸方向前端側ほど小径となる縮径部に形成されたことを特徴とするガスセンサ。
A protector that covers the detection portion formed on the front end side of the detection element includes a first cylindrical portion and a second cylindrical portion that is disposed substantially coaxially outside the first cylindrical portion,
A plurality of first side gas inlets are formed along the circumferential direction in the side wall portion of the first cylindrical portion, and a second side gas inlet is formed in the side wall portion of the second cylindrical portion,
A gas to be measured is introduced into the second side gas inlet between the first cylindrical portion and the second cylindrical portion, and a swirling flow surrounding the outer surface of the side wall portion of the first cylindrical portion is generated. the guide body is arranged for,
In a cross section perpendicular to the axis including the second side gas inlet, an extension line (hereinafter referred to as a gas introduction line) of the gas introduction surface of the guide body in the measurement gas introduction direction is a side wall portion of the first cylindrical portion. A gas sensor characterized in that the side wall portion on the front end side of the first cylindrical portion is formed in a reduced diameter portion that becomes smaller in diameter toward the front end side in the axial direction so as to be spaced apart from the outer surface in the radial direction .
前記ガイド体は、前記第二筒状部の側壁部から径方向内側に向けて一体的に延出されている請求項1記載のガスセンサ。  The gas sensor according to claim 1, wherein the guide body is integrally extended toward a radially inner side from a side wall portion of the second cylindrical portion. 前記ガイド体は、前記第二筒状部の側壁部において、湾曲した切れ目を作成し、この切れ目により生ずる爪状部を径方向内側に折り曲げることで構成されている請求項1又は2記載のガスセンサ。  3. The gas sensor according to claim 1, wherein the guide body is formed by creating a curved cut in the side wall portion of the second cylindrical portion and bending a claw-like portion generated by the cut into a radially inner side. . 前記第一側ガス入口は前記第二側ガス入口よりも軸方向後端側に配置されている請求項1ないし3のいずれかに記載のガスセンサ。  The gas sensor according to any one of claims 1 to 3, wherein the first gas inlet is disposed on the rear end side in the axial direction with respect to the second gas inlet. 前記第一筒状部の前端側の側壁部には、軸方向前端側ほど小径となる縮径部が形成されるとともに、前記第一筒状部の前端面に第一側ガス出口が形成されている請求項1ないし4のいずれかに記載のガスセンサ。 The side wall portion on the front end side of the first tubular portion is formed with a reduced diameter portion having a smaller diameter toward the front end side in the axial direction, and a first side gas outlet is formed on the front end surface of the first tubular portion. The gas sensor according to any one of claims 1 to 4. 前記第二側ガス入口は、前記第一筒状部の前記縮径部と対向する位置に配置されている請求項5記載のガスセンサ。The gas sensor according to claim 5, wherein the second side gas inlet is disposed at a position facing the reduced diameter portion of the first cylindrical portion . 前記第二筒状部の前端面に第二側ガス出口が形成されている請求項1ないし6のいずれかに記載のガスセンサ。The gas sensor according to any one of claims 1 to 6, wherein a second-side gas outlet is formed on a front end surface of the second cylindrical portion . 軸直交断面において、前記第二筒状部の前記第二側ガス出口は、前記第一筒状部の前端面に形成される第一側ガス出口に対して径方向に離間して位置している請求項7記載のガスセンサ。 In the cross section orthogonal to the axis, the second side gas outlet of the second cylindrical portion is located radially away from the first side gas outlet formed on the front end surface of the first cylindrical portion. The gas sensor according to claim 7.
JP2000023059A 1999-07-23 2000-01-31 Gas sensor Expired - Fee Related JP4194648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000023059A JP4194648B2 (en) 1999-07-23 2000-01-31 Gas sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-208925 1999-07-23
JP1999208925 1999-07-23
JP2000023059A JP4194648B2 (en) 1999-07-23 2000-01-31 Gas sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008161660A Division JP4398501B2 (en) 1999-07-23 2008-06-20 Gas sensor

Publications (2)

Publication Number Publication Date
JP2001099807A JP2001099807A (en) 2001-04-13
JP4194648B2 true JP4194648B2 (en) 2008-12-10

Family

ID=26517127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000023059A Expired - Fee Related JP4194648B2 (en) 1999-07-23 2000-01-31 Gas sensor

Country Status (1)

Country Link
JP (1) JP4194648B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030351B2 (en) * 2001-06-20 2008-01-09 株式会社デンソー Gas sensor
JP2003107033A (en) * 2001-07-27 2003-04-09 Denso Corp Gas sensor
JP4669638B2 (en) * 2001-07-31 2011-04-13 日本特殊陶業株式会社 Gas sensor
WO2004023130A1 (en) 2002-08-27 2004-03-18 Ngk Spark Plug Co., Ltd. Gas sensor
JP3978384B2 (en) * 2002-10-04 2007-09-19 日本特殊陶業株式会社 Gas sensor
JP4131242B2 (en) 2003-01-20 2008-08-13 株式会社デンソー Gas sensor
JP4105570B2 (en) * 2003-03-17 2008-06-25 株式会社日立製作所 Oxygen sensor
JP4124135B2 (en) 2004-02-13 2008-07-23 株式会社デンソー Gas sensor
US7534332B2 (en) * 2004-03-09 2009-05-19 Ngk Spark Plug Co., Ltd. Gas sensor manufacturing process, and gas sensor
JP4950675B2 (en) * 2006-03-17 2012-06-13 日立オートモティブシステムズ株式会社 Exhaust gas sensor
JP5130392B2 (en) * 2006-03-17 2013-01-30 日立オートモティブシステムズ株式会社 Exhaust gas sensor
JP4725494B2 (en) * 2006-04-27 2011-07-13 株式会社デンソー Gas sensor
JP4765865B2 (en) 2006-09-21 2011-09-07 株式会社デンソー Gas sensor
JP5000984B2 (en) * 2006-11-06 2012-08-15 日本特殊陶業株式会社 Gas sensor
JP2008164307A (en) * 2006-12-26 2008-07-17 Yazaki Corp Gas sensor and stirrer therefor
JP4809781B2 (en) * 2007-01-18 2011-11-09 日本特殊陶業株式会社 Gas sensor
DE102007016976B4 (en) * 2007-04-10 2021-07-29 Bayerische Motoren Werke Aktiengesellschaft Protective cap for a gas sensor and gas sensor
JP4423309B2 (en) * 2007-05-10 2010-03-03 日本特殊陶業株式会社 Gas sensor
JP4938588B2 (en) * 2007-08-08 2012-05-23 日本特殊陶業株式会社 Gas sensor
JP4938587B2 (en) * 2007-08-08 2012-05-23 日本特殊陶業株式会社 Gas sensor
JP5022170B2 (en) * 2007-10-12 2012-09-12 日本特殊陶業株式会社 Gas sensor
JP5108640B2 (en) * 2008-06-10 2012-12-26 株式会社豊田中央研究所 Gas detector
JP5545908B2 (en) * 2010-05-18 2014-07-09 日本碍子株式会社 Gas concentration detection sensor
JP5171896B2 (en) * 2010-07-15 2013-03-27 日本特殊陶業株式会社 Gas sensor
JP5890765B2 (en) 2011-11-18 2016-03-22 日本碍子株式会社 Gas sensor
US9435669B2 (en) 2012-12-20 2016-09-06 Robert Bosch Gmbh Intake gas sensor with vortex for internal combustion engine
DE102015224460A1 (en) * 2015-12-07 2017-06-08 Robert Bosch Gmbh gas sensor
DE102018203389A1 (en) * 2017-05-30 2018-12-06 Robert Bosch Gmbh gas sensor

Also Published As

Publication number Publication date
JP2001099807A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
JP4194648B2 (en) Gas sensor
JP4260324B2 (en) Gas sensor
JP4131242B2 (en) Gas sensor
US6346179B1 (en) Gas sensor
US7607340B2 (en) Gas sensor
US6726819B2 (en) Gas sensor
JP4124135B2 (en) Gas sensor
CN101178377B (en) Gas sensor
JP4838871B2 (en) Gas sensor
JP2003107033A (en) Gas sensor
JP4398501B2 (en) Gas sensor
US6682639B2 (en) Gas sensor
WO2004023130A1 (en) Gas sensor
JP6158792B2 (en) Gas sensor
JP2003043002A (en) Gas sensor
JP3798686B2 (en) Gas sensor
JP3803057B2 (en) Gas sensor
JP4171376B2 (en) Gas sensor
EP0981045B1 (en) Gas sensor
JP4080526B2 (en) Gas sensor
JP3529626B2 (en) Oxygen sensor
JP2010066075A (en) Gas sensor
JP2006058144A (en) Gas sensor
JPS5814051A (en) Exhaust gas sensor for internal combustion engine
JP4518054B2 (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080923

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees