JP4193364B2 - Electric car - Google Patents

Electric car Download PDF

Info

Publication number
JP4193364B2
JP4193364B2 JP2001059539A JP2001059539A JP4193364B2 JP 4193364 B2 JP4193364 B2 JP 4193364B2 JP 2001059539 A JP2001059539 A JP 2001059539A JP 2001059539 A JP2001059539 A JP 2001059539A JP 4193364 B2 JP4193364 B2 JP 4193364B2
Authority
JP
Japan
Prior art keywords
battery
motor
vehicle
power
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001059539A
Other languages
Japanese (ja)
Other versions
JP2002262404A (en
Inventor
浩文 小濱
裕明 吉田
信也 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2001059539A priority Critical patent/JP4193364B2/en
Publication of JP2002262404A publication Critical patent/JP2002262404A/en
Application granted granted Critical
Publication of JP4193364B2 publication Critical patent/JP4193364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バッテリに蓄積された電力によりモータを駆動して車両を走行させる電気自動車に関し、特にバッテリに充電する発電機及びこの発電機を駆動するエンジンを搭載したシリーズ式ハイブリッド電気自動車に用いて好適である。
【0002】
【従来の技術】
例えば、シリーズ式ハイブリッド電気自動車は、車両に搭載されたバッテリに蓄電された電力、あるいは、エンジンが駆動することで発電機が発電する電力を選択的に使用し、この電力によってモータを駆動し、このモータの出力軸に駆動連結された駆動輪を回転駆動することで車両を走行させるものである。
【0003】
この場合、ハイブリッド電気自動車では、バッテリに充電された電力によりあとどのくらい走行し続けられるかを検出することが重要であり、常時、バッテリの充電容量を検出し、適切な時期に発電を行ってバッテリの充電を行っている。即ち、走行開始前に充電機等によって予めバッテリに電力を蓄電してバッテリ充電率を100%としておき、この状態からモータを駆動して電気自動車の走行を開始する。すると、走行時間の経過に伴ってバッテリ充電率が低下し、このバッテリ充電率が下限値まで低下すると、このときにエンジンを駆動して発電機による発電を開始し、電力をバッテリに蓄電する。そして、バッテリ充電率が上限値まで上昇するとエンジンを停止し、再び、バッテリの電力のみでモータを駆動して電気自動車を走行する。
【0004】
しかしながら、ハイブリッド電気自動車にて、バッテリの残存容量を検出してドライバに表示しても、ドライバとしては、バッテリに充電された電力で何キロ走行できるかが重要であり、充電容量よりも継続走行可能距離を表示することが望まれている。
【0005】
そこで、バッテリの残存容量に代えて走行可能距離を表示する電気自動車が、例えば、特開平9−191505号公報に開示されている。この公報に開示された「電気自動車の走行可能距離算出装置」は、車両の走行中に、一定時間経過する間でのバッテリからモータに流れる電流と指定容量電圧とからその間の走行距離の消費量を求めた後、この消費量と前回走行停止時の電池総容量と走行距離とから単位距離当たりの消費量を求め、この単位距離当たりの消費量と指定容量電圧とから以後の走行可能距離を求めるものである。
【0006】
【発明が解決しようとする課題】
上述した従来の「電気自動車の走行可能距離算出装置」にあっては、走行前に前回停止時における電池の総容量を予め求めておき、今回走行開始後にこの総容量と走行距離とその消費量とに基づいて単位距離当たりの消費量、並びに走行可能距離を求めている。そのため、前回の走行停止時と今回の走行開始時との間に長時間経過している場合には、バッテリの自己放電により電池の総容量が変動し、走行可能距離を高精度に算出することができない。
【0007】
また、ハイブリッド電気自動車では、バッテリに発電機及びエンジンが接続されており、充電容量が低下したら発電を行ってバッテリの充電を行っている。ところが、車両が登坂路走行や高速走行などの高負荷運転を行った場合、モータ消費電力がバッテリ供給電力よりも大きくなり、現在の運転状態では、走行可能距離が限られてしまい、いずれはバッテリ充電容量がゼロとなり、走行不能となってしまう。上述した従来技術は電気自動車に関するものであり、単に走行可能距離を求めるだけであり、このような点が考慮されていない。
【0008】
本発明はこのような問題を解決するものであって、車両の継続走行可能距離を高精度に表示すると共に、高負荷運転時にはドライバに注意を促して走行不能となることを抑制した電気自動車を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するための請求項1の発明の電気自動車では、車両を駆動する駆動用モータと、該駆動用モータに電力を供給するバッテリと、該バッテリに電力を蓄積する発電機と、該発電機を駆動するエンジンと、前記バッテリから前記駆動用モータに出力される消費電力を検出するモータ消費電力検出手段と、前記発電機から前記バッテリに蓄積される供給電力を検出するバッテリ供給電力検出手段と、前記モータ消費電力が前記バッテリ供給電力よりも大きいときに警報を発する警報手段とを具えたことを特徴とする。
【0010】
従って、車両が登坂路走行や高速走行などの高負荷運転を行うと、バッテリ充電が容量著しく減少して走行不能になってしまうが、この高負荷運転を、モータ消費電力がバッテリ供給電力よりも大きくなることで検出し、このときに警報を発してドライバに注意を促すことができ、その結果、高負荷運転を中止してバッテリ充電容量の減少を阻止し、車両の走行不能を防止できる。
【0011】
また、請求項の発明の電気自動車では、前記バッテリの充電容量を検出する充電容量検出手段と、該バッテリ充電容量の低下率を検出する充電容量低下率算出手段と、前記車両の平均車速を算出する平均車速算出手段と、前記バッテリ充電容量と前記充電容量の低下率と前記平均車速とに基づいて継続走行可能距離を算出する継続走行可能距離算出手段とを更に備え、前記警報手段は前記モータ消費電力が前記バッテリ供給電力よりも大きいときに前記警報として前記継続走行可能距離を表示することを特徴とする。
【0012】
また、請求項の発明の電気自動車では、請求項に記載する電気自動車において、前記警報手段は前記継続走行可能距離の表示と共に警告音を鳴らすことを特徴とする。
【0013】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を詳細に説明する。
【0014】
図1に本発明の一実施形態に係る電気自動車の概略構成、図2に本実施形態の電気自動車における継続走行可能距離表示のフローチャート、図3に平均車速の算出方法を説明するためのグラフ、図4にバッテリ充電率の低下率の算出方法を説明するためのグラフを示す。
【0015】
以下に示す実施形態では、本発明の電気自動車をシリーズ式ハイブリッド電気自動車に適用して説明する。図1に示すように、車両に搭載されるエンジン11は燃料にガソリンを使用する内燃機関(メタノールやLPG、CNGエンジンでもよい。)であり、このエンジン11の出力軸に発電機12が連結されている。この発電機12にはモータコントローラ13及びモータ14が電気的に接続されており、このモータ14の出力軸には図示しない駆動輪が連結されている。そして、モータコントローラ13にはアクセル開度センサ15が接続されており、ドライバが踏み込み操作するアクセルペダル16の開度θが入力する。
【0016】
また、発電機12とモータコントローラ13との間にバッテリ17が接続されており、バッテリ17にはこのバッテリ17からモータ14に出力される消費電流IM を検出する第1電流センサ(モータ消費電力検出手段)18と、発電機12からバッテリ17に蓄積される供給電流IG を検出する第2電流センサ(バッテリ供給電力検出手段)19が接続されると共に、バッテリ17の端子電圧Vを検出する電圧センサ20が接続されている。
【0017】
そして、第1電流センサ18と第2電流センサ19と電圧センサ20は制御装置21に接線されており、検出した消費電流IM と供給電流IG と端子電圧Vとが入力する。制御装置20はこれらの入力値に基づいてエンジン11及び発電機12を作動制御する。
【0018】
このように構成されたハイブリッド電気自動車にて、ドライバがアクセルペダル16を踏み込み操作すると、アクセル開度センサ15はアクセル開度θをモータコントローラ13に出力する。モータコントローラ13はこのアクセル開度θに応じた要求出力を演算し、バッテリ17からモータ14に要求出力に応じた電流IM を出力してモータ14を駆動し、車両を所望の速度で走行させる。
【0019】
車両の走行に伴ってバッテリ17の残存容量が低下するため、制御装置21は第1電流センサ18が検出した消費電流IM からバッテリ充電率SOCを算出しており、このバッテリ充電率SOCが予め設定した下限値まで低下すると、エンジン11を駆動して発電機12による発電を開始し、バッテリ17に電力を蓄積する。そして、前述した消費電流IM と第2電流センサ19が検出した供給電流IG とからバッテリ充電率SOCを算出し、このバッテリ充電率SOCが予め設定した上限値まで上昇するとエンジン11を停止し、再び、バッテリ17の電力のみでモータ14を駆動して車両を走行させる。
【0020】
ところで、本実施形態にて、制御装置21はモータ消費電流IM がバッテリ供給電流IG よりも大きいときに、車両の高負荷運転と判定し、バッテリ充電率SOCとこのSOC低下率RSOC と平均車速Va とに基づいて継続走行可能距離Dを算出(継続走行可能距離算出手段)し、この継続走行可能距離Dを表示(表示手段)してドライバに警報を発する(警報手段)ようにしている。即ち、制御装置21には車速センサ22が接続されて車速Vが入力されると共に、表示部(例えば、インストルメントパネルのディスプレイ)23が接続されて継続走行可能距離Dを表示可能となっている。
【0021】
ここで、この制御装置21による継続走行可能距離Dの表示制御及び警報制御について、図2のフローチャート、並びに図3予備図4のグラフを用いて詳細に説明する。
【0022】
図2に示すように、エンジン11により発電機12が駆動し、バッテリ17に充電すると共に、この発電力あるいはバッテリ17の充電力によりモータ14を駆動して車両を走行させる車両のハイブリッド運転状態のとき、ステップS1において、モータ消費電流IM がバッテリ供給電流IG よりも大きいかどうかを判定する。この場合、所定時間、例えば、5分間におけるモータ消費電流IM の積算値とバッテリ供給電流IG の積算値とを比較して判定する。そして、このステップS1にて、モータ消費電流IM よりもバッテリ供給電流IG の方が大きい、つまり、車両が低負荷運転状態であって、発電機12の駆動により発電した電力がバッテリ17に蓄積され、バッテリ17の充電率SOCが増加していれば、ステップS7にて、表示部23に何も表示しないでこのルーチンを抜ける。
【0023】
一方、ステップS1にて、モータ消費電流IM がバッテリ供給電流IG よりも大きい、つまり、車両が高負荷運転状態であって、発電機12を駆動してもバッテリ17の充電率SOCが増加しなければ、ステップS2に移行する。このステップS2では、車速センサ22が検出した車速Vを用い、図3に示すグラフ及び下記数式(1)に基づいて所定時間、例えば、20分間(t2−t1)の平均車速Va を算出する。なお、ΔVtは車速の変化量である。
【数1】

Figure 0004193364
【0024】
次に、ステップS3では、前述したバッテリ充電率SOCを用い、図4に示すグラフ及び下記数式(2)に基づいて所定時間、例えば、20分間(t2−t1)のバッテリ充電率SOCの低下率RSOC を算出する。
【数2】
Figure 0004193364
【0025】
そして、ステップS4にて、現在のバッテリ充電率SOCと算出した低下率RSOC を用い、下記数式(3)に基づいて基づいて継続走行可能時間Tを算出する。
【数3】
Figure 0004193364
【0026】
更に、ステップS5にて、平均車速Va と継続走行可能時間Tを用い、下記数式(4)に基づいて基づいて継続走行可能距離Dを算出する。
【数4】
Figure 0004193364
【0027】
ステップS6では、算出した継続走行可能距離Dを表示部23に表示する。このように継続走行可能距離Dが表示部23に表示されると、ドライバは、車両の高負荷運転状態を認識することとなり、車速を低下させるなどしてこの高負荷運転を中止することとなる。そして、高負荷運転を中止すると、ステップS1の判定処理にて、モータ消費電流IM よりもバッテリ供給電流IG の方が大きくなり、発電機12の駆動により発電した電力がバッテリ17に蓄積され、バッテリ17の充電率SOCが増加するため、ステップS7に移行して表示部23の表示をやめてこのルーチンを抜ける。
【0028】
このように本実施形態のシリーズ式ハイブリッド電気自動車にあっては、モータ消費電流IM がバッテリ供給電流IG よりも大きいときには、バッテリ充電率SOCとこのSOC低下率RSOC と平均車速Va とに基づいて継続走行可能距離Dを算出し、この継続走行可能距離Dを表示することで、ドライバに対して高負荷運転状態であって、この運転状態ではあと距離Dしか走行することができないと認識させている。従って、ドライバは、車速を低下させるなどして高負荷運転を中止し、バッテリ17のバッテリ充電率SOCを増加させ、車両が走行不能となることを防止することができる。
【0029】
なお、モータ消費電流IM がバッテリ供給電流IG よりも大きいときに、算出した継続走行可能距離Dを表示すると共に、警告音を鳴らしてドライバに対して注意を促すようにしてもよい。また、エンジン11を駆動する燃料が無くなって発電機12による発電ができなくなったときは、車両がハイブリッド運転状態でなくても、継続走行可能距離Dを表示するようにしてもよい。
【0030】
また、上述の実施形態では、本発明の電気自動車をシリーズ式ハイブリッド電気自動車に適用して説明したが、エンジン11や発電機12が搭載されていない電気自動車にも適用することができるものであり、また、パラレル式ハイブリッド電気自動車に適用してもよい。
【0031】
【発明の効果】
以上、実施形態において詳細に説明したように請求項1の発明の電気自動車によれば、モータ消費電力がバッテリ供給電力よりも大きいときに警報を発するようにしたので、車両が登坂路走行や高速走行などの高負荷運転を行うと、バッテリ充電が容量著しく減少して走行不能になってしまうが、この高負荷運転を、モータ消費電力がバッテリ供給電力よりも大きくなることで検出し、このときに警報を発してドライバに注意を促すことができ、その結果、高負荷運転を中止してバッテリ充電容量の減少を阻止し、車両が走行不能状態となるのを防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電気自動車の概略構成図である。
【図2】本実施形態の電気自動車における継続走行可能距離表示のフローチャートである。
【図3】平均車速の算出方法を説明するためのグラフである。
【図4】バッテリ充電率の低下率の算出方法を説明するためのグラフである。
【符号の説明】
11 エンジン
12 発電機
13 モータコントローラ
14 モータ
17 バッテリ
18 第1電流センサ(モータ消費電力検出手段)
19 第2電流センサ(バッテリ供給電力検出手段)
20 電圧センサ
21 制御装置(充電容量検出手段、充電容量低下率算出手段、平均車速算出手段、継続走行可能距離算出手段)
22 車速センサ
23 表示部(表示手段、警報手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric vehicle for driving a vehicle by driving a motor with electric power stored in a battery, and more particularly to a generator for charging a battery and a series hybrid electric vehicle equipped with an engine for driving the generator. Is preferred.
[0002]
[Prior art]
For example, a series hybrid electric vehicle selectively uses electric power stored in a battery mounted on a vehicle, or electric power generated by a generator by driving an engine, and drives a motor with this electric power. The vehicle is driven by rotationally driving a drive wheel that is drivingly connected to the output shaft of the motor.
[0003]
In this case, in a hybrid electric vehicle, it is important to detect how long the vehicle can continue to be driven by the electric power charged in the battery, and the battery charge capacity is always detected and the battery is generated by generating power at an appropriate time. Is charging. That is, the battery is charged in advance by a battery charger or the like before the start of running to set the battery charging rate to 100%, and the motor is driven from this state to start running the electric vehicle. Then, as the travel time elapses, the battery charging rate decreases. When the battery charging rate decreases to the lower limit value, the engine is driven at this time to start power generation by the generator, and the power is stored in the battery. Then, when the battery charge rate rises to the upper limit value, the engine is stopped, and the electric vehicle is driven by driving the motor again only with the battery power.
[0004]
However, even if the remaining capacity of the battery is detected and displayed on the driver in a hybrid electric vehicle, it is important for the driver to know how many kilometers the battery can run with the power charged in the battery. It is desired to display the possible distance.
[0005]
Thus, an electric vehicle that displays a travelable distance instead of the remaining capacity of the battery is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-191505. The "electric vehicle mileage calculating device" disclosed in this publication is a consumption amount of mileage between a current flowing from a battery to a motor and a specified capacity voltage during a certain period of time while the vehicle is running. Then, the consumption per unit distance is obtained from this consumption, the total battery capacity at the time of the previous stoppage, and the distance traveled, and the subsequent travelable distance is calculated from the consumption per unit distance and the specified capacity voltage. It is what you want.
[0006]
[Problems to be solved by the invention]
In the conventional “electric vehicle mileage calculating device” described above, the total capacity of the battery at the time of the previous stop is obtained in advance before traveling, and the total capacity, the traveling distance, and its consumption amount after starting the current traveling. Based on the above, the consumption per unit distance and the travelable distance are obtained. Therefore, if a long time has elapsed between the last stop of travel and the start of this travel, the total capacity of the battery will fluctuate due to the self-discharge of the battery, and the travelable distance will be calculated with high accuracy. I can't.
[0007]
In the hybrid electric vehicle, a generator and an engine are connected to the battery, and when the charging capacity is reduced, the battery is charged by generating power. However, when the vehicle performs high-load driving such as uphill traveling or high-speed driving, the motor power consumption becomes larger than the battery supply power, and the current driving state limits the travelable distance. The charge capacity becomes zero and the vehicle cannot run. The above-described prior art relates to an electric vehicle, and merely calculates a travelable distance, and this point is not taken into consideration.
[0008]
The present invention solves such a problem, and displays an electric vehicle capable of displaying the distance that the vehicle can continuously travel with high accuracy and that prevents the driver from being unable to travel during high-load driving by alerting the driver. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In the electric vehicle of the invention of claim 1 for achieving the above object, a drive motor for driving the vehicle, a battery for supplying electric power to the drive motor, a generator for storing electric power in the battery, Engine for driving the generator, motor power consumption detecting means for detecting power consumption output from the battery to the driving motor, and battery power supply for detecting supply power accumulated in the battery from the generator It is characterized by comprising detection means and alarm means for issuing an alarm when the motor power consumption is larger than the battery supply power.
[0010]
Therefore, when the vehicle performs a high load operation such as traveling on an uphill road or at a high speed, the battery charge is remarkably reduced and the vehicle cannot be driven. However, the motor power consumption is higher than the battery supply power. It can be detected by increasing, and an alarm can be issued at this time to alert the driver. As a result, the high-load operation can be stopped to prevent the battery charge capacity from decreasing, thereby preventing the vehicle from being unable to run.
[0011]
Further, in the electric vehicle of the invention of claim 1, the charge amount detection means for detecting a charging capacity before Symbol battery, and charge capacity decrease rate calculating means for detecting the rate of decrease in the battery charge capacity, the average speed of the vehicle Average vehicle speed calculation means for calculating the battery charge capacity, a reduction rate of the charge capacity, and a continuous travelable distance calculation means for calculating a continuous travelable distance based on the average vehicle speed, and the warning means When the motor power consumption is larger than the battery supply power, the continuous travelable distance is displayed as the alarm.
[0012]
Further, in the electric vehicle according to a second aspect of the present invention, in the electric vehicle according to the first aspect , the warning means sounds a warning sound together with the indication of the continuously travelable distance.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
FIG. 1 is a schematic configuration of an electric vehicle according to an embodiment of the present invention, FIG. 2 is a flowchart of displaying a distance that can be continuously traveled in the electric vehicle of the present embodiment, and FIG. 3 is a graph for explaining a method for calculating an average vehicle speed. FIG. 4 shows a graph for explaining a method for calculating the rate of decrease of the battery charge rate.
[0015]
In the embodiments described below, the electric vehicle of the present invention will be described by applying it to a series hybrid electric vehicle. As shown in FIG. 1, an engine 11 mounted on a vehicle is an internal combustion engine (may be methanol, LPG, or CNG engine) that uses gasoline as a fuel, and a generator 12 is connected to an output shaft of the engine 11. ing. A motor controller 13 and a motor 14 are electrically connected to the generator 12, and driving wheels (not shown) are connected to the output shaft of the motor 14. An accelerator opening sensor 15 is connected to the motor controller 13, and an opening degree θ of an accelerator pedal 16 that is depressed by the driver is input.
[0016]
The battery 17 is connected between the generator 12 and the motor controller 13, the battery 17 a first current sensor (motor power consumption for detecting the consumption current I M that is output from the battery 17 to the motor 14 and detecting means) 18, the second current sensor (battery supply electric power detecting means) 19 for detecting the supply current I G to be accumulated from the generator 12 to the battery 17 is connected, detecting a terminal voltage V of the battery 17 A voltage sensor 20 is connected.
[0017]
The first current sensor 18, the second current sensor 19, and the voltage sensor 20 are tangent to the control device 21, and the detected consumption current I M , supply current I G, and terminal voltage V are input. The control device 20 controls the operation of the engine 11 and the generator 12 based on these input values.
[0018]
When the driver depresses the accelerator pedal 16 in the hybrid electric vehicle configured as described above, the accelerator opening sensor 15 outputs the accelerator opening θ to the motor controller 13. The motor controller 13 calculates a required output corresponding to the accelerator opening θ, outputs a current I M corresponding to the required output from the battery 17 to the motor 14, drives the motor 14, and drives the vehicle at a desired speed. .
[0019]
Since the remaining capacity of the battery 17 with the running of the vehicle is lowered, the controller 21 is to calculate the battery charging rate SOC from the current consumption I M by the first current sensor 18 detects, the battery charging rate SOC is pre When it falls to the set lower limit, the engine 11 is driven to start power generation by the generator 12 and power is stored in the battery 17. Then, the battery charging rate SOC is calculated from the consumption current I M and the supply current I G detected by the second current sensor 19, and the engine 11 is stopped when the battery charging rate SOC rises to a preset upper limit value. Again, the motor 14 is driven only by the electric power of the battery 17 to drive the vehicle.
[0020]
By the way, in this embodiment, when the motor consumption current I M is larger than the battery supply current I G , the control device 21 determines that the vehicle is operating at a high load, and determines the battery charge rate SOC and the SOC reduction rate R SOC . Based on the average vehicle speed V a , the continuous travelable distance D is calculated (continuous travelable distance calculation means), and the continuous travelable distance D is displayed (display means) to issue a warning to the driver (alarm means). ing. That is, the vehicle speed sensor 22 is connected to the control device 21 and the vehicle speed V is input, and a display unit (for example, a display of an instrument panel) 23 is connected to display the continuously travelable distance D. .
[0021]
Here, the display control and warning control of the continuously travelable distance D by the control device 21 will be described in detail using the flowchart of FIG. 2 and the graph of FIG. 3 preliminary FIG.
[0022]
As shown in FIG. 2, the generator 12 is driven by the engine 11 to charge the battery 17, and the motor 14 is driven by the generated power or the charging power of the battery 17 to drive the vehicle. In step S1, it is determined whether the motor consumption current I M is larger than the battery supply current I G. In this case, the determination is made by comparing the integrated value of the motor consumption current I M and the integrated value of the battery supply current I G for a predetermined time, for example, 5 minutes. In step S 1, the battery supply current I G is larger than the motor consumption current I M , that is, the vehicle is in a low-load operation state, and the power generated by driving the generator 12 is supplied to the battery 17. If accumulated and the charging rate SOC of the battery 17 is increasing, the routine exits without displaying anything on the display unit 23 in step S7.
[0023]
On the other hand, in step S1, the motor consumption current I M is larger than the battery supply current I G , that is, the charge rate SOC of the battery 17 increases even if the vehicle is in a high load operation state and the generator 12 is driven. If not, the process proceeds to step S2. In step S2, the vehicle speed V detected by the vehicle speed sensor 22 is used to calculate an average vehicle speed Va for a predetermined time, for example, 20 minutes (t 2 -t 1 ) based on the graph shown in FIG. 3 and the following equation (1). calculate. ΔVt is a change amount of the vehicle speed.
[Expression 1]
Figure 0004193364
[0024]
Next, in step S3, the battery charge rate SOC of the battery charge rate SOC for a predetermined time, for example, 20 minutes (t 2 -t 1 ) is used based on the graph shown in FIG. A reduction rate R SOC is calculated.
[Expression 2]
Figure 0004193364
[0025]
Then, in step S4, using the current battery charge rate SOC and the calculated decrease rate R SOC , the continuous travelable time T is calculated based on the following formula (3).
[Equation 3]
Figure 0004193364
[0026]
Further, in step S5, using the average vehicle speed V a and continuity travelable time T, calculates a continuous travel distance D based on the basis of the following equation (4).
[Expression 4]
Figure 0004193364
[0027]
In step S <b> 6, the calculated continuous travelable distance D is displayed on the display unit 23. When the continuous travelable distance D is thus displayed on the display unit 23, the driver recognizes the high-load driving state of the vehicle, and stops the high-load driving by reducing the vehicle speed. . When the high load operation is stopped, the battery supply current I G becomes larger than the motor consumption current I M in the determination process of step S 1, and the power generated by driving the generator 12 is accumulated in the battery 17. Since the charging rate SOC of the battery 17 increases, the process proceeds to step S7, the display on the display unit 23 is stopped, and this routine is exited.
[0028]
Thus, in the series hybrid electric vehicle of the present embodiment, when the motor consumption current I M is larger than the battery supply current I G , the battery charge rate SOC, the SOC reduction rate R SOC, and the average vehicle speed V a By calculating the continuous travelable distance D based on the above and displaying this continuous travelable distance D, the driver is in a high-load operation state, and only a further distance D can travel in this operation state. Recognize. Therefore, the driver can stop the high load operation by reducing the vehicle speed, etc., increase the battery charge rate SOC of the battery 17, and prevent the vehicle from being unable to travel.
[0029]
When the motor consumption current I M is larger than the battery supply current I G , the calculated continuous travelable distance D may be displayed and a warning sound may be sounded to alert the driver. Further, when there is no fuel for driving the engine 11 and power generation by the generator 12 becomes impossible, the continuous travelable distance D may be displayed even if the vehicle is not in the hybrid operation state.
[0030]
In the above-described embodiment, the electric vehicle of the present invention is described as applied to a series hybrid electric vehicle. However, the present invention can also be applied to an electric vehicle in which the engine 11 and the generator 12 are not mounted. Further, the present invention may be applied to a parallel hybrid electric vehicle.
[0031]
【The invention's effect】
As described above in detail in the embodiment, according to the electric vehicle of the first aspect of the invention, an alarm is issued when the motor power consumption is larger than the battery supply power. When a high load operation such as traveling is performed, the battery charge is remarkably reduced and the traveling becomes impossible, but this high load operation is detected when the motor power consumption becomes larger than the battery supply power. A warning can be issued to alert the driver, and as a result, the high-load operation can be stopped to prevent the battery charge capacity from decreasing and the vehicle from being disabled.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an electric vehicle according to an embodiment of the present invention.
FIG. 2 is a flowchart of a continuous travelable distance display in the electric vehicle of the present embodiment.
FIG. 3 is a graph for explaining a method of calculating an average vehicle speed.
FIG. 4 is a graph for explaining a method for calculating a rate of decrease in battery charge rate.
[Explanation of symbols]
11 Engine 12 Generator 13 Motor controller 14 Motor 17 Battery 18 First current sensor (Motor power consumption detection means)
19 Second current sensor (battery supply power detection means)
20 Voltage sensor 21 Control device (charge capacity detection means, charge capacity decrease rate calculation means, average vehicle speed calculation means, continuous travelable distance calculation means)
22 Vehicle speed sensor 23 Display section (display means, alarm means)

Claims (2)

車両を駆動する駆動用モータと、
該駆動用モータに電力を供給するバッテリと、
該バッテリに電力を蓄積する発電機と、
該発電機を駆動するエンジンと、
前記バッテリから前記駆動用モータに出力される消費電力を検出するモータ消費電力検出手段と、
前記発電機から前記バッテリに蓄積される供給電力を検出するバッテリ供給電力検出手段と、
前記モータ消費電力が前記バッテリ供給電力よりも大きいときに警報を発する警報手段とを具え
前記バッテリの充電容量を検出する充電容量検出手段と、
該バッテリ充電容量の低下率を検出する充電容量低下率算出手段と、
前記車両の平均車速を算出する平均車速算出手段と、
前記バッテリ充電容量と前記充電容量の低下率と前記平均車速とに基づいて継続走行可能距離を算出する継続走行可能距離算出手段とを更に備え、
前記警報手段は前記モータ消費電力が前記バッテリ供給電力よりも大きいときに前記警報として前記継続走行可能距離を表示する
ことを特徴とする電気自動車。
A drive motor for driving the vehicle;
A battery for supplying power to the drive motor;
A generator for storing electric power in the battery;
An engine that drives the generator;
Motor power consumption detection means for detecting power consumption output from the battery to the drive motor;
Battery supply power detection means for detecting supply power stored in the battery from the generator;
Alarm means for issuing an alarm when the motor power consumption is greater than the battery supply power ,
Charge capacity detection means for detecting the charge capacity of the battery;
Charging capacity reduction rate calculating means for detecting the battery charging capacity reduction rate;
Average vehicle speed calculating means for calculating an average vehicle speed of the vehicle;
A continuous travelable distance calculating means for calculating a continuous travelable distance based on the battery charge capacity, the rate of decrease of the charge capacity, and the average vehicle speed;
The electric vehicle according to claim 1, wherein the warning means displays the continuous travelable distance as the warning when the motor power consumption is larger than the battery supply power .
前記警報手段は前記継続走行可能距離の表示と共に警告音を鳴らす
ことを特徴とする請求項に記載の電気自動車。
The electric vehicle according to claim 1 , wherein the warning unit sounds a warning sound together with the display of the continuous travelable distance.
JP2001059539A 2001-03-05 2001-03-05 Electric car Expired - Fee Related JP4193364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001059539A JP4193364B2 (en) 2001-03-05 2001-03-05 Electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001059539A JP4193364B2 (en) 2001-03-05 2001-03-05 Electric car

Publications (2)

Publication Number Publication Date
JP2002262404A JP2002262404A (en) 2002-09-13
JP4193364B2 true JP4193364B2 (en) 2008-12-10

Family

ID=18919087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059539A Expired - Fee Related JP4193364B2 (en) 2001-03-05 2001-03-05 Electric car

Country Status (1)

Country Link
JP (1) JP4193364B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143169A (en) * 2003-11-05 2005-06-02 Yamaha Motor Co Ltd Electric vehicle
JP2008120186A (en) * 2006-11-10 2008-05-29 Toyota Motor Corp Hybrid vehicle, and motor cruisable area displaying method
JP4692646B2 (en) 2009-02-04 2011-06-01 株式会社デンソー Power source control device
MX2012003116A (en) 2009-09-15 2012-06-19 Kpit Cummins Infosystems Ltd Method of providing assistance for a hybrid vehicle based on user input.
EP2477833B1 (en) * 2009-09-15 2013-11-06 Kpit Cummins Infosystems Limited Motor assistance for a hybrid vehicle based on predicted driving range
WO2011033528A2 (en) 2009-09-15 2011-03-24 Kpit Cummins Infosystems Limited Motor assistance for a hybrid vehicle
JP5914337B2 (en) 2009-09-15 2016-05-11 ケーピーアイティ テクノロジーズ リミテッド How to convert a vehicle to a hybrid vehicle
JP2011102739A (en) * 2009-11-10 2011-05-26 Showa Shell Sekiyu Kk Wide-area guide system of charging station for electric vehicle
JP2013169917A (en) * 2012-02-22 2013-09-02 Toyota Motor Corp Vehicle and vehicle control method
JP5999338B2 (en) * 2012-09-20 2016-09-28 マツダ株式会社 Vehicle cruising distance calculation device
CN105291845A (en) * 2015-11-13 2016-02-03 华晨汽车集团控股有限公司 System for monitoring dynamic energy consumption and driving range of electric automobile
US10661805B2 (en) * 2016-11-22 2020-05-26 Samsung Electronics Co., Ltd. Vehicle control unit (VCU) and operating method thereof
JP7209209B2 (en) * 2018-08-23 2023-01-20 マツダ株式会社 Remaining drivable distance calculation device
KR102648822B1 (en) * 2019-04-24 2024-03-19 현대자동차주식회사 SOC control method and apparatus for improving fuel efficiency of hybrid vehicle
JP7340432B2 (en) * 2019-11-26 2023-09-07 株式会社ミツバ Electric vehicle drive system
CN114537215A (en) * 2022-03-28 2022-05-27 浙江吉利控股集团有限公司 Endurance mileage estimation method, endurance mileage estimation device and storage medium

Also Published As

Publication number Publication date
JP2002262404A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
JP4193364B2 (en) Electric car
JP3409661B2 (en) Control device for hybrid vehicle
US8862376B2 (en) Cruising distance calculation apparatus for a hybrid vehicle
JP5429197B2 (en) Vehicle control device
US6794853B2 (en) Display device for fuel cell vehicle and fuel cell vehicle
US8207838B2 (en) Eco-drive assist apparatus and method
JP3614341B2 (en) Display device for hybrid electric vehicle
US5670830A (en) Fuel use limiter-equipped hybrid electric car
US20140320046A1 (en) Detectible indication of an electric motor vehicle standby mode
JPWO2005068245A1 (en) Hybrid vehicle
US20140236405A1 (en) Controller for hybrid vehicle
JP2013147170A (en) Control apparatus for hybrid vehicle
CN107933314A (en) Electric power supply system
JPH1094295A (en) Control method and controller for belt driven generator
JP4172222B2 (en) Control device for electric vehicle
JP2009027772A (en) Device and method for indicating remaining power of battery
CN102267455B (en) Hybrid motorcycle/scooter and control method thereof
KR101611285B1 (en) electric vehicle and control method thereof
JP3772730B2 (en) Deterioration diagnosis device for vehicle battery
JP2009095143A (en) Control device and control method for vehicle, program having the control method realized by computer, and recoding media having the program recorded thereon
JP2005295617A (en) Power generation controller of hybrid vehicle
JP3044962B2 (en) Motor control device for electric vehicle with engine-driven generator
CN111542448B (en) Fuel consumption display control method and fuel consumption display control system
JP4692083B2 (en) Vehicle that corrects battery SOC change due to solar power generation during vehicle suspension
JPH0998504A (en) Detector for residual capacity of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R151 Written notification of patent or utility model registration

Ref document number: 4193364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees